Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
0b302171 | 3 | Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "symtab.h" | |
22 | #include "gdbtypes.h" | |
23 | #include "gdbcore.h" | |
24 | #include "frame.h" | |
25 | #include "target.h" | |
26 | #include "value.h" | |
27 | #include "symfile.h" | |
28 | #include "objfiles.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "call-cmds.h" | |
88987551 | 31 | #include "gdb_regex.h" |
c906108c SS |
32 | #include "expression.h" |
33 | #include "language.h" | |
34 | #include "demangle.h" | |
35 | #include "inferior.h" | |
c5f0f3d0 | 36 | #include "linespec.h" |
0378c332 | 37 | #include "source.h" |
a7fdf62f | 38 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 39 | #include "objc-lang.h" |
6aecb9c2 | 40 | #include "d-lang.h" |
1f8173e6 | 41 | #include "ada-lang.h" |
a766d390 | 42 | #include "go-lang.h" |
cd6c7346 | 43 | #include "p-lang.h" |
ff013f42 | 44 | #include "addrmap.h" |
c906108c | 45 | |
2de7ced7 DJ |
46 | #include "hashtab.h" |
47 | ||
04ea0df1 | 48 | #include "gdb_obstack.h" |
fe898f56 | 49 | #include "block.h" |
de4f826b | 50 | #include "dictionary.h" |
c906108c SS |
51 | |
52 | #include <sys/types.h> | |
53 | #include <fcntl.h> | |
54 | #include "gdb_string.h" | |
55 | #include "gdb_stat.h" | |
56 | #include <ctype.h> | |
015a42b4 | 57 | #include "cp-abi.h" |
71c25dea | 58 | #include "cp-support.h" |
ea53e89f | 59 | #include "observer.h" |
94277a38 | 60 | #include "gdb_assert.h" |
3a40aaa0 | 61 | #include "solist.h" |
9a044a89 TT |
62 | #include "macrotab.h" |
63 | #include "macroscope.h" | |
c906108c | 64 | |
ccefe4c4 TT |
65 | #include "psymtab.h" |
66 | ||
c906108c SS |
67 | /* Prototypes for local functions */ |
68 | ||
a14ed312 | 69 | static void rbreak_command (char *, int); |
c906108c | 70 | |
a14ed312 | 71 | static void types_info (char *, int); |
c906108c | 72 | |
a14ed312 | 73 | static void functions_info (char *, int); |
c906108c | 74 | |
a14ed312 | 75 | static void variables_info (char *, int); |
c906108c | 76 | |
a14ed312 | 77 | static void sources_info (char *, int); |
c906108c | 78 | |
d092d1a2 | 79 | static void output_source_filename (const char *, int *); |
c906108c | 80 | |
f8eba3c6 | 81 | static int find_line_common (struct linetable *, int, int *, int); |
c906108c | 82 | |
3121eff0 | 83 | static struct symbol *lookup_symbol_aux (const char *name, |
3121eff0 | 84 | const struct block *block, |
176620f1 | 85 | const domain_enum domain, |
53c5240f | 86 | enum language language, |
774b6a14 | 87 | int *is_a_field_of_this); |
fba7f19c | 88 | |
e4051eeb DC |
89 | static |
90 | struct symbol *lookup_symbol_aux_local (const char *name, | |
e4051eeb | 91 | const struct block *block, |
13387711 SW |
92 | const domain_enum domain, |
93 | enum language language); | |
8155455b DC |
94 | |
95 | static | |
96 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
97 | const char *name, | |
67ff19f7 | 98 | const domain_enum domain); |
8155455b DC |
99 | |
100 | static | |
ccefe4c4 TT |
101 | struct symbol *lookup_symbol_aux_quick (struct objfile *objfile, |
102 | int block_index, | |
103 | const char *name, | |
104 | const domain_enum domain); | |
c906108c | 105 | |
a14ed312 | 106 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 107 | |
a14ed312 | 108 | void _initialize_symtab (void); |
c906108c SS |
109 | |
110 | /* */ | |
111 | ||
c011a4f4 DE |
112 | /* Non-zero if a file may be known by two different basenames. |
113 | This is the uncommon case, and significantly slows down gdb. | |
114 | Default set to "off" to not slow down the common case. */ | |
115 | int basenames_may_differ = 0; | |
116 | ||
717d2f5a JB |
117 | /* Allow the user to configure the debugger behavior with respect |
118 | to multiple-choice menus when more than one symbol matches during | |
119 | a symbol lookup. */ | |
120 | ||
7fc830e2 MK |
121 | const char multiple_symbols_ask[] = "ask"; |
122 | const char multiple_symbols_all[] = "all"; | |
123 | const char multiple_symbols_cancel[] = "cancel"; | |
40478521 | 124 | static const char *const multiple_symbols_modes[] = |
717d2f5a JB |
125 | { |
126 | multiple_symbols_ask, | |
127 | multiple_symbols_all, | |
128 | multiple_symbols_cancel, | |
129 | NULL | |
130 | }; | |
131 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
132 | ||
133 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
134 | ||
135 | const char * | |
136 | multiple_symbols_select_mode (void) | |
137 | { | |
138 | return multiple_symbols_mode; | |
139 | } | |
140 | ||
c906108c | 141 | /* Block in which the most recently searched-for symbol was found. |
9af17804 | 142 | Might be better to make this a parameter to lookup_symbol and |
c378eb4e | 143 | value_of_this. */ |
c906108c SS |
144 | |
145 | const struct block *block_found; | |
146 | ||
4aac40c8 TT |
147 | /* See whether FILENAME matches SEARCH_NAME using the rule that we |
148 | advertise to the user. (The manual's description of linespecs | |
149 | describes what we advertise). SEARCH_LEN is the length of | |
150 | SEARCH_NAME. We assume that SEARCH_NAME is a relative path. | |
151 | Returns true if they match, false otherwise. */ | |
152 | ||
153 | int | |
154 | compare_filenames_for_search (const char *filename, const char *search_name, | |
155 | int search_len) | |
156 | { | |
157 | int len = strlen (filename); | |
4aac40c8 TT |
158 | |
159 | if (len < search_len) | |
160 | return 0; | |
161 | ||
162 | /* The tail of FILENAME must match. */ | |
163 | if (FILENAME_CMP (filename + len - search_len, search_name) != 0) | |
164 | return 0; | |
165 | ||
166 | /* Either the names must completely match, or the character | |
167 | preceding the trailing SEARCH_NAME segment of FILENAME must be a | |
168 | directory separator. */ | |
169 | return (len == search_len | |
170 | || IS_DIR_SEPARATOR (filename[len - search_len - 1]) | |
171 | || (HAS_DRIVE_SPEC (filename) | |
172 | && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); | |
173 | } | |
174 | ||
f8eba3c6 TT |
175 | /* Check for a symtab of a specific name by searching some symtabs. |
176 | This is a helper function for callbacks of iterate_over_symtabs. | |
c906108c | 177 | |
f8eba3c6 TT |
178 | The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA |
179 | are identical to the `map_symtabs_matching_filename' method of | |
180 | quick_symbol_functions. | |
181 | ||
182 | FIRST and AFTER_LAST indicate the range of symtabs to search. | |
183 | AFTER_LAST is one past the last symtab to search; NULL means to | |
184 | search until the end of the list. */ | |
185 | ||
186 | int | |
187 | iterate_over_some_symtabs (const char *name, | |
188 | const char *full_path, | |
189 | const char *real_path, | |
190 | int (*callback) (struct symtab *symtab, | |
191 | void *data), | |
192 | void *data, | |
193 | struct symtab *first, | |
194 | struct symtab *after_last) | |
c906108c | 195 | { |
ccefe4c4 | 196 | struct symtab *s = NULL; |
c011a4f4 | 197 | const char* base_name = lbasename (name); |
4aac40c8 TT |
198 | int name_len = strlen (name); |
199 | int is_abs = IS_ABSOLUTE_PATH (name); | |
1f84b619 | 200 | |
f8eba3c6 | 201 | for (s = first; s != NULL && s != after_last; s = s->next) |
f079a2e5 | 202 | { |
4aac40c8 | 203 | /* Exact match is always ok. */ |
f8eba3c6 TT |
204 | if (FILENAME_CMP (name, s->filename) == 0) |
205 | { | |
206 | if (callback (s, data)) | |
207 | return 1; | |
208 | } | |
9af17804 | 209 | |
4aac40c8 TT |
210 | if (!is_abs && compare_filenames_for_search (s->filename, name, name_len)) |
211 | { | |
212 | if (callback (s, data)) | |
213 | return 1; | |
214 | } | |
215 | ||
c011a4f4 DE |
216 | /* Before we invoke realpath, which can get expensive when many |
217 | files are involved, do a quick comparison of the basenames. */ | |
218 | if (! basenames_may_differ | |
219 | && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) | |
220 | continue; | |
221 | ||
58d370e0 TT |
222 | /* If the user gave us an absolute path, try to find the file in |
223 | this symtab and use its absolute path. */ | |
9af17804 | 224 | |
f079a2e5 JB |
225 | if (full_path != NULL) |
226 | { | |
09bcec80 | 227 | const char *fp = symtab_to_fullname (s); |
433759f7 | 228 | |
09bcec80 BR |
229 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) |
230 | { | |
f8eba3c6 TT |
231 | if (callback (s, data)) |
232 | return 1; | |
09bcec80 | 233 | } |
4aac40c8 TT |
234 | |
235 | if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name, | |
236 | name_len)) | |
237 | { | |
238 | if (callback (s, data)) | |
239 | return 1; | |
240 | } | |
f079a2e5 JB |
241 | } |
242 | ||
58d370e0 TT |
243 | if (real_path != NULL) |
244 | { | |
09bcec80 | 245 | char *fullname = symtab_to_fullname (s); |
433759f7 | 246 | |
09bcec80 BR |
247 | if (fullname != NULL) |
248 | { | |
249 | char *rp = gdb_realpath (fullname); | |
433759f7 | 250 | |
09bcec80 BR |
251 | make_cleanup (xfree, rp); |
252 | if (FILENAME_CMP (real_path, rp) == 0) | |
f8eba3c6 TT |
253 | { |
254 | if (callback (s, data)) | |
255 | return 1; | |
256 | } | |
4aac40c8 TT |
257 | |
258 | if (!is_abs && compare_filenames_for_search (rp, name, name_len)) | |
259 | { | |
260 | if (callback (s, data)) | |
261 | return 1; | |
262 | } | |
09bcec80 | 263 | } |
58d370e0 | 264 | } |
f8eba3c6 | 265 | } |
58d370e0 | 266 | |
f8eba3c6 TT |
267 | return 0; |
268 | } | |
269 | ||
270 | /* Check for a symtab of a specific name; first in symtabs, then in | |
271 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
272 | in the symtab filename will also work. | |
273 | ||
274 | Calls CALLBACK with each symtab that is found and with the supplied | |
275 | DATA. If CALLBACK returns true, the search stops. */ | |
276 | ||
277 | void | |
278 | iterate_over_symtabs (const char *name, | |
279 | int (*callback) (struct symtab *symtab, | |
280 | void *data), | |
281 | void *data) | |
282 | { | |
283 | struct symtab *s = NULL; | |
284 | struct objfile *objfile; | |
285 | char *real_path = NULL; | |
286 | char *full_path = NULL; | |
287 | struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); | |
288 | ||
289 | /* Here we are interested in canonicalizing an absolute path, not | |
290 | absolutizing a relative path. */ | |
291 | if (IS_ABSOLUTE_PATH (name)) | |
292 | { | |
293 | full_path = xfullpath (name); | |
294 | make_cleanup (xfree, full_path); | |
295 | real_path = gdb_realpath (name); | |
296 | make_cleanup (xfree, real_path); | |
297 | } | |
298 | ||
299 | ALL_OBJFILES (objfile) | |
300 | { | |
301 | if (iterate_over_some_symtabs (name, full_path, real_path, callback, data, | |
302 | objfile->symtabs, NULL)) | |
303 | { | |
304 | do_cleanups (cleanups); | |
305 | return; | |
306 | } | |
307 | } | |
308 | ||
c906108c SS |
309 | /* Same search rules as above apply here, but now we look thru the |
310 | psymtabs. */ | |
311 | ||
ccefe4c4 TT |
312 | ALL_OBJFILES (objfile) |
313 | { | |
314 | if (objfile->sf | |
f8eba3c6 TT |
315 | && objfile->sf->qf->map_symtabs_matching_filename (objfile, |
316 | name, | |
317 | full_path, | |
318 | real_path, | |
319 | callback, | |
320 | data)) | |
ccefe4c4 | 321 | { |
f8eba3c6 TT |
322 | do_cleanups (cleanups); |
323 | return; | |
ccefe4c4 TT |
324 | } |
325 | } | |
c906108c | 326 | |
f8eba3c6 TT |
327 | do_cleanups (cleanups); |
328 | } | |
329 | ||
330 | /* The callback function used by lookup_symtab. */ | |
331 | ||
332 | static int | |
333 | lookup_symtab_callback (struct symtab *symtab, void *data) | |
334 | { | |
335 | struct symtab **result_ptr = data; | |
c906108c | 336 | |
f8eba3c6 TT |
337 | *result_ptr = symtab; |
338 | return 1; | |
c906108c | 339 | } |
f8eba3c6 TT |
340 | |
341 | /* A wrapper for iterate_over_symtabs that returns the first matching | |
342 | symtab, or NULL. */ | |
343 | ||
344 | struct symtab * | |
345 | lookup_symtab (const char *name) | |
346 | { | |
347 | struct symtab *result = NULL; | |
348 | ||
349 | iterate_over_symtabs (name, lookup_symtab_callback, &result); | |
350 | return result; | |
351 | } | |
352 | ||
c906108c SS |
353 | \f |
354 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
355 | full method name, which consist of the class name (from T), the unadorned | |
356 | method name from METHOD_ID, and the signature for the specific overload, | |
c378eb4e | 357 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ |
c906108c SS |
358 | |
359 | char * | |
fba45db2 | 360 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
361 | { |
362 | int mangled_name_len; | |
363 | char *mangled_name; | |
364 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
365 | struct fn_field *method = &f[signature_id]; | |
0d5cff50 | 366 | const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); |
1d06ead6 | 367 | const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); |
0d5cff50 | 368 | const char *newname = type_name_no_tag (type); |
c906108c SS |
369 | |
370 | /* Does the form of physname indicate that it is the full mangled name | |
371 | of a constructor (not just the args)? */ | |
372 | int is_full_physname_constructor; | |
373 | ||
374 | int is_constructor; | |
015a42b4 | 375 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
376 | /* Need a new type prefix. */ |
377 | char *const_prefix = method->is_const ? "C" : ""; | |
378 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
379 | char buf[20]; | |
380 | int len = (newname == NULL ? 0 : strlen (newname)); | |
381 | ||
43630227 PS |
382 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
383 | or an operator name. */ | |
384 | if ((physname[0] == '_' && physname[1] == 'Z') | |
385 | || is_operator_name (field_name)) | |
235d1e03 EZ |
386 | return xstrdup (physname); |
387 | ||
015a42b4 | 388 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c | 389 | |
3e43a32a MS |
390 | is_constructor = is_full_physname_constructor |
391 | || (newname && strcmp (field_name, newname) == 0); | |
c906108c SS |
392 | |
393 | if (!is_destructor) | |
c5aa993b | 394 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
395 | |
396 | if (is_destructor || is_full_physname_constructor) | |
397 | { | |
c5aa993b JM |
398 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
399 | strcpy (mangled_name, physname); | |
c906108c SS |
400 | return mangled_name; |
401 | } | |
402 | ||
403 | if (len == 0) | |
404 | { | |
405 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
406 | } | |
407 | else if (physname[0] == 't' || physname[0] == 'Q') | |
408 | { | |
409 | /* The physname for template and qualified methods already includes | |
c5aa993b | 410 | the class name. */ |
c906108c SS |
411 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
412 | newname = NULL; | |
413 | len = 0; | |
414 | } | |
415 | else | |
416 | { | |
417 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
418 | } | |
419 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 420 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 421 | |
433759f7 MS |
422 | mangled_name = (char *) xmalloc (mangled_name_len); |
423 | if (is_constructor) | |
424 | mangled_name[0] = '\0'; | |
425 | else | |
426 | strcpy (mangled_name, field_name); | |
427 | ||
c906108c SS |
428 | strcat (mangled_name, buf); |
429 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
430 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c378eb4e | 431 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
432 | if (newname != NULL) |
433 | strcat (mangled_name, newname); | |
434 | ||
435 | strcat (mangled_name, physname); | |
436 | return (mangled_name); | |
437 | } | |
12af6855 | 438 | |
29df156d SW |
439 | /* Initialize the cplus_specific structure. 'cplus_specific' should |
440 | only be allocated for use with cplus symbols. */ | |
441 | ||
442 | static void | |
443 | symbol_init_cplus_specific (struct general_symbol_info *gsymbol, | |
444 | struct objfile *objfile) | |
445 | { | |
446 | /* A language_specific structure should not have been previously | |
447 | initialized. */ | |
448 | gdb_assert (gsymbol->language_specific.cplus_specific == NULL); | |
449 | gdb_assert (objfile != NULL); | |
450 | ||
451 | gsymbol->language_specific.cplus_specific = | |
452 | OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific); | |
453 | } | |
454 | ||
b250c185 | 455 | /* Set the demangled name of GSYMBOL to NAME. NAME must be already |
29df156d | 456 | correctly allocated. For C++ symbols a cplus_specific struct is |
c378eb4e | 457 | allocated so OBJFILE must not be NULL. If this is a non C++ symbol |
29df156d | 458 | OBJFILE can be NULL. */ |
eca864fe | 459 | |
b250c185 SW |
460 | void |
461 | symbol_set_demangled_name (struct general_symbol_info *gsymbol, | |
29df156d SW |
462 | char *name, |
463 | struct objfile *objfile) | |
b250c185 | 464 | { |
29df156d SW |
465 | if (gsymbol->language == language_cplus) |
466 | { | |
467 | if (gsymbol->language_specific.cplus_specific == NULL) | |
468 | symbol_init_cplus_specific (gsymbol, objfile); | |
469 | ||
470 | gsymbol->language_specific.cplus_specific->demangled_name = name; | |
471 | } | |
472 | else | |
473 | gsymbol->language_specific.mangled_lang.demangled_name = name; | |
b250c185 SW |
474 | } |
475 | ||
476 | /* Return the demangled name of GSYMBOL. */ | |
eca864fe | 477 | |
0d5cff50 | 478 | const char * |
b250c185 SW |
479 | symbol_get_demangled_name (const struct general_symbol_info *gsymbol) |
480 | { | |
29df156d SW |
481 | if (gsymbol->language == language_cplus) |
482 | { | |
45c58896 SW |
483 | if (gsymbol->language_specific.cplus_specific != NULL) |
484 | return gsymbol->language_specific.cplus_specific->demangled_name; | |
485 | else | |
486 | return NULL; | |
29df156d SW |
487 | } |
488 | else | |
489 | return gsymbol->language_specific.mangled_lang.demangled_name; | |
b250c185 SW |
490 | } |
491 | ||
12af6855 | 492 | \f |
89aad1f9 | 493 | /* Initialize the language dependent portion of a symbol |
c378eb4e | 494 | depending upon the language for the symbol. */ |
eca864fe | 495 | |
89aad1f9 | 496 | void |
33e5013e SW |
497 | symbol_set_language (struct general_symbol_info *gsymbol, |
498 | enum language language) | |
89aad1f9 EZ |
499 | { |
500 | gsymbol->language = language; | |
33e5013e | 501 | if (gsymbol->language == language_d |
a766d390 | 502 | || gsymbol->language == language_go |
5784d15e | 503 | || gsymbol->language == language_java |
f55ee35c JK |
504 | || gsymbol->language == language_objc |
505 | || gsymbol->language == language_fortran) | |
89aad1f9 | 506 | { |
29df156d | 507 | symbol_set_demangled_name (gsymbol, NULL, NULL); |
89aad1f9 | 508 | } |
29df156d SW |
509 | else if (gsymbol->language == language_cplus) |
510 | gsymbol->language_specific.cplus_specific = NULL; | |
89aad1f9 EZ |
511 | else |
512 | { | |
513 | memset (&gsymbol->language_specific, 0, | |
514 | sizeof (gsymbol->language_specific)); | |
515 | } | |
516 | } | |
517 | ||
2de7ced7 DJ |
518 | /* Functions to initialize a symbol's mangled name. */ |
519 | ||
04a679b8 TT |
520 | /* Objects of this type are stored in the demangled name hash table. */ |
521 | struct demangled_name_entry | |
522 | { | |
523 | char *mangled; | |
524 | char demangled[1]; | |
525 | }; | |
526 | ||
527 | /* Hash function for the demangled name hash. */ | |
eca864fe | 528 | |
04a679b8 TT |
529 | static hashval_t |
530 | hash_demangled_name_entry (const void *data) | |
531 | { | |
532 | const struct demangled_name_entry *e = data; | |
433759f7 | 533 | |
04a679b8 TT |
534 | return htab_hash_string (e->mangled); |
535 | } | |
536 | ||
537 | /* Equality function for the demangled name hash. */ | |
eca864fe | 538 | |
04a679b8 TT |
539 | static int |
540 | eq_demangled_name_entry (const void *a, const void *b) | |
541 | { | |
542 | const struct demangled_name_entry *da = a; | |
543 | const struct demangled_name_entry *db = b; | |
433759f7 | 544 | |
04a679b8 TT |
545 | return strcmp (da->mangled, db->mangled) == 0; |
546 | } | |
547 | ||
2de7ced7 DJ |
548 | /* Create the hash table used for demangled names. Each hash entry is |
549 | a pair of strings; one for the mangled name and one for the demangled | |
550 | name. The entry is hashed via just the mangled name. */ | |
551 | ||
552 | static void | |
553 | create_demangled_names_hash (struct objfile *objfile) | |
554 | { | |
555 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
9af17804 | 556 | The hash table code will round this up to the next prime number. |
2de7ced7 DJ |
557 | Choosing a much larger table size wastes memory, and saves only about |
558 | 1% in symbol reading. */ | |
559 | ||
aa2ee5f6 | 560 | objfile->demangled_names_hash = htab_create_alloc |
