]>
Commit | Line | Data |
---|---|---|
1ab3bf1b | 1 | /* GDB routines for manipulating objfiles. |
02b40a19 | 2 | Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc. |
1ab3bf1b JG |
3 | Contributed by Cygnus Support, using pieces from other GDB modules. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | /* This file contains support routines for creating, manipulating, and | |
22 | destroying objfile structures. */ | |
23 | ||
1ab3bf1b JG |
24 | #include "defs.h" |
25 | #include "bfd.h" /* Binary File Description */ | |
26 | #include "symtab.h" | |
27 | #include "symfile.h" | |
5e2e79f8 | 28 | #include "objfiles.h" |
610a7e74 | 29 | #include "gdb-stabs.h" |
c5198d93 | 30 | #include "target.h" |
1ab3bf1b | 31 | |
318bf84f FF |
32 | #include <sys/types.h> |
33 | #include <sys/stat.h> | |
34 | #include <fcntl.h> | |
1ab3bf1b JG |
35 | #include <obstack.h> |
36 | ||
318bf84f FF |
37 | /* Prototypes for local functions */ |
38 | ||
1867b3be FF |
39 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
40 | ||
41 | static int | |
42 | open_existing_mapped_file PARAMS ((char *, long, int)); | |
43 | ||
318bf84f | 44 | static int |
b0246b3b | 45 | open_mapped_file PARAMS ((char *filename, long mtime, int mapped)); |
318bf84f FF |
46 | |
47 | static CORE_ADDR | |
48 | map_to_address PARAMS ((void)); | |
49 | ||
1867b3be FF |
50 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ |
51 | ||
5e2e79f8 FF |
52 | /* Externally visible variables that are owned by this module. |
53 | See declarations in objfile.h for more info. */ | |
1ab3bf1b JG |
54 | |
55 | struct objfile *object_files; /* Linked list of all objfiles */ | |
5e2e79f8 FF |
56 | struct objfile *current_objfile; /* For symbol file being read in */ |
57 | struct objfile *symfile_objfile; /* Main symbol table loaded from */ | |
02b40a19 | 58 | struct objfile *rt_common_objfile; /* For runtime common symbols */ |
5e2e79f8 | 59 | |
318bf84f | 60 | int mapped_symbol_files; /* Try to use mapped symbol files */ |
1ab3bf1b | 61 | |
73d0fc78 RP |
62 | /* Locate all mappable sections of a BFD file. |
63 | objfile_p_char is a char * to get it through | |
64 | bfd_map_over_sections; we cast it back to its proper type. */ | |
65 | ||
66 | static void | |
67 | add_to_objfile_sections (abfd, asect, objfile_p_char) | |
68 | bfd *abfd; | |
69 | sec_ptr asect; | |
70 | PTR objfile_p_char; | |
71 | { | |
72 | struct objfile *objfile = (struct objfile *) objfile_p_char; | |
73 | struct obj_section section; | |
74 | flagword aflag; | |
75 | ||
76 | aflag = bfd_get_section_flags (abfd, asect); | |
e14316e7 | 77 | if (!(aflag & SEC_ALLOC)) |
73d0fc78 RP |
78 | return; |
79 | if (0 == bfd_section_size (abfd, asect)) | |
80 | return; | |
81 | section.offset = 0; | |
4365c36c | 82 | section.objfile = objfile; |
94d4b713 | 83 | section.the_bfd_section = asect; |
73d0fc78 RP |
84 | section.addr = bfd_section_vma (abfd, asect); |
85 | section.endaddr = section.addr + bfd_section_size (abfd, asect); | |
86 | obstack_grow (&objfile->psymbol_obstack, §ion, sizeof(section)); | |
5573d7d4 | 87 | objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); |
73d0fc78 RP |
88 | } |
89 | ||
90 | /* Builds a section table for OBJFILE. | |
4d57c599 JK |
91 | Returns 0 if OK, 1 on error (in which case bfd_error contains the |
92 | error). */ | |
73d0fc78 | 93 | |
4d57c599 | 94 | int |
73d0fc78 RP |
95 | build_objfile_section_table (objfile) |
96 | struct objfile *objfile; | |
97 | { | |
e14316e7 JK |
98 | /* objfile->sections can be already set when reading a mapped symbol |
99 | file. I believe that we do need to rebuild the section table in | |
100 | this case (we rebuild other things derived from the bfd), but we | |
101 | can't free the old one (it's in the psymbol_obstack). So we just | |
102 | waste some memory. */ | |
73d0fc78 RP |
103 | |
104 | objfile->sections_end = 0; | |
105 | bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile); | |
ccd87bf2 JK |
106 | objfile->sections = (struct obj_section *) |
107 | obstack_finish (&objfile->psymbol_obstack); | |
5573d7d4 | 108 | objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; |
73d0fc78 RP |
109 | return(0); |
110 | } | |
111 | ||
b0246b3b FF |
112 | /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates |
