]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
2 | Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "gdb_string.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "gdbcore.h" | |
28 | #include "frame.h" | |
29 | #include "command.h" | |
30 | #include "gdbcmd.h" | |
31 | #include "target.h" | |
32 | #include "language.h" | |
33 | #include "scm-lang.h" | |
34 | #include "demangle.h" | |
35 | ||
36 | /* Prototypes for exported functions. */ | |
37 | ||
38 | void _initialize_values PARAMS ((void)); | |
39 | ||
40 | /* Prototypes for local functions. */ | |
41 | ||
42 | static value_ptr value_headof PARAMS ((value_ptr, struct type *, | |
43 | struct type *)); | |
44 | ||
45 | static void show_values PARAMS ((char *, int)); | |
46 | ||
47 | static void show_convenience PARAMS ((char *, int)); | |
48 | ||
49 | static int vb_match PARAMS ((struct type *, int, struct type *)); | |
50 | ||
51 | /* The value-history records all the values printed | |
52 | by print commands during this session. Each chunk | |
53 | records 60 consecutive values. The first chunk on | |
54 | the chain records the most recent values. | |
55 | The total number of values is in value_history_count. */ | |
56 | ||
57 | #define VALUE_HISTORY_CHUNK 60 | |
58 | ||
59 | struct value_history_chunk | |
c5aa993b JM |
60 | { |
61 | struct value_history_chunk *next; | |
62 | value_ptr values[VALUE_HISTORY_CHUNK]; | |
63 | }; | |
c906108c SS |
64 | |
65 | /* Chain of chunks now in use. */ | |
66 | ||
67 | static struct value_history_chunk *value_history_chain; | |
68 | ||
69 | static int value_history_count; /* Abs number of last entry stored */ | |
70 | \f | |
71 | /* List of all value objects currently allocated | |
72 | (except for those released by calls to release_value) | |
73 | This is so they can be freed after each command. */ | |
74 | ||
75 | static value_ptr all_values; | |
76 | ||
77 | /* Allocate a value that has the correct length for type TYPE. */ | |
78 | ||
79 | value_ptr | |
80 | allocate_value (type) | |
81 | struct type *type; | |
82 | { | |
83 | register value_ptr val; | |
84 | struct type *atype = check_typedef (type); | |
85 | ||
86 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)); | |
87 | VALUE_NEXT (val) = all_values; | |
88 | all_values = val; | |
89 | VALUE_TYPE (val) = type; | |
90 | VALUE_ENCLOSING_TYPE (val) = type; | |
91 | VALUE_LVAL (val) = not_lval; | |
92 | VALUE_ADDRESS (val) = 0; | |
93 | VALUE_FRAME (val) = 0; | |
94 | VALUE_OFFSET (val) = 0; | |
95 | VALUE_BITPOS (val) = 0; | |
96 | VALUE_BITSIZE (val) = 0; | |
97 | VALUE_REGNO (val) = -1; | |
98 | VALUE_LAZY (val) = 0; | |
99 | VALUE_OPTIMIZED_OUT (val) = 0; | |
100 | VALUE_BFD_SECTION (val) = NULL; | |
101 | VALUE_EMBEDDED_OFFSET (val) = 0; | |
102 | VALUE_POINTED_TO_OFFSET (val) = 0; | |
103 | val->modifiable = 1; | |
104 | return val; | |
105 | } | |
106 | ||
107 | /* Allocate a value that has the correct length | |
108 | for COUNT repetitions type TYPE. */ | |
109 | ||
110 | value_ptr | |
111 | allocate_repeat_value (type, count) | |
112 | struct type *type; | |
113 | int count; | |
114 | { | |
c5aa993b | 115 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
116 | /* FIXME-type-allocation: need a way to free this type when we are |
117 | done with it. */ | |
118 | struct type *range_type | |
c5aa993b JM |
119 | = create_range_type ((struct type *) NULL, builtin_type_int, |
120 | low_bound, count + low_bound - 1); | |
c906108c SS |
121 | /* FIXME-type-allocation: need a way to free this type when we are |
122 | done with it. */ | |
123 | return allocate_value (create_array_type ((struct type *) NULL, | |
124 | type, range_type)); | |
125 | } | |
126 | ||
127 | /* Return a mark in the value chain. All values allocated after the | |
128 | mark is obtained (except for those released) are subject to being freed | |
129 | if a subsequent value_free_to_mark is passed the mark. */ | |
130 | value_ptr | |
131 | value_mark () | |
132 | { | |
133 | return all_values; | |
134 | } | |
135 | ||
136 | /* Free all values allocated since MARK was obtained by value_mark | |
137 | (except for those released). */ | |
138 | void | |
139 | value_free_to_mark (mark) | |
140 | value_ptr mark; | |
141 | { | |
142 | value_ptr val, next; | |
143 | ||
144 | for (val = all_values; val && val != mark; val = next) | |
145 | { | |
146 | next = VALUE_NEXT (val); | |
147 | value_free (val); | |
148 | } | |
149 | all_values = val; | |
150 | } | |
151 | ||
152 | /* Free all the values that have been allocated (except for those released). | |
153 | Called after each command, successful or not. */ | |
154 | ||
155 | void | |
156 | free_all_values () | |
157 | { | |
158 | register value_ptr val, next; | |
159 | ||
160 | for (val = all_values; val; val = next) | |
161 | { | |
162 | next = VALUE_NEXT (val); | |
163 | value_free (val); | |
164 | } | |
165 | ||
166 | all_values = 0; | |
167 | } | |
168 | ||
169 | /* Remove VAL from the chain all_values | |
170 | so it will not be freed automatically. */ | |
171 | ||
172 | void | |
173 | release_value (val) | |
174 | register value_ptr val; | |
175 | { | |
176 | register value_ptr v; | |
177 | ||
178 | if (all_values == val) | |
179 | { | |
180 | all_values = val->next; | |
181 | return; | |
182 | } | |
183 | ||
184 | for (v = all_values; v; v = v->next) | |
185 | { | |
186 | if (v->next == val) | |
187 | { | |
188 | v->next = val->next; | |
189 | break; | |
190 | } | |
191 | } | |
192 | } | |
193 | ||
194 | /* Release all values up to mark */ | |
195 | value_ptr | |
196 | value_release_to_mark (mark) | |
197 | value_ptr mark; | |
198 | { | |
199 | value_ptr val, next; | |
200 | ||
201 | for (val = next = all_values; next; next = VALUE_NEXT (next)) | |
202 | if (VALUE_NEXT (next) == mark) | |
203 | { | |
204 | all_values = VALUE_NEXT (next); | |
205 | VALUE_NEXT (next) = 0; | |
206 | return val; | |
207 | } | |
208 | all_values = 0; | |
209 | return val; | |
210 | } | |
211 | ||
212 | /* Return a copy of the value ARG. | |
213 | It contains the same contents, for same memory address, | |
214 | but it's a different block of storage. */ | |
215 | ||
216 | value_ptr | |
217 | value_copy (arg) | |
218 | value_ptr arg; | |
219 | { | |
220 | register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg); | |
221 | register value_ptr val = allocate_value (encl_type); | |
222 | VALUE_TYPE (val) = VALUE_TYPE (arg); | |
223 | VALUE_LVAL (val) = VALUE_LVAL (arg); | |
224 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
225 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
226 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
227 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
228 | VALUE_FRAME (val) = VALUE_FRAME (arg); | |
229 | VALUE_REGNO (val) = VALUE_REGNO (arg); | |
230 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
231 | VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg); | |
232 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg); | |
233 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg); | |
234 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg); | |
235 | val->modifiable = arg->modifiable; | |
236 | if (!VALUE_LAZY (val)) | |
237 | { | |
238 | memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg), | |
239 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg))); | |
240 | ||
241 | } | |
242 | return val; | |
243 | } | |
244 | \f | |
245 | /* Access to the value history. */ | |
246 | ||
247 | /* Record a new value in the value history. | |
248 | Returns the absolute history index of the entry. | |
249 | Result of -1 indicates the value was not saved; otherwise it is the | |
250 | value history index of this new item. */ | |