04a679b8 | 561 | (256, hash_demangled_name_entry, eq_demangled_name_entry, |
aa2ee5f6 | 562 | NULL, xcalloc, xfree); |
2de7ced7 | 563 | } |
12af6855 | 564 | |
2de7ced7 | 565 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
566 | language of that symbol. If the language is set to language_auto, |
567 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
568 | then set the language appropriately. The returned name is allocated |
569 | by the demangler and should be xfree'd. */ | |
12af6855 | 570 | |
2de7ced7 DJ |
571 | static char * |
572 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
573 | const char *mangled) | |
12af6855 | 574 | { |
12af6855 JB |
575 | char *demangled = NULL; |
576 | ||
577 | if (gsymbol->language == language_unknown) | |
578 | gsymbol->language = language_auto; | |
1bae87b9 AF |
579 | |
580 | if (gsymbol->language == language_objc | |
581 | || gsymbol->language == language_auto) | |
582 | { | |
583 | demangled = | |
584 | objc_demangle (mangled, 0); | |
585 | if (demangled != NULL) | |
586 | { | |
587 | gsymbol->language = language_objc; | |
588 | return demangled; | |
589 | } | |
590 | } | |
12af6855 JB |
591 | if (gsymbol->language == language_cplus |
592 | || gsymbol->language == language_auto) | |
593 | { | |
594 | demangled = | |
3f542ed1 | 595 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 596 | if (demangled != NULL) |
2de7ced7 DJ |
597 | { |
598 | gsymbol->language = language_cplus; | |
599 | return demangled; | |
600 | } | |
12af6855 JB |
601 | } |
602 | if (gsymbol->language == language_java) | |
603 | { | |
604 | demangled = | |
2de7ced7 | 605 | cplus_demangle (mangled, |
12af6855 JB |
606 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
607 | if (demangled != NULL) | |
2de7ced7 DJ |
608 | { |
609 | gsymbol->language = language_java; | |
610 | return demangled; | |
611 | } | |
612 | } | |
6aecb9c2 JB |
613 | if (gsymbol->language == language_d |
614 | || gsymbol->language == language_auto) | |
615 | { | |
616 | demangled = d_demangle(mangled, 0); | |
617 | if (demangled != NULL) | |
618 | { | |
619 | gsymbol->language = language_d; | |
620 | return demangled; | |
621 | } | |
622 | } | |
a766d390 DE |
623 | /* FIXME(dje): Continually adding languages here is clumsy. |
624 | Better to just call la_demangle if !auto, and if auto then call | |
625 | a utility routine that tries successive languages in turn and reports | |
626 | which one it finds. I realize the la_demangle options may be different | |
627 | for different languages but there's already a FIXME for that. */ | |
628 | if (gsymbol->language == language_go | |
629 | || gsymbol->language == language_auto) | |
630 | { | |
631 | demangled = go_demangle (mangled, 0); | |
632 | if (demangled != NULL) | |
633 | { | |
634 | gsymbol->language = language_go; | |
635 | return demangled; | |
636 | } | |
637 | } | |
638 | ||
f55ee35c JK |
639 | /* We could support `gsymbol->language == language_fortran' here to provide |
640 | module namespaces also for inferiors with only minimal symbol table (ELF | |
641 | symbols). Just the mangling standard is not standardized across compilers | |
642 | and there is no DW_AT_producer available for inferiors with only the ELF | |
643 | symbols to check the mangling kind. */ | |
2de7ced7 DJ |
644 | return NULL; |
645 | } | |
646 | ||
980cae7a | 647 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
04a679b8 TT |
648 | on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the |
649 | objfile's obstack; but if COPY_NAME is 0 and if NAME is | |
650 | NUL-terminated, then this function assumes that NAME is already | |
651 | correctly saved (either permanently or with a lifetime tied to the | |
652 | objfile), and it will not be copied. | |
653 | ||
654 | The hash table corresponding to OBJFILE is used, and the memory | |
655 | comes from that objfile's objfile_obstack. LINKAGE_NAME is copied, | |
656 | so the pointer can be discarded after calling this function. */ | |
2de7ced7 | 657 | |
d2a52b27 DC |
658 | /* We have to be careful when dealing with Java names: when we run |
659 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
660 | gets demangled as a C++ name. This is unfortunate, but there's not | |
661 | much we can do about it: but when demangling partial symbols and | |
662 | regular symbols, we'd better not reuse the wrong demangled name. | |
663 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
664 | on Java names when storing them in the hash table. */ | |
665 | ||
666 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
667 | don't mind the Java prefix so much: different languages have | |
668 | different demangling requirements, so it's only natural that we | |
669 | need to keep language data around in our demangling cache. But | |
670 | it's not good that the minimal symbol has the wrong demangled name. | |
671 | Unfortunately, I can't think of any easy solution to that | |
672 | problem. */ | |
673 | ||
674 | #define JAVA_PREFIX "##JAVA$$" | |
675 | #define JAVA_PREFIX_LEN 8 | |
676 | ||
2de7ced7 DJ |
677 | void |
678 | symbol_set_names (struct general_symbol_info *gsymbol, | |
04a679b8 TT |
679 | const char *linkage_name, int len, int copy_name, |
680 | struct objfile *objfile) | |
2de7ced7 | 681 | { |
04a679b8 | 682 | struct demangled_name_entry **slot; |
980cae7a DC |
683 | /* A 0-terminated copy of the linkage name. */ |
684 | const char *linkage_name_copy; | |
d2a52b27 DC |
685 | /* A copy of the linkage name that might have a special Java prefix |
686 | added to it, for use when looking names up in the hash table. */ | |
687 | const char *lookup_name; | |
688 | /* The length of lookup_name. */ | |
689 | int lookup_len; | |
04a679b8 | 690 | struct demangled_name_entry entry; |
2de7ced7 | 691 | |
b06ead72 JB |
692 | if (gsymbol->language == language_ada) |
693 | { | |
694 | /* In Ada, we do the symbol lookups using the mangled name, so | |
695 | we can save some space by not storing the demangled name. | |
696 | ||
697 | As a side note, we have also observed some overlap between | |
698 | the C++ mangling and Ada mangling, similarly to what has | |
699 | been observed with Java. Because we don't store the demangled | |
700 | name with the symbol, we don't need to use the same trick | |
701 | as Java. */ | |
04a679b8 | 702 | if (!copy_name) |
0d5cff50 | 703 | gsymbol->name = linkage_name; |
04a679b8 TT |
704 | else |
705 | { | |
0d5cff50 DE |
706 | char *name = obstack_alloc (&objfile->objfile_obstack, len + 1); |
707 | ||
708 | memcpy (name, linkage_name, len); | |
709 | name[len] = '\0'; | |
710 | gsymbol->name = name; | |
04a679b8 | 711 | } |
29df156d | 712 | symbol_set_demangled_name (gsymbol, NULL, NULL); |
b06ead72 JB |
713 | |
714 | return; | |
715 | } | |
716 | ||
04a679b8 TT |
717 | if (objfile->demangled_names_hash == NULL) |
718 | create_demangled_names_hash (objfile); | |
719 | ||
980cae7a DC |
720 | /* The stabs reader generally provides names that are not |
721 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
722 | can just use the given copy, unless we're in the Java case. */ |
723 | if (gsymbol->language == language_java) | |
724 | { | |
725 | char *alloc_name; | |
d2a52b27 | 726 | |
433759f7 | 727 | lookup_len = len + JAVA_PREFIX_LEN; |
d2a52b27 DC |
728 | alloc_name = alloca (lookup_len + 1); |
729 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
730 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
731 | alloc_name[lookup_len] = '\0'; | |
732 | ||
733 | lookup_name = alloc_name; | |
734 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
735 | } | |
736 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 737 | { |
980cae7a DC |
738 | char *alloc_name; |
739 | ||
433759f7 | 740 | lookup_len = len; |
d2a52b27 | 741 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 742 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 743 | alloc_name[lookup_len] = '\0'; |
980cae7a | 744 | |
d2a52b27 | 745 | lookup_name = alloc_name; |
980cae7a | 746 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
747 | } |
748 | else | |
980cae7a | 749 | { |
d2a52b27 DC |
750 | lookup_len = len; |
751 | lookup_name = linkage_name; | |
980cae7a DC |
752 | linkage_name_copy = linkage_name; |
753 | } | |
2de7ced7 | 754 | |
04a679b8 TT |
755 | entry.mangled = (char *) lookup_name; |
756 | slot = ((struct demangled_name_entry **) | |
757 | htab_find_slot (objfile->demangled_names_hash, | |
758 | &entry, INSERT)); | |
2de7ced7 DJ |
759 | |
760 | /* If this name is not in the hash table, add it. */ | |
a766d390 DE |
761 | if (*slot == NULL |
762 | /* A C version of the symbol may have already snuck into the table. | |
763 | This happens to, e.g., main.init (__go_init_main). Cope. */ | |
764 | || (gsymbol->language == language_go | |
765 | && (*slot)->demangled[0] == '\0')) | |
2de7ced7 | 766 | { |
980cae7a DC |
767 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
768 | linkage_name_copy); | |
2de7ced7 DJ |
769 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
770 | ||
04a679b8 TT |
771 | /* Suppose we have demangled_name==NULL, copy_name==0, and |
772 | lookup_name==linkage_name. In this case, we already have the | |
773 | mangled name saved, and we don't have a demangled name. So, | |
774 | you might think we could save a little space by not recording | |
775 | this in the hash table at all. | |
776 | ||
777 | It turns out that it is actually important to still save such | |
778 | an entry in the hash table, because storing this name gives | |
705b5767 | 779 | us better bcache hit rates for partial symbols. */ |
04a679b8 TT |
780 | if (!copy_name && lookup_name == linkage_name) |
781 | { | |
782 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
783 | offsetof (struct demangled_name_entry, | |
784 | demangled) | |
785 | + demangled_len + 1); | |
786 | (*slot)->mangled = (char *) lookup_name; | |
787 | } | |
788 | else | |
789 | { | |
790 | /* If we must copy the mangled name, put it directly after | |
791 | the demangled name so we can have a single | |
792 | allocation. */ | |
793 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
794 | offsetof (struct demangled_name_entry, | |
795 | demangled) | |
796 | + lookup_len + demangled_len + 2); | |
797 | (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]); | |
798 | strcpy ((*slot)->mangled, lookup_name); | |
799 | } | |
800 | ||
980cae7a | 801 | if (demangled_name != NULL) |
2de7ced7 | 802 | { |
04a679b8 | 803 | strcpy ((*slot)->demangled, demangled_name); |
2de7ced7 DJ |
804 | xfree (demangled_name); |
805 | } | |
806 | else | |
04a679b8 | 807 | (*slot)->demangled[0] = '\0'; |
2de7ced7 DJ |
808 | } |
809 | ||
72dcaf82 | 810 | gsymbol->name = (*slot)->mangled + lookup_len - len; |
04a679b8 | 811 | if ((*slot)->demangled[0] != '\0') |
29df156d | 812 | symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile); |
2de7ced7 | 813 | else |
29df156d | 814 | symbol_set_demangled_name (gsymbol, NULL, objfile); |
2de7ced7 DJ |
815 | } |
816 | ||
22abf04a DC |
817 | /* Return the source code name of a symbol. In languages where |
818 | demangling is necessary, this is the demangled name. */ | |
819 | ||
0d5cff50 | 820 | const char * |
22abf04a DC |
821 | symbol_natural_name (const struct general_symbol_info *gsymbol) |
822 | { | |
9af17804 | 823 | switch (gsymbol->language) |
22abf04a | 824 | { |
1f8173e6 | 825 | case language_cplus: |
6aecb9c2 | 826 | case language_d: |
a766d390 | 827 | case language_go: |
1f8173e6 PH |
828 | case language_java: |
829 | case language_objc: | |
f55ee35c | 830 | case language_fortran: |
b250c185 SW |
831 | if (symbol_get_demangled_name (gsymbol) != NULL) |
832 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
833 | break; |
834 | case language_ada: | |
b250c185 SW |
835 | if (symbol_get_demangled_name (gsymbol) != NULL) |
836 | return symbol_get_demangled_name (gsymbol); | |
1f8173e6 PH |
837 | else |
838 | return ada_decode_symbol (gsymbol); | |
839 | break; | |
840 | default: | |
841 | break; | |
22abf04a | 842 | } |
1f8173e6 | 843 | return gsymbol->name; |
22abf04a DC |
844 | } |
845 | ||
9cc0d196 | 846 | /* Return the demangled name for a symbol based on the language for |
c378eb4e | 847 | that symbol. If no demangled name exists, return NULL. */ |
eca864fe | 848 | |
0d5cff50 | 849 | const char * |
df8a16a1 | 850 | symbol_demangled_name (const struct general_symbol_info *gsymbol) |
9cc0d196 | 851 | { |
c6e5ee5e SDJ |
852 | const char *dem_name = NULL; |
853 | ||
9af17804 | 854 | switch (gsymbol->language) |
1f8173e6 PH |
855 | { |
856 | case language_cplus: | |
6aecb9c2 | 857 | case language_d: |
a766d390 | 858 | case language_go: |
1f8173e6 PH |
859 | case language_java: |
860 | case language_objc: | |
f55ee35c | 861 | case language_fortran: |
c6e5ee5e | 862 | dem_name = symbol_get_demangled_name (gsymbol); |
1f8173e6 PH |
863 | break; |
864 | case language_ada: | |
c6e5ee5e SDJ |
865 | dem_name = symbol_get_demangled_name (gsymbol); |
866 | if (dem_name == NULL) | |
867 | dem_name = ada_decode_symbol (gsymbol); | |
1f8173e6 PH |
868 | break; |
869 | default: | |
870 | break; | |
871 | } | |
c6e5ee5e | 872 | return dem_name; |
9cc0d196 | 873 | } |
fe39c653 | 874 | |
4725b721 PH |
875 | /* Return the search name of a symbol---generally the demangled or |
876 | linkage name of the symbol, depending on how it will be searched for. | |
9af17804 | 877 | If there is no distinct demangled name, then returns the same value |
c378eb4e | 878 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
eca864fe | 879 | |
0d5cff50 | 880 | const char * |
fc062ac6 JB |
881 | symbol_search_name (const struct general_symbol_info *gsymbol) |
882 | { | |
1f8173e6 PH |
883 | if (gsymbol->language == language_ada) |
884 | return gsymbol->name; | |
885 | else | |
886 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
887 | } |
888 | ||
fe39c653 | 889 | /* Initialize the structure fields to zero values. */ |
eca864fe | 890 | |
fe39c653 EZ |
891 | void |
892 | init_sal (struct symtab_and_line *sal) | |
893 | { | |
6c95b8df | 894 | sal->pspace = NULL; |
fe39c653 EZ |
895 | sal->symtab = 0; |
896 | sal->section = 0; | |
897 | sal->line = 0; | |
898 | sal->pc = 0; | |
899 | sal->end = 0; | |
ed0616c6 VP |
900 | sal->explicit_pc = 0; |
901 | sal->explicit_line = 0; | |
55aa24fb | 902 | sal->probe = NULL; |
fe39c653 | 903 | } |
c906108c SS |
904 | \f |
905 | ||
94277a38 DJ |
906 | /* Return 1 if the two sections are the same, or if they could |
907 | plausibly be copies of each other, one in an original object | |
908 | file and another in a separated debug file. */ | |
909 | ||
910 | int | |
714835d5 UW |
911 | matching_obj_sections (struct obj_section *obj_first, |
912 | struct obj_section *obj_second) | |
94277a38 | 913 | { |
714835d5 UW |
914 | asection *first = obj_first? obj_first->the_bfd_section : NULL; |
915 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
94277a38 DJ |
916 | struct objfile *obj; |
917 | ||
918 | /* If they're the same section, then they match. */ | |
919 | if (first == second) | |
920 | return 1; | |
921 | ||
922 | /* If either is NULL, give up. */ | |
923 | if (first == NULL || second == NULL) | |
924 | return 0; | |
925 | ||
926 | /* This doesn't apply to absolute symbols. */ | |
927 | if (first->owner == NULL || second->owner == NULL) | |
928 | return 0; | |
929 | ||
930 | /* If they're in the same object file, they must be different sections. */ | |
931 | if (first->owner == second->owner) | |
932 | return 0; | |
933 | ||
934 | /* Check whether the two sections are potentially corresponding. They must | |
935 | have the same size, address, and name. We can't compare section indexes, | |
936 | which would be more reliable, because some sections may have been | |
937 | stripped. */ | |
938 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
939 | return 0; | |
940 | ||
818f79f6 | 941 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 942 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
943 | - bfd_get_start_address (first->owner) |
944 | != bfd_get_section_vma (second->owner, second) | |
945 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
946 | return 0; |
947 | ||
948 | if (bfd_get_section_name (first->owner, first) == NULL | |
949 | || bfd_get_section_name (second->owner, second) == NULL | |
950 | || strcmp (bfd_get_section_name (first->owner, first), | |
951 | bfd_get_section_name (second->owner, second)) != 0) | |
952 | return 0; | |
953 | ||
954 | /* Otherwise check that they are in corresponding objfiles. */ | |
955 | ||
956 | ALL_OBJFILES (obj) | |
957 | if (obj->obfd == first->owner) | |
958 | break; | |
959 | gdb_assert (obj != NULL); | |
960 | ||
961 | if (obj->separate_debug_objfile != NULL | |
962 | && obj->separate_debug_objfile->obfd == second->owner) | |
963 | return 1; | |
964 | if (obj->separate_debug_objfile_backlink != NULL | |
965 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
966 | return 1; | |
967 | ||
968 | return 0; | |
969 | } | |
c5aa993b | 970 | |
ccefe4c4 TT |
971 | struct symtab * |
972 | find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section) | |
c906108c | 973 | { |
52f0bd74 | 974 | struct objfile *objfile; |
8a48e967 DJ |
975 | struct minimal_symbol *msymbol; |
976 | ||
977 | /* If we know that this is not a text address, return failure. This is | |
978 | necessary because we loop based on texthigh and textlow, which do | |
979 | not include the data ranges. */ | |
980 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
981 | if (msymbol | |
712f90be TT |
982 | && (MSYMBOL_TYPE (msymbol) == mst_data |
983 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
984 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
985 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
986 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 987 | return NULL; |
c906108c | 988 | |
ff013f42 | 989 | ALL_OBJFILES (objfile) |
ccefe4c4 TT |
990 | { |
991 | struct symtab *result = NULL; | |
433759f7 | 992 | |
ccefe4c4 TT |
993 | if (objfile->sf) |
994 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol, | |
995 | pc, section, 0); | |
996 | if (result) | |
997 | return result; | |
998 | } | |
ff013f42 JK |
999 | |
1000 | return NULL; | |
c906108c | 1001 | } |
c906108c SS |
1002 | \f |
1003 | /* Debug symbols usually don't have section information. We need to dig that | |
1004 | out of the minimal symbols and stash that in the debug symbol. */ | |
1005 | ||
ccefe4c4 | 1006 | void |
907fc202 UW |
1007 | fixup_section (struct general_symbol_info *ginfo, |
1008 | CORE_ADDR addr, struct objfile *objfile) | |
c906108c SS |
1009 | { |
1010 | struct minimal_symbol *msym; | |
c906108c | 1011 | |
bccdca4a UW |
1012 | /* First, check whether a minimal symbol with the same name exists |
1013 | and points to the same address. The address check is required | |
1014 | e.g. on PowerPC64, where the minimal symbol for a function will | |
1015 | point to the function descriptor, while the debug symbol will | |
1016 | point to the actual function code. */ | |
907fc202 UW |
1017 | msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); |
1018 | if (msym) | |
7a78d0ee | 1019 | { |
714835d5 | 1020 | ginfo->obj_section = SYMBOL_OBJ_SECTION (msym); |
7a78d0ee KB |
1021 | ginfo->section = SYMBOL_SECTION (msym); |
1022 | } | |
907fc202 | 1023 | else |
19e2d14b KB |
1024 | { |
1025 | /* Static, function-local variables do appear in the linker | |
1026 | (minimal) symbols, but are frequently given names that won't | |
1027 | be found via lookup_minimal_symbol(). E.g., it has been | |
1028 | observed in frv-uclinux (ELF) executables that a static, | |
1029 | function-local variable named "foo" might appear in the | |
1030 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
1031 | point in attempting to extend the lookup-by-name mechanism to | |
1032 | handle this case due to the fact that there can be multiple | |
1033 | names. | |
9af17804 | 1034 | |
19e2d14b KB |
1035 | So, instead, search the section table when lookup by name has |
1036 | failed. The ``addr'' and ``endaddr'' fields may have already | |
1037 | been relocated. If so, the relocation offset (i.e. the | |
1038 | ANOFFSET value) needs to be subtracted from these values when | |
1039 | performing the comparison. We unconditionally subtract it, | |
1040 | because, when no relocation has been performed, the ANOFFSET | |
1041 | value will simply be zero. | |
9af17804 | 1042 | |
19e2d14b KB |
1043 | The address of the symbol whose section we're fixing up HAS |
1044 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