113 | whether or not an objfile is to be mapped (MAPPED), allocate a new objfile | |
114 | struct, fill it in as best we can, link it into the list of all known | |
115 | objfiles, and return a pointer to the new objfile struct. */ | |
1ab3bf1b JG |
116 | |
117 | struct objfile * | |
b0246b3b | 118 | allocate_objfile (abfd, mapped) |
1ab3bf1b | 119 | bfd *abfd; |
318bf84f | 120 | int mapped; |
1ab3bf1b | 121 | { |
318bf84f | 122 | struct objfile *objfile = NULL; |
7f4c8595 | 123 | struct objfile *last_one = NULL; |
318bf84f FF |
124 | |
125 | mapped |= mapped_symbol_files; | |
126 | ||
127 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) | |
100f92e2 | 128 | { |
318bf84f | 129 | |
100f92e2 JK |
130 | /* If we can support mapped symbol files, try to open/reopen the |
131 | mapped file that corresponds to the file from which we wish to | |
132 | read symbols. If the objfile is to be mapped, we must malloc | |
133 | the structure itself using the mmap version, and arrange that | |
134 | all memory allocation for the objfile uses the mmap routines. | |
135 | If we are reusing an existing mapped file, from which we get | |
136 | our objfile pointer, we have to make sure that we update the | |
137 | pointers to the alloc/free functions in the obstack, in case | |
138 | these functions have moved within the current gdb. */ | |
139 | ||
140 | int fd; | |
141 | ||
142 | fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), | |
143 | mapped); | |
144 | if (fd >= 0) | |
145 | { | |
146 | CORE_ADDR mapto; | |
147 | PTR md; | |
148 | ||
149 | if (((mapto = map_to_address ()) == 0) || | |
150 | ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL)) | |
151 | { | |
152 | close (fd); | |
153 | } | |
154 | else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) | |
155 | { | |
156 | /* Update memory corruption handler function addresses. */ | |
157 | init_malloc (md); | |
158 | objfile -> md = md; | |
159 | objfile -> mmfd = fd; | |
160 | /* Update pointers to functions to *our* copies */ | |
161 | obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc); | |
162 | obstack_freefun (&objfile -> psymbol_obstack, mfree); | |
163 | obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc); | |
164 | obstack_freefun (&objfile -> symbol_obstack, mfree); | |
165 | obstack_chunkfun (&objfile -> type_obstack, xmmalloc); | |
166 | obstack_freefun (&objfile -> type_obstack, mfree); | |
167 | /* If already in objfile list, unlink it. */ | |
168 | unlink_objfile (objfile); | |
169 | /* Forget things specific to a particular gdb, may have changed. */ | |
170 | objfile -> sf = NULL; | |
171 | } | |
172 | else | |
173 | { | |
174 | ||
175 | /* Set up to detect internal memory corruption. MUST be | |
176 | done before the first malloc. See comments in | |
177 | init_malloc() and mmcheck(). */ | |
178 | ||
179 | init_malloc (md); | |
180 | ||
181 | objfile = (struct objfile *) | |
182 | xmmalloc (md, sizeof (struct objfile)); | |
183 | memset (objfile, 0, sizeof (struct objfile)); | |
184 | objfile -> md = md; | |
185 | objfile -> mmfd = fd; | |
186 | objfile -> flags |= OBJF_MAPPED; | |
187 | mmalloc_setkey (objfile -> md, 0, objfile); | |
188 | obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack, | |
189 | 0, 0, xmmalloc, mfree, | |
190 | objfile -> md); | |
191 | obstack_specify_allocation_with_arg (&objfile -> symbol_obstack, | |
192 | 0, 0, xmmalloc, mfree, | |
193 | objfile -> md); | |
194 | obstack_specify_allocation_with_arg (&objfile -> type_obstack, | |
195 | 0, 0, xmmalloc, mfree, | |
196 | objfile -> md); | |
197 | } | |
198 | } | |
199 | ||
200 | if (mapped && (objfile == NULL)) | |
201 | { | |
202 | warning ("symbol table for '%s' will not be mapped", | |
203 | bfd_get_filename (abfd)); | |
204 | } | |
205 | } | |
318bf84f | 206 | #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */ |
1ab3bf1b | 207 | |
318bf84f | 208 | if (mapped) |
1ab3bf1b | 209 | { |
318bf84f FF |
210 | warning ("this version of gdb does not support mapped symbol tables."); |
211 | ||
212 | /* Turn off the global flag so we don't try to do mapped symbol tables | |
213 | any more, which shuts up gdb unless the user specifically gives the | |
214 | "mapped" keyword again. */ | |
215 | ||
216 | mapped_symbol_files = 0; | |
1ab3bf1b | 217 | } |
318bf84f FF |
218 | |