251 | ||
252 | int | |
253 | record_latest_value (val) | |
254 | value_ptr val; | |
255 | { | |
256 | int i; | |
257 | ||
258 | /* We don't want this value to have anything to do with the inferior anymore. | |
259 | In particular, "set $1 = 50" should not affect the variable from which | |
260 | the value was taken, and fast watchpoints should be able to assume that | |
261 | a value on the value history never changes. */ | |
262 | if (VALUE_LAZY (val)) | |
263 | value_fetch_lazy (val); | |
264 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
265 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
266 | but the current contents of that location. c'est la vie... */ | |
267 | val->modifiable = 0; | |
268 | release_value (val); | |
269 | ||
270 | /* Here we treat value_history_count as origin-zero | |
271 | and applying to the value being stored now. */ | |
272 | ||
273 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
274 | if (i == 0) | |
275 | { | |
276 | register struct value_history_chunk *new | |
c5aa993b JM |
277 | = (struct value_history_chunk *) |
278 | xmalloc (sizeof (struct value_history_chunk)); | |
c906108c SS |
279 | memset (new->values, 0, sizeof new->values); |
280 | new->next = value_history_chain; | |
281 | value_history_chain = new; | |
282 | } | |
283 | ||
284 | value_history_chain->values[i] = val; | |
285 | ||
286 | /* Now we regard value_history_count as origin-one | |
287 | and applying to the value just stored. */ | |
288 | ||
289 | return ++value_history_count; | |
290 | } | |
291 | ||
292 | /* Return a copy of the value in the history with sequence number NUM. */ | |
293 | ||
294 | value_ptr | |
295 | access_value_history (num) | |
296 | int num; | |
297 | { | |
298 | register struct value_history_chunk *chunk; | |
299 | register int i; | |
300 | register int absnum = num; | |
301 | ||
302 | if (absnum <= 0) | |
303 | absnum += value_history_count; | |
304 | ||
305 | if (absnum <= 0) | |
306 | { | |
307 | if (num == 0) | |
308 | error ("The history is empty."); | |
309 | else if (num == 1) | |
310 | error ("There is only one value in the history."); | |
311 | else | |
312 | error ("History does not go back to $$%d.", -num); | |
313 | } | |
314 | if (absnum > value_history_count) | |
315 | error ("History has not yet reached $%d.", absnum); | |
316 | ||
317 | absnum--; | |
318 | ||
319 | /* Now absnum is always absolute and origin zero. */ | |
320 | ||
321 | chunk = value_history_chain; | |
322 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
323 | i > 0; i--) | |
324 | chunk = chunk->next; | |
325 | ||
326 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
327 | } | |
328 | ||
329 | /* Clear the value history entirely. | |
330 | Must be done when new symbol tables are loaded, | |
331 | because the type pointers become invalid. */ | |
332 | ||
333 | void | |
334 | clear_value_history () | |
335 | { | |
336 | register struct value_history_chunk *next; | |
337 | register int i; | |
338 | register value_ptr val; | |
339 | ||
340 | while (value_history_chain) | |
341 | { | |
342 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
343 | if ((val = value_history_chain->values[i]) != NULL) | |
c5aa993b | 344 | free ((PTR) val); |
c906108c | 345 | next = value_history_chain->next; |
c5aa993b | 346 | free ((PTR) value_history_chain); |
c906108c SS |
347 | value_history_chain = next; |
348 | } | |
349 | value_history_count = 0; | |
350 | } | |
351 | ||
352 | static void | |
353 | show_values (num_exp, from_tty) | |
354 | char *num_exp; | |
355 | int from_tty; | |
356 | { | |
357 | register int i; | |
358 | register value_ptr val; | |
359 | static int num = 1; | |
360 | ||
361 | if (num_exp) | |
362 | { | |
c5aa993b JM |
363 | /* "info history +" should print from the stored position. |
364 | "info history <exp>" should print around value number <exp>. */ | |
c906108c SS |
365 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
366 | num = parse_and_eval_address (num_exp) - 5; | |
367 | } | |
368 | else | |
369 | { | |
370 | /* "info history" means print the last 10 values. */ | |
371 | num = value_history_count - 9; | |
372 | } | |
373 | ||
374 | if (num <= 0) | |
375 | num = 1; | |
376 | ||
377 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
378 | { | |
379 | val = access_value_history (i); | |
380 | printf_filtered ("$%d = ", i); | |
381 | value_print (val, gdb_stdout, 0, Val_pretty_default); | |
382 | printf_filtered ("\n"); | |
383 | } | |
384 | ||
385 | /* The next "info history +" should start after what we just printed. */ | |
386 | num += 10; | |
387 | ||
388 | /* Hitting just return after this command should do the same thing as | |
389 | "info history +". If num_exp is null, this is unnecessary, since | |
390 | "info history +" is not useful after "info history". */ | |
391 | if (from_tty && num_exp) | |
392 | { | |
393 | num_exp[0] = '+'; | |
394 | num_exp[1] = '\0'; | |
395 | } | |
396 | } | |
397 | \f | |
398 | /* Internal variables. These are variables within the debugger | |
399 | that hold values assigned by debugger commands. | |
400 | The user refers to them with a '$' prefix | |
401 | that does not appear in the variable names stored internally. */ | |
402 | ||
403 | static struct internalvar *internalvars; | |
404 | ||
405 | /* Look up an internal variable with name NAME. NAME should not | |
406 | normally include a dollar sign. | |
407 | ||
408 | If the specified internal variable does not exist, | |
409 | one is created, with a void value. */ | |
410 | ||
411 | struct internalvar * | |
412 | lookup_internalvar (name) | |
413 | char *name; | |
414 | { | |
415 | register struct internalvar *var; | |
416 | ||
417 | for (var = internalvars; var; var = var->next) | |
418 | if (STREQ (var->name, name)) | |
419 | return var; | |
420 | ||
421 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
422 | var->name = concat (name, NULL); | |
423 | var->value = allocate_value (builtin_type_void); | |
424 | release_value (var->value); | |
425 | var->next = internalvars; | |
426 | internalvars = var; | |
427 | return var; | |
428 | } | |
429 | ||
430 | value_ptr | |
431 | value_of_internalvar (var) | |
432 | struct internalvar *var; | |
433 | { | |
434 | register value_ptr val; | |
435 | ||
436 | #ifdef IS_TRAPPED_INTERNALVAR | |
437 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
438 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
c5aa993b | 439 | #endif |
c906108c SS |
440 | |
441 | val = value_copy (var->value); | |
442 | if (VALUE_LAZY (val)) | |
443 | value_fetch_lazy (val); | |
444 | VALUE_LVAL (val) = lval_internalvar; | |
445 | VALUE_INTERNALVAR (val) = var; | |
446 | return val; | |
447 | } | |
448 | ||
449 | void | |
450 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
451 | struct internalvar *var; | |
452 | int offset, bitpos, bitsize; | |
453 | value_ptr newval; | |
454 | { | |
455 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
456 | ||
457 | #ifdef IS_TRAPPED_INTERNALVAR | |
458 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
459 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
460 | #endif | |
461 | ||
462 | if (bitsize) | |
463 | modify_field (addr, value_as_long (newval), | |
464 | bitpos, bitsize); | |
465 | else | |
466 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); | |
467 | } | |
468 | ||
469 | void | |
470 | set_internalvar (var, val) | |
471 | struct internalvar *var; | |
472 | value_ptr val; | |
473 | { | |
474 | value_ptr newval; | |
475 | ||
476 | #ifdef IS_TRAPPED_INTERNALVAR | |
477 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
478 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
479 | #endif | |
480 | ||