1045 | the section isn't yet known and knowing the section is | |
1046 | necessary in order to add the correct relocation value. In | |
1047 | other words, we wouldn't even be in this function (attempting | |
1048 | to compute the section) if it were already known. | |
1049 | ||
1050 | Note that it is possible to search the minimal symbols | |
1051 | (subtracting the relocation value if necessary) to find the | |
1052 | matching minimal symbol, but this is overkill and much less | |
1053 | efficient. It is not necessary to find the matching minimal | |
9af17804 DE |
1054 | symbol, only its section. |
1055 | ||
19e2d14b KB |
1056 | Note that this technique (of doing a section table search) |
1057 | can fail when unrelocated section addresses overlap. For | |
1058 | this reason, we still attempt a lookup by name prior to doing | |
1059 | a search of the section table. */ | |
9af17804 | 1060 | |
19e2d14b | 1061 | struct obj_section *s; |
433759f7 | 1062 | |
19e2d14b KB |
1063 | ALL_OBJFILE_OSECTIONS (objfile, s) |
1064 | { | |
1065 | int idx = s->the_bfd_section->index; | |
1066 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
1067 | ||
f1f6aadf PA |
1068 | if (obj_section_addr (s) - offset <= addr |
1069 | && addr < obj_section_endaddr (s) - offset) | |
19e2d14b | 1070 | { |
714835d5 | 1071 | ginfo->obj_section = s; |
19e2d14b KB |
1072 | ginfo->section = idx; |
1073 | return; | |
1074 | } | |
1075 | } | |
1076 | } | |
c906108c SS |
1077 | } |
1078 | ||
1079 | struct symbol * | |
fba45db2 | 1080 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c | 1081 | { |
907fc202 UW |
1082 | CORE_ADDR addr; |
1083 | ||
c906108c SS |
1084 | if (!sym) |
1085 | return NULL; | |
1086 | ||
714835d5 | 1087 | if (SYMBOL_OBJ_SECTION (sym)) |
c906108c SS |
1088 | return sym; |
1089 | ||
907fc202 UW |
1090 | /* We either have an OBJFILE, or we can get at it from the sym's |
1091 | symtab. Anything else is a bug. */ | |
1092 | gdb_assert (objfile || SYMBOL_SYMTAB (sym)); | |
1093 | ||
1094 | if (objfile == NULL) | |
1095 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
1096 | ||
1097 | /* We should have an objfile by now. */ | |
1098 | gdb_assert (objfile); | |
1099 | ||
1100 | switch (SYMBOL_CLASS (sym)) | |
1101 | { | |
1102 | case LOC_STATIC: | |
1103 | case LOC_LABEL: | |
907fc202 UW |
1104 | addr = SYMBOL_VALUE_ADDRESS (sym); |
1105 | break; | |
1106 | case LOC_BLOCK: | |
1107 | addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1108 | break; | |
1109 | ||
1110 | default: | |
1111 | /* Nothing else will be listed in the minsyms -- no use looking | |
1112 | it up. */ | |
1113 | return sym; | |
1114 | } | |
1115 | ||
1116 | fixup_section (&sym->ginfo, addr, objfile); | |
c906108c SS |
1117 | |
1118 | return sym; | |
1119 | } | |
1120 | ||
f8eba3c6 TT |
1121 | /* Compute the demangled form of NAME as used by the various symbol |
1122 | lookup functions. The result is stored in *RESULT_NAME. Returns a | |
1123 | cleanup which can be used to clean up the result. | |
1124 | ||
1125 | For Ada, this function just sets *RESULT_NAME to NAME, unmodified. | |
1126 | Normally, Ada symbol lookups are performed using the encoded name | |
1127 | rather than the demangled name, and so it might seem to make sense | |
1128 | for this function to return an encoded version of NAME. | |
1129 | Unfortunately, we cannot do this, because this function is used in | |
1130 | circumstances where it is not appropriate to try to encode NAME. | |
1131 | For instance, when displaying the frame info, we demangle the name | |
1132 | of each parameter, and then perform a symbol lookup inside our | |
1133 | function using that demangled name. In Ada, certain functions | |
1134 | have internally-generated parameters whose name contain uppercase | |
1135 | characters. Encoding those name would result in those uppercase | |
1136 | characters to become lowercase, and thus cause the symbol lookup | |
1137 | to fail. */ | |
c906108c | 1138 | |
f8eba3c6 TT |
1139 | struct cleanup * |
1140 | demangle_for_lookup (const char *name, enum language lang, | |
1141 | const char **result_name) | |
c906108c | 1142 | { |
729051e6 DJ |
1143 | char *demangled_name = NULL; |
1144 | const char *modified_name = NULL; | |
9ee6bb93 | 1145 | struct cleanup *cleanup = make_cleanup (null_cleanup, 0); |
c906108c | 1146 | |
729051e6 DJ |
1147 | modified_name = name; |
1148 | ||
a766d390 | 1149 | /* If we are using C++, D, Go, or Java, demangle the name before doing a |
c378eb4e | 1150 | lookup, so we can always binary search. */ |
53c5240f | 1151 | if (lang == language_cplus) |
729051e6 DJ |
1152 | { |
1153 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1154 | if (demangled_name) | |
1155 | { | |
729051e6 | 1156 | modified_name = demangled_name; |
9ee6bb93 | 1157 | make_cleanup (xfree, demangled_name); |
729051e6 | 1158 | } |
71c25dea TT |
1159 | else |
1160 | { | |
1161 | /* If we were given a non-mangled name, canonicalize it | |
1162 | according to the language (so far only for C++). */ | |
1163 | demangled_name = cp_canonicalize_string (name); | |
1164 | if (demangled_name) | |
1165 | { | |
1166 | modified_name = demangled_name; | |
1167 | make_cleanup (xfree, demangled_name); | |
1168 | } | |
1169 | } | |
729051e6 | 1170 | } |
53c5240f | 1171 | else if (lang == language_java) |
987504bb | 1172 | { |
9af17804 | 1173 | demangled_name = cplus_demangle (name, |
987504bb JJ |
1174 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); |
1175 | if (demangled_name) | |
1176 | { | |
987504bb | 1177 | modified_name = demangled_name; |
9ee6bb93 | 1178 | make_cleanup (xfree, demangled_name); |
987504bb JJ |
1179 | } |
1180 | } | |
6aecb9c2 JB |
1181 | else if (lang == language_d) |
1182 | { | |
1183 | demangled_name = d_demangle (name, 0); | |
1184 | if (demangled_name) | |
1185 | { | |
1186 | modified_name = demangled_name; | |
1187 | make_cleanup (xfree, demangled_name); | |
1188 | } | |
1189 | } | |
a766d390 DE |
1190 | else if (lang == language_go) |
1191 | { | |
1192 | demangled_name = go_demangle (name, 0); | |
1193 | if (demangled_name) | |
1194 | { | |
1195 | modified_name = demangled_name; | |
1196 | make_cleanup (xfree, demangled_name); | |
1197 | } | |
1198 | } | |
729051e6 | 1199 | |
f8eba3c6 TT |
1200 | *result_name = modified_name; |
1201 | return cleanup; | |
1202 | } | |
1203 | ||
1204 | /* Find the definition for a specified symbol name NAME | |
1205 | in domain DOMAIN, visible from lexical block BLOCK. | |
1206 | Returns the struct symbol pointer, or zero if no symbol is found. | |
1207 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if | |
1208 | NAME is a field of the current implied argument `this'. If so set | |
1209 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. | |
1210 | BLOCK_FOUND is set to the block in which NAME is found (in the case of | |
1211 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
1212 | ||
7e082072 DE |
1213 | /* This function (or rather its subordinates) have a bunch of loops and |
1214 | it would seem to be attractive to put in some QUIT's (though I'm not really | |
1215 | sure whether it can run long enough to be really important). But there | |
f8eba3c6 | 1216 | are a few calls for which it would appear to be bad news to quit |
7e082072 | 1217 | out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note |
f8eba3c6 TT |
1218 | that there is C++ code below which can error(), but that probably |
1219 | doesn't affect these calls since they are looking for a known | |
1220 | variable and thus can probably assume it will never hit the C++ | |
1221 | code). */ | |
1222 | ||
1223 | struct symbol * | |
1224 | lookup_symbol_in_language (const char *name, const struct block *block, | |
1225 | const domain_enum domain, enum language lang, | |
1226 | int *is_a_field_of_this) | |
1227 | { | |
1228 | const char *modified_name; | |
1229 | struct symbol *returnval; | |
1230 | struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name); | |
1231 | ||
94af9270 | 1232 | returnval = lookup_symbol_aux (modified_name, block, domain, lang, |
774b6a14 | 1233 | is_a_field_of_this); |
9ee6bb93 | 1234 | do_cleanups (cleanup); |
fba7f19c | 1235 | |
9af17804 | 1236 | return returnval; |
fba7f19c EZ |
1237 | } |
1238 | ||
53c5240f PA |
1239 | /* Behave like lookup_symbol_in_language, but performed with the |
1240 | current language. */ | |
1241 | ||
1242 | struct symbol * | |
1243 | lookup_symbol (const char *name, const struct block *block, | |
2570f2b7 | 1244 | domain_enum domain, int *is_a_field_of_this) |
53c5240f PA |
1245 | { |
1246 | return lookup_symbol_in_language (name, block, domain, | |
1247 | current_language->la_language, | |
2570f2b7 | 1248 | is_a_field_of_this); |
53c5240f PA |
1249 | } |
1250 | ||
66a17cb6 TT |
1251 | /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if |
1252 | found, or NULL if not found. */ | |
1253 | ||
1254 | struct symbol * | |
1255 | lookup_language_this (const struct language_defn *lang, | |
1256 | const struct block *block) | |
1257 | { | |
1258 | if (lang->la_name_of_this == NULL || block == NULL) | |
1259 | return NULL; | |
1260 | ||
03de6823 | 1261 | while (block) |
66a17cb6 TT |
1262 | { |
1263 | struct symbol *sym; | |
1264 | ||
1265 | sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN); | |
1266 | if (sym != NULL) | |
f149aabd TT |
1267 | { |
1268 | block_found = block; | |
1269 | return sym; | |
1270 | } | |
66a17cb6 | 1271 | if (BLOCK_FUNCTION (block)) |
03de6823 | 1272 | break; |
66a17cb6 TT |
1273 | block = BLOCK_SUPERBLOCK (block); |
1274 | } | |
03de6823 TT |
1275 | |
1276 | return NULL; | |
66a17cb6 TT |
1277 | } |
1278 | ||
53c5240f | 1279 | /* Behave like lookup_symbol except that NAME is the natural name |
7e082072 | 1280 | (e.g., demangled name) of the symbol that we're looking for. */ |
5ad1c190 | 1281 | |
fba7f19c | 1282 | static struct symbol * |
94af9270 KS |
1283 | lookup_symbol_aux (const char *name, const struct block *block, |
1284 | const domain_enum domain, enum language language, | |
774b6a14 | 1285 | int *is_a_field_of_this) |
fba7f19c | 1286 | { |
8155455b | 1287 | struct symbol *sym; |
53c5240f | 1288 | const struct language_defn *langdef; |
406bc4de | 1289 | |
9a146a11 EZ |
1290 | /* Make sure we do something sensible with is_a_field_of_this, since |
1291 | the callers that set this parameter to some non-null value will | |
1292 | certainly use it later and expect it to be either 0 or 1. | |
1293 | If we don't set it, the contents of is_a_field_of_this are | |
1294 | undefined. */ | |
1295 | if (is_a_field_of_this != NULL) | |
1296 | *is_a_field_of_this = 0; | |
1297 | ||
e4051eeb DC |
1298 | /* Search specified block and its superiors. Don't search |
1299 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1300 | |
13387711 | 1301 | sym = lookup_symbol_aux_local (name, block, domain, language); |
8155455b DC |
1302 | if (sym != NULL) |
1303 | return sym; | |
c906108c | 1304 | |
53c5240f | 1305 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
13387711 | 1306 | check to see if NAME is a field of `this'. */ |
53c5240f PA |
1307 | |
1308 | langdef = language_def (language); | |
5f9a71c3 | 1309 | |
66a17cb6 | 1310 | if (is_a_field_of_this != NULL) |
c906108c | 1311 | { |
66a17cb6 | 1312 | struct symbol *sym = lookup_language_this (langdef, block); |
2b2d9e11 | 1313 | |
2b2d9e11 | 1314 | if (sym) |
c906108c | 1315 | { |
2b2d9e11 | 1316 | struct type *t = sym->type; |
9af17804 | 1317 | |
2b2d9e11 VP |
1318 | /* I'm not really sure that type of this can ever |
1319 | be typedefed; just be safe. */ | |
1320 | CHECK_TYPEDEF (t); | |
1321 | if (TYPE_CODE (t) == TYPE_CODE_PTR | |
1322 | || TYPE_CODE (t) == TYPE_CODE_REF) | |
1323 | t = TYPE_TARGET_TYPE (t); | |
9af17804 | 1324 | |
2b2d9e11 VP |
1325 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1326 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
9af17804 | 1327 | error (_("Internal error: `%s' is not an aggregate"), |
2b2d9e11 | 1328 | langdef->la_name_of_this); |
9af17804 | 1329 | |
2b2d9e11 VP |
1330 | if (check_field (t, name)) |
1331 | { | |
1332 | *is_a_field_of_this = 1; | |
2b2d9e11 VP |
1333 | return NULL; |
1334 | } | |
c906108c SS |
1335 | } |
1336 | } | |
1337 | ||
53c5240f | 1338 | /* Now do whatever is appropriate for LANGUAGE to look |
774b6a14 | 1339 | up static and global variables. */ |
c906108c | 1340 | |
774b6a14 TT |
1341 | sym = langdef->la_lookup_symbol_nonlocal (name, block, domain); |
1342 | if (sym != NULL) | |
1343 | return sym; | |
c906108c | 1344 | |
774b6a14 TT |
1345 | /* Now search all static file-level symbols. Not strictly correct, |
1346 | but more useful than an error. */ | |
41f62f39 JK |
1347 | |
1348 | return lookup_static_symbol_aux (name, domain); | |
1349 | } | |
1350 | ||
1351 | /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs | |
1352 | first, then check the psymtabs. If a psymtab indicates the existence of the | |
1353 | desired name as a file-level static, then do psymtab-to-symtab conversion on | |
c378eb4e | 1354 | the fly and return the found symbol. */ |
41f62f39 JK |
1355 | |
1356 | struct symbol * | |
1357 | lookup_static_symbol_aux (const char *name, const domain_enum domain) | |
1358 | { | |
1359 | struct objfile *objfile; | |
1360 | struct symbol *sym; | |
c906108c | 1361 | |
67ff19f7 | 1362 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain); |
8155455b DC |
1363 | if (sym != NULL) |
1364 | return sym; | |
9af17804 | 1365 | |
ccefe4c4 TT |
1366 | ALL_OBJFILES (objfile) |
1367 | { | |
1368 | sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain); | |
1369 | if (sym != NULL) | |
1370 | return sym; | |
1371 | } | |
c906108c | 1372 | |
8155455b | 1373 | return NULL; |
c906108c | 1374 | } |
8155455b | 1375 | |
e4051eeb | 1376 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1377 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1378 | |
1379 | static struct symbol * | |
94af9270 | 1380 | lookup_symbol_aux_local (const char *name, const struct block *block, |
13387711 SW |
1381 | const domain_enum domain, |
1382 | enum language language) | |
8155455b DC |
1383 | { |
1384 | struct symbol *sym; | |
89a9d1b1 | 1385 | const struct block *static_block = block_static_block (block); |
13387711 SW |
1386 | const char *scope = block_scope (block); |
1387 | ||
e4051eeb DC |
1388 | /* Check if either no block is specified or it's a global block. */ |
1389 | ||
89a9d1b1 DC |
1390 | if (static_block == NULL) |
1391 | return NULL; | |
e4051eeb | 1392 | |
89a9d1b1 | 1393 | while (block != static_block) |
f61e8913 | 1394 | { |
94af9270 | 1395 | sym = lookup_symbol_aux_block (name, block, domain); |
f61e8913 DC |
1396 | if (sym != NULL) |
1397 | return sym; | |
edb3359d | 1398 | |
f55ee35c | 1399 | if (language == language_cplus || language == language_fortran) |
13387711 | 1400 | { |
34eaf542 TT |
1401 | sym = cp_lookup_symbol_imports_or_template (scope, name, block, |
1402 | domain); | |
13387711 SW |
1403 | if (sym != NULL) |
1404 | return sym; | |
1405 | } | |
1406 | ||
edb3359d DJ |
1407 | if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) |
1408 | break; | |
f61e8913 DC |
1409 | block = BLOCK_SUPERBLOCK (block); |
1410 | } | |
1411 | ||
edb3359d | 1412 | /* We've reached the edge of the function without finding a result. */ |
e4051eeb | 1413 | |
f61e8913 DC |
1414 | return NULL; |
1415 | } | |
1416 | ||
3a40aaa0 UW |
1417 | /* Look up OBJFILE to BLOCK. */ |
1418 | ||
c0201579 | 1419 | struct objfile * |
3a40aaa0 UW |
1420 | lookup_objfile_from_block (const struct block *block) |
1421 | { | |
1422 | struct objfile *obj; | |
1423 | struct symtab *s; | |
1424 | ||
1425 | if (block == NULL) | |
1426 | return NULL; | |
1427 | ||
1428 | block = block_global_block (block); | |
1429 | /* Go through SYMTABS. */ | |
1430 | ALL_SYMTABS (obj, s) | |
1431 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
61f0d762 JK |
1432 | { |
1433 | if (obj->separate_debug_objfile_backlink) | |
1434 | obj = obj->separate_debug_objfile_backlink; | |
1435 | ||
1436 | return obj; | |
1437 | } | |
3a40aaa0 UW |
1438 | |
1439 | return NULL; | |
1440 | } | |
1441 | ||
6c9353d3 PA |
1442 | /* Look up a symbol in a block; if found, fixup the symbol, and set |
1443 | block_found appropriately. */ | |
f61e8913 | 1444 | |
5f9a71c3 | 1445 | struct symbol * |
94af9270 | 1446 | lookup_symbol_aux_block (const char *name, const struct block *block, |
21b556f4 | 1447 | const domain_enum domain) |
f61e8913 DC |
1448 | { |
1449 | struct symbol *sym; | |
f61e8913 | 1450 | |
94af9270 | 1451 | sym = lookup_block_symbol (block, name, domain); |
f61e8913 | 1452 | if (sym) |
8155455b | 1453 | { |
f61e8913 | 1454 | block_found = block; |
21b556f4 | 1455 | return fixup_symbol_section (sym, NULL); |
8155455b DC |
1456 | } |
1457 | ||
1458 | return NULL; | |
1459 | } | |
1460 | ||
3a40aaa0 UW |
1461 | /* Check all global symbols in OBJFILE in symtabs and |
1462 | psymtabs. */ | |
1463 | ||
1464 | struct symbol * | |
15d123c9 | 1465 | lookup_global_symbol_from_objfile (const struct objfile *main_objfile, |
3a40aaa0 | 1466 | const char *name, |
21b556f4 | 1467 | const domain_enum domain) |
3a40aaa0 | 1468 | { |
15d123c9 | 1469 | const struct objfile *objfile; |
3a40aaa0 UW |
1470 | struct symbol *sym; |
1471 | struct blockvector *bv; | |
1472 | const struct block *block; | |
1473 | struct symtab *s; | |
3a40aaa0 | 1474 | |
15d123c9 TG |
1475 | for (objfile = main_objfile; |
1476 | objfile; | |
1477 | objfile = objfile_separate_debug_iterate (main_objfile, objfile)) | |
1478 | { | |
1479 | /* Go through symtabs. */ | |
78e5175a DE |
1480 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
1481 | { | |
1482 | bv = BLOCKVECTOR (s); | |
1483 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1484 | sym = lookup_block_symbol (block, name, domain); | |
1485 | if (sym) | |
1486 | { | |
1487 | block_found = block; | |
1488 | return fixup_symbol_section (sym, (struct objfile *)objfile); | |
1489 | } | |
1490 | } | |
15d123c9 | 1491 | |
ccefe4c4 TT |
1492 | sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK, |
1493 | name, domain); | |
1494 | if (sym) | |
1495 | return sym; | |
15d123c9 | 1496 | } |
56e3f43c | 1497 | |
3a40aaa0 UW |
1498 | return NULL; |
1499 | } | |
1500 | ||
19630284 JB |
1501 | /* Check to see if the symbol is defined in one of the OBJFILE's |
1502 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
8155455b DC |
1503 | depending on whether or not we want to search global symbols or |
1504 | static symbols. */ | |
1505 | ||
19630284 JB |
1506 | static struct symbol * |
1507 | lookup_symbol_aux_objfile (struct objfile *objfile, int block_index, | |
1508 | const char *name, const domain_enum domain) | |
1509 | { | |
1510 | struct symbol *sym = NULL; | |
1511 | struct blockvector *bv; | |
1512 | const struct block *block; | |
1513 | struct symtab *s; | |
1514 | ||
1515 | if (objfile->sf) | |
1516 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index, | |
1517 | name, domain); | |
1518 | ||
1519 | ALL_OBJFILE_SYMTABS (objfile, s) | |
1520 | if (s->primary) | |
1521 | { | |
1522 | bv = BLOCKVECTOR (s); | |
1523 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
1524 | sym = lookup_block_symbol (block, name, domain); | |
1525 | if (sym) | |
1526 | { | |
1527 | block_found = block; | |
1528 | return fixup_symbol_section (sym, objfile); | |
1529 | } | |
1530 | } | |
1531 | ||
1532 | return NULL; | |
1533 | } | |
1534 | ||
1535 | /* Same as lookup_symbol_aux_objfile, except that it searches all | |
1536 | objfiles. Return the first match found. */ | |
1537 | ||
8155455b | 1538 | static struct symbol * |
67ff19f7 JB |
1539 | lookup_symbol_aux_symtabs (int block_index, const char *name, |
1540 | const domain_enum domain) | |
8155455b | 1541 | { |
67ff19f7 JB |
1542 | struct symbol *sym; |
1543 | struct objfile *objfile; | |
8155455b | 1544 | |
67ff19f7 JB |
1545 | ALL_OBJFILES (objfile) |
1546 | { | |
19630284 JB |
1547 | sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain); |
1548 | if (sym) | |
1549 | return sym; | |
8155455b DC |
1550 | } |
1551 | ||
1552 | return NULL; | |
1553 | } | |
1554 | ||
422d65e7 DE |
1555 | /* Wrapper around lookup_symbol_aux_objfile for search_symbols. |
1556 | Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE | |
1557 | and all related objfiles. */ | |
1558 | ||
1559 | static struct symbol * | |
1560 | lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile, | |
1561 | const char *linkage_name, | |
1562 | domain_enum domain) | |
1563 | { | |
1564 | enum language lang = current_language->la_language; | |