219 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
220 | ||
221 | /* If we don't support mapped symbol files, didn't ask for the file to be | |
222 | mapped, or failed to open the mapped file for some reason, then revert | |
223 | back to an unmapped objfile. */ | |
224 | ||
225 | if (objfile == NULL) | |
1ab3bf1b JG |
226 | { |
227 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
4ed3a9ea | 228 | memset (objfile, 0, sizeof (struct objfile)); |
318bf84f | 229 | objfile -> md = NULL; |
cd46ffad FF |
230 | obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc, |
231 | free); | |
232 | obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc, | |
233 | free); | |
234 | obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc, | |
235 | free); | |
1ab3bf1b JG |
236 | } |
237 | ||
b0246b3b FF |
238 | /* Update the per-objfile information that comes from the bfd, ensuring |
239 | that any data that is reference is saved in the per-objfile data | |
240 | region. */ | |
1ab3bf1b JG |
241 | |
242 | objfile -> obfd = abfd; | |
2d6d969c FF |
243 | if (objfile -> name != NULL) |
244 | { | |
245 | mfree (objfile -> md, objfile -> name); | |
246 | } | |
b0246b3b | 247 | objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd)); |
1ab3bf1b JG |
248 | objfile -> mtime = bfd_get_mtime (abfd); |
249 | ||
73d0fc78 RP |
250 | /* Build section table. */ |
251 | ||
252 | if (build_objfile_section_table (objfile)) | |
253 | { | |
254 | error ("Can't find the file sections in `%s': %s", | |
c4a081e1 | 255 | objfile -> name, bfd_errmsg (bfd_get_error ())); |
73d0fc78 RP |
256 | } |
257 | ||
7f4c8595 | 258 | /* Add this file onto the tail of the linked list of other such files. */ |
1ab3bf1b | 259 | |
7f4c8595 SS |
260 | objfile -> next = NULL; |
261 | if (object_files == NULL) | |
262 | object_files = objfile; | |
263 | else | |
264 | { | |
265 | for (last_one = object_files; | |
266 | last_one -> next; | |
267 | last_one = last_one -> next); | |
268 | last_one -> next = objfile; | |
269 | } | |
1ab3bf1b JG |
270 | return (objfile); |
271 | } | |
272 | ||
3a470454 JK |
273 | /* Put OBJFILE at the front of the list. */ |
274 | ||
275 | void | |
276 | objfile_to_front (objfile) | |
277 | struct objfile *objfile; | |
278 | { | |
279 | struct objfile **objp; | |
280 | for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) | |
281 | { | |
282 | if (*objp == objfile) | |
283 | { | |
284 | /* Unhook it from where it is. */ | |
285 | *objp = objfile->next; | |
286 | /* Put it in the front. */ | |
287 | objfile->next = object_files; | |
288 | object_files = objfile; | |
289 | break; | |
290 | } | |
291 | } | |
292 | } | |
293 | ||
6c316cfd FF |
294 | /* Unlink OBJFILE from the list of known objfiles, if it is found in the |
295 | list. | |
296 | ||
297 | It is not a bug, or error, to call this function if OBJFILE is not known | |
298 | to be in the current list. This is done in the case of mapped objfiles, | |
299 | for example, just to ensure that the mapped objfile doesn't appear twice | |
300 | in the list. Since the list is threaded, linking in a mapped objfile | |
301 | twice would create a circular list. | |
302 | ||
303 | If OBJFILE turns out to be in the list, we zap it's NEXT pointer after | |
304 | unlinking it, just to ensure that we have completely severed any linkages | |
305 | between the OBJFILE and the list. */ | |
306 | ||
307 | void | |
308 | unlink_objfile (objfile) | |
309 | struct objfile *objfile; | |
310 | { | |
311 | struct objfile** objpp; | |
312 | ||
313 | for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next)) | |
314 | { | |
315 | if (*objpp == objfile) | |
316 | { | |
317 | *objpp = (*objpp) -> next; | |
318 | objfile -> next = NULL; | |
319 | break; | |
320 | } | |
321 | } | |
322 | } | |
323 | ||
1ab3bf1b JG |
324 | |
325 | /* Destroy an objfile and all the symtabs and psymtabs under it. Note | |
326 | that as much as possible is allocated on the symbol_obstack and | |
80d68b1d FF |
327 | psymbol_obstack, so that the memory can be efficiently freed. |
328 | ||
329 | Things which we do NOT free because they are not in malloc'd memory | |
330 | or not in memory specific to the objfile include: | |
331 | ||
332 | objfile -> sf | |
333 | ||
2d6d969c FF |
334 | FIXME: If the objfile is using reusable symbol information (via mmalloc), |