481 | newval = value_copy (val); | |
482 | newval->modifiable = 1; | |
483 | ||
484 | /* Force the value to be fetched from the target now, to avoid problems | |
485 | later when this internalvar is referenced and the target is gone or | |
486 | has changed. */ | |
487 | if (VALUE_LAZY (newval)) | |
488 | value_fetch_lazy (newval); | |
489 | ||
490 | /* Begin code which must not call error(). If var->value points to | |
491 | something free'd, an error() obviously leaves a dangling pointer. | |
492 | But we also get a danling pointer if var->value points to | |
493 | something in the value chain (i.e., before release_value is | |
494 | called), because after the error free_all_values will get called before | |
495 | long. */ | |
c5aa993b | 496 | free ((PTR) var->value); |
c906108c SS |
497 | var->value = newval; |
498 | release_value (newval); | |
499 | /* End code which must not call error(). */ | |
500 | } | |
501 | ||
502 | char * | |
503 | internalvar_name (var) | |
504 | struct internalvar *var; | |
505 | { | |
506 | return var->name; | |
507 | } | |
508 | ||
509 | /* Free all internalvars. Done when new symtabs are loaded, | |
510 | because that makes the values invalid. */ | |
511 | ||
512 | void | |
513 | clear_internalvars () | |
514 | { | |
515 | register struct internalvar *var; | |
516 | ||
517 | while (internalvars) | |
518 | { | |
519 | var = internalvars; | |
520 | internalvars = var->next; | |
c5aa993b JM |
521 | free ((PTR) var->name); |
522 | free ((PTR) var->value); | |
523 | free ((PTR) var); | |
c906108c SS |
524 | } |
525 | } | |
526 | ||
527 | static void | |
528 | show_convenience (ignore, from_tty) | |
529 | char *ignore; | |
530 | int from_tty; | |
531 | { | |
532 | register struct internalvar *var; | |
533 | int varseen = 0; | |
534 | ||
535 | for (var = internalvars; var; var = var->next) | |
536 | { | |
537 | #ifdef IS_TRAPPED_INTERNALVAR | |
538 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
539 | continue; | |
540 | #endif | |
541 | if (!varseen) | |
542 | { | |
543 | varseen = 1; | |
544 | } | |
545 | printf_filtered ("$%s = ", var->name); | |
546 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); | |
547 | printf_filtered ("\n"); | |
548 | } | |
549 | if (!varseen) | |
550 | printf_unfiltered ("No debugger convenience variables now defined.\n\ | |
551 | Convenience variables have names starting with \"$\";\n\ | |
552 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
553 | } | |
554 | \f | |
555 | /* Extract a value as a C number (either long or double). | |
556 | Knows how to convert fixed values to double, or | |
557 | floating values to long. | |
558 | Does not deallocate the value. */ | |
559 | ||
560 | LONGEST | |
561 | value_as_long (val) | |
562 | register value_ptr val; | |
563 | { | |
564 | /* This coerces arrays and functions, which is necessary (e.g. | |
565 | in disassemble_command). It also dereferences references, which | |
566 | I suspect is the most logical thing to do. */ | |
567 | COERCE_ARRAY (val); | |
568 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); | |
569 | } | |
570 | ||
571 | DOUBLEST | |
572 | value_as_double (val) | |
573 | register value_ptr val; | |
574 | { | |
575 | DOUBLEST foo; | |
576 | int inv; | |
c5aa993b | 577 | |
c906108c SS |
578 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); |
579 | if (inv) | |
580 | error ("Invalid floating value found in program."); | |
581 | return foo; | |
582 | } | |
4478b372 JB |
583 | /* Extract a value as a C pointer. Does not deallocate the value. |
584 | Note that val's type may not actually be a pointer; value_as_long | |
585 | handles all the cases. */ | |
c906108c SS |
586 | CORE_ADDR |
587 | value_as_pointer (val) | |
588 | value_ptr val; | |
589 | { | |
590 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
591 | whether we want this to be true eventually. */ | |
592 | #if 0 | |
593 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
594 | non-address (e.g. argument to "signal", "info break", etc.), or | |
595 | for pointers to char, in which the low bits *are* significant. */ | |
c5aa993b | 596 | return ADDR_BITS_REMOVE (value_as_long (val)); |
c906108c SS |
597 | #else |
598 | return value_as_long (val); | |
599 | #endif | |
600 | } | |
601 | \f | |
602 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
603 | as a long, or as a double, assuming the raw data is described | |
604 | by type TYPE. Knows how to convert different sizes of values | |
605 | and can convert between fixed and floating point. We don't assume | |
606 | any alignment for the raw data. Return value is in host byte order. | |
607 | ||
608 | If you want functions and arrays to be coerced to pointers, and | |
609 | references to be dereferenced, call value_as_long() instead. | |
610 | ||
611 | C++: It is assumed that the front-end has taken care of | |
612 | all matters concerning pointers to members. A pointer | |
613 | to member which reaches here is considered to be equivalent | |
614 | to an INT (or some size). After all, it is only an offset. */ | |
615 | ||
616 | LONGEST | |
617 | unpack_long (type, valaddr) | |
618 | struct type *type; | |
619 | char *valaddr; | |
620 | { | |
621 | register enum type_code code = TYPE_CODE (type); | |
622 | register int len = TYPE_LENGTH (type); | |
623 | register int nosign = TYPE_UNSIGNED (type); | |
624 | ||
625 | if (current_language->la_language == language_scm | |
626 | && is_scmvalue_type (type)) | |
627 | return scm_unpack (type, valaddr, TYPE_CODE_INT); | |
628 | ||
629 | switch (code) | |
630 | { | |
631 | case TYPE_CODE_TYPEDEF: | |
632 | return unpack_long (check_typedef (type), valaddr); | |
633 | case TYPE_CODE_ENUM: | |
634 | case TYPE_CODE_BOOL: | |
635 | case TYPE_CODE_INT: | |
636 | case TYPE_CODE_CHAR: | |
637 | case TYPE_CODE_RANGE: | |
638 | if (nosign) | |
639 | return extract_unsigned_integer (valaddr, len); | |
640 | else | |
641 | return extract_signed_integer (valaddr, len); | |
642 | ||
643 | case TYPE_CODE_FLT: | |
644 | return extract_floating (valaddr, len); | |
645 | ||
646 | case TYPE_CODE_PTR: | |
647 | case TYPE_CODE_REF: | |
648 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 649 | whether we want this to be true eventually. */ |
7a292a7a SS |
650 | if (GDB_TARGET_IS_D10V |
651 | && len == 2) | |
c5aa993b | 652 | return D10V_MAKE_DADDR (extract_address (valaddr, len)); |
4478b372 | 653 | return extract_typed_address (valaddr, type); |
c906108c SS |
654 | |
655 | case TYPE_CODE_MEMBER: | |
656 | error ("not implemented: member types in unpack_long"); | |
657 | ||
658 | default: | |
659 | error ("Value can't be converted to integer."); | |
660 | } | |
c5aa993b | 661 | return 0; /* Placate lint. */ |
c906108c SS |
662 | } |
663 | ||
664 | /* Return a double value from the specified type and address. | |
665 | INVP points to an int which is set to 0 for valid value, | |
666 | 1 for invalid value (bad float format). In either case, | |
667 | the returned double is OK to use. Argument is in target | |
668 | format, result is in host format. */ | |
669 | ||
670 | DOUBLEST | |
671 | unpack_double (type, valaddr, invp) | |
672 | struct type *type; | |
673 | char *valaddr; | |
674 | int *invp; | |
675 | { | |
676 | enum type_code code; | |
677 | int len; | |
678 | int nosign; | |
679 | ||
680 | *invp = 0; /* Assume valid. */ | |
681 | CHECK_TYPEDEF (type); | |
682 | code = TYPE_CODE (type); | |
683 | len = TYPE_LENGTH (type); | |
684 | nosign = TYPE_UNSIGNED (type); | |
685 | if (code == TYPE_CODE_FLT) | |
686 | { | |
687 | #ifdef INVALID_FLOAT | |
688 | if (INVALID_FLOAT (valaddr, len)) | |
689 | { | |
690 | *invp = 1; | |
691 | return 1.234567891011121314; | |
692 | } | |
693 | #endif | |