1565 | const char *modified_name; | |
1566 | struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang, | |
1567 | &modified_name); | |
1568 | struct objfile *main_objfile, *cur_objfile; | |
1569 | ||
1570 | if (objfile->separate_debug_objfile_backlink) | |
1571 | main_objfile = objfile->separate_debug_objfile_backlink; | |
1572 | else | |
1573 | main_objfile = objfile; | |
1574 | ||
1575 | for (cur_objfile = main_objfile; | |
1576 | cur_objfile; | |
1577 | cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile)) | |
1578 | { | |
1579 | struct symbol *sym; | |
1580 | ||
1581 | sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK, | |
1582 | modified_name, domain); | |
1583 | if (sym == NULL) | |
1584 | sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK, | |
1585 | modified_name, domain); | |
1586 | if (sym != NULL) | |
1587 | { | |
1588 | do_cleanups (cleanup); | |
1589 | return sym; | |
1590 | } | |
1591 | } | |
1592 | ||
1593 | do_cleanups (cleanup); | |
1594 | return NULL; | |
1595 | } | |
1596 | ||
ccefe4c4 TT |
1597 | /* A helper function for lookup_symbol_aux that interfaces with the |
1598 | "quick" symbol table functions. */ | |
8155455b DC |
1599 | |
1600 | static struct symbol * | |
ccefe4c4 TT |
1601 | lookup_symbol_aux_quick (struct objfile *objfile, int kind, |
1602 | const char *name, const domain_enum domain) | |
8155455b | 1603 | { |
ccefe4c4 | 1604 | struct symtab *symtab; |
8155455b DC |
1605 | struct blockvector *bv; |
1606 | const struct block *block; | |
ccefe4c4 | 1607 | struct symbol *sym; |
8155455b | 1608 | |
ccefe4c4 TT |
1609 | if (!objfile->sf) |
1610 | return NULL; | |
1611 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain); | |
1612 | if (!symtab) | |
1613 | return NULL; | |
8155455b | 1614 | |
ccefe4c4 TT |
1615 | bv = BLOCKVECTOR (symtab); |
1616 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1617 | sym = lookup_block_symbol (block, name, domain); | |
1618 | if (!sym) | |
1619 | { | |
1620 | /* This shouldn't be necessary, but as a last resort try | |
1621 | looking in the statics even though the psymtab claimed | |
c378eb4e | 1622 | the symbol was global, or vice-versa. It's possible |
ccefe4c4 TT |
1623 | that the psymtab gets it wrong in some cases. */ |
1624 | ||
1625 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1626 | If that happens, isn't it likely to be a GDB error, in | |
1627 | which case we should fix the GDB error rather than | |
1628 | silently dealing with it here? So I'd vote for | |
1629 | removing the check for the symbol in the other | |
1630 | block. */ | |
1631 | block = BLOCKVECTOR_BLOCK (bv, | |
1632 | kind == GLOBAL_BLOCK ? | |
1633 | STATIC_BLOCK : GLOBAL_BLOCK); | |
1634 | sym = lookup_block_symbol (block, name, domain); | |
1635 | if (!sym) | |
3e43a32a MS |
1636 | error (_("\ |
1637 | Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ | |
1638 | %s may be an inlined function, or may be a template function\n\ | |
1639 | (if a template, try specifying an instantiation: %s<type>)."), | |
ccefe4c4 TT |
1640 | kind == GLOBAL_BLOCK ? "global" : "static", |
1641 | name, symtab->filename, name, name); | |
1642 | } | |
1643 | return fixup_symbol_section (sym, objfile); | |
8155455b DC |
1644 | } |
1645 | ||
5f9a71c3 DC |
1646 | /* A default version of lookup_symbol_nonlocal for use by languages |
1647 | that can't think of anything better to do. This implements the C | |
1648 | lookup rules. */ | |
1649 | ||
1650 | struct symbol * | |
1651 | basic_lookup_symbol_nonlocal (const char *name, | |
5f9a71c3 | 1652 | const struct block *block, |
21b556f4 | 1653 | const domain_enum domain) |
5f9a71c3 DC |
1654 | { |
1655 | struct symbol *sym; | |
1656 | ||
1657 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1658 | this (or what turned into this) was part of lookup_symbol_aux; | |
1659 | I'm much less worried about these questions now, since these | |
1660 | decisions have turned out well, but I leave these comments here | |
1661 | for posterity. */ | |
1662 | ||
1663 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1664 | not it would be appropriate to search the current global block | |
1665 | here as well. (That's what this code used to do before the | |
1666 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1667 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1668 | next. On the other hand, if decode_line_1 is passed an argument | |
1669 | like filename:var, then the user presumably wants 'var' to be | |
1670 | searched for in filename. On the third hand, there shouldn't be | |
1671 | multiple global variables all of which are named 'var', and it's | |
1672 | not like decode_line_1 has ever restricted its search to only | |
1673 | global variables in a single filename. All in all, only | |
1674 | searching the static block here seems best: it's correct and it's | |
1675 | cleanest. */ | |
1676 | ||
1677 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1678 | issue here: if you usually search for global symbols in the | |
1679 | current file, then it would be slightly better to search the | |
1680 | current global block before searching all the symtabs. But there | |
1681 | are other factors that have a much greater effect on performance | |
1682 | than that one, so I don't think we should worry about that for | |
1683 | now. */ | |
1684 | ||
94af9270 | 1685 | sym = lookup_symbol_static (name, block, domain); |
5f9a71c3 DC |
1686 | if (sym != NULL) |
1687 | return sym; | |
1688 | ||
94af9270 | 1689 | return lookup_symbol_global (name, block, domain); |
5f9a71c3 DC |
1690 | } |
1691 | ||
1692 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1693 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1694 | ||
1695 | struct symbol * | |
1696 | lookup_symbol_static (const char *name, | |
5f9a71c3 | 1697 | const struct block *block, |
21b556f4 | 1698 | const domain_enum domain) |
5f9a71c3 DC |
1699 | { |
1700 | const struct block *static_block = block_static_block (block); | |
1701 | ||
1702 | if (static_block != NULL) | |
94af9270 | 1703 | return lookup_symbol_aux_block (name, static_block, domain); |
5f9a71c3 DC |
1704 | else |
1705 | return NULL; | |
1706 | } | |
1707 | ||
19630284 JB |
1708 | /* Private data to be used with lookup_symbol_global_iterator_cb. */ |
1709 | ||
1710 | struct global_sym_lookup_data | |
1711 | { | |
1712 | /* The name of the symbol we are searching for. */ | |
1713 | const char *name; | |
1714 | ||
1715 | /* The domain to use for our search. */ | |
1716 | domain_enum domain; | |
1717 | ||
1718 | /* The field where the callback should store the symbol if found. | |
1719 | It should be initialized to NULL before the search is started. */ | |
1720 | struct symbol *result; | |
1721 | }; | |
1722 | ||
1723 | /* A callback function for gdbarch_iterate_over_objfiles_in_search_order. | |
1724 | It searches by name for a symbol in the GLOBAL_BLOCK of the given | |
1725 | OBJFILE. The arguments for the search are passed via CB_DATA, | |
1726 | which in reality is a pointer to struct global_sym_lookup_data. */ | |
1727 | ||
1728 | static int | |
1729 | lookup_symbol_global_iterator_cb (struct objfile *objfile, | |
1730 | void *cb_data) | |
1731 | { | |
1732 | struct global_sym_lookup_data *data = | |
1733 | (struct global_sym_lookup_data *) cb_data; | |
1734 | ||
1735 | gdb_assert (data->result == NULL); | |
1736 | ||
1737 | data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK, | |
1738 | data->name, data->domain); | |
1739 | if (data->result == NULL) | |
1740 | data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, | |
1741 | data->name, data->domain); | |
1742 | ||
1743 | /* If we found a match, tell the iterator to stop. Otherwise, | |
1744 | keep going. */ | |
1745 | return (data->result != NULL); | |
1746 | } | |
1747 | ||
5f9a71c3 DC |
1748 | /* Lookup a symbol in all files' global blocks (searching psymtabs if |
1749 | necessary). */ | |
1750 | ||
1751 | struct symbol * | |
1752 | lookup_symbol_global (const char *name, | |
3a40aaa0 | 1753 | const struct block *block, |
21b556f4 | 1754 | const domain_enum domain) |
5f9a71c3 | 1755 | { |
3a40aaa0 UW |
1756 | struct symbol *sym = NULL; |
1757 | struct objfile *objfile = NULL; | |
19630284 | 1758 | struct global_sym_lookup_data lookup_data; |
3a40aaa0 UW |
1759 | |
1760 | /* Call library-specific lookup procedure. */ | |
67ff19f7 JB |
1761 | objfile = lookup_objfile_from_block (block); |
1762 | if (objfile != NULL) | |
1763 | sym = solib_global_lookup (objfile, name, domain); | |
3a40aaa0 UW |
1764 | if (sym != NULL) |
1765 | return sym; | |
5f9a71c3 | 1766 | |
19630284 JB |
1767 | memset (&lookup_data, 0, sizeof (lookup_data)); |
1768 | lookup_data.name = name; | |
1769 | lookup_data.domain = domain; | |
1770 | gdbarch_iterate_over_objfiles_in_search_order | |
1771 | (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch, | |
1772 | lookup_symbol_global_iterator_cb, &lookup_data, objfile); | |
5f9a71c3 | 1773 | |
19630284 | 1774 | return lookup_data.result; |
5f9a71c3 DC |
1775 | } |
1776 | ||
5eeb2539 | 1777 | int |
9af17804 | 1778 | symbol_matches_domain (enum language symbol_language, |
5eeb2539 AR |
1779 | domain_enum symbol_domain, |
1780 | domain_enum domain) | |
1781 | { | |
9af17804 | 1782 | /* For C++ "struct foo { ... }" also defines a typedef for "foo". |
5eeb2539 AR |
1783 | A Java class declaration also defines a typedef for the class. |
1784 | Similarly, any Ada type declaration implicitly defines a typedef. */ | |
1785 | if (symbol_language == language_cplus | |
6aecb9c2 | 1786 | || symbol_language == language_d |
5eeb2539 AR |
1787 | || symbol_language == language_java |
1788 | || symbol_language == language_ada) | |
1789 | { | |
1790 | if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
1791 | && symbol_domain == STRUCT_DOMAIN) | |
1792 | return 1; | |
1793 | } | |
1794 | /* For all other languages, strict match is required. */ | |
1795 | return (symbol_domain == domain); | |
1796 | } | |
1797 | ||
ccefe4c4 TT |
1798 | /* Look up a type named NAME in the struct_domain. The type returned |
1799 | must not be opaque -- i.e., must have at least one field | |
1800 | defined. */ | |
c906108c | 1801 | |
ccefe4c4 TT |
1802 | struct type * |
1803 | lookup_transparent_type (const char *name) | |
c906108c | 1804 | { |
ccefe4c4 TT |
1805 | return current_language->la_lookup_transparent_type (name); |
1806 | } | |
9af17804 | 1807 | |
ccefe4c4 TT |
1808 | /* A helper for basic_lookup_transparent_type that interfaces with the |
1809 | "quick" symbol table functions. */ | |
357e46e7 | 1810 | |
ccefe4c4 TT |
1811 | static struct type * |
1812 | basic_lookup_transparent_type_quick (struct objfile *objfile, int kind, | |
1813 | const char *name) | |
1814 | { | |
1815 | struct symtab *symtab; | |
1816 | struct blockvector *bv; | |
1817 | struct block *block; | |
1818 | struct symbol *sym; | |
c906108c | 1819 | |
ccefe4c4 TT |
1820 | if (!objfile->sf) |
1821 | return NULL; | |
1822 | symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN); | |
1823 | if (!symtab) | |
1824 | return NULL; | |
c906108c | 1825 | |
ccefe4c4 TT |
1826 | bv = BLOCKVECTOR (symtab); |
1827 | block = BLOCKVECTOR_BLOCK (bv, kind); | |
1828 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1829 | if (!sym) | |
9af17804 | 1830 | { |
ccefe4c4 TT |
1831 | int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK; |
1832 | ||
1833 | /* This shouldn't be necessary, but as a last resort | |
1834 | * try looking in the 'other kind' even though the psymtab | |
c378eb4e | 1835 | * claimed the symbol was one thing. It's possible that |
ccefe4c4 TT |
1836 | * the psymtab gets it wrong in some cases. |
1837 | */ | |
1838 | block = BLOCKVECTOR_BLOCK (bv, other_kind); | |
1839 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1840 | if (!sym) | |
c378eb4e | 1841 | /* FIXME; error is wrong in one case. */ |
3e43a32a MS |
1842 | error (_("\ |
1843 | Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ | |
ccefe4c4 TT |
1844 | %s may be an inlined function, or may be a template function\n\ |
1845 | (if a template, try specifying an instantiation: %s<type>)."), | |
1846 | name, symtab->filename, name, name); | |
c906108c | 1847 | } |
ccefe4c4 TT |
1848 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1849 | return SYMBOL_TYPE (sym); | |
c906108c | 1850 | |
ccefe4c4 | 1851 | return NULL; |
b368761e | 1852 | } |
c906108c | 1853 | |
b368761e DC |
1854 | /* The standard implementation of lookup_transparent_type. This code |
1855 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1856 | up types were just left out. In particular it's assumed here that | |
1857 | types are available in struct_domain and only at file-static or | |
1858 | global blocks. */ | |
c906108c SS |
1859 | |
1860 | struct type * | |
b368761e | 1861 | basic_lookup_transparent_type (const char *name) |
c906108c | 1862 | { |
52f0bd74 AC |
1863 | struct symbol *sym; |
1864 | struct symtab *s = NULL; | |
c906108c | 1865 | struct blockvector *bv; |
52f0bd74 AC |
1866 | struct objfile *objfile; |
1867 | struct block *block; | |
ccefe4c4 | 1868 | struct type *t; |
c906108c SS |
1869 | |
1870 | /* Now search all the global symbols. Do the symtab's first, then | |
c378eb4e | 1871 | check the psymtab's. If a psymtab indicates the existence |
c906108c SS |
1872 | of the desired name as a global, then do psymtab-to-symtab |
1873 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1874 | |
58b6ab13 | 1875 | ALL_OBJFILES (objfile) |
c5aa993b | 1876 | { |
774b6a14 TT |
1877 | if (objfile->sf) |
1878 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, | |
1879 | GLOBAL_BLOCK, | |
1880 | name, STRUCT_DOMAIN); | |
1881 | ||
d790cf0a DE |
1882 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
1883 | { | |
1884 | bv = BLOCKVECTOR (s); | |
1885 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1886 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1887 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1888 | { | |
1889 | return SYMBOL_TYPE (sym); | |
1890 | } | |
1891 | } | |
c5aa993b | 1892 | } |
c906108c | 1893 | |
ccefe4c4 | 1894 | ALL_OBJFILES (objfile) |
c5aa993b | 1895 | { |
ccefe4c4 TT |
1896 | t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); |
1897 | if (t) | |
1898 | return t; | |
c5aa993b | 1899 | } |
c906108c SS |
1900 | |
1901 | /* Now search the static file-level symbols. | |
1902 | Not strictly correct, but more useful than an error. | |
1903 | Do the symtab's first, then | |
c378eb4e | 1904 | check the psymtab's. If a psymtab indicates the existence |
c906108c | 1905 | of the desired name as a file-level static, then do psymtab-to-symtab |
c378eb4e | 1906 | conversion on the fly and return the found symbol. */ |
c906108c | 1907 | |
54ec275a | 1908 | ALL_OBJFILES (objfile) |
c5aa993b | 1909 | { |
774b6a14 TT |
1910 | if (objfile->sf) |
1911 | objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK, | |
1912 | name, STRUCT_DOMAIN); | |
1913 | ||
78e5175a | 1914 | ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s) |
c5aa993b | 1915 | { |
54ec275a KS |
1916 | bv = BLOCKVECTOR (s); |
1917 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1918 | sym = lookup_block_symbol (block, name, STRUCT_DOMAIN); | |
1919 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1920 | { | |
1921 | return SYMBOL_TYPE (sym); | |
1922 | } | |
c5aa993b JM |
1923 | } |
1924 | } | |
c906108c | 1925 | |
ccefe4c4 | 1926 | ALL_OBJFILES (objfile) |
c5aa993b | 1927 | { |
ccefe4c4 TT |
1928 | t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); |
1929 | if (t) | |
1930 | return t; | |
c5aa993b | 1931 | } |
ccefe4c4 | 1932 | |
c906108c SS |
1933 | return (struct type *) 0; |
1934 | } | |
1935 | ||
c378eb4e | 1936 | /* Find the name of the file containing main(). */ |
c906108c | 1937 | /* FIXME: What about languages without main() or specially linked |
c378eb4e | 1938 | executables that have no main() ? */ |
c906108c | 1939 | |
dd786858 | 1940 | const char * |
ccefe4c4 | 1941 | find_main_filename (void) |
c906108c | 1942 | { |
52f0bd74 | 1943 | struct objfile *objfile; |
dd786858 | 1944 | char *name = main_name (); |
c906108c | 1945 | |
ccefe4c4 | 1946 | ALL_OBJFILES (objfile) |
c5aa993b | 1947 | { |
dd786858 TT |
1948 | const char *result; |
1949 | ||
ccefe4c4 TT |
1950 | if (!objfile->sf) |
1951 | continue; | |
1952 | result = objfile->sf->qf->find_symbol_file (objfile, name); | |
1953 | if (result) | |
1954 | return result; | |
c5aa993b | 1955 | } |
c906108c SS |
1956 | return (NULL); |
1957 | } | |
1958 | ||
176620f1 | 1959 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1960 | |
1961 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1962 | to find a match during the binary search of the non-encoded names, but | |
1963 | for now we don't worry about the slight inefficiency of looking for | |
1964 | a match we'll never find, since it will go pretty quick. Once the | |
1965 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 | 1966 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
9af17804 | 1967 | symbol (language_cplus or language_objc set) has both the encoded and |
c378eb4e | 1968 | non-encoded names tested for a match. */ |
c906108c SS |
1969 | |
1970 | struct symbol * | |
aa1ee363 | 1971 | lookup_block_symbol (const struct block *block, const char *name, |
176620f1 | 1972 | const domain_enum domain) |
c906108c | 1973 | { |
8157b174 | 1974 | struct block_iterator iter; |
de4f826b | 1975 | struct symbol *sym; |
c906108c | 1976 | |
de4f826b | 1977 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1978 | { |
8157b174 | 1979 | for (sym = block_iter_name_first (block, name, &iter); |
de4f826b | 1980 | sym != NULL; |
8157b174 | 1981 | sym = block_iter_name_next (name, &iter)) |
261397f8 | 1982 | { |
5eeb2539 | 1983 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 1984 | SYMBOL_DOMAIN (sym), domain)) |
261397f8 DJ |
1985 | return sym; |
1986 | } | |
1987 | return NULL; | |
1988 | } | |
526e70c0 | 1989 | else |
c906108c | 1990 | { |
526e70c0 DC |
1991 | /* Note that parameter symbols do not always show up last in the |
1992 | list; this loop makes sure to take anything else other than | |
1993 | parameter symbols first; it only uses parameter symbols as a | |
1994 | last resort. Note that this only takes up extra computation | |
1995 | time on a match. */ | |
de4f826b DC |
1996 | |
1997 | struct symbol *sym_found = NULL; | |
1998 | ||
8157b174 | 1999 | for (sym = block_iter_name_first (block, name, &iter); |
de4f826b | 2000 | sym != NULL; |
8157b174 | 2001 | sym = block_iter_name_next (name, &iter)) |
c906108c | 2002 | { |
5eeb2539 | 2003 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
94af9270 | 2004 | SYMBOL_DOMAIN (sym), domain)) |
c906108c | 2005 | { |
c906108c | 2006 | sym_found = sym; |
2a2d4dc3 | 2007 | if (!SYMBOL_IS_ARGUMENT (sym)) |
c906108c SS |
2008 | { |
2009 | break; | |
2010 | } | |
2011 | } | |
c906108c | 2012 | } |
c378eb4e | 2013 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 2014 | } |
c906108c SS |
2015 | } |
2016 | ||
f8eba3c6 TT |
2017 | /* Iterate over the symbols named NAME, matching DOMAIN, starting with |
2018 | BLOCK. | |
2019 | ||
2020 | For each symbol that matches, CALLBACK is called. The symbol and | |
2021 | DATA are passed to the callback. | |
2022 | ||
2023 | If CALLBACK returns zero, the iteration ends. Otherwise, the | |
2024 | search continues. This function iterates upward through blocks. | |
2025 | When the outermost block has been finished, the function | |
2026 | returns. */ | |
2027 | ||
2028 | void | |
2029 | iterate_over_symbols (const struct block *block, const char *name, | |
2030 | const domain_enum domain, | |
8e704927 | 2031 | symbol_found_callback_ftype *callback, |
f8eba3c6 TT |
2032 | void *data) |
2033 | { | |
2034 | while (block) | |
2035 | { | |
8157b174 | 2036 | struct block_iterator iter; |
f8eba3c6 TT |
2037 | struct symbol *sym; |
2038 | ||
8157b174 | 2039 | for (sym = block_iter_name_first (block, name, &iter); |
f8eba3c6 | 2040 | sym != NULL; |
8157b174 | 2041 | sym = block_iter_name_next (name, &iter)) |
f8eba3c6 TT |
2042 | { |
2043 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), | |
2044 | SYMBOL_DOMAIN (sym), domain)) | |
2045 | { | |
2046 | if (!callback (sym, data)) | |
2047 | return; | |
2048 | } | |
2049 | } | |
2050 | ||
2051 | block = BLOCK_SUPERBLOCK (block); | |
2052 | } | |
2053 | } | |
2054 | ||
c906108c | 2055 | /* Find the symtab associated with PC and SECTION. Look through the |