335 | then we need to take into account the fact that more than one process | |
336 | may be using the symbol information at the same time (when mmalloc is | |
337 | extended to support cooperative locking). When more than one process | |
338 | is using the mapped symbol info, we need to be more careful about when | |
339 | we free objects in the reusable area. */ | |
1ab3bf1b JG |
340 | |
341 | void | |
342 | free_objfile (objfile) | |
343 | struct objfile *objfile; | |
344 | { | |
2d6d969c FF |
345 | /* First do any symbol file specific actions required when we are |
346 | finished with a particular symbol file. Note that if the objfile | |
347 | is using reusable symbol information (via mmalloc) then each of | |
348 | these routines is responsible for doing the correct thing, either | |
349 | freeing things which are valid only during this particular gdb | |
350 | execution, or leaving them to be reused during the next one. */ | |
1ab3bf1b | 351 | |
80d68b1d FF |
352 | if (objfile -> sf != NULL) |
353 | { | |
354 | (*objfile -> sf -> sym_finish) (objfile); | |
355 | } | |
2d6d969c FF |
356 | |
357 | /* We always close the bfd. */ | |
358 | ||
80d68b1d | 359 | if (objfile -> obfd != NULL) |
1ab3bf1b | 360 | { |
346168a2 | 361 | char *name = bfd_get_filename (objfile->obfd); |
9de0904c JK |
362 | if (!bfd_close (objfile -> obfd)) |
363 | warning ("cannot close \"%s\": %s", | |
364 | name, bfd_errmsg (bfd_get_error ())); | |
346168a2 | 365 | free (name); |
1ab3bf1b JG |
366 | } |
367 | ||
2d6d969c | 368 | /* Remove it from the chain of all objfiles. */ |
1ab3bf1b | 369 | |
6c316cfd | 370 | unlink_objfile (objfile); |
1ab3bf1b | 371 | |
02b40a19 PS |
372 | /* If we are going to free the runtime common objfile, mark it |
373 | as unallocated. */ | |
374 | ||
375 | if (objfile == rt_common_objfile) | |
376 | rt_common_objfile = NULL; | |
377 | ||
1ab3bf1b JG |
378 | /* Before the symbol table code was redone to make it easier to |
379 | selectively load and remove information particular to a specific | |
380 | linkage unit, gdb used to do these things whenever the monolithic | |
381 | symbol table was blown away. How much still needs to be done | |
382 | is unknown, but we play it safe for now and keep each action until | |
383 | it is shown to be no longer needed. */ | |
384 | ||
1ab3bf1b JG |
385 | #if defined (CLEAR_SOLIB) |
386 | CLEAR_SOLIB (); | |
c5198d93 JK |
387 | /* CLEAR_SOLIB closes the bfd's for any shared libraries. But |
388 | the to_sections for a core file might refer to those bfd's. So | |
389 | detach any core file. */ | |
390 | { | |
391 | struct target_ops *t = find_core_target (); | |
392 | if (t != NULL) | |
393 | (t->to_detach) (NULL, 0); | |
394 | } | |
1ab3bf1b | 395 | #endif |
4d57c599 JK |
396 | /* I *think* all our callers call clear_symtab_users. If so, no need |
397 | to call this here. */ | |
1ab3bf1b JG |
398 | clear_pc_function_cache (); |
399 | ||
2d6d969c FF |
400 | /* The last thing we do is free the objfile struct itself for the |
401 | non-reusable case, or detach from the mapped file for the reusable | |
402 | case. Note that the mmalloc_detach or the mfree is the last thing | |
403 | we can do with this objfile. */ | |
1ab3bf1b | 404 | |
55b3ef9a FF |
405 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
406 | ||
2d6d969c FF |
407 | if (objfile -> flags & OBJF_MAPPED) |
408 | { | |
409 | /* Remember the fd so we can close it. We can't close it before | |
410 | doing the detach, and after the detach the objfile is gone. */ | |
100f92e2 JK |
411 | int mmfd; |
412 | ||
2d6d969c FF |
413 | mmfd = objfile -> mmfd; |
414 | mmalloc_detach (objfile -> md); | |
55b3ef9a | 415 | objfile = NULL; |
4ed3a9ea | 416 | close (mmfd); |
2d6d969c | 417 | } |
55b3ef9a FF |
418 | |
419 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
420 | ||
421 | /* If we still have an objfile, then either we don't support reusable | |
422 | objfiles or this one was not reusable. So free it normally. */ | |
423 | ||
424 | if (objfile != NULL) | |
2d6d969c FF |
425 | { |
426 | if (objfile -> name != NULL) | |
427 | { | |
428 | mfree (objfile -> md, objfile -> name); | |
429 | } | |
346168a2 JG |
430 | if (objfile->global_psymbols.list) |
431 | mfree (objfile->md, objfile->global_psymbols.list); | |