694 | return extract_floating (valaddr, len); | |
695 | } | |
696 | else if (nosign) | |
697 | { | |
698 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
699 | #if !defined (_MSC_VER) || (_MSC_VER > 900) | |
700 | return (ULONGEST) unpack_long (type, valaddr); | |
701 | #else | |
702 | /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */ | |
703 | return (LONGEST) unpack_long (type, valaddr); | |
704 | #endif /* _MSC_VER */ | |
705 | } | |
706 | else | |
707 | { | |
708 | /* Signed -- we are OK with unpack_long. */ | |
709 | return unpack_long (type, valaddr); | |
710 | } | |
711 | } | |
712 | ||
713 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
714 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
715 | We don't assume any alignment for the raw data. Return value is in | |
716 | host byte order. | |
717 | ||
718 | If you want functions and arrays to be coerced to pointers, and | |
719 | references to be dereferenced, call value_as_pointer() instead. | |
720 | ||
721 | C++: It is assumed that the front-end has taken care of | |
722 | all matters concerning pointers to members. A pointer | |
723 | to member which reaches here is considered to be equivalent | |
724 | to an INT (or some size). After all, it is only an offset. */ | |
725 | ||
726 | CORE_ADDR | |
727 | unpack_pointer (type, valaddr) | |
728 | struct type *type; | |
729 | char *valaddr; | |
730 | { | |
731 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
732 | whether we want this to be true eventually. */ | |
733 | return unpack_long (type, valaddr); | |
734 | } | |
4478b372 | 735 | |
c906108c SS |
736 | \f |
737 | /* Get the value of the FIELDN'th field (which must be static) of TYPE. */ | |
738 | ||
739 | value_ptr | |
740 | value_static_field (type, fieldno) | |
741 | struct type *type; | |
742 | int fieldno; | |
743 | { | |
744 | CORE_ADDR addr; | |
745 | asection *sect; | |
746 | if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno)) | |
747 | { | |
748 | addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno); | |
749 | sect = NULL; | |
750 | } | |
751 | else | |
752 | { | |
753 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
754 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); | |
755 | if (sym == NULL) | |
756 | { | |
757 | /* With some compilers, e.g. HP aCC, static data members are reported | |
c5aa993b JM |
758 | as non-debuggable symbols */ |
759 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c906108c SS |
760 | if (!msym) |
761 | return NULL; | |
762 | else | |
c5aa993b | 763 | { |
c906108c SS |
764 | addr = SYMBOL_VALUE_ADDRESS (msym); |
765 | sect = SYMBOL_BFD_SECTION (msym); | |
766 | } | |
767 | } | |
768 | else | |
769 | { | |
770 | addr = SYMBOL_VALUE_ADDRESS (sym); | |
771 | sect = SYMBOL_BFD_SECTION (sym); | |
772 | } | |
773 | SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr); | |
774 | } | |
775 | return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect); | |
776 | } | |
777 | ||
778 | /* Given a value ARG1 (offset by OFFSET bytes) | |
779 | of a struct or union type ARG_TYPE, | |
780 | extract and return the value of one of its (non-static) fields. | |
781 | FIELDNO says which field. */ | |
782 | ||
783 | value_ptr | |
784 | value_primitive_field (arg1, offset, fieldno, arg_type) | |
785 | register value_ptr arg1; | |
786 | int offset; | |
787 | register int fieldno; | |
788 | register struct type *arg_type; | |
789 | { | |
790 | register value_ptr v; | |
791 | register struct type *type; | |
792 | ||
793 | CHECK_TYPEDEF (arg_type); | |
794 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
795 | ||
796 | /* Handle packed fields */ | |
797 | ||
798 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
799 | { | |
800 | v = value_from_longest (type, | |
801 | unpack_field_as_long (arg_type, | |
802 | VALUE_CONTENTS (arg1) | |
c5aa993b | 803 | + offset, |
c906108c SS |
804 | fieldno)); |
805 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
806 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
2e70b7b9 MS |
807 | VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset |
808 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
c906108c SS |
809 | } |
810 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
811 | { | |
812 | /* This field is actually a base subobject, so preserve the | |
813 | entire object's contents for later references to virtual | |
814 | bases, etc. */ | |
815 | v = allocate_value (VALUE_ENCLOSING_TYPE (arg1)); | |
816 | VALUE_TYPE (v) = arg_type; | |
817 | if (VALUE_LAZY (arg1)) | |
818 | VALUE_LAZY (v) = 1; | |
819 | else | |
820 | memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1), | |
821 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1))); | |
822 | VALUE_OFFSET (v) = VALUE_OFFSET (arg1); | |
823 | VALUE_EMBEDDED_OFFSET (v) | |
c5aa993b JM |
824 | = offset + |
825 | VALUE_EMBEDDED_OFFSET (arg1) + | |
826 | TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
c906108c SS |
827 | } |
828 | else | |
829 | { | |
830 | /* Plain old data member */ | |
831 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
832 | v = allocate_value (type); | |
833 | if (VALUE_LAZY (arg1)) | |
834 | VALUE_LAZY (v) = 1; | |
835 | else | |
836 | memcpy (VALUE_CONTENTS_RAW (v), | |
837 | VALUE_CONTENTS_RAW (arg1) + offset, | |
838 | TYPE_LENGTH (type)); | |
839 | VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset; | |
840 | } | |
841 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
842 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
843 | VALUE_LVAL (v) = lval_internalvar_component; | |
844 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
845 | /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset | |
c5aa993b | 846 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */ |
c906108c SS |
847 | return v; |
848 | } | |
849 | ||
850 | /* Given a value ARG1 of a struct or union type, | |
851 | extract and return the value of one of its (non-static) fields. | |
852 | FIELDNO says which field. */ | |
853 | ||
854 | value_ptr | |
855 | value_field (arg1, fieldno) | |
856 | register value_ptr arg1; | |
857 | register int fieldno; | |
858 | { | |
859 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
860 | } | |
861 | ||
862 | /* Return a non-virtual function as a value. | |
863 | F is the list of member functions which contains the desired method. | |
864 | J is an index into F which provides the desired method. */ | |
865 | ||
866 | value_ptr | |
867 | value_fn_field (arg1p, f, j, type, offset) | |
868 | value_ptr *arg1p; | |
869 | struct fn_field *f; | |
870 | int j; | |
871 | struct type *type; | |
872 | int offset; | |
873 | { | |
874 | register value_ptr v; | |
875 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); | |
876 | struct symbol *sym; | |
877 | ||
878 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
879 | 0, VAR_NAMESPACE, 0, NULL); | |
c5aa993b JM |
880 | if (!sym) |
881 | return NULL; | |
c906108c | 882 | /* |
c5aa993b JM |
883 | error ("Internal error: could not find physical method named %s", |
884 | TYPE_FN_FIELD_PHYSNAME (f, j)); | |
885 | */ | |
886 | ||
c906108c SS |
887 | v = allocate_value (ftype); |
888 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
889 | VALUE_TYPE (v) = ftype; | |
890 | ||
891 | if (arg1p) | |
c5aa993b JM |
892 | { |
893 | if (type != VALUE_TYPE (*arg1p)) | |
894 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
895 | value_addr (*arg1p))); | |
896 | ||
070ad9f0 | 897 | /* Move the `this' pointer according to the offset. |
c5aa993b JM |
898 | VALUE_OFFSET (*arg1p) += offset; |
899 | */ | |
c906108c SS |
900 | } |
901 | ||
902 | return v; | |
903 | } | |
904 | ||