c378eb4e | 2056 | psymtabs and read in another symtab if necessary. */ |
c906108c SS |
2057 | |
2058 | struct symtab * | |
714835d5 | 2059 | find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 2060 | { |
52f0bd74 | 2061 | struct block *b; |
c906108c | 2062 | struct blockvector *bv; |
52f0bd74 AC |
2063 | struct symtab *s = NULL; |
2064 | struct symtab *best_s = NULL; | |
52f0bd74 | 2065 | struct objfile *objfile; |
6c95b8df | 2066 | struct program_space *pspace; |
c906108c | 2067 | CORE_ADDR distance = 0; |
8a48e967 DJ |
2068 | struct minimal_symbol *msymbol; |
2069 | ||
6c95b8df PA |
2070 | pspace = current_program_space; |
2071 | ||
8a48e967 DJ |
2072 | /* If we know that this is not a text address, return failure. This is |
2073 | necessary because we loop based on the block's high and low code | |
2074 | addresses, which do not include the data ranges, and because | |
2075 | we call find_pc_sect_psymtab which has a similar restriction based | |
2076 | on the partial_symtab's texthigh and textlow. */ | |
2077 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
2078 | if (msymbol | |
712f90be TT |
2079 | && (MSYMBOL_TYPE (msymbol) == mst_data |
2080 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
2081 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
2082 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
2083 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 2084 | return NULL; |
c906108c SS |
2085 | |
2086 | /* Search all symtabs for the one whose file contains our address, and which | |
2087 | is the smallest of all the ones containing the address. This is designed | |
2088 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
2089 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
2090 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
2091 | ||
2092 | This happens for native ecoff format, where code from included files | |
c378eb4e | 2093 | gets its own symtab. The symtab for the included file should have |
c906108c SS |
2094 | been read in already via the dependency mechanism. |
2095 | It might be swifter to create several symtabs with the same name | |
2096 | like xcoff does (I'm not sure). | |
2097 | ||
2098 | It also happens for objfiles that have their functions reordered. | |
2099 | For these, the symtab we are looking for is not necessarily read in. */ | |
2100 | ||
11309657 | 2101 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
2102 | { |
2103 | bv = BLOCKVECTOR (s); | |
2104 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 2105 | |
c5aa993b | 2106 | if (BLOCK_START (b) <= pc |
c5aa993b | 2107 | && BLOCK_END (b) > pc |
c5aa993b JM |
2108 | && (distance == 0 |
2109 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
2110 | { | |
2111 | /* For an objfile that has its functions reordered, | |
2112 | find_pc_psymtab will find the proper partial symbol table | |
2113 | and we simply return its corresponding symtab. */ | |
2114 | /* In order to better support objfiles that contain both | |
2115 | stabs and coff debugging info, we continue on if a psymtab | |
c378eb4e | 2116 | can't be found. */ |
ccefe4c4 | 2117 | if ((objfile->flags & OBJF_REORDERED) && objfile->sf) |
c5aa993b | 2118 | { |
ccefe4c4 | 2119 | struct symtab *result; |
433759f7 | 2120 | |
ccefe4c4 TT |
2121 | result |
2122 | = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
2123 | msymbol, | |
2124 | pc, section, | |
2125 | 0); | |
2126 | if (result) | |
2127 | return result; | |
c5aa993b JM |
2128 | } |
2129 | if (section != 0) | |
2130 | { | |
8157b174 | 2131 | struct block_iterator iter; |
261397f8 | 2132 | struct symbol *sym = NULL; |
c906108c | 2133 | |
de4f826b | 2134 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 2135 | { |
261397f8 | 2136 | fixup_symbol_section (sym, objfile); |
714835d5 | 2137 | if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section)) |
c5aa993b JM |
2138 | break; |
2139 | } | |
de4f826b | 2140 | if (sym == NULL) |
c378eb4e MS |
2141 | continue; /* No symbol in this symtab matches |
2142 | section. */ | |
c5aa993b JM |
2143 | } |
2144 | distance = BLOCK_END (b) - BLOCK_START (b); | |
2145 | best_s = s; | |
2146 | } | |
2147 | } | |
c906108c SS |
2148 | |
2149 | if (best_s != NULL) | |
c5aa993b | 2150 | return (best_s); |
c906108c | 2151 | |
ccefe4c4 TT |
2152 | ALL_OBJFILES (objfile) |
2153 | { | |
2154 | struct symtab *result; | |
433759f7 | 2155 | |
ccefe4c4 TT |
2156 | if (!objfile->sf) |
2157 | continue; | |
2158 | result = objfile->sf->qf->find_pc_sect_symtab (objfile, | |
2159 | msymbol, | |
2160 | pc, section, | |
2161 | 1); | |
2162 | if (result) | |
2163 | return result; | |
2164 | } | |
2165 | ||
2166 | return NULL; | |
c906108c SS |
2167 | } |
2168 | ||
c378eb4e MS |
2169 | /* Find the symtab associated with PC. Look through the psymtabs and read |
2170 | in another symtab if necessary. Backward compatibility, no section. */ | |
c906108c SS |
2171 | |
2172 | struct symtab * | |
fba45db2 | 2173 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
2174 | { |
2175 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
2176 | } | |
c906108c | 2177 | \f |
c5aa993b | 2178 | |
7e73cedf | 2179 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
2180 | Return a structure containing a symtab pointer, a line number, |
2181 | and a pc range for the entire source line. | |
2182 | The value's .pc field is NOT the specified pc. | |
2183 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
2184 | use the line that ends there. Otherwise, in that case, the line | |
2185 | that begins there is used. */ | |
2186 | ||
2187 | /* The big complication here is that a line may start in one file, and end just | |
2188 | before the start of another file. This usually occurs when you #include | |
2189 | code in the middle of a subroutine. To properly find the end of a line's PC | |
2190 | range, we must search all symtabs associated with this compilation unit, and | |
2191 | find the one whose first PC is closer than that of the next line in this | |
2192 | symtab. */ | |
2193 | ||
2194 | /* If it's worth the effort, we could be using a binary search. */ | |
2195 | ||
2196 | struct symtab_and_line | |
714835d5 | 2197 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
c906108c SS |
2198 | { |
2199 | struct symtab *s; | |
52f0bd74 AC |
2200 | struct linetable *l; |
2201 | int len; | |
2202 | int i; | |
2203 | struct linetable_entry *item; | |
c906108c SS |
2204 | struct symtab_and_line val; |
2205 | struct blockvector *bv; | |
2206 | struct minimal_symbol *msymbol; | |
2207 | struct minimal_symbol *mfunsym; | |
93b55aa1 | 2208 | struct objfile *objfile; |
c906108c SS |
2209 | |
2210 | /* Info on best line seen so far, and where it starts, and its file. */ | |
2211 | ||
2212 | struct linetable_entry *best = NULL; | |
2213 | CORE_ADDR best_end = 0; | |
2214 | struct symtab *best_symtab = 0; | |
2215 | ||
2216 | /* Store here the first line number | |
2217 | of a file which contains the line at the smallest pc after PC. | |
2218 | If we don't find a line whose range contains PC, | |
2219 | we will use a line one less than this, | |
2220 | with a range from the start of that file to the first line's pc. */ | |
2221 | struct linetable_entry *alt = NULL; | |
2222 | struct symtab *alt_symtab = 0; | |
2223 | ||
2224 | /* Info on best line seen in this file. */ | |
2225 | ||
2226 | struct linetable_entry *prev; | |
2227 | ||
2228 | /* If this pc is not from the current frame, | |
2229 | it is the address of the end of a call instruction. | |
2230 | Quite likely that is the start of the following statement. | |
2231 | But what we want is the statement containing the instruction. | |
2232 | Fudge the pc to make sure we get that. */ | |
2233 | ||
fe39c653 | 2234 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 2235 | |
6c95b8df PA |
2236 | val.pspace = current_program_space; |
2237 | ||
b77b1eb7 JB |
2238 | /* It's tempting to assume that, if we can't find debugging info for |
2239 | any function enclosing PC, that we shouldn't search for line | |
2240 | number info, either. However, GAS can emit line number info for | |
2241 | assembly files --- very helpful when debugging hand-written | |
2242 | assembly code. In such a case, we'd have no debug info for the | |
2243 | function, but we would have line info. */ | |
648f4f79 | 2244 | |
c906108c SS |
2245 | if (notcurrent) |
2246 | pc -= 1; | |
2247 | ||
c5aa993b | 2248 | /* elz: added this because this function returned the wrong |
c906108c | 2249 | information if the pc belongs to a stub (import/export) |
c378eb4e | 2250 | to call a shlib function. This stub would be anywhere between |
9af17804 | 2251 | two functions in the target, and the line info was erroneously |
c378eb4e MS |
2252 | taken to be the one of the line before the pc. */ |
2253 | ||
c906108c | 2254 | /* RT: Further explanation: |
c5aa993b | 2255 | |
c906108c SS |
2256 | * We have stubs (trampolines) inserted between procedures. |
2257 | * | |
2258 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
2259 | * exists in the main image. | |
2260 | * | |
2261 | * In the minimal symbol table, we have a bunch of symbols | |
c378eb4e | 2262 | * sorted by start address. The stubs are marked as "trampoline", |
c906108c SS |
2263 | * the others appear as text. E.g.: |
2264 | * | |
9af17804 | 2265 | * Minimal symbol table for main image |
c906108c SS |
2266 | * main: code for main (text symbol) |
2267 | * shr1: stub (trampoline symbol) | |
2268 | * foo: code for foo (text symbol) | |
2269 | * ... | |
2270 | * Minimal symbol table for "shr1" image: | |
2271 | * ... | |
2272 | * shr1: code for shr1 (text symbol) | |
2273 | * ... | |
2274 | * | |
2275 | * So the code below is trying to detect if we are in the stub | |
2276 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
2277 | * and if found, do the symbolization from the real-code address | |
2278 | * rather than the stub address. | |
2279 | * | |
2280 | * Assumptions being made about the minimal symbol table: | |
2281 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
c378eb4e | 2282 | * if we're really in the trampoline.s If we're beyond it (say |
9af17804 | 2283 | * we're in "foo" in the above example), it'll have a closer |
c906108c SS |
2284 | * symbol (the "foo" text symbol for example) and will not |
2285 | * return the trampoline. | |
2286 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
2287 | * corresponding to the trampoline, and whose address will | |
c378eb4e | 2288 | * be different than the trampoline address. I put in a sanity |
c906108c SS |
2289 | * check for the address being the same, to avoid an |
2290 | * infinite recursion. | |
2291 | */ | |
c5aa993b JM |
2292 | msymbol = lookup_minimal_symbol_by_pc (pc); |
2293 | if (msymbol != NULL) | |
c906108c | 2294 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 2295 | { |
2335f48e | 2296 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 2297 | NULL); |
c5aa993b JM |
2298 | if (mfunsym == NULL) |
2299 | /* I eliminated this warning since it is coming out | |
2300 | * in the following situation: | |
2301 | * gdb shmain // test program with shared libraries | |
2302 | * (gdb) break shr1 // function in shared lib | |
2303 | * Warning: In stub for ... | |
9af17804 | 2304 | * In the above situation, the shared lib is not loaded yet, |
c5aa993b JM |
2305 | * so of course we can't find the real func/line info, |
2306 | * but the "break" still works, and the warning is annoying. | |
c378eb4e | 2307 | * So I commented out the warning. RT */ |
3e43a32a | 2308 | /* warning ("In stub for %s; unable to find real function/line info", |
c378eb4e MS |
2309 | SYMBOL_LINKAGE_NAME (msymbol)); */ |
2310 | ; | |
c5aa993b | 2311 | /* fall through */ |
3e43a32a MS |
2312 | else if (SYMBOL_VALUE_ADDRESS (mfunsym) |
2313 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
c5aa993b | 2314 | /* Avoid infinite recursion */ |
c378eb4e | 2315 | /* See above comment about why warning is commented out. */ |
3e43a32a | 2316 | /* warning ("In stub for %s; unable to find real function/line info", |
c378eb4e MS |
2317 | SYMBOL_LINKAGE_NAME (msymbol)); */ |
2318 | ; | |
c5aa993b JM |
2319 | /* fall through */ |
2320 | else | |
82cf6c60 | 2321 | return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0); |
c5aa993b | 2322 | } |
c906108c SS |
2323 | |
2324 | ||
2325 | s = find_pc_sect_symtab (pc, section); | |
2326 | if (!s) | |
2327 | { | |
c378eb4e | 2328 | /* If no symbol information, return previous pc. */ |
c906108c SS |
2329 | if (notcurrent) |
2330 | pc++; | |
2331 | val.pc = pc; | |
2332 | return val; | |
2333 | } | |
2334 | ||
2335 | bv = BLOCKVECTOR (s); | |
93b55aa1 | 2336 | objfile = s->objfile; |
c906108c SS |
2337 | |
2338 | /* Look at all the symtabs that share this blockvector. | |
2339 | They all have the same apriori range, that we found was right; | |
2340 | but they have different line tables. */ | |
2341 | ||
93b55aa1 | 2342 | ALL_OBJFILE_SYMTABS (objfile, s) |
c906108c | 2343 | { |
93b55aa1 JK |
2344 | if (BLOCKVECTOR (s) != bv) |
2345 | continue; | |
2346 | ||
c906108c SS |
2347 | /* Find the best line in this symtab. */ |
2348 | l = LINETABLE (s); | |
2349 | if (!l) | |
c5aa993b | 2350 | continue; |
c906108c SS |
2351 | len = l->nitems; |
2352 | if (len <= 0) | |
2353 | { | |
2354 | /* I think len can be zero if the symtab lacks line numbers | |
2355 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2356 | I'm not sure which, and maybe it depends on the symbol | |
2357 | reader). */ | |
2358 | continue; | |
2359 | } | |
2360 | ||
2361 | prev = NULL; | |
c378eb4e | 2362 | item = l->item; /* Get first line info. */ |
c906108c SS |
2363 | |
2364 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2365 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2366 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2367 | { | |
2368 | alt = item; | |
2369 | alt_symtab = s; | |
2370 | } | |
2371 | ||
2372 | for (i = 0; i < len; i++, item++) | |
2373 | { | |
2374 | /* Leave prev pointing to the linetable entry for the last line | |
2375 | that started at or before PC. */ | |
2376 | if (item->pc > pc) | |
2377 | break; | |
2378 | ||
2379 | prev = item; | |
2380 | } | |
2381 | ||
2382 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2383 | item points at the next line. If we ran off the end of the linetable |
2384 | (pc >= start of the last line), then prev == item. If pc < start of | |
2385 | the first line, prev will not be set. */ | |
c906108c SS |
2386 | |
2387 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2388 | If so, record this file, and its best line, as best so far. Don't |
2389 | save prev if it represents the end of a function (i.e. line number | |
2390 | 0) instead of a real line. */ | |
c906108c | 2391 | |
083ae935 | 2392 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2393 | { |
2394 | best = prev; | |
2395 | best_symtab = s; | |
25d53da1 KB |
2396 | |
2397 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2398 | if (best_end <= best->pc) | |
2399 | best_end = 0; | |
c906108c | 2400 | } |
25d53da1 KB |
2401 | |
2402 | /* If another line (denoted by ITEM) is in the linetable and its | |
2403 | PC is after BEST's PC, but before the current BEST_END, then | |
2404 | use ITEM's PC as the new best_end. */ | |
2405 | if (best && i < len && item->pc > best->pc | |
2406 | && (best_end == 0 || best_end > item->pc)) | |
2407 | best_end = item->pc; | |
c906108c SS |
2408 | } |
2409 | ||
2410 | if (!best_symtab) | |
2411 | { | |
e86e87f7 DJ |
2412 | /* If we didn't find any line number info, just return zeros. |
2413 | We used to return alt->line - 1 here, but that could be | |
2414 | anywhere; if we don't have line number info for this PC, | |
2415 | don't make some up. */ | |
2416 | val.pc = pc; | |
c906108c | 2417 | } |
e8717518 FF |
2418 | else if (best->line == 0) |
2419 | { | |
2420 | /* If our best fit is in a range of PC's for which no line | |
2421 | number info is available (line number is zero) then we didn't | |
c378eb4e | 2422 | find any valid line information. */ |
e8717518 FF |
2423 | val.pc = pc; |
2424 | } | |
c906108c SS |
2425 | else |
2426 | { | |
2427 | val.symtab = best_symtab; | |
2428 | val.line = best->line; | |
2429 | val.pc = best->pc; | |
2430 | if (best_end && (!alt || best_end < alt->pc)) | |
2431 | val.end = best_end; | |
2432 | else if (alt) | |
2433 | val.end = alt->pc; | |
2434 | else | |
2435 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2436 | } | |
2437 | val.section = section; | |
2438 | return val; | |
2439 | } | |
2440 | ||
c378eb4e | 2441 | /* Backward compatibility (no section). */ |
c906108c SS |
2442 | |
2443 | struct symtab_and_line | |
fba45db2 | 2444 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2445 | { |
714835d5 | 2446 | struct obj_section *section; |
c906108c SS |
2447 | |
2448 | section = find_pc_overlay (pc); | |
2449 | if (pc_in_unmapped_range (pc, section)) | |
2450 | pc = overlay_mapped_address (pc, section); | |
2451 | return find_pc_sect_line (pc, section, notcurrent); | |
2452 | } | |
c906108c | 2453 | \f |
c906108c SS |
2454 | /* Find line number LINE in any symtab whose name is the same as |
2455 | SYMTAB. | |
2456 | ||
2457 | If found, return the symtab that contains the linetable in which it was | |
2458 | found, set *INDEX to the index in the linetable of the best entry | |
2459 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2460 | exact match. | |
2461 | ||
2462 | If not found, return NULL. */ | |
2463 | ||
50641945 | 2464 | struct symtab * |
433759f7 MS |
2465 | find_line_symtab (struct symtab *symtab, int line, |
2466 | int *index, int *exact_match) | |
c906108c | 2467 | { |
6f43c46f | 2468 | int exact = 0; /* Initialized here to avoid a compiler warning. */ |
c906108c SS |
2469 | |
2470 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2471 | so far seen. */ | |
2472 | ||
2473 | int best_index; | |
2474 | struct linetable *best_linetable; | |
2475 | struct symtab *best_symtab; | |
2476 | ||
2477 | /* First try looking it up in the given symtab. */ | |
2478 | best_linetable = LINETABLE (symtab); | |
2479 | best_symtab = symtab; | |
f8eba3c6 | 2480 | best_index = find_line_common (best_linetable, line, &exact, 0); |
c906108c SS |
2481 | if (best_index < 0 || !exact) |
2482 | { | |
2483 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2484 | another symtab with the same name. In the case of xcoff, |
2485 | multiple csects for one source file (produced by IBM's FORTRAN | |
2486 | compiler) produce multiple symtabs (this is unavoidable | |
2487 | assuming csects can be at arbitrary places in memory and that | |
2488 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2489 | |
2490 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2491 | or 0 if none has been seen so far. |
2492 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2493 | int best; |
2494 | ||
2495 | struct objfile *objfile; | |
2496 | struct symtab *s; | |
2497 | ||
2498 | if (best_index >= 0) | |
2499 | best = best_linetable->item[best_index].line; | |
2500 | else | |
2501 | best = 0; | |
2502 | ||
ccefe4c4 | 2503 | ALL_OBJFILES (objfile) |
51432cca | 2504 | { |
ccefe4c4 TT |
2505 | if (objfile->sf) |
2506 | objfile->sf->qf->expand_symtabs_with_filename (objfile, | |
2507 | symtab->filename); | |
51432cca CES |
2508 | } |
2509 | ||
3ffc00b8 JB |
2510 | /* Get symbol full file name if possible. */ |
2511 | symtab_to_fullname (symtab); | |
2512 | ||
c906108c | 2513 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
2514 | { |
2515 | struct linetable *l; | |
2516 | int ind; | |
c906108c | 2517 | |
3ffc00b8 | 2518 | if (FILENAME_CMP (symtab->filename, s->filename) != 0) |
c5aa993b | 2519 | continue; |
3ffc00b8 JB |
2520 | if (symtab->fullname != NULL |
2521 | && symtab_to_fullname (s) != NULL | |
2522 | && FILENAME_CMP (symtab->fullname, s->fullname) != 0) | |
2523 | continue; | |
c5aa993b | 2524 | l = LINETABLE (s); |
f8eba3c6 | 2525 | ind = find_line_common (l, line, &exact, 0); |
c5aa993b JM |
2526 | if (ind >= 0) |
2527 | { | |
2528 | if (exact) | |
2529 | { | |
2530 | best_index = ind; | |
2531 | best_linetable = l; | |
2532 | best_symtab = s; | |
2533 | goto done; | |
2534 | } | |
2535 | if (best == 0 || l->item[ind].line < best) | |
2536 | { | |
2537 | best = l->item[ind].line; | |
2538 | best_index = ind; | |
2539 | best_linetable = l; | |
2540 | best_symtab = s; | |
2541 | } | |
2542 | } | |
2543 | } | |
c906108c | 2544 | } |
c5aa993b | 2545 | done: |
c906108c SS |
2546 | if (best_index < 0) |
2547 | return NULL; | |
2548 | ||
2549 | if (index) | |