432 | if (objfile->static_psymbols.list) | |
433 | mfree (objfile->md, objfile->static_psymbols.list); | |
2d6d969c FF |
434 | /* Free the obstacks for non-reusable objfiles */ |
435 | obstack_free (&objfile -> psymbol_obstack, 0); | |
436 | obstack_free (&objfile -> symbol_obstack, 0); | |
437 | obstack_free (&objfile -> type_obstack, 0); | |
438 | mfree (objfile -> md, objfile); | |
55b3ef9a | 439 | objfile = NULL; |
2d6d969c | 440 | } |
1ab3bf1b JG |
441 | } |
442 | ||
cba0d141 | 443 | |
0eb22669 | 444 | /* Free all the object files at once and clean up their users. */ |
cba0d141 JG |
445 | |
446 | void | |
447 | free_all_objfiles () | |
448 | { | |
449 | struct objfile *objfile, *temp; | |
450 | ||
451 | ALL_OBJFILES_SAFE (objfile, temp) | |
452 | { | |
453 | free_objfile (objfile); | |
454 | } | |
0eb22669 | 455 | clear_symtab_users (); |
cba0d141 | 456 | } |
3c02636b JK |
457 | \f |
458 | /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS | |
459 | entries in new_offsets. */ | |
460 | void | |
461 | objfile_relocate (objfile, new_offsets) | |
462 | struct objfile *objfile; | |
463 | struct section_offsets *new_offsets; | |
464 | { | |
465 | struct section_offsets *delta = (struct section_offsets *) alloca | |
466 | (sizeof (struct section_offsets) | |
467 | + objfile->num_sections * sizeof (delta->offsets)); | |
468 | ||
469 | { | |
470 | int i; | |
471 | int something_changed = 0; | |
472 | for (i = 0; i < objfile->num_sections; ++i) | |
473 | { | |
474 | ANOFFSET (delta, i) = | |
475 | ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); | |
476 | if (ANOFFSET (delta, i) != 0) | |
477 | something_changed = 1; | |
478 | } | |
479 | if (!something_changed) | |
480 | return; | |
481 | } | |
482 | ||
483 | /* OK, get all the symtabs. */ | |
484 | { | |
485 | struct symtab *s; | |
486 | ||
72bba93b | 487 | ALL_OBJFILE_SYMTABS (objfile, s) |
3c02636b JK |
488 | { |
489 | struct linetable *l; | |
490 | struct blockvector *bv; | |
491 | int i; | |
492 | ||
493 | /* First the line table. */ | |
494 | l = LINETABLE (s); | |
495 | if (l) | |
496 | { | |
497 | for (i = 0; i < l->nitems; ++i) | |
498 | l->item[i].pc += ANOFFSET (delta, s->block_line_section); | |
499 | } | |
500 | ||
501 | /* Don't relocate a shared blockvector more than once. */ | |
502 | if (!s->primary) | |
503 | continue; | |
504 | ||
505 | bv = BLOCKVECTOR (s); | |
506 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) | |
507 | { | |
508 | struct block *b; | |
509 | int j; | |
510 | ||
511 | b = BLOCKVECTOR_BLOCK (bv, i); | |
512 | BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); | |
513 | BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); | |
514 | ||
515 | for (j = 0; j < BLOCK_NSYMS (b); ++j) | |
516 | { | |
517 | struct symbol *sym = BLOCK_SYM (b, j); | |
518 | /* The RS6000 code from which this was taken skipped | |
519 | any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. | |
520 | But I'm leaving out that test, on the theory that | |
521 | they can't possibly pass the tests below. */ | |
522 | if ((SYMBOL_CLASS (sym) == LOC_LABEL | |
523 | || SYMBOL_CLASS (sym) == LOC_STATIC) | |
524 | && SYMBOL_SECTION (sym) >= 0) | |
525 | { | |
526 | SYMBOL_VALUE_ADDRESS (sym) += | |
527 | ANOFFSET (delta, SYMBOL_SECTION (sym)); | |
528 | } | |
72bba93b SG |
529 | #ifdef MIPS_EFI_SYMBOL_NAME |
530 | /* Relocate Extra Function Info for ecoff. */ | |
531 | ||
532 | else | |
533 | if (SYMBOL_CLASS (sym) == LOC_CONST | |
534 | && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE | |
535 | && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) | |
536 | ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section)); | |
537 | #endif | |
3c02636b JK |
538 | } |
539 | } | |
540 | } | |
541 | } | |
542 | ||
610a7e74 ILT |
543 | { |
544 | struct partial_symtab *p; | |
545 | ||
546 | ALL_OBJFILE_PSYMTABS (objfile, p) | |
547 | { | |
804506f6 JK |
548 | /* FIXME: specific to symbol readers which use gdb-stabs.h. |
549 | We can only get away with it since objfile_relocate is only | |
550 | used on XCOFF, which lacks psymtabs, and for gdb-stabs.h | |
551 | targets. */ | |
610a7e74 ILT |
552 | p->textlow += ANOFFSET (delta, SECT_OFF_TEXT); |
553 | p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT); | |
554 | } | |
555 | } | |