905 | /* Return a virtual function as a value. | |
906 | ARG1 is the object which provides the virtual function | |
907 | table pointer. *ARG1P is side-effected in calling this function. | |
908 | F is the list of member functions which contains the desired virtual | |
909 | function. | |
910 | J is an index into F which provides the desired virtual function. | |
911 | ||
912 | TYPE is the type in which F is located. */ | |
913 | value_ptr | |
914 | value_virtual_fn_field (arg1p, f, j, type, offset) | |
915 | value_ptr *arg1p; | |
916 | struct fn_field *f; | |
917 | int j; | |
918 | struct type *type; | |
919 | int offset; | |
920 | { | |
921 | value_ptr arg1 = *arg1p; | |
922 | struct type *type1 = check_typedef (VALUE_TYPE (arg1)); | |
923 | ||
924 | if (TYPE_HAS_VTABLE (type)) | |
925 | { | |
926 | /* Deal with HP/Taligent runtime model for virtual functions */ | |
927 | value_ptr vp; | |
c5aa993b | 928 | value_ptr argp; /* arg1 cast to base */ |
c5aa993b JM |
929 | CORE_ADDR coreptr; /* pointer to target address */ |
930 | int class_index; /* which class segment pointer to use */ | |
931 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */ | |
c906108c SS |
932 | |
933 | argp = value_cast (type, *arg1p); | |
934 | ||
935 | if (VALUE_ADDRESS (argp) == 0) | |
c5aa993b JM |
936 | error ("Address of object is null; object may not have been created."); |
937 | ||
c906108c SS |
938 | /* pai: FIXME -- 32x64 possible problem? */ |
939 | /* First word (4 bytes) in object layout is the vtable pointer */ | |
c5aa993b JM |
940 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */ |
941 | /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */ | |
c906108c SS |
942 | |
943 | if (!coreptr) | |
c5aa993b JM |
944 | error ("Virtual table pointer is null for object; object may not have been created."); |
945 | ||
c906108c SS |
946 | /* pai/1997-05-09 |
947 | * FIXME: The code here currently handles only | |
948 | * the non-RRBC case of the Taligent/HP runtime spec; when RRBC | |
949 | * is introduced, the condition for the "if" below will have to | |
950 | * be changed to be a test for the RRBC case. */ | |
c5aa993b | 951 | |
c906108c | 952 | if (1) |
c5aa993b JM |
953 | { |
954 | /* Non-RRBC case; the virtual function pointers are stored at fixed | |
955 | * offsets in the virtual table. */ | |
956 | ||
957 | /* Retrieve the offset in the virtual table from the debug | |
958 | * info. The offset of the vfunc's entry is in words from | |
959 | * the beginning of the vtable; but first we have to adjust | |
960 | * by HP_ACC_VFUNC_START to account for other entries */ | |
961 | ||
962 | /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in | |
963 | * which case the multiplier should be 8 and values should be long */ | |
964 | vp = value_at (builtin_type_int, | |
965 | coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL); | |
966 | ||
967 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); | |
968 | /* coreptr now contains the address of the virtual function */ | |
969 | /* (Actually, it contains the pointer to the plabel for the function. */ | |
970 | } | |
c906108c | 971 | else |
c5aa993b JM |
972 | { |
973 | /* RRBC case; the virtual function pointers are found by double | |
974 | * indirection through the class segment tables. */ | |
975 | ||
976 | /* Choose class segment depending on type we were passed */ | |
977 | class_index = class_index_in_primary_list (type); | |
978 | ||
979 | /* Find class segment pointer. These are in the vtable slots after | |
980 | * some other entries, so adjust by HP_ACC_VFUNC_START for that. */ | |
981 | /* pai: FIXME 32x64 problem here, if words are 8 bytes long | |
982 | * the multiplier below has to be 8 and value should be long. */ | |
983 | vp = value_at (builtin_type_int, | |
984 | coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL); | |
985 | /* Indirect once more, offset by function index */ | |
986 | /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */ | |
987 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j)); | |
988 | vp = value_at (builtin_type_int, coreptr, NULL); | |
989 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); | |
990 | ||
991 | /* coreptr now contains the address of the virtual function */ | |
992 | /* (Actually, it contains the pointer to the plabel for the function.) */ | |
993 | ||
994 | } | |
c906108c SS |
995 | |
996 | if (!coreptr) | |
c5aa993b | 997 | error ("Address of virtual function is null; error in virtual table?"); |
c906108c | 998 | |
c5aa993b | 999 | /* Wrap this addr in a value and return pointer */ |
c906108c SS |
1000 | vp = allocate_value (ftype); |
1001 | VALUE_TYPE (vp) = ftype; | |
1002 | VALUE_ADDRESS (vp) = coreptr; | |
c5aa993b | 1003 | |
c906108c SS |
1004 | /* pai: (temp) do we need the value_ind stuff in value_fn_field? */ |
1005 | return vp; | |
1006 | } | |
c5aa993b JM |
1007 | else |
1008 | { /* Not using HP/Taligent runtime conventions; so try to | |
1009 | * use g++ conventions for virtual table */ | |
1010 | ||
c906108c SS |
1011 | struct type *entry_type; |
1012 | /* First, get the virtual function table pointer. That comes | |
1013 | with a strange type, so cast it to type `pointer to long' (which | |
1014 | should serve just fine as a function type). Then, index into | |
1015 | the table, and convert final value to appropriate function type. */ | |
1016 | value_ptr entry, vfn, vtbl; | |
c5aa993b JM |
1017 | value_ptr vi = value_from_longest (builtin_type_int, |
1018 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); | |
c906108c SS |
1019 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
1020 | struct type *context; | |
1021 | if (fcontext == NULL) | |
c5aa993b JM |
1022 | /* We don't have an fcontext (e.g. the program was compiled with |
1023 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
1024 | This won't work right for multiple inheritance, but at least we | |
1025 | should do as well as GDB 3.x did. */ | |
1026 | fcontext = TYPE_VPTR_BASETYPE (type); | |
c906108c SS |
1027 | context = lookup_pointer_type (fcontext); |
1028 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
1029 | if (TYPE_TARGET_TYPE (context) != type1) | |
c5aa993b | 1030 | { |
c906108c SS |
1031 | value_ptr tmp = value_cast (context, value_addr (arg1)); |
1032 | VALUE_POINTED_TO_OFFSET (tmp) = 0; | |
c5aa993b JM |
1033 | arg1 = value_ind (tmp); |
1034 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1035 | } | |
c906108c SS |
1036 | |
1037 | context = type1; | |
1038 | /* Now context is the basetype containing the vtbl. */ | |
1039 | ||
1040 | /* This type may have been defined before its virtual function table | |
1041 | was. If so, fill in the virtual function table entry for the | |
1042 | type now. */ | |
1043 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
c5aa993b | 1044 | fill_in_vptr_fieldno (context); |
c906108c SS |
1045 | |
1046 | /* The virtual function table is now an array of structures | |
1047 | which have the form { int16 offset, delta; void *pfn; }. */ | |
1048 | vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context), | |
1049 | TYPE_VPTR_BASETYPE (context)); | |
c5aa993b | 1050 | |
c906108c | 1051 | /* With older versions of g++, the vtbl field pointed to an array |
c5aa993b | 1052 | of structures. Nowadays it points directly to the structure. */ |
c906108c | 1053 | if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR |
c5aa993b | 1054 | && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY) |
c906108c SS |
1055 | { |
1056 | /* Handle the case where the vtbl field points to an | |
1057 | array of structures. */ | |
1058 | vtbl = value_ind (vtbl); | |
1059 | ||
1060 | /* Index into the virtual function table. This is hard-coded because | |