2550 | *index = best_index; | |
2551 | if (exact_match) | |
2552 | *exact_match = exact; | |
2553 | ||
2554 | return best_symtab; | |
2555 | } | |
f8eba3c6 TT |
2556 | |
2557 | /* Given SYMTAB, returns all the PCs function in the symtab that | |
2558 | exactly match LINE. Returns NULL if there are no exact matches, | |
2559 | but updates BEST_ITEM in this case. */ | |
2560 | ||
2561 | VEC (CORE_ADDR) * | |
2562 | find_pcs_for_symtab_line (struct symtab *symtab, int line, | |
2563 | struct linetable_entry **best_item) | |
2564 | { | |
2565 | int start = 0, ix; | |
2566 | struct symbol *previous_function = NULL; | |
2567 | VEC (CORE_ADDR) *result = NULL; | |
2568 | ||
2569 | /* First, collect all the PCs that are at this line. */ | |
2570 | while (1) | |
2571 | { | |
2572 | int was_exact; | |
2573 | int idx; | |
2574 | ||
2575 | idx = find_line_common (LINETABLE (symtab), line, &was_exact, start); | |
2576 | if (idx < 0) | |
2577 | break; | |
2578 | ||
2579 | if (!was_exact) | |
2580 | { | |
2581 | struct linetable_entry *item = &LINETABLE (symtab)->item[idx]; | |
2582 | ||
2583 | if (*best_item == NULL || item->line < (*best_item)->line) | |
2584 | *best_item = item; | |
2585 | ||
2586 | break; | |
2587 | } | |
2588 | ||
2589 | VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc); | |
2590 | start = idx + 1; | |
2591 | } | |
2592 | ||
2593 | return result; | |
2594 | } | |
2595 | ||
c906108c SS |
2596 | \f |
2597 | /* Set the PC value for a given source file and line number and return true. | |
2598 | Returns zero for invalid line number (and sets the PC to 0). | |
2599 | The source file is specified with a struct symtab. */ | |
2600 | ||
2601 | int | |
fba45db2 | 2602 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2603 | { |
2604 | struct linetable *l; | |
2605 | int ind; | |
2606 | ||
2607 | *pc = 0; | |
2608 | if (symtab == 0) | |
2609 | return 0; | |
2610 | ||
2611 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2612 | if (symtab != NULL) | |
2613 | { | |
2614 | l = LINETABLE (symtab); | |
2615 | *pc = l->item[ind].pc; | |
2616 | return 1; | |
2617 | } | |
2618 | else | |
2619 | return 0; | |
2620 | } | |
2621 | ||
2622 | /* Find the range of pc values in a line. | |
2623 | Store the starting pc of the line into *STARTPTR | |
2624 | and the ending pc (start of next line) into *ENDPTR. | |
2625 | Returns 1 to indicate success. | |
2626 | Returns 0 if could not find the specified line. */ | |
2627 | ||
2628 | int | |
fba45db2 KB |
2629 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2630 | CORE_ADDR *endptr) | |
c906108c SS |
2631 | { |
2632 | CORE_ADDR startaddr; | |
2633 | struct symtab_and_line found_sal; | |
2634 | ||
2635 | startaddr = sal.pc; | |
c5aa993b | 2636 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2637 | return 0; |
2638 | ||
2639 | /* This whole function is based on address. For example, if line 10 has | |
2640 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2641 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2642 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2643 | This also insures that we never give a range like "starts at 0x134 | |
2644 | and ends at 0x12c". */ | |
2645 | ||
2646 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2647 | if (found_sal.line != sal.line) | |
2648 | { | |
2649 | /* The specified line (sal) has zero bytes. */ | |
2650 | *startptr = found_sal.pc; | |
2651 | *endptr = found_sal.pc; | |
2652 | } | |
2653 | else | |
2654 | { | |
2655 | *startptr = found_sal.pc; | |
2656 | *endptr = found_sal.end; | |
2657 | } | |
2658 | return 1; | |
2659 | } | |
2660 | ||
2661 | /* Given a line table and a line number, return the index into the line | |
2662 | table for the pc of the nearest line whose number is >= the specified one. | |
2663 | Return -1 if none is found. The value is >= 0 if it is an index. | |
f8eba3c6 | 2664 | START is the index at which to start searching the line table. |
c906108c SS |
2665 | |
2666 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2667 | ||
2668 | static int | |
aa1ee363 | 2669 | find_line_common (struct linetable *l, int lineno, |
f8eba3c6 | 2670 | int *exact_match, int start) |
c906108c | 2671 | { |
52f0bd74 AC |
2672 | int i; |
2673 | int len; | |
c906108c SS |
2674 | |
2675 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2676 | or 0 if none has been seen so far. | |
2677 | BEST_INDEX identifies the item for it. */ | |
2678 | ||
2679 | int best_index = -1; | |
2680 | int best = 0; | |
2681 | ||
b7589f7d DJ |
2682 | *exact_match = 0; |
2683 | ||
c906108c SS |
2684 | if (lineno <= 0) |
2685 | return -1; | |
2686 | if (l == 0) | |
2687 | return -1; | |
2688 | ||
2689 | len = l->nitems; | |
f8eba3c6 | 2690 | for (i = start; i < len; i++) |
c906108c | 2691 | { |
aa1ee363 | 2692 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2693 | |
2694 | if (item->line == lineno) | |
2695 | { | |
2696 | /* Return the first (lowest address) entry which matches. */ | |
2697 | *exact_match = 1; | |
2698 | return i; | |
2699 | } | |
2700 | ||
2701 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2702 | { | |
2703 | best = item->line; | |
2704 | best_index = i; | |
2705 | } | |
2706 | } | |
2707 | ||
2708 | /* If we got here, we didn't get an exact match. */ | |
c906108c SS |
2709 | return best_index; |
2710 | } | |
2711 | ||
2712 | int | |
fba45db2 | 2713 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2714 | { |
2715 | struct symtab_and_line sal; | |
433759f7 | 2716 | |
c906108c SS |
2717 | sal = find_pc_line (pc, 0); |
2718 | *startptr = sal.pc; | |
2719 | *endptr = sal.end; | |
2720 | return sal.symtab != 0; | |
2721 | } | |
2722 | ||
8c7a1ee8 EZ |
2723 | /* Given a function start address FUNC_ADDR and SYMTAB, find the first |
2724 | address for that function that has an entry in SYMTAB's line info | |
2725 | table. If such an entry cannot be found, return FUNC_ADDR | |
2726 | unaltered. */ | |
eca864fe | 2727 | |
70221824 | 2728 | static CORE_ADDR |
8c7a1ee8 EZ |
2729 | skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) |
2730 | { | |
2731 | CORE_ADDR func_start, func_end; | |
2732 | struct linetable *l; | |
952a6d41 | 2733 | int i; |
8c7a1ee8 EZ |
2734 | |
2735 | /* Give up if this symbol has no lineinfo table. */ | |
2736 | l = LINETABLE (symtab); | |
2737 | if (l == NULL) | |
2738 | return func_addr; | |
2739 | ||
2740 | /* Get the range for the function's PC values, or give up if we | |
2741 | cannot, for some reason. */ | |
2742 | if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) | |
2743 | return func_addr; | |
2744 | ||
2745 | /* Linetable entries are ordered by PC values, see the commentary in | |
2746 | symtab.h where `struct linetable' is defined. Thus, the first | |
2747 | entry whose PC is in the range [FUNC_START..FUNC_END[ is the | |
2748 | address we are looking for. */ | |
2749 | for (i = 0; i < l->nitems; i++) | |
2750 | { | |
2751 | struct linetable_entry *item = &(l->item[i]); | |
2752 | ||
2753 | /* Don't use line numbers of zero, they mark special entries in | |
2754 | the table. See the commentary on symtab.h before the | |
2755 | definition of struct linetable. */ | |
2756 | if (item->line > 0 && func_start <= item->pc && item->pc < func_end) | |
2757 | return item->pc; | |
2758 | } | |
2759 | ||
2760 | return func_addr; | |
2761 | } | |
2762 | ||
c906108c SS |
2763 | /* Given a function symbol SYM, find the symtab and line for the start |
2764 | of the function. | |
2765 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2766 | of real code inside the function. */ | |
2767 | ||
50641945 | 2768 | struct symtab_and_line |
fba45db2 | 2769 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c | 2770 | { |
059acae7 UW |
2771 | struct symtab_and_line sal; |
2772 | ||
2773 | fixup_symbol_section (sym, NULL); | |
2774 | sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), | |
2775 | SYMBOL_OBJ_SECTION (sym), 0); | |
2776 | ||
86da934b UW |
2777 | /* We always should have a line for the function start address. |
2778 | If we don't, something is odd. Create a plain SAL refering | |
2779 | just the PC and hope that skip_prologue_sal (if requested) | |
2780 | can find a line number for after the prologue. */ | |
2781 | if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym))) | |
2782 | { | |
2783 | init_sal (&sal); | |
2784 | sal.pspace = current_program_space; | |
2785 | sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2786 | sal.section = SYMBOL_OBJ_SECTION (sym); | |
2787 | } | |
2788 | ||
059acae7 UW |
2789 | if (funfirstline) |
2790 | skip_prologue_sal (&sal); | |
bccdca4a | 2791 | |
059acae7 UW |
2792 | return sal; |
2793 | } | |
2794 | ||
2795 | /* Adjust SAL to the first instruction past the function prologue. | |
2796 | If the PC was explicitly specified, the SAL is not changed. | |
2797 | If the line number was explicitly specified, at most the SAL's PC | |
2798 | is updated. If SAL is already past the prologue, then do nothing. */ | |
eca864fe | 2799 | |
059acae7 UW |
2800 | void |
2801 | skip_prologue_sal (struct symtab_and_line *sal) | |
2802 | { | |
2803 | struct symbol *sym; | |
2804 | struct symtab_and_line start_sal; | |
2805 | struct cleanup *old_chain; | |
8be455d7 | 2806 | CORE_ADDR pc, saved_pc; |
059acae7 UW |
2807 | struct obj_section *section; |
2808 | const char *name; | |
2809 | struct objfile *objfile; | |
2810 | struct gdbarch *gdbarch; | |
edb3359d | 2811 | struct block *b, *function_block; |
8be455d7 | 2812 | int force_skip, skip; |
c906108c | 2813 | |
059acae7 UW |
2814 | /* Do not change the SAL is PC was specified explicitly. */ |
2815 | if (sal->explicit_pc) | |
2816 | return; | |
6c95b8df PA |
2817 | |
2818 | old_chain = save_current_space_and_thread (); | |
059acae7 | 2819 | switch_to_program_space_and_thread (sal->pspace); |
6c95b8df | 2820 | |
059acae7 UW |
2821 | sym = find_pc_sect_function (sal->pc, sal->section); |
2822 | if (sym != NULL) | |
bccdca4a | 2823 | { |
059acae7 UW |
2824 | fixup_symbol_section (sym, NULL); |
2825 | ||
2826 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2827 | section = SYMBOL_OBJ_SECTION (sym); | |
2828 | name = SYMBOL_LINKAGE_NAME (sym); | |
2829 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
c906108c | 2830 | } |
059acae7 UW |
2831 | else |
2832 | { | |
2833 | struct minimal_symbol *msymbol | |
2834 | = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); | |
433759f7 | 2835 | |
059acae7 UW |
2836 | if (msymbol == NULL) |
2837 | { | |
2838 | do_cleanups (old_chain); | |
2839 | return; | |
2840 | } | |
2841 | ||
2842 | pc = SYMBOL_VALUE_ADDRESS (msymbol); | |
2843 | section = SYMBOL_OBJ_SECTION (msymbol); | |
2844 | name = SYMBOL_LINKAGE_NAME (msymbol); | |
2845 | objfile = msymbol_objfile (msymbol); | |
2846 | } | |
2847 | ||
2848 | gdbarch = get_objfile_arch (objfile); | |
2849 | ||
8be455d7 JK |
2850 | /* Process the prologue in two passes. In the first pass try to skip the |
2851 | prologue (SKIP is true) and verify there is a real need for it (indicated | |
2852 | by FORCE_SKIP). If no such reason was found run a second pass where the | |
2853 | prologue is not skipped (SKIP is false). */ | |
059acae7 | 2854 | |
8be455d7 JK |
2855 | skip = 1; |
2856 | force_skip = 1; | |
059acae7 | 2857 | |
8be455d7 JK |
2858 | /* Be conservative - allow direct PC (without skipping prologue) only if we |
2859 | have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not | |
2860 | have to be set by the caller so we use SYM instead. */ | |
2861 | if (sym && SYMBOL_SYMTAB (sym)->locations_valid) | |
2862 | force_skip = 0; | |
059acae7 | 2863 | |
8be455d7 JK |
2864 | saved_pc = pc; |
2865 | do | |
c906108c | 2866 | { |
8be455d7 | 2867 | pc = saved_pc; |
4309257c | 2868 | |
8be455d7 JK |
2869 | /* If the function is in an unmapped overlay, use its unmapped LMA address, |
2870 | so that gdbarch_skip_prologue has something unique to work on. */ | |
2871 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
2872 | pc = overlay_unmapped_address (pc, section); | |
2873 | ||
2874 | /* Skip "first line" of function (which is actually its prologue). */ | |
2875 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
2876 | if (skip) | |
2877 | pc = gdbarch_skip_prologue (gdbarch, pc); | |
2878 | ||
2879 | /* For overlays, map pc back into its mapped VMA range. */ | |
2880 | pc = overlay_mapped_address (pc, section); | |
2881 | ||
2882 | /* Calculate line number. */ | |
059acae7 | 2883 | start_sal = find_pc_sect_line (pc, section, 0); |
8be455d7 JK |
2884 | |
2885 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next | |
2886 | line is still part of the same function. */ | |
2887 | if (skip && start_sal.pc != pc | |
b1d96efd JK |
2888 | && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end |
2889 | && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
8be455d7 JK |
2890 | : (lookup_minimal_symbol_by_pc_section (start_sal.end, section) |
2891 | == lookup_minimal_symbol_by_pc_section (pc, section)))) | |
2892 | { | |
2893 | /* First pc of next line */ | |
2894 | pc = start_sal.end; | |
2895 | /* Recalculate the line number (might not be N+1). */ | |
2896 | start_sal = find_pc_sect_line (pc, section, 0); | |
2897 | } | |
2898 | ||
2899 | /* On targets with executable formats that don't have a concept of | |
2900 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
2901 | to `__main' in `main' between the prologue and before user | |
2902 | code. */ | |
2903 | if (gdbarch_skip_main_prologue_p (gdbarch) | |
7ccffd7c | 2904 | && name && strcmp_iw (name, "main") == 0) |
8be455d7 JK |
2905 | { |
2906 | pc = gdbarch_skip_main_prologue (gdbarch, pc); | |
2907 | /* Recalculate the line number (might not be N+1). */ | |
2908 | start_sal = find_pc_sect_line (pc, section, 0); | |
2909 | force_skip = 1; | |
2910 | } | |
4309257c | 2911 | } |
8be455d7 | 2912 | while (!force_skip && skip--); |
4309257c | 2913 | |
8c7a1ee8 EZ |
2914 | /* If we still don't have a valid source line, try to find the first |
2915 | PC in the lineinfo table that belongs to the same function. This | |
2916 | happens with COFF debug info, which does not seem to have an | |
2917 | entry in lineinfo table for the code after the prologue which has | |
2918 | no direct relation to source. For example, this was found to be | |
2919 | the case with the DJGPP target using "gcc -gcoff" when the | |
2920 | compiler inserted code after the prologue to make sure the stack | |
2921 | is aligned. */ | |
8be455d7 | 2922 | if (!force_skip && sym && start_sal.symtab == NULL) |
8c7a1ee8 EZ |
2923 | { |
2924 | pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym)); | |
2925 | /* Recalculate the line number. */ | |
059acae7 | 2926 | start_sal = find_pc_sect_line (pc, section, 0); |
8c7a1ee8 EZ |
2927 | } |
2928 | ||
059acae7 UW |
2929 | do_cleanups (old_chain); |
2930 | ||
2931 | /* If we're already past the prologue, leave SAL unchanged. Otherwise | |
2932 | forward SAL to the end of the prologue. */ | |
2933 | if (sal->pc >= pc) | |
2934 | return; | |
2935 | ||
2936 | sal->pc = pc; | |
2937 | sal->section = section; | |
2938 | ||
2939 | /* Unless the explicit_line flag was set, update the SAL line | |
2940 | and symtab to correspond to the modified PC location. */ | |
2941 | if (sal->explicit_line) | |
2942 | return; | |
2943 | ||
2944 | sal->symtab = start_sal.symtab; | |
2945 | sal->line = start_sal.line; | |
2946 | sal->end = start_sal.end; | |
c906108c | 2947 | |
edb3359d DJ |
2948 | /* Check if we are now inside an inlined function. If we can, |
2949 | use the call site of the function instead. */ | |
059acae7 | 2950 | b = block_for_pc_sect (sal->pc, sal->section); |
edb3359d DJ |
2951 | function_block = NULL; |
2952 | while (b != NULL) | |
2953 | { | |
2954 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
2955 | function_block = b; | |
2956 | else if (BLOCK_FUNCTION (b) != NULL) | |
2957 | break; | |
2958 | b = BLOCK_SUPERBLOCK (b); | |
2959 | } | |
2960 | if (function_block != NULL | |
2961 | && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) | |
2962 | { | |
059acae7 UW |
2963 | sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); |
2964 | sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block)); | |
edb3359d | 2965 | } |
c906108c | 2966 | } |
50641945 | 2967 | |
c906108c SS |
2968 | /* If P is of the form "operator[ \t]+..." where `...' is |
2969 | some legitimate operator text, return a pointer to the | |
2970 | beginning of the substring of the operator text. | |
2971 | Otherwise, return "". */ | |
eca864fe | 2972 | |
fc9f3a69 | 2973 | static char * |
fba45db2 | 2974 | operator_chars (char *p, char **end) |
c906108c SS |
2975 | { |
2976 | *end = ""; | |
2977 | if (strncmp (p, "operator", 8)) | |
2978 | return *end; | |
2979 | p += 8; | |
2980 | ||
2981 | /* Don't get faked out by `operator' being part of a longer | |
2982 | identifier. */ | |
c5aa993b | 2983 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2984 | return *end; |
2985 | ||
2986 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2987 | while (*p == ' ' || *p == '\t') | |
2988 | p++; | |
2989 | ||
c378eb4e | 2990 | /* Recognize 'operator TYPENAME'. */ |
c906108c | 2991 | |
c5aa993b | 2992 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2993 | { |
aa1ee363 | 2994 | char *q = p + 1; |
433759f7 | 2995 | |
c5aa993b | 2996 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2997 | q++; |
2998 | *end = q; | |
2999 | return p; | |
3000 | } | |
3001 | ||
53e8ad3d MS |
3002 | while (*p) |
3003 | switch (*p) | |
3004 | { | |
3005 | case '\\': /* regexp quoting */ | |
3006 | if (p[1] == '*') | |
3007 | { | |
3e43a32a | 3008 | if (p[2] == '=') /* 'operator\*=' */ |
53e8ad3d MS |
3009 | *end = p + 3; |
3010 | else /* 'operator\*' */ | |
3011 | *end = p + 2; | |
3012 | return p; | |
3013 | } | |
3014 | else if (p[1] == '[') | |
3015 | { | |
3016 | if (p[2] == ']') | |
3e43a32a MS |
3017 | error (_("mismatched quoting on brackets, " |
3018 | "try 'operator\\[\\]'")); | |
53e8ad3d MS |
3019 | else if (p[2] == '\\' && p[3] == ']') |
3020 | { | |
3021 | *end = p + 4; /* 'operator\[\]' */ | |
3022 | return p; | |
3023 | } | |
3024 | else | |
8a3fe4f8 | 3025 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d | 3026 | } |
9af17804 | 3027 | else |
53e8ad3d | 3028 | { |
c378eb4e | 3029 | /* Gratuitous qoute: skip it and move on. */ |
53e8ad3d MS |
3030 | p++; |
3031 | continue; | |
3032 | } | |
3033 | break; | |
3034 | case '!': | |
3035 | case '=': | |
3036 | case '*': | |
3037 | case '/': | |
3038 | case '%': | |
3039 | case '^': | |
3040 | if (p[1] == '=') | |
3041 | *end = p + 2; | |
3042 | else | |
3043 | *end = p + 1; | |
3044 | return p; | |
3045 | case '<': | |
3046 | case '>': | |
3047 | case '+': | |
3048 | case '-': | |
3049 | case '&': | |
3050 | case '|': | |
3051 | if (p[0] == '-' && p[1] == '>') | |
3052 | { | |
c378eb4e | 3053 | /* Struct pointer member operator 'operator->'. */ |
53e8ad3d MS |
3054 | if (p[2] == '*') |
3055 | { | |
3056 | *end = p + 3; /* 'operator->*' */ | |
3057 | return p; | |
3058 | } | |
3059 | else if (p[2] == '\\') | |
3060 | { | |
3061 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
3062 | return p; | |
3063 | } | |
3064 | else | |
3065 | { | |
3066 | *end = p + 2; /* 'operator->' */ | |
3067 | return p; | |
3068 | } | |
3069 | } | |
3070 | if (p[1] == '=' || p[1] == p[0]) | |
3071 | *end = p + 2; | |
3072 | else | |
3073 | *end = p + 1; | |
3074 | return p; | |
3075 | case '~': | |
3076 | case ',': | |
c5aa993b | 3077 | *end = p + 1; |
53e8ad3d MS |
3078 | return p; |
3079 | case '(': | |
3080 | if (p[1] != ')') | |
3e43a32a MS |
3081 | error (_("`operator ()' must be specified " |
3082 | "without whitespace in `()'")); | |
c5aa993b | 3083 | *end = p + 2; |
53e8ad3d MS |
3084 | return p; |
3085 | case '?': | |
3086 | if (p[1] != ':') | |
3e43a32a MS |
3087 | error (_("`operator ?:' must be specified " |
3088 | "without whitespace in `?:'")); | |
53e8ad3d MS |
3089 | *end = p + 2; |
3090 | return p; | |
3091 | case '[': | |
3092 | if (p[1] != ']') | |
3e43a32a MS |
3093 | error (_("`operator []' must be specified " |
3094 | "without whitespace in `[]'")); | |
53e8ad3d MS |
3095 | *end = p + 2; |
3096 | return p; | |
3097 | default: | |
8a3fe4f8 | 3098 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
3099 | break; |
3100 | } | |
3101 | ||
c906108c SS |
3102 | *end = ""; |
3103 | return *end; | |
3104 | } | |
c906108c | 3105 | \f |
c5aa993b | 3106 | |
c94fdfd0 EZ |
3107 | /* If FILE is not already in the table of files, return zero; |