556 | ||
557 | { | |
558 | struct partial_symbol *psym; | |
559 | ||
560 | for (psym = objfile->global_psymbols.list; | |
561 | psym < objfile->global_psymbols.next; | |
562 | psym++) | |
563 | if (SYMBOL_SECTION (psym) >= 0) | |
564 | SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym)); | |
565 | for (psym = objfile->static_psymbols.list; | |
566 | psym < objfile->static_psymbols.next; | |
567 | psym++) | |
568 | if (SYMBOL_SECTION (psym) >= 0) | |
569 | SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym)); | |
570 | } | |
571 | ||
3c02636b JK |
572 | { |
573 | struct minimal_symbol *msym; | |
574 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
610a7e74 ILT |
575 | if (SYMBOL_SECTION (msym) >= 0) |
576 | SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); | |
3c02636b | 577 | } |
3a470454 JK |
578 | /* Relocating different sections by different amounts may cause the symbols |
579 | to be out of order. */ | |
580 | msymbols_sort (objfile); | |
3c02636b JK |
581 | |
582 | { | |
583 | int i; | |
584 | for (i = 0; i < objfile->num_sections; ++i) | |
585 | ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i); | |
586 | } | |
72bba93b SG |
587 | |
588 | { | |
589 | struct obj_section *s; | |
590 | bfd *abfd; | |
591 | ||
3a470454 | 592 | abfd = objfile->obfd; |
72bba93b | 593 | |
3a470454 JK |
594 | for (s = objfile->sections; |
595 | s < objfile->sections_end; ++s) | |
72bba93b SG |
596 | { |
597 | flagword flags; | |
598 | ||
599 | flags = bfd_get_section_flags (abfd, s->the_bfd_section); | |
600 | ||
601 | if (flags & SEC_CODE) | |
602 | { | |
603 | s->addr += ANOFFSET (delta, SECT_OFF_TEXT); | |
604 | s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT); | |
605 | } | |
606 | else if (flags & (SEC_DATA | SEC_LOAD)) | |
607 | { | |
608 | s->addr += ANOFFSET (delta, SECT_OFF_DATA); | |
609 | s->endaddr += ANOFFSET (delta, SECT_OFF_DATA); | |
610 | } | |
611 | else if (flags & SEC_ALLOC) | |
612 | { | |
613 | s->addr += ANOFFSET (delta, SECT_OFF_BSS); | |
614 | s->endaddr += ANOFFSET (delta, SECT_OFF_BSS); | |
615 | } | |
616 | } | |
617 | } | |
a4b4f520 SG |
618 | |
619 | if (objfile->ei.entry_point != ~0) | |
620 | objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT); | |
621 | ||
622 | if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) | |
623 | { | |
624 | objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
625 | objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
626 | } | |
627 | ||
628 | if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) | |
629 | { | |
630 | objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
631 | objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
632 | } | |
633 | ||
634 | if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) | |
635 | { | |
636 | objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
637 | objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
638 | } | |
3c02636b JK |
639 | } |
640 | \f | |
1ab3bf1b JG |
641 | /* Many places in gdb want to test just to see if we have any partial |
642 | symbols available. This function returns zero if none are currently | |
643 | available, nonzero otherwise. */ | |
644 | ||
645 | int | |
646 | have_partial_symbols () | |
647 | { | |
648 | struct objfile *ofp; | |
1ab3bf1b | 649 | |
84ffdec2 | 650 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
651 | { |
652 | if (ofp -> psymtabs != NULL) | |
653 | { | |
84ffdec2 | 654 | return 1; |
1ab3bf1b JG |
655 | } |
656 | } | |
84ffdec2 | 657 | return 0; |
1ab3bf1b JG |
658 | } |
659 | ||
660 | /* Many places in gdb want to test just to see if we have any full | |
661 | symbols available. This function returns zero if none are currently | |
662 | available, nonzero otherwise. */ | |
663 | ||
664 | int | |
665 | have_full_symbols () | |
666 | { | |
667 | struct objfile *ofp; | |
1ab3bf1b | 668 | |
84ffdec2 | 669 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
670 | { |
671 | if (ofp -> symtabs != NULL) | |
672 | { | |
84ffdec2 | 673 | return 1; |
1ab3bf1b JG |
674 | } |
675 | } | |
84ffdec2 | 676 | return 0; |
1ab3bf1b JG |
677 | } |
678 | ||
679 | /* Many places in gdb want to test just to see if we have any minimal | |
680 | symbols available. This function returns zero if none are currently | |