1061 | looking up a field is not cheap, and it may be important to save | |
1062 | time, e.g. if the user has set a conditional breakpoint calling | |
1063 | a virtual function. */ | |
1064 | entry = value_subscript (vtbl, vi); | |
1065 | } | |
1066 | else | |
1067 | { | |
1068 | /* Handle the case where the vtbl field points directly to a structure. */ | |
1069 | vtbl = value_add (vtbl, vi); | |
1070 | entry = value_ind (vtbl); | |
1071 | } | |
1072 | ||
1073 | entry_type = check_typedef (VALUE_TYPE (entry)); | |
1074 | ||
1075 | if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT) | |
c5aa993b JM |
1076 | { |
1077 | /* Move the `this' pointer according to the virtual function table. */ | |
1078 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); | |
1079 | ||
1080 | if (!VALUE_LAZY (arg1)) | |
1081 | { | |
1082 | VALUE_LAZY (arg1) = 1; | |
1083 | value_fetch_lazy (arg1); | |
1084 | } | |
1085 | ||
1086 | vfn = value_field (entry, 2); | |
1087 | } | |
c906108c | 1088 | else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR) |
c5aa993b | 1089 | vfn = entry; |
c906108c | 1090 | else |
c5aa993b | 1091 | error ("I'm confused: virtual function table has bad type"); |
c906108c SS |
1092 | /* Reinstantiate the function pointer with the correct type. */ |
1093 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
1094 | ||
1095 | *arg1p = arg1; | |
1096 | return vfn; | |
1097 | } | |
1098 | } | |
1099 | ||
1100 | /* ARG is a pointer to an object we know to be at least | |
1101 | a DTYPE. BTYPE is the most derived basetype that has | |
1102 | already been searched (and need not be searched again). | |
1103 | After looking at the vtables between BTYPE and DTYPE, | |
1104 | return the most derived type we find. The caller must | |
1105 | be satisfied when the return value == DTYPE. | |
1106 | ||
070ad9f0 DB |
1107 | FIXME-tiemann: should work with dossier entries as well. |
1108 | NOTICE - djb: I see no good reason at all to keep this function now that | |
1109 | we have RTTI support. It's used in literally one place, and it's | |
1110 | hard to keep this function up to date when it's purpose is served | |
1111 | by value_rtti_type efficiently. | |
1112 | Consider it gone for 5.1. */ | |
c906108c SS |
1113 | |
1114 | static value_ptr | |
1115 | value_headof (in_arg, btype, dtype) | |
1116 | value_ptr in_arg; | |
1117 | struct type *btype, *dtype; | |
1118 | { | |
1119 | /* First collect the vtables we must look at for this object. */ | |
070ad9f0 | 1120 | value_ptr arg, vtbl; |
c906108c | 1121 | struct symbol *sym; |
c906108c SS |
1122 | char *demangled_name; |
1123 | struct minimal_symbol *msymbol; | |
1124 | ||
1125 | btype = TYPE_VPTR_BASETYPE (dtype); | |
1126 | CHECK_TYPEDEF (btype); | |
1127 | arg = in_arg; | |
1128 | if (btype != dtype) | |
070ad9f0 DB |
1129 | arg = value_cast (lookup_pointer_type (btype), arg); |
1130 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF) | |
1131 | { | |
1132 | /* | |
1133 | * Copy the value, but change the type from (T&) to (T*). | |
1134 | * We keep the same location information, which is efficient, | |
1135 | * and allows &(&X) to get the location containing the reference. | |
1136 | */ | |
1137 | arg = value_copy (arg); | |
1138 | VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg))); | |
1139 | } | |
1140 | if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0) | |
1141 | return arg; | |
1142 | ||
c906108c | 1143 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); |
070ad9f0 DB |
1144 | /* Turn vtable into typeinfo function */ |
1145 | VALUE_OFFSET(vtbl)+=4; | |
c906108c | 1146 | |
070ad9f0 | 1147 | msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) ); |
c906108c | 1148 | if (msymbol == NULL |
070ad9f0 DB |
1149 | || (demangled_name = SYMBOL_NAME (msymbol)) == NULL) |
1150 | { | |
1151 | /* If we expected to find a vtable, but did not, let the user | |
1152 | know that we aren't happy, but don't throw an error. | |
1153 | FIXME: there has to be a better way to do this. */ | |
1154 | struct type *error_type = (struct type *) xmalloc (sizeof (struct type)); | |
1155 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); | |
1156 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); | |
1157 | VALUE_TYPE (in_arg) = error_type; | |
1158 | return in_arg; | |
1159 | } | |
1160 | demangled_name = cplus_demangle(demangled_name,DMGL_ANSI); | |
1161 | *(strchr (demangled_name, ' ')) = '\0'; | |
c906108c | 1162 | |
c906108c SS |
1163 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
1164 | if (sym == NULL) | |
070ad9f0 DB |
1165 | error ("could not find type declaration for `%s'", demangled_name); |
1166 | ||
1167 | arg = in_arg; | |
c906108c SS |
1168 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
1169 | return arg; | |
1170 | } | |
1171 | ||
1172 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1173 | function tables, probe ARG's tables (including the vtables | |
1174 | of its baseclasses) to figure out the most derived type that ARG | |
1175 | could actually be a pointer to. */ | |
1176 | ||
1177 | value_ptr | |
1178 | value_from_vtable_info (arg, type) | |
1179 | value_ptr arg; | |
1180 | struct type *type; | |
1181 | { | |
1182 | /* Take care of preliminaries. */ | |
1183 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1184 | fill_in_vptr_fieldno (type); | |
1185 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1186 | return 0; | |
1187 | ||
1188 | return value_headof (arg, 0, type); | |
1189 | } | |
1190 | ||
1191 | /* Return true if the INDEXth field of TYPE is a virtual baseclass | |
1192 | pointer which is for the base class whose type is BASECLASS. */ | |
1193 | ||
1194 | static int | |
1195 | vb_match (type, index, basetype) | |
1196 | struct type *type; | |
1197 | int index; | |
1198 | struct type *basetype; | |
1199 | { | |
1200 | struct type *fieldtype; | |
1201 | char *name = TYPE_FIELD_NAME (type, index); | |
1202 | char *field_class_name = NULL; | |
1203 | ||
1204 | if (*name != '_') | |
1205 | return 0; | |
1206 | /* gcc 2.4 uses _vb$. */ | |
1207 | if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3])) | |
1208 | field_class_name = name + 4; | |
1209 | /* gcc 2.5 will use __vb_. */ | |
1210 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') | |
1211 | field_class_name = name + 5; | |
1212 | ||
1213 | if (field_class_name == NULL) | |
1214 | /* This field is not a virtual base class pointer. */ | |
1215 | return 0; | |
1216 | ||
1217 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1218 | it is for this baseclass. */ | |
1219 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1220 | if (fieldtype == NULL | |
1221 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1222 | /* "Can't happen". */ | |
1223 | return 0; | |
1224 | ||
1225 | /* What we check for is that either the types are equal (needed for | |
1226 | nameless types) or have the same name. This is ugly, and a more | |
1227 | elegant solution should be devised (which would probably just push | |
1228 | the ugliness into symbol reading unless we change the stabs format). */ | |
1229 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1230 | return 1; | |
1231 | ||
1232 | if (TYPE_NAME (basetype) != NULL | |
1233 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1234 | && STREQ (TYPE_NAME (basetype), | |
1235 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1236 | return 1; | |
1237 | return 0; | |
1238 | } | |
1239 | ||
1240 | /* Compute the offset of the baseclass which is | |
1241 | the INDEXth baseclass of class TYPE, | |
1242 | for value at VALADDR (in host) at ADDRESS (in target). | |
1243 | The result is the offset of the baseclass value relative | |