3108 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
3109 | is non-zero. If *FIRST is non-zero, forget the old table | |
3110 | contents. */ | |
eca864fe | 3111 | |
c94fdfd0 EZ |
3112 | static int |
3113 | filename_seen (const char *file, int add, int *first) | |
c906108c | 3114 | { |
c94fdfd0 EZ |
3115 | /* Table of files seen so far. */ |
3116 | static const char **tab = NULL; | |
c906108c SS |
3117 | /* Allocated size of tab in elements. |
3118 | Start with one 256-byte block (when using GNU malloc.c). | |
3119 | 24 is the malloc overhead when range checking is in effect. */ | |
3120 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
3121 | /* Current size of tab in elements. */ | |
3122 | static int tab_cur_size; | |
c94fdfd0 | 3123 | const char **p; |
c906108c SS |
3124 | |
3125 | if (*first) | |
3126 | { | |
3127 | if (tab == NULL) | |
c94fdfd0 | 3128 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
3129 | tab_cur_size = 0; |
3130 | } | |
3131 | ||
c94fdfd0 | 3132 | /* Is FILE in tab? */ |
c906108c | 3133 | for (p = tab; p < tab + tab_cur_size; p++) |
0ba1096a | 3134 | if (filename_cmp (*p, file) == 0) |
c94fdfd0 EZ |
3135 | return 1; |
3136 | ||
3137 | /* No; maybe add it to tab. */ | |
3138 | if (add) | |
c906108c | 3139 | { |
c94fdfd0 EZ |
3140 | if (tab_cur_size == tab_alloc_size) |
3141 | { | |
3142 | tab_alloc_size *= 2; | |
3143 | tab = (const char **) xrealloc ((char *) tab, | |
3144 | tab_alloc_size * sizeof (*tab)); | |
3145 | } | |
3146 | tab[tab_cur_size++] = file; | |
c906108c | 3147 | } |
c906108c | 3148 | |
c94fdfd0 EZ |
3149 | return 0; |
3150 | } | |
3151 | ||
3152 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
3153 | NAME is the name to print and *FIRST is nonzero if this is the first | |
3154 | name printed. Set *FIRST to zero. */ | |
eca864fe | 3155 | |
c94fdfd0 | 3156 | static void |
d092d1a2 | 3157 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
3158 | { |
3159 | /* Since a single source file can result in several partial symbol | |
3160 | tables, we need to avoid printing it more than once. Note: if | |
3161 | some of the psymtabs are read in and some are not, it gets | |
3162 | printed both under "Source files for which symbols have been | |
3163 | read" and "Source files for which symbols will be read in on | |
3164 | demand". I consider this a reasonable way to deal with the | |
3165 | situation. I'm not sure whether this can also happen for | |
3166 | symtabs; it doesn't hurt to check. */ | |
3167 | ||
3168 | /* Was NAME already seen? */ | |
3169 | if (filename_seen (name, 1, first)) | |
3170 | { | |
3171 | /* Yes; don't print it again. */ | |
3172 | return; | |
3173 | } | |
3174 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
3175 | if (*first) |
3176 | { | |
3177 | *first = 0; | |
3178 | } | |
3179 | else | |
3180 | { | |
3181 | printf_filtered (", "); | |
3182 | } | |
3183 | ||
3184 | wrap_here (""); | |
3185 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 3186 | } |
c906108c | 3187 | |
ccefe4c4 | 3188 | /* A callback for map_partial_symbol_filenames. */ |
eca864fe | 3189 | |
ccefe4c4 | 3190 | static void |
533a737e | 3191 | output_partial_symbol_filename (const char *filename, const char *fullname, |
ccefe4c4 TT |
3192 | void *data) |
3193 | { | |
3194 | output_source_filename (fullname ? fullname : filename, data); | |
3195 | } | |
3196 | ||
c906108c | 3197 | static void |
fba45db2 | 3198 | sources_info (char *ignore, int from_tty) |
c906108c | 3199 | { |
52f0bd74 | 3200 | struct symtab *s; |
52f0bd74 | 3201 | struct objfile *objfile; |
c906108c | 3202 | int first; |
c5aa993b | 3203 | |
c906108c SS |
3204 | if (!have_full_symbols () && !have_partial_symbols ()) |
3205 | { | |
8a3fe4f8 | 3206 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 3207 | } |
c5aa993b | 3208 | |
c906108c SS |
3209 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
3210 | ||
3211 | first = 1; | |
3212 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 3213 | { |
d092d1a2 | 3214 | const char *fullname = symtab_to_fullname (s); |
433759f7 | 3215 | |
d092d1a2 | 3216 | output_source_filename (fullname ? fullname : s->filename, &first); |
c5aa993b | 3217 | } |
c906108c | 3218 | printf_filtered ("\n\n"); |
c5aa993b | 3219 | |
3e43a32a MS |
3220 | printf_filtered ("Source files for which symbols " |
3221 | "will be read in on demand:\n\n"); | |
c906108c SS |
3222 | |
3223 | first = 1; | |
74e2f255 DE |
3224 | map_partial_symbol_filenames (output_partial_symbol_filename, &first, |
3225 | 1 /*need_fullname*/); | |
c906108c SS |
3226 | printf_filtered ("\n"); |
3227 | } | |
3228 | ||
3229 | static int | |
ccefe4c4 | 3230 | file_matches (const char *file, char *files[], int nfiles) |
c906108c SS |
3231 | { |
3232 | int i; | |
3233 | ||
3234 | if (file != NULL && nfiles != 0) | |
3235 | { | |
3236 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 3237 | { |
0ba1096a | 3238 | if (filename_cmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
3239 | return 1; |
3240 | } | |
c906108c SS |
3241 | } |
3242 | else if (nfiles == 0) | |
3243 | return 1; | |
3244 | return 0; | |
3245 | } | |
3246 | ||
c378eb4e | 3247 | /* Free any memory associated with a search. */ |
eca864fe | 3248 | |
c906108c | 3249 | void |
fba45db2 | 3250 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
3251 | { |
3252 | struct symbol_search *p; | |
3253 | struct symbol_search *next; | |
3254 | ||
3255 | for (p = symbols; p != NULL; p = next) | |
3256 | { | |
3257 | next = p->next; | |
b8c9b27d | 3258 | xfree (p); |
c906108c SS |
3259 | } |
3260 | } | |
3261 | ||
5bd98722 AC |
3262 | static void |
3263 | do_free_search_symbols_cleanup (void *symbols) | |
3264 | { | |
3265 | free_search_symbols (symbols); | |
3266 | } | |
3267 | ||
3268 | struct cleanup * | |
3269 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
3270 | { | |
3271 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
3272 | } | |
3273 | ||
434d2d4f DJ |
3274 | /* Helper function for sort_search_symbols and qsort. Can only |
3275 | sort symbols, not minimal symbols. */ | |
eca864fe | 3276 | |
434d2d4f DJ |
3277 | static int |
3278 | compare_search_syms (const void *sa, const void *sb) | |
3279 | { | |
3280 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
3281 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
3282 | ||
de5ad195 DC |
3283 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
3284 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
3285 | } |
3286 | ||
3287 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
3288 | prevtail where it is, but update its next pointer to point to | |
3289 | the first of the sorted symbols. */ | |
eca864fe | 3290 | |
434d2d4f DJ |
3291 | static struct symbol_search * |
3292 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
3293 | { | |
3294 | struct symbol_search **symbols, *symp, *old_next; | |
3295 | int i; | |
3296 | ||
3297 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
3298 | * nfound); | |
3299 | symp = prevtail->next; | |
3300 | for (i = 0; i < nfound; i++) | |
3301 | { | |
3302 | symbols[i] = symp; | |
3303 | symp = symp->next; | |
3304 | } | |
3305 | /* Generally NULL. */ | |
3306 | old_next = symp; | |
3307 | ||
3308 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
3309 | compare_search_syms); | |
3310 | ||
3311 | symp = prevtail; | |
3312 | for (i = 0; i < nfound; i++) | |
3313 | { | |
3314 | symp->next = symbols[i]; | |
3315 | symp = symp->next; | |
3316 | } | |
3317 | symp->next = old_next; | |
3318 | ||
8ed32cc0 | 3319 | xfree (symbols); |
434d2d4f DJ |
3320 | return symp; |
3321 | } | |
5bd98722 | 3322 | |
ccefe4c4 TT |
3323 | /* An object of this type is passed as the user_data to the |
3324 | expand_symtabs_matching method. */ | |
3325 | struct search_symbols_data | |
3326 | { | |
3327 | int nfiles; | |
3328 | char **files; | |
681bf369 JK |
3329 | |
3330 | /* It is true if PREG contains valid data, false otherwise. */ | |
3331 | unsigned preg_p : 1; | |
3332 | regex_t preg; | |
ccefe4c4 TT |
3333 | }; |
3334 | ||
3335 | /* A callback for expand_symtabs_matching. */ | |
eca864fe | 3336 | |
ccefe4c4 TT |
3337 | static int |
3338 | search_symbols_file_matches (const char *filename, void *user_data) | |
3339 | { | |
3340 | struct search_symbols_data *data = user_data; | |
433759f7 | 3341 | |
ccefe4c4 TT |
3342 | return file_matches (filename, data->files, data->nfiles); |
3343 | } | |
3344 | ||
3345 | /* A callback for expand_symtabs_matching. */ | |
eca864fe | 3346 | |
ccefe4c4 | 3347 | static int |
e078317b | 3348 | search_symbols_name_matches (const char *symname, void *user_data) |
ccefe4c4 TT |
3349 | { |
3350 | struct search_symbols_data *data = user_data; | |
433759f7 | 3351 | |
681bf369 | 3352 | return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0; |
ccefe4c4 TT |
3353 | } |
3354 | ||
c906108c SS |
3355 | /* Search the symbol table for matches to the regular expression REGEXP, |
3356 | returning the results in *MATCHES. | |
3357 | ||
3358 | Only symbols of KIND are searched: | |
e8930875 JK |
3359 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
3360 | and constants (enums) | |
176620f1 EZ |
3361 | FUNCTIONS_DOMAIN - search all functions |
3362 | TYPES_DOMAIN - search all type names | |
7b08b9eb | 3363 | ALL_DOMAIN - an internal error for this function |
c906108c SS |
3364 | |
3365 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
3366 | |
3367 | The results are sorted locally; each symtab's global and static blocks are | |
c378eb4e MS |
3368 | separately alphabetized. */ |
3369 | ||
c906108c | 3370 | void |
8903c50d TT |
3371 | search_symbols (char *regexp, enum search_domain kind, |
3372 | int nfiles, char *files[], | |
fd118b61 | 3373 | struct symbol_search **matches) |
c906108c | 3374 | { |
52f0bd74 | 3375 | struct symtab *s; |
52f0bd74 | 3376 | struct blockvector *bv; |
52f0bd74 AC |
3377 | struct block *b; |
3378 | int i = 0; | |
8157b174 | 3379 | struct block_iterator iter; |
52f0bd74 | 3380 | struct symbol *sym; |
c906108c SS |
3381 | struct objfile *objfile; |
3382 | struct minimal_symbol *msymbol; | |
c906108c | 3383 | int found_misc = 0; |
bc043ef3 | 3384 | static const enum minimal_symbol_type types[] |
e8930875 | 3385 | = {mst_data, mst_text, mst_abs}; |
bc043ef3 | 3386 | static const enum minimal_symbol_type types2[] |
e8930875 | 3387 | = {mst_bss, mst_file_text, mst_abs}; |
bc043ef3 | 3388 | static const enum minimal_symbol_type types3[] |
e8930875 | 3389 | = {mst_file_data, mst_solib_trampoline, mst_abs}; |
bc043ef3 | 3390 | static const enum minimal_symbol_type types4[] |
e8930875 | 3391 | = {mst_file_bss, mst_text_gnu_ifunc, mst_abs}; |
c906108c SS |
3392 | enum minimal_symbol_type ourtype; |
3393 | enum minimal_symbol_type ourtype2; | |
3394 | enum minimal_symbol_type ourtype3; | |
3395 | enum minimal_symbol_type ourtype4; | |
3396 | struct symbol_search *sr; | |
3397 | struct symbol_search *psr; | |
3398 | struct symbol_search *tail; | |
ccefe4c4 | 3399 | struct search_symbols_data datum; |
c906108c | 3400 | |
681bf369 JK |
3401 | /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current |
3402 | CLEANUP_CHAIN is freed only in the case of an error. */ | |
3403 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
3404 | struct cleanup *retval_chain; | |
3405 | ||
e8930875 JK |
3406 | gdb_assert (kind <= TYPES_DOMAIN); |
3407 | ||
8903c50d TT |
3408 | ourtype = types[kind]; |
3409 | ourtype2 = types2[kind]; | |
3410 | ourtype3 = types3[kind]; | |
3411 | ourtype4 = types4[kind]; | |
c906108c SS |
3412 | |
3413 | sr = *matches = NULL; | |
3414 | tail = NULL; | |
681bf369 | 3415 | datum.preg_p = 0; |
c906108c SS |
3416 | |
3417 | if (regexp != NULL) | |
3418 | { | |
3419 | /* Make sure spacing is right for C++ operators. | |
3420 | This is just a courtesy to make the matching less sensitive | |
3421 | to how many spaces the user leaves between 'operator' | |
c378eb4e | 3422 | and <TYPENAME> or <OPERATOR>. */ |
c906108c SS |
3423 | char *opend; |
3424 | char *opname = operator_chars (regexp, &opend); | |
681bf369 | 3425 | int errcode; |
433759f7 | 3426 | |
c906108c | 3427 | if (*opname) |
c5aa993b | 3428 | { |
3e43a32a MS |
3429 | int fix = -1; /* -1 means ok; otherwise number of |
3430 | spaces needed. */ | |
433759f7 | 3431 | |
c5aa993b JM |
3432 | if (isalpha (*opname) || *opname == '_' || *opname == '$') |
3433 | { | |
c378eb4e | 3434 | /* There should 1 space between 'operator' and 'TYPENAME'. */ |
c5aa993b JM |
3435 | if (opname[-1] != ' ' || opname[-2] == ' ') |
3436 | fix = 1; | |
3437 | } | |
3438 | else | |
3439 | { | |
c378eb4e | 3440 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ |
c5aa993b JM |
3441 | if (opname[-1] == ' ') |
3442 | fix = 0; | |
3443 | } | |
c378eb4e | 3444 | /* If wrong number of spaces, fix it. */ |
c5aa993b JM |
3445 | if (fix >= 0) |
3446 | { | |
045f55a6 | 3447 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
433759f7 | 3448 | |
c5aa993b JM |
3449 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
3450 | regexp = tmp; | |
3451 | } | |
3452 | } | |
3453 | ||
559a7a62 JK |
3454 | errcode = regcomp (&datum.preg, regexp, |
3455 | REG_NOSUB | (case_sensitivity == case_sensitive_off | |
3456 | ? REG_ICASE : 0)); | |
681bf369 JK |
3457 | if (errcode != 0) |
3458 | { | |
3459 | char *err = get_regcomp_error (errcode, &datum.preg); | |
3460 | ||
3461 | make_cleanup (xfree, err); | |
3462 | error (_("Invalid regexp (%s): %s"), err, regexp); | |
3463 | } | |
3464 | datum.preg_p = 1; | |
3465 | make_regfree_cleanup (&datum.preg); | |
c906108c SS |
3466 | } |
3467 | ||
3468 | /* Search through the partial symtabs *first* for all symbols | |
3469 | matching the regexp. That way we don't have to reproduce all of | |
c378eb4e | 3470 | the machinery below. */ |
c906108c | 3471 | |
ccefe4c4 TT |
3472 | datum.nfiles = nfiles; |
3473 | datum.files = files; | |
ccefe4c4 | 3474 | ALL_OBJFILES (objfile) |
c5aa993b | 3475 | { |
ccefe4c4 TT |
3476 | if (objfile->sf) |
3477 | objfile->sf->qf->expand_symtabs_matching (objfile, | |
71cddcc1 DE |
3478 | (nfiles == 0 |
3479 | ? NULL | |
3480 | : search_symbols_file_matches), | |
ccefe4c4 TT |
3481 | search_symbols_name_matches, |
3482 | kind, | |
3483 | &datum); | |
c5aa993b | 3484 | } |
c906108c | 3485 | |
681bf369 JK |
3486 | retval_chain = old_chain; |
3487 | ||
c906108c SS |
3488 | /* Here, we search through the minimal symbol tables for functions |
3489 | and variables that match, and force their symbols to be read. | |
3490 | This is in particular necessary for demangled variable names, | |
3491 | which are no longer put into the partial symbol tables. | |
3492 | The symbol will then be found during the scan of symtabs below. | |
3493 | ||
3494 | For functions, find_pc_symtab should succeed if we have debug info | |
422d65e7 DE |
3495 | for the function, for variables we have to call |
3496 | lookup_symbol_in_objfile_from_linkage_name to determine if the variable | |
3497 | has debug info. | |
c906108c | 3498 | If the lookup fails, set found_misc so that we will rescan to print |
422d65e7 DE |
3499 | any matching symbols without debug info. |
3500 | We only search the objfile the msymbol came from, we no longer search | |
3501 | all objfiles. In large programs (1000s of shared libs) searching all | |
3502 | objfiles is not worth the pain. */ | |
c906108c | 3503 | |
176620f1 | 3504 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3505 | { |
3506 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3507 | { |
89295b4d PP |
3508 | QUIT; |
3509 | ||
422d65e7 DE |
3510 | if (msymbol->created_by_gdb) |
3511 | continue; | |
3512 | ||
d50bd42b DE |
3513 | if (MSYMBOL_TYPE (msymbol) == ourtype |
3514 | || MSYMBOL_TYPE (msymbol) == ourtype2 | |
3515 | || MSYMBOL_TYPE (msymbol) == ourtype3 | |
3516 | || MSYMBOL_TYPE (msymbol) == ourtype4) | |
c5aa993b | 3517 | { |
681bf369 JK |
3518 | if (!datum.preg_p |
3519 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0, | |
3520 | NULL, 0) == 0) | |
c5aa993b | 3521 | { |
422d65e7 DE |
3522 | /* Note: An important side-effect of these lookup functions |
3523 | is to expand the symbol table if msymbol is found, for the | |
3524 | benefit of the next loop on ALL_PRIMARY_SYMTABS. */ | |
3525 | if (kind == FUNCTIONS_DOMAIN | |
3526 | ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL | |
3527 | : (lookup_symbol_in_objfile_from_linkage_name | |
3528 | (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN) | |
3529 | == NULL)) | |
3530 | found_misc = 1; | |
c5aa993b JM |
3531 | } |
3532 | } | |
3533 | } | |
c906108c SS |
3534 | } |
3535 | ||
11309657 | 3536 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3537 | { |
3538 | bv = BLOCKVECTOR (s); | |
d50bd42b DE |
3539 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3540 | { | |
3541 | struct symbol_search *prevtail = tail; | |
3542 | int nfound = 0; | |
433759f7 | 3543 | |
d50bd42b DE |
3544 | b = BLOCKVECTOR_BLOCK (bv, i); |
3545 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
3546 | { | |
3547 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); | |
3548 | ||
3549 | QUIT; | |
3550 | ||
3551 | if (file_matches (real_symtab->filename, files, nfiles) | |
3552 | && ((!datum.preg_p | |
3553 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0, | |
3554 | NULL, 0) == 0) | |
3555 | && ((kind == VARIABLES_DOMAIN | |
3556 | && SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
3557 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
3558 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
3559 | /* LOC_CONST can be used for more than just enums, | |
3560 | e.g., c++ static const members. | |
3561 | We only want to skip enums here. */ | |
3562 | && !(SYMBOL_CLASS (sym) == LOC_CONST | |
3563 | && TYPE_CODE (SYMBOL_TYPE (sym)) | |
3564 | == TYPE_CODE_ENUM)) | |
3565 | || (kind == FUNCTIONS_DOMAIN | |
3566 | && SYMBOL_CLASS (sym) == LOC_BLOCK) | |
3567 | || (kind == TYPES_DOMAIN | |
3568 | && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) | |
3569 | { | |
3570 | /* match */ | |
3571 | psr = (struct symbol_search *) | |
3572 | xmalloc (sizeof (struct symbol_search)); | |
3573 | psr->block = i; | |
3574 | psr->symtab = real_symtab; | |
3575 | psr->symbol = sym; | |
3576 | psr->msymbol = NULL; | |
3577 | psr->next = NULL; | |
3578 | if (tail == NULL) | |
3579 | sr = psr; | |
3580 | else | |
3581 | tail->next = psr; | |
3582 | tail = psr; | |
3583 | nfound ++; | |
3584 | } | |
3585 | } | |
3586 | if (nfound > 0) | |
3587 | { | |
3588 | if (prevtail == NULL) | |
3589 | { | |
3590 | struct symbol_search dummy; | |
434d2d4f | 3591 | |
d50bd42b DE |
3592 | dummy.next = sr; |
3593 | tail = sort_search_symbols (&dummy, nfound); | |
3594 | sr = dummy.next; | |
434d2d4f | 3595 | |
d50bd42b DE |
3596 | make_cleanup_free_search_symbols (sr); |
3597 | } | |
3598 | else | |
3599 | tail = sort_search_symbols (prevtail, nfound); | |
3600 | } | |
3601 | } | |
c5aa993b | 3602 | } |
c906108c SS |
3603 | |
3604 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3605 | no debug symbols, then print directly from the msymbol_vector. */ | |
3606 | ||
422d65e7 | 3607 | if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN)) |
c906108c SS |
3608 | { |
3609 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3610 | { |
89295b4d PP |
3611 | QUIT; |
3612 | ||
422d65e7 DE |
3613 | if (msymbol->created_by_gdb) |
3614 | continue; | |
3615 | ||
d50bd42b DE |
3616 | if (MSYMBOL_TYPE (msymbol) == ourtype |
3617 | || MSYMBOL_TYPE (msymbol) == ourtype2 | |
3618 | || MSYMBOL_TYPE (msymbol) == ourtype3 | |
3619 | || MSYMBOL_TYPE (msymbol) == ourtype4) | |
c5aa993b | 3620 | { |
681bf369 JK |
3621 | if (!datum.preg_p |
3622 | || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0, | |
3623 | NULL, 0) == 0) | |
c5aa993b | 3624 | { |
422d65e7 DE |
3625 | /* For functions we can do a quick check of whether the |
3626 | symbol might be found via find_pc_symtab. */ | |
3627 | if (kind != FUNCTIONS_DOMAIN | |
3628 | || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL) | |
c5aa993b | 3629 | { |
422d65e7 DE |
3630 | if (lookup_symbol_in_objfile_from_linkage_name |
3631 | (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN) | |
3632 | == NULL) | |
c5aa993b JM |
3633 | { |
3634 | /* match */ | |
3e43a32a MS |
3635 | psr = (struct symbol_search *) |
3636 | xmalloc (sizeof (struct symbol_search)); | |
c5aa993b JM |
3637 | psr->block = i; |
3638 | psr->msymbol = msymbol; | |
3639 | psr->symtab = NULL; | |
3640 | psr->symbol = NULL; | |
3641 | psr->next = NULL; | |
3642 | if (tail == NULL) | |
3643 | { | |
3644 | sr = psr; | |