681 | available, nonzero otherwise. */ | |
682 | ||
683 | int | |
684 | have_minimal_symbols () | |
685 | { | |
686 | struct objfile *ofp; | |
1ab3bf1b | 687 | |
84ffdec2 | 688 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
689 | { |
690 | if (ofp -> msymbols != NULL) | |
691 | { | |
84ffdec2 | 692 | return 1; |
1ab3bf1b JG |
693 | } |
694 | } | |
84ffdec2 | 695 | return 0; |
1ab3bf1b JG |
696 | } |
697 | ||
1867b3be FF |
698 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
699 | ||
700 | /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp | |
701 | of the corresponding symbol file in MTIME, try to open an existing file | |
702 | with the name SYMSFILENAME and verify it is more recent than the base | |
703 | file by checking it's timestamp against MTIME. | |
704 | ||
705 | If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. | |
706 | ||
707 | If SYMSFILENAME does exist, but is out of date, we check to see if the | |
708 | user has specified creation of a mapped file. If so, we don't issue | |
709 | any warning message because we will be creating a new mapped file anyway, | |
710 | overwriting the old one. If not, then we issue a warning message so that | |
711 | the user will know why we aren't using this existing mapped symbol file. | |
712 | In either case, we return -1. | |
713 | ||
714 | If SYMSFILENAME does exist and is not out of date, but can't be opened for | |
715 | some reason, then prints an appropriate system error message and returns -1. | |
716 | ||
717 | Otherwise, returns the open file descriptor. */ | |
718 | ||
719 | static int | |
720 | open_existing_mapped_file (symsfilename, mtime, mapped) | |
721 | char *symsfilename; | |
722 | long mtime; | |
723 | int mapped; | |
724 | { | |
725 | int fd = -1; | |
726 | struct stat sbuf; | |
727 | ||
728 | if (stat (symsfilename, &sbuf) == 0) | |
729 | { | |
730 | if (sbuf.st_mtime < mtime) | |
731 | { | |
732 | if (!mapped) | |
733 | { | |
a679650f FF |
734 | warning ("mapped symbol file `%s' is out of date, ignored it", |
735 | symsfilename); | |
1867b3be FF |
736 | } |
737 | } | |
738 | else if ((fd = open (symsfilename, O_RDWR)) < 0) | |
739 | { | |
740 | if (error_pre_print) | |
741 | { | |
199b2450 | 742 | printf_unfiltered (error_pre_print); |
1867b3be FF |
743 | } |
744 | print_sys_errmsg (symsfilename, errno); | |
745 | } | |
746 | } | |
747 | return (fd); | |
748 | } | |
749 | ||
b0246b3b | 750 | /* Look for a mapped symbol file that corresponds to FILENAME and is more |
318bf84f | 751 | recent than MTIME. If MAPPED is nonzero, the user has asked that gdb |
b0246b3b FF |
752 | use a mapped symbol file for this file, so create a new one if one does |
753 | not currently exist. | |
318bf84f FF |
754 | |
755 | If found, then return an open file descriptor for the file, otherwise | |
756 | return -1. | |
757 | ||
758 | This routine is responsible for implementing the policy that generates | |
759 | the name of the mapped symbol file from the name of a file containing | |
1867b3be FF |
760 | symbols that gdb would like to read. Currently this policy is to append |
761 | ".syms" to the name of the file. | |
762 | ||
763 | This routine is also responsible for implementing the policy that | |
764 | determines where the mapped symbol file is found (the search path). | |
765 | This policy is that when reading an existing mapped file, a file of | |
766 | the correct name in the current directory takes precedence over a | |
767 | file of the correct name in the same directory as the symbol file. | |
768 | When creating a new mapped file, it is always created in the current | |
769 | directory. This helps to minimize the chances of a user unknowingly | |
770 | creating big mapped files in places like /bin and /usr/local/bin, and | |
771 | allows a local copy to override a manually installed global copy (in | |
772 | /bin for example). */ | |
318bf84f FF |
773 | |
774 | static int | |
b0246b3b FF |
775 | open_mapped_file (filename, mtime, mapped) |
776 | char *filename; | |
318bf84f FF |
777 | long mtime; |
778 | int mapped; | |
779 | { | |
780 | int fd; | |
1867b3be | 781 | char *symsfilename; |
318bf84f | 782 | |
1867b3be FF |
783 | /* First try to open an existing file in the current directory, and |
784 | then try the directory where the symbol file is located. */ | |