1244 | to (the address of)(ARG) + OFFSET. | |
1245 | ||
1246 | -1 is returned on error. */ | |
1247 | ||
1248 | int | |
1249 | baseclass_offset (type, index, valaddr, address) | |
1250 | struct type *type; | |
1251 | int index; | |
1252 | char *valaddr; | |
1253 | CORE_ADDR address; | |
1254 | { | |
1255 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1256 | ||
1257 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1258 | { | |
1259 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1260 | register int i, len = TYPE_NFIELDS (type); | |
1261 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
1262 | ||
1263 | /* First look for the virtual baseclass pointer | |
c5aa993b | 1264 | in the fields. */ |
c906108c SS |
1265 | for (i = n_baseclasses; i < len; i++) |
1266 | { | |
1267 | if (vb_match (type, i, basetype)) | |
1268 | { | |
1269 | CORE_ADDR addr | |
c5aa993b JM |
1270 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), |
1271 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); | |
c906108c SS |
1272 | |
1273 | return addr - (LONGEST) address; | |
1274 | } | |
1275 | } | |
1276 | /* Not in the fields, so try looking through the baseclasses. */ | |
c5aa993b | 1277 | for (i = index + 1; i < n_baseclasses; i++) |
c906108c SS |
1278 | { |
1279 | int boffset = | |
c5aa993b | 1280 | baseclass_offset (type, i, valaddr, address); |
c906108c SS |
1281 | if (boffset) |
1282 | return boffset; | |
1283 | } | |
1284 | /* Not found. */ | |
1285 | return -1; | |
1286 | } | |
1287 | ||
1288 | /* Baseclass is easily computed. */ | |
1289 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1290 | } | |
1291 | \f | |
1292 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at | |
1293 | VALADDR. | |
1294 | ||
1295 | Extracting bits depends on endianness of the machine. Compute the | |
1296 | number of least significant bits to discard. For big endian machines, | |
1297 | we compute the total number of bits in the anonymous object, subtract | |
1298 | off the bit count from the MSB of the object to the MSB of the | |
1299 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1300 | count. For little endian machines, the discard count is simply the | |
1301 | number of bits from the LSB of the anonymous object to the LSB of the | |
1302 | bitfield. | |
1303 | ||
1304 | If the field is signed, we also do sign extension. */ | |
1305 | ||
1306 | LONGEST | |
1307 | unpack_field_as_long (type, valaddr, fieldno) | |
1308 | struct type *type; | |
1309 | char *valaddr; | |
1310 | int fieldno; | |
1311 | { | |
1312 | ULONGEST val; | |
1313 | ULONGEST valmask; | |
1314 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
1315 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
1316 | int lsbcount; | |
1317 | struct type *field_type; | |
1318 | ||
1319 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); | |
1320 | field_type = TYPE_FIELD_TYPE (type, fieldno); | |
1321 | CHECK_TYPEDEF (field_type); | |
1322 | ||
1323 | /* Extract bits. See comment above. */ | |
1324 | ||
1325 | if (BITS_BIG_ENDIAN) | |
1326 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1327 | else | |
1328 | lsbcount = (bitpos % 8); | |
1329 | val >>= lsbcount; | |
1330 | ||
1331 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
1332 | If the field is signed, and is negative, then sign extend. */ | |
1333 | ||
1334 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
1335 | { | |
1336 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
1337 | val &= valmask; | |
1338 | if (!TYPE_UNSIGNED (field_type)) | |
1339 | { | |
1340 | if (val & (valmask ^ (valmask >> 1))) | |
1341 | { | |
1342 | val |= ~valmask; | |
1343 | } | |
1344 | } | |
1345 | } | |
1346 | return (val); | |
1347 | } | |
1348 | ||
1349 | /* Modify the value of a bitfield. ADDR points to a block of memory in | |
1350 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1351 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1352 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1353 | ||
1354 | void | |
1355 | modify_field (addr, fieldval, bitpos, bitsize) | |
1356 | char *addr; | |
1357 | LONGEST fieldval; | |
1358 | int bitpos, bitsize; | |
1359 | { | |
1360 | LONGEST oword; | |
1361 | ||
1362 | /* If a negative fieldval fits in the field in question, chop | |
1363 | off the sign extension bits. */ | |
1364 | if (bitsize < (8 * (int) sizeof (fieldval)) | |
1365 | && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0) | |
1366 | fieldval = fieldval & ((1 << bitsize) - 1); | |
1367 | ||
1368 | /* Warn if value is too big to fit in the field in question. */ | |
1369 | if (bitsize < (8 * (int) sizeof (fieldval)) | |
c5aa993b | 1370 | && 0 != (fieldval & ~((1 << bitsize) - 1))) |
c906108c SS |
1371 | { |
1372 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 1373 | we don't have a sprintf_longest. */ |
c906108c SS |
1374 | warning ("Value does not fit in %d bits.", bitsize); |
1375 | ||
1376 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
1377 | fieldval = fieldval & ((1 << bitsize) - 1); | |
1378 | } | |
1379 | ||
1380 | oword = extract_signed_integer (addr, sizeof oword); | |
1381 | ||
1382 | /* Shifting for bit field depends on endianness of the target machine. */ | |
1383 | if (BITS_BIG_ENDIAN) | |
1384 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
1385 | ||
1386 | /* Mask out old value, while avoiding shifts >= size of oword */ | |
1387 | if (bitsize < 8 * (int) sizeof (oword)) | |
c5aa993b | 1388 | oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos); |
c906108c | 1389 | else |
c5aa993b | 1390 | oword &= ~((~(ULONGEST) 0) << bitpos); |
c906108c SS |
1391 | oword |= fieldval << bitpos; |
1392 | ||
1393 | store_signed_integer (addr, sizeof oword, oword); | |
1394 | } | |
1395 | \f | |
1396 | /* Convert C numbers into newly allocated values */ | |
1397 | ||
1398 | value_ptr | |
1399 | value_from_longest (type, num) | |
1400 | struct type *type; | |
1401 | register LONGEST num; | |
1402 | { | |
1403 | register value_ptr val = allocate_value (type); | |
1404 | register enum type_code code; | |
1405 | register int len; | |
c5aa993b | 1406 | retry: |
c906108c SS |
1407 | code = TYPE_CODE (type); |
1408 | len = TYPE_LENGTH (type); | |
1409 | ||
1410 | switch (code) | |
1411 | { | |
1412 | case TYPE_CODE_TYPEDEF: | |
1413 | type = check_typedef (type); | |
1414 | goto retry; | |
1415 | case TYPE_CODE_INT: | |
1416 | case TYPE_CODE_CHAR: | |
1417 | case TYPE_CODE_ENUM: | |
1418 | case TYPE_CODE_BOOL: | |
1419 | case TYPE_CODE_RANGE: | |
1420 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); | |
1421 | break; | |
c5aa993b | 1422 | |
c906108c SS |
1423 | case TYPE_CODE_REF: |
1424 | case TYPE_CODE_PTR: | |
4478b372 | 1425 | store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num); |
c906108c | 1426 | break; |
c5aa993b | 1427 | |
c906108c SS |
1428 | default: |
1429 | error ("Unexpected type (%d) encountered for integer constant.", code); | |
1430 | } | |
1431 | return val; | |
1432 | } | |
1433 | ||
4478b372 JB |
1434 | |
1435 | /* Create a value representing a pointer of type TYPE to the address | |
1436 | ADDR. */ | |
1437 | value_ptr | |
1438 | value_from_pointer (struct type *type, CORE_ADDR addr) | |
1439 | { | |
1440 | value_ptr val = allocate_value (type); | |
1441 | store_typed_address (VALUE_CONTENTS_RAW (val), type, addr); | |
1442 | return val; | |
1443 | } | |
1444 | ||
1445 | ||
0f71a2f6 | 1446 | /* Create a value for a string constant to be stored locally |
070ad9f0 | 1447 | (not in the inferior's memory space, but in GDB memory). |
0f71a2f6 JM |
1448 | This is analogous to value_from_longest, which also does not |
1449 | use inferior memory. String shall NOT contain embedded nulls. */ | |