318bf84f | 785 | |
1867b3be FF |
786 | symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL); |
787 | if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0) | |
318bf84f | 788 | { |
1867b3be FF |
789 | free (symsfilename); |
790 | symsfilename = concat (filename, ".syms", (char *) NULL); | |
791 | fd = open_existing_mapped_file (symsfilename, mtime, mapped); | |
318bf84f FF |
792 | } |
793 | ||
1867b3be FF |
794 | /* If we don't have an open file by now, then either the file does not |
795 | already exist, or the base file has changed since it was created. In | |
796 | either case, if the user has specified use of a mapped file, then | |
797 | create a new mapped file, truncating any existing one. If we can't | |
798 | create one, print a system error message saying why we can't. | |
318bf84f FF |
799 | |
800 | By default the file is rw for everyone, with the user's umask taking | |
801 | care of turning off the permissions the user wants off. */ | |
802 | ||
1867b3be | 803 | if ((fd < 0) && mapped) |
318bf84f | 804 | { |
1867b3be FF |
805 | free (symsfilename); |
806 | symsfilename = concat ("./", basename (filename), ".syms", | |
807 | (char *) NULL); | |
808 | if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) | |
809 | { | |
810 | if (error_pre_print) | |
811 | { | |
199b2450 | 812 | printf_unfiltered (error_pre_print); |
1867b3be FF |
813 | } |
814 | print_sys_errmsg (symsfilename, errno); | |
815 | } | |
318bf84f FF |
816 | } |
817 | ||
1867b3be | 818 | free (symsfilename); |
318bf84f FF |
819 | return (fd); |
820 | } | |
821 | ||
822 | /* Return the base address at which we would like the next objfile's | |
823 | mapped data to start. | |
824 | ||
825 | For now, we use the kludge that the configuration specifies a base | |
826 | address to which it is safe to map the first mmalloc heap, and an | |
827 | increment to add to this address for each successive heap. There are | |
828 | a lot of issues to deal with here to make this work reasonably, including: | |
829 | ||
830 | Avoid memory collisions with existing mapped address spaces | |
831 | ||
832 | Reclaim address spaces when their mmalloc heaps are unmapped | |
833 | ||
834 | When mmalloc heaps are shared between processes they have to be | |
835 | mapped at the same addresses in each | |
836 | ||
837 | Once created, a mmalloc heap that is to be mapped back in must be | |
838 | mapped at the original address. I.E. each objfile will expect to | |
839 | be remapped at it's original address. This becomes a problem if | |
840 | the desired address is already in use. | |
841 | ||
842 | etc, etc, etc. | |
843 | ||
844 | */ | |
845 | ||
846 | ||
847 | static CORE_ADDR | |
848 | map_to_address () | |
849 | { | |
850 | ||
851 | #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT) | |
852 | ||
853 | static CORE_ADDR next = MMAP_BASE_ADDRESS; | |
854 | CORE_ADDR mapto = next; | |
855 | ||
856 | next += MMAP_INCREMENT; | |
857 | return (mapto); | |
858 | ||
859 | #else | |
860 | ||
861 | return (0); | |
862 | ||
863 | #endif | |
864 | ||
865 | } | |
1867b3be FF |
866 | |
867 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
73d0fc78 RP |
868 | |
869 | /* Returns a section whose range includes PC or NULL if none found. */ | |
870 | ||
4365c36c | 871 | struct obj_section * |
73d0fc78 RP |
872 | find_pc_section(pc) |
873 | CORE_ADDR pc; | |
874 | { | |
875 | struct obj_section *s; | |
876 | struct objfile *objfile; | |
877 | ||
878 | ALL_OBJFILES (objfile) | |
879 | for (s = objfile->sections; s < objfile->sections_end; ++s) | |
880 | if (s->addr <= pc | |
881 | && pc < s->endaddr) | |
4365c36c | 882 | return(s); |
73d0fc78 RP |
883 | |
884 | return(NULL); | |
885 | } | |
38b90473 PS |
886 | |
887 | /* In SVR4, we recognize a trampoline by it's section name. | |
888 | That is, if the pc is in a section named ".plt" then we are in | |
889 | a trampoline. */ | |
890 | ||
891 | int | |
892 | in_plt_section(pc, name) | |
893 | CORE_ADDR pc; | |
894 | char *name; | |
895 | { | |
896 | struct obj_section *s; | |
897 | int retval = 0; | |
898 | ||
899 | s = find_pc_section(pc); | |
900 | ||
901 | retval = (s != NULL | |
902 | && s->the_bfd_section->name != NULL | |
903 | && STREQ (s->the_bfd_section->name, ".plt")); | |
904 | return(retval); | |
905 | } |