1450 | ||
1451 | value_ptr | |
1452 | value_from_string (ptr) | |
1453 | char *ptr; | |
1454 | { | |
1455 | value_ptr val; | |
c5aa993b | 1456 | int len = strlen (ptr); |
0f71a2f6 | 1457 | int lowbound = current_language->string_lower_bound; |
c5aa993b JM |
1458 | struct type *rangetype = |
1459 | create_range_type ((struct type *) NULL, | |
1460 | builtin_type_int, | |
1461 | lowbound, len + lowbound - 1); | |
1462 | struct type *stringtype = | |
1463 | create_array_type ((struct type *) NULL, | |
1464 | *current_language->string_char_type, | |
1465 | rangetype); | |
0f71a2f6 JM |
1466 | |
1467 | val = allocate_value (stringtype); | |
1468 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1469 | return val; | |
1470 | } | |
1471 | ||
c906108c SS |
1472 | value_ptr |
1473 | value_from_double (type, num) | |
1474 | struct type *type; | |
1475 | DOUBLEST num; | |
1476 | { | |
1477 | register value_ptr val = allocate_value (type); | |
1478 | struct type *base_type = check_typedef (type); | |
1479 | register enum type_code code = TYPE_CODE (base_type); | |
1480 | register int len = TYPE_LENGTH (base_type); | |
1481 | ||
1482 | if (code == TYPE_CODE_FLT) | |
1483 | { | |
1484 | store_floating (VALUE_CONTENTS_RAW (val), len, num); | |
1485 | } | |
1486 | else | |
1487 | error ("Unexpected type encountered for floating constant."); | |
1488 | ||
1489 | return val; | |
1490 | } | |
1491 | \f | |
1492 | /* Deal with the value that is "about to be returned". */ | |
1493 | ||
1494 | /* Return the value that a function returning now | |
1495 | would be returning to its caller, assuming its type is VALTYPE. | |
1496 | RETBUF is where we look for what ought to be the contents | |
1497 | of the registers (in raw form). This is because it is often | |
1498 | desirable to restore old values to those registers | |
1499 | after saving the contents of interest, and then call | |
1500 | this function using the saved values. | |
1501 | struct_return is non-zero when the function in question is | |
1502 | using the structure return conventions on the machine in question; | |
1503 | 0 when it is using the value returning conventions (this often | |
1504 | means returning pointer to where structure is vs. returning value). */ | |
1505 | ||
1506 | value_ptr | |
1507 | value_being_returned (valtype, retbuf, struct_return) | |
1508 | register struct type *valtype; | |
7a292a7a | 1509 | char *retbuf; |
c906108c | 1510 | int struct_return; |
c5aa993b | 1511 | /*ARGSUSED */ |
c906108c SS |
1512 | { |
1513 | register value_ptr val; | |
1514 | CORE_ADDR addr; | |
1515 | ||
c906108c | 1516 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ |
ac9a91a7 JM |
1517 | if (EXTRACT_STRUCT_VALUE_ADDRESS_P) |
1518 | if (struct_return) | |
1519 | { | |
1520 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1521 | if (!addr) | |
1522 | error ("Function return value unknown"); | |
1523 | return value_at (valtype, addr, NULL); | |
1524 | } | |
c906108c SS |
1525 | |
1526 | val = allocate_value (valtype); | |
1527 | CHECK_TYPEDEF (valtype); | |
1528 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); | |
1529 | ||
1530 | return val; | |
1531 | } | |
1532 | ||
1533 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1534 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1535 | and TYPE is the type (which is known to be struct, union or array). | |
1536 | ||
1537 | On most machines, the struct convention is used unless we are | |
1538 | using gcc and the type is of a special size. */ | |
1539 | /* As of about 31 Mar 93, GCC was changed to be compatible with the | |
1540 | native compiler. GCC 2.3.3 was the last release that did it the | |
1541 | old way. Since gcc2_compiled was not changed, we have no | |
1542 | way to correctly win in all cases, so we just do the right thing | |
1543 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1544 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1545 | would cause more chaos than dealing with some struct returns being | |
1546 | handled wrong. */ | |
1547 | ||
1548 | int | |
1549 | generic_use_struct_convention (gcc_p, value_type) | |
1550 | int gcc_p; | |
1551 | struct type *value_type; | |
c5aa993b | 1552 | { |
c906108c | 1553 | return !((gcc_p == 1) |
c5aa993b JM |
1554 | && (TYPE_LENGTH (value_type) == 1 |
1555 | || TYPE_LENGTH (value_type) == 2 | |
1556 | || TYPE_LENGTH (value_type) == 4 | |
1557 | || TYPE_LENGTH (value_type) == 8)); | |
c906108c SS |
1558 | } |
1559 | ||
1560 | #ifndef USE_STRUCT_CONVENTION | |
1561 | #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type) | |
1562 | #endif | |
1563 | ||
1564 | /* Some fundamental types (such as long double) are returned on the stack for | |
1565 | certain architectures. This macro should return true for any type besides | |
1566 | struct, union or array that gets returned on the stack. */ | |
1567 | ||
1568 | #ifndef RETURN_VALUE_ON_STACK | |
1569 | #define RETURN_VALUE_ON_STACK(TYPE) 0 | |
1570 | #endif | |
1571 | ||
1572 | /* Return true if the function specified is using the structure returning | |
1573 | convention on this machine to return arguments, or 0 if it is using | |
1574 | the value returning convention. FUNCTION is the value representing | |
1575 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1576 | is the type returned by the function. GCC_P is nonzero if compiled | |
1577 | with GCC. */ | |
1578 | ||
1579 | int | |
1580 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
1581 | value_ptr function; | |
1582 | CORE_ADDR funcaddr; | |
1583 | struct type *value_type; | |
1584 | int gcc_p; | |
c5aa993b | 1585 | /*ARGSUSED */ |
c906108c SS |
1586 | { |
1587 | register enum type_code code = TYPE_CODE (value_type); | |
1588 | ||
1589 | if (code == TYPE_CODE_ERROR) | |
1590 | error ("Function return type unknown."); | |
1591 | ||
1592 | if (code == TYPE_CODE_STRUCT | |
1593 | || code == TYPE_CODE_UNION | |
1594 | || code == TYPE_CODE_ARRAY | |
1595 | || RETURN_VALUE_ON_STACK (value_type)) | |
1596 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1597 | ||
1598 | return 0; | |
1599 | } | |
1600 | ||
1601 | /* Store VAL so it will be returned if a function returns now. | |
1602 | Does not verify that VAL's type matches what the current | |
1603 | function wants to return. */ | |
1604 | ||
1605 | void | |
1606 | set_return_value (val) | |
1607 | value_ptr val; | |
1608 | { | |
1609 | struct type *type = check_typedef (VALUE_TYPE (val)); | |
1610 | register enum type_code code = TYPE_CODE (type); | |
1611 | ||
1612 | if (code == TYPE_CODE_ERROR) | |
1613 | error ("Function return type unknown."); | |
1614 | ||
c5aa993b | 1615 | if (code == TYPE_CODE_STRUCT |
c906108c SS |
1616 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ |
1617 | error ("GDB does not support specifying a struct or union return value."); | |
1618 | ||
1619 | STORE_RETURN_VALUE (type, VALUE_CONTENTS (val)); | |
1620 | } | |
1621 | \f | |
1622 | void | |
1623 | _initialize_values () | |
1624 | { | |
1625 | add_cmd ("convenience", no_class, show_convenience, | |
c5aa993b | 1626 | "Debugger convenience (\"$foo\") variables.\n\ |
c906108c SS |
1627 | These variables are created when you assign them values;\n\ |
1628 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1629 | A few convenience variables are given values automatically:\n\ | |
1630 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1631 | \"$__\" holds the contents of the last address examined with \"x\".", | |
1632 | &showlist); | |
1633 | ||
1634 | add_cmd ("values", no_class, show_values, | |
1635 | "Elements of value history around item number IDX (or last ten).", | |
1636 | &showlist); | |
1637 | } |