681bf369 | 3645 | make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3646 | } |
3647 | else | |
3648 | tail->next = psr; | |
3649 | tail = psr; | |
3650 | } | |
3651 | } | |
3652 | } | |
3653 | } | |
3654 | } | |
c906108c SS |
3655 | } |
3656 | ||
681bf369 JK |
3657 | discard_cleanups (retval_chain); |
3658 | do_cleanups (old_chain); | |
c906108c | 3659 | *matches = sr; |
c906108c SS |
3660 | } |
3661 | ||
3662 | /* Helper function for symtab_symbol_info, this function uses | |
3663 | the data returned from search_symbols() to print information | |
c378eb4e MS |
3664 | regarding the match to gdb_stdout. */ |
3665 | ||
c906108c | 3666 | static void |
8903c50d TT |
3667 | print_symbol_info (enum search_domain kind, |
3668 | struct symtab *s, struct symbol *sym, | |
fba45db2 | 3669 | int block, char *last) |
c906108c | 3670 | { |
0ba1096a | 3671 | if (last == NULL || filename_cmp (last, s->filename) != 0) |
c906108c SS |
3672 | { |
3673 | fputs_filtered ("\nFile ", gdb_stdout); | |
3674 | fputs_filtered (s->filename, gdb_stdout); | |
3675 | fputs_filtered (":\n", gdb_stdout); | |
3676 | } | |
3677 | ||
176620f1 | 3678 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3679 | printf_filtered ("static "); |
c5aa993b | 3680 | |
c378eb4e | 3681 | /* Typedef that is not a C++ class. */ |
176620f1 EZ |
3682 | if (kind == TYPES_DOMAIN |
3683 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3684 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c378eb4e | 3685 | /* variable, func, or typedef-that-is-c++-class. */ |
d50bd42b DE |
3686 | else if (kind < TYPES_DOMAIN |
3687 | || (kind == TYPES_DOMAIN | |
3688 | && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3689 | { |
3690 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3691 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3692 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3693 | gdb_stdout, 0); |
c906108c SS |
3694 | |
3695 | printf_filtered (";\n"); | |
3696 | } | |
c906108c SS |
3697 | } |
3698 | ||
3699 | /* This help function for symtab_symbol_info() prints information | |
c378eb4e MS |
3700 | for non-debugging symbols to gdb_stdout. */ |
3701 | ||
c906108c | 3702 | static void |
fba45db2 | 3703 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3704 | { |
d80b854b | 3705 | struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol)); |
3ac4495a MS |
3706 | char *tmp; |
3707 | ||
d80b854b | 3708 | if (gdbarch_addr_bit (gdbarch) <= 32) |
bb599908 PH |
3709 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3710 | & (CORE_ADDR) 0xffffffff, | |
3711 | 8); | |
3ac4495a | 3712 | else |
bb599908 PH |
3713 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3714 | 16); | |
3ac4495a | 3715 | printf_filtered ("%s %s\n", |
de5ad195 | 3716 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3717 | } |
3718 | ||
3719 | /* This is the guts of the commands "info functions", "info types", and | |
c378eb4e | 3720 | "info variables". It calls search_symbols to find all matches and then |
c906108c | 3721 | print_[m]symbol_info to print out some useful information about the |
c378eb4e MS |
3722 | matches. */ |
3723 | ||
c906108c | 3724 | static void |
8903c50d | 3725 | symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty) |
c906108c | 3726 | { |
bc043ef3 | 3727 | static const char * const classnames[] = |
e8930875 | 3728 | {"variable", "function", "type"}; |
c906108c SS |
3729 | struct symbol_search *symbols; |
3730 | struct symbol_search *p; | |
3731 | struct cleanup *old_chain; | |
3732 | char *last_filename = NULL; | |
3733 | int first = 1; | |
3734 | ||
e8930875 JK |
3735 | gdb_assert (kind <= TYPES_DOMAIN); |
3736 | ||
c378eb4e | 3737 | /* Must make sure that if we're interrupted, symbols gets freed. */ |
c906108c | 3738 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); |
5bd98722 | 3739 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3740 | |
3741 | printf_filtered (regexp | |
c5aa993b JM |
3742 | ? "All %ss matching regular expression \"%s\":\n" |
3743 | : "All defined %ss:\n", | |
8903c50d | 3744 | classnames[kind], regexp); |
c906108c SS |
3745 | |
3746 | for (p = symbols; p != NULL; p = p->next) | |
3747 | { | |
3748 | QUIT; | |
3749 | ||
3750 | if (p->msymbol != NULL) | |
c5aa993b JM |
3751 | { |
3752 | if (first) | |
3753 | { | |
3754 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3755 | first = 0; | |
3756 | } | |
3757 | print_msymbol_info (p->msymbol); | |
3758 | } | |
c906108c | 3759 | else |
c5aa993b JM |
3760 | { |
3761 | print_symbol_info (kind, | |
3762 | p->symtab, | |
3763 | p->symbol, | |
3764 | p->block, | |
3765 | last_filename); | |
3766 | last_filename = p->symtab->filename; | |
3767 | } | |
c906108c SS |
3768 | } |
3769 | ||
3770 | do_cleanups (old_chain); | |
3771 | } | |
3772 | ||
3773 | static void | |
fba45db2 | 3774 | variables_info (char *regexp, int from_tty) |
c906108c | 3775 | { |
176620f1 | 3776 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3777 | } |
3778 | ||
3779 | static void | |
fba45db2 | 3780 | functions_info (char *regexp, int from_tty) |
c906108c | 3781 | { |
176620f1 | 3782 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3783 | } |
3784 | ||
357e46e7 | 3785 | |
c906108c | 3786 | static void |
fba45db2 | 3787 | types_info (char *regexp, int from_tty) |
c906108c | 3788 | { |
176620f1 | 3789 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3790 | } |
3791 | ||
c378eb4e | 3792 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3793 | |
8b93c638 | 3794 | void |
fba45db2 | 3795 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3796 | { |
3797 | rbreak_command (regexp, from_tty); | |
3798 | } | |
8926118c | 3799 | |
95a42b64 TT |
3800 | /* A cleanup function that calls end_rbreak_breakpoints. */ |
3801 | ||
3802 | static void | |
3803 | do_end_rbreak_breakpoints (void *ignore) | |
3804 | { | |
3805 | end_rbreak_breakpoints (); | |
3806 | } | |
3807 | ||
c906108c | 3808 | static void |
fba45db2 | 3809 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3810 | { |
3811 | struct symbol_search *ss; | |
3812 | struct symbol_search *p; | |
3813 | struct cleanup *old_chain; | |
95a42b64 TT |
3814 | char *string = NULL; |
3815 | int len = 0; | |
9c1e305a | 3816 | char **files = NULL, *file_name; |
8bd10a10 | 3817 | int nfiles = 0; |
c906108c | 3818 | |
8bd10a10 CM |
3819 | if (regexp) |
3820 | { | |
3821 | char *colon = strchr (regexp, ':'); | |
433759f7 | 3822 | |
8bd10a10 CM |
3823 | if (colon && *(colon + 1) != ':') |
3824 | { | |
3825 | int colon_index; | |
8bd10a10 CM |
3826 | |
3827 | colon_index = colon - regexp; | |
3828 | file_name = alloca (colon_index + 1); | |
3829 | memcpy (file_name, regexp, colon_index); | |
3830 | file_name[colon_index--] = 0; | |
3831 | while (isspace (file_name[colon_index])) | |
3832 | file_name[colon_index--] = 0; | |
3833 | files = &file_name; | |
3834 | nfiles = 1; | |
3835 | regexp = colon + 1; | |
3836 | while (isspace (*regexp)) regexp++; | |
3837 | } | |
3838 | } | |
3839 | ||
3840 | search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss); | |
5bd98722 | 3841 | old_chain = make_cleanup_free_search_symbols (ss); |
95a42b64 | 3842 | make_cleanup (free_current_contents, &string); |
c906108c | 3843 | |
95a42b64 TT |
3844 | start_rbreak_breakpoints (); |
3845 | make_cleanup (do_end_rbreak_breakpoints, NULL); | |
c906108c SS |
3846 | for (p = ss; p != NULL; p = p->next) |
3847 | { | |
3848 | if (p->msymbol == NULL) | |
c5aa993b | 3849 | { |
95a42b64 TT |
3850 | int newlen = (strlen (p->symtab->filename) |
3851 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3852 | + 4); | |
433759f7 | 3853 | |
95a42b64 TT |
3854 | if (newlen > len) |
3855 | { | |
3856 | string = xrealloc (string, newlen); | |
3857 | len = newlen; | |
3858 | } | |
c5aa993b JM |
3859 | strcpy (string, p->symtab->filename); |
3860 | strcat (string, ":'"); | |
2335f48e | 3861 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3862 | strcat (string, "'"); |
3863 | break_command (string, from_tty); | |
176620f1 | 3864 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3865 | p->symtab, |
3866 | p->symbol, | |
3867 | p->block, | |
3868 | p->symtab->filename); | |
3869 | } | |
c906108c | 3870 | else |
c5aa993b | 3871 | { |
433759f7 MS |
3872 | int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3); |
3873 | ||
95a42b64 TT |
3874 | if (newlen > len) |
3875 | { | |
3876 | string = xrealloc (string, newlen); | |
3877 | len = newlen; | |
3878 | } | |
6214f497 DJ |
3879 | strcpy (string, "'"); |
3880 | strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol)); | |
3881 | strcat (string, "'"); | |
3882 | ||
3883 | break_command (string, from_tty); | |
c5aa993b | 3884 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3885 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3886 | } |
c906108c SS |
3887 | } |
3888 | ||
3889 | do_cleanups (old_chain); | |
3890 | } | |
c906108c | 3891 | \f |
c5aa993b | 3892 | |
1976171a JK |
3893 | /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN. |
3894 | ||
3895 | Either sym_text[sym_text_len] != '(' and then we search for any | |
3896 | symbol starting with SYM_TEXT text. | |
3897 | ||
3898 | Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to | |
3899 | be terminated at that point. Partial symbol tables do not have parameters | |
3900 | information. */ | |
3901 | ||
3902 | static int | |
3903 | compare_symbol_name (const char *name, const char *sym_text, int sym_text_len) | |
3904 | { | |
3905 | int (*ncmp) (const char *, const char *, size_t); | |
3906 | ||
3907 | ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp); | |
3908 | ||
3909 | if (ncmp (name, sym_text, sym_text_len) != 0) | |
3910 | return 0; | |
3911 | ||
3912 | if (sym_text[sym_text_len] == '(') | |
3913 | { | |
3914 | /* User searches for `name(someth...'. Require NAME to be terminated. | |
3915 | Normally psymtabs and gdbindex have no parameter types so '\0' will be | |
3916 | present but accept even parameters presence. In this case this | |
3917 | function is in fact strcmp_iw but whitespace skipping is not supported | |
3918 | for tab completion. */ | |
3919 | ||
3920 | if (name[sym_text_len] != '\0' && name[sym_text_len] != '(') | |
3921 | return 0; | |
3922 | } | |
3923 | ||
3924 | return 1; | |
3925 | } | |
3926 | ||
821296b7 SA |
3927 | /* Free any memory associated with a completion list. */ |
3928 | ||
3929 | static void | |
49c4e619 | 3930 | free_completion_list (VEC (char_ptr) **list_ptr) |
821296b7 | 3931 | { |
49c4e619 TT |
3932 | int i; |
3933 | char *p; | |
821296b7 | 3934 | |
49c4e619 TT |
3935 | for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i) |
3936 | xfree (p); | |
3937 | VEC_free (char_ptr, *list_ptr); | |
821296b7 SA |
3938 | } |
3939 | ||
3940 | /* Callback for make_cleanup. */ | |
3941 | ||
3942 | static void | |
3943 | do_free_completion_list (void *list) | |
3944 | { | |
3945 | free_completion_list (list); | |
3946 | } | |
3947 | ||
c906108c SS |
3948 | /* Helper routine for make_symbol_completion_list. */ |
3949 | ||
49c4e619 | 3950 | static VEC (char_ptr) *return_val; |
c906108c SS |
3951 | |
3952 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3953 | completion_list_add_name \ |
2335f48e | 3954 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3955 | |
3956 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b | 3957 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
c378eb4e | 3958 | characters. If so, add it to the current completion list. */ |
c906108c SS |
3959 | |
3960 | static void | |
0d5cff50 DE |
3961 | completion_list_add_name (const char *symname, |
3962 | const char *sym_text, int sym_text_len, | |
3963 | const char *text, const char *word) | |
c906108c SS |
3964 | { |
3965 | int newsize; | |
c906108c | 3966 | |
c378eb4e | 3967 | /* Clip symbols that cannot match. */ |
1976171a JK |
3968 | if (!compare_symbol_name (symname, sym_text, sym_text_len)) |
3969 | return; | |
c906108c | 3970 | |
c906108c | 3971 | /* We have a match for a completion, so add SYMNAME to the current list |
c378eb4e | 3972 | of matches. Note that the name is moved to freshly malloc'd space. */ |
c906108c SS |
3973 | |
3974 | { | |
3975 | char *new; | |
433759f7 | 3976 | |
c906108c SS |
3977 | if (word == sym_text) |
3978 | { | |
3979 | new = xmalloc (strlen (symname) + 5); | |
3980 | strcpy (new, symname); | |
3981 | } | |
3982 | else if (word > sym_text) | |
3983 | { | |
3984 | /* Return some portion of symname. */ | |
3985 | new = xmalloc (strlen (symname) + 5); | |
3986 | strcpy (new, symname + (word - sym_text)); | |
3987 | } | |
3988 | else | |
3989 | { | |
3990 | /* Return some of SYM_TEXT plus symname. */ | |
3991 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3992 | strncpy (new, word, sym_text - word); | |
3993 | new[sym_text - word] = '\0'; | |
3994 | strcat (new, symname); | |
3995 | } | |
3996 | ||
49c4e619 | 3997 | VEC_safe_push (char_ptr, return_val, new); |
c906108c SS |
3998 | } |
3999 | } | |
4000 | ||
69636828 AF |
4001 | /* ObjC: In case we are completing on a selector, look as the msymbol |
4002 | again and feed all the selectors into the mill. */ | |
4003 | ||
4004 | static void | |
0d5cff50 DE |
4005 | completion_list_objc_symbol (struct minimal_symbol *msymbol, |
4006 | const char *sym_text, int sym_text_len, | |
4007 | const char *text, const char *word) | |
69636828 AF |
4008 | { |
4009 | static char *tmp = NULL; | |
4010 | static unsigned int tmplen = 0; | |
9af17804 | 4011 | |
0d5cff50 | 4012 | const char *method, *category, *selector; |
69636828 | 4013 | char *tmp2 = NULL; |
9af17804 | 4014 | |
69636828 AF |
4015 | method = SYMBOL_NATURAL_NAME (msymbol); |
4016 | ||
4017 | /* Is it a method? */ | |
4018 | if ((method[0] != '-') && (method[0] != '+')) | |
4019 | return; | |
4020 | ||
4021 | if (sym_text[0] == '[') | |
4022 | /* Complete on shortened method method. */ | |
4023 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
9af17804 | 4024 | |
69636828 AF |
4025 | while ((strlen (method) + 1) >= tmplen) |
4026 | { | |
4027 | if (tmplen == 0) | |
4028 | tmplen = 1024; | |
4029 | else | |
4030 | tmplen *= 2; | |
4031 | tmp = xrealloc (tmp, tmplen); | |
4032 | } | |
4033 | selector = strchr (method, ' '); | |
4034 | if (selector != NULL) | |
4035 | selector++; | |
9af17804 | 4036 | |
69636828 | 4037 | category = strchr (method, '('); |
9af17804 | 4038 | |
69636828 AF |
4039 | if ((category != NULL) && (selector != NULL)) |
4040 | { | |
4041 | memcpy (tmp, method, (category - method)); | |
4042 | tmp[category - method] = ' '; | |
4043 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
4044 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
4045 | if (sym_text[0] == '[') | |
4046 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
4047 | } | |
9af17804 | 4048 | |
69636828 AF |
4049 | if (selector != NULL) |
4050 | { | |
4051 | /* Complete on selector only. */ | |
4052 | strcpy (tmp, selector); | |
4053 | tmp2 = strchr (tmp, ']'); | |
4054 | if (tmp2 != NULL) | |
4055 | *tmp2 = '\0'; | |
9af17804 | 4056 | |
69636828 AF |
4057 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
4058 | } | |
4059 | } | |
4060 | ||
4061 | /* Break the non-quoted text based on the characters which are in | |
c378eb4e | 4062 | symbols. FIXME: This should probably be language-specific. */ |
69636828 AF |
4063 | |
4064 | static char * | |
4065 | language_search_unquoted_string (char *text, char *p) | |
4066 | { | |
4067 | for (; p > text; --p) | |
4068 | { | |
4069 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
4070 | continue; | |
4071 | else | |
4072 | { | |
4073 | if ((current_language->la_language == language_objc)) | |
4074 | { | |
c378eb4e | 4075 | if (p[-1] == ':') /* Might be part of a method name. */ |
69636828 AF |
4076 | continue; |
4077 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
c378eb4e | 4078 | p -= 2; /* Beginning of a method name. */ |
69636828 | 4079 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') |
c378eb4e | 4080 | { /* Might be part of a method name. */ |
69636828 AF |
4081 | char *t = p; |
4082 | ||
4083 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
4084 | that we are in the middle of a method name. However, | |
4085 | finding "-[" or "+[" should be pretty un-ambiguous. | |
4086 | Unfortunately we have to find it now to decide. */ | |
4087 | ||
4088 | while (t > text) | |
4089 | if (isalnum (t[-1]) || t[-1] == '_' || | |
4090 | t[-1] == ' ' || t[-1] == ':' || | |
4091 | t[-1] == '(' || t[-1] == ')') | |
4092 | --t; | |
4093 | else | |
4094 | break; | |
4095 | ||
4096 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
c378eb4e MS |
4097 | p = t - 2; /* Method name detected. */ |
4098 | /* Else we leave with p unchanged. */ | |
69636828 AF |
4099 | } |
4100 | } | |
4101 | break; | |
4102 | } | |
4103 | } | |
4104 | return p; | |
4105 | } | |
4106 | ||
edb3359d DJ |
4107 | static void |
4108 | completion_list_add_fields (struct symbol *sym, char *sym_text, | |
4109 | int sym_text_len, char *text, char *word) | |
4110 | { | |
4111 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4112 | { | |
4113 | struct type *t = SYMBOL_TYPE (sym); | |
4114 | enum type_code c = TYPE_CODE (t); | |
4115 | int j; | |
4116 | ||
4117 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
4118 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
4119 | if (TYPE_FIELD_NAME (t, j)) | |
4120 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
4121 | sym_text, sym_text_len, text, word); | |
4122 | } | |
4123 | } | |
4124 | ||
ccefe4c4 | 4125 | /* Type of the user_data argument passed to add_macro_name or |
7b08b9eb | 4126 | expand_partial_symbol_name. The contents are simply whatever is |
ccefe4c4 TT |
4127 | needed by completion_list_add_name. */ |
4128 | struct add_name_data | |
9a044a89 TT |
4129 | { |
4130 | char *sym_text; | |
4131 | int sym_text_len; | |
4132 | char *text; | |
4133 | char *word; | |
4134 | }; | |
4135 | ||
4136 | /* A callback used with macro_for_each and macro_for_each_in_scope. | |
4137 | This adds a macro's name to the current completion list. */ | |
eca864fe | 4138 | |
9a044a89 TT |
4139 | static void |
4140 | add_macro_name (const char *name, const struct macro_definition *ignore, | |
9b158ba0 | 4141 | struct macro_source_file *ignore2, int ignore3, |
9a044a89 TT |
4142 | void *user_data) |
4143 | { | |
ccefe4c4 | 4144 | struct add_name_data *datum = (struct add_name_data *) user_data; |
433759f7 | 4145 | |
ccefe4c4 TT |
4146 | completion_list_add_name ((char *) name, |
4147 | datum->sym_text, datum->sym_text_len, | |
4148 | datum->text, datum->word); | |
4149 | } | |
4150 | ||
7b08b9eb | 4151 | /* A callback for expand_partial_symbol_names. */ |
eca864fe | 4152 | |
7b08b9eb | 4153 | static int |
e078317b | 4154 | expand_partial_symbol_name (const char *name, void *user_data) |
ccefe4c4 TT |
4155 | { |
4156 | struct add_name_data *datum = (struct add_name_data *) user_data; | |
165195f4 | 4157 | |
1976171a | 4158 | return compare_symbol_name (name, datum->sym_text, datum->sym_text_len); |
9a044a89 TT |
4159 | } |
4160 | ||
49c4e619 | 4161 | VEC (char_ptr) * |
f55ee35c JK |
4162 | default_make_symbol_completion_list_break_on (char *text, char *word, |
4163 | const char *break_on) | |
c906108c | 4164 | { |
41d27058 JB |
4165 | /* Problem: All of the symbols have to be copied because readline |
4166 | frees them. I'm not going to worry about this; hopefully there | |
4167 | won't be that many. */ | |
4168 | ||
de4f826b DC |
4169 | struct symbol *sym; |
4170 | struct symtab *s; | |
de4f826b DC |
4171 | struct minimal_symbol *msymbol; |
4172 | struct objfile *objfile; | |
edb3359d DJ |
4173 | struct block *b; |
4174 | const struct block *surrounding_static_block, *surrounding_global_block; | |
8157b174 | 4175 | struct block_iterator iter; |
c906108c SS |
4176 | /* The symbol we are completing on. Points in same buffer as text. */ |
4177 | char *sym_text; | |
4178 | /* Length of sym_text. */ | |
4179 | int sym_text_len; | |
ccefe4c4 | 4180 | struct add_name_data datum; |
821296b7 | 4181 | struct cleanup *back_to; |
c906108c | 4182 | |
41d27058 | 4183 | /* Now look for the symbol we are supposed to complete on. */ |
c906108c SS |
4184 | { |
4185 | char *p; | |
4186 | char quote_found; | |
4187 | char *quote_pos = NULL; | |
4188 | ||
4189 | /* First see if this is a quoted string. */ | |
4190 | quote_found = '\0'; | |
4191 | for (p = text; *p != '\0'; ++p) | |
4192 | { | |
4193 | if (quote_found != '\0') | |
4194 | { | |
4195 | if (*p == quote_found) | |
4196 | /* Found close quote. */ | |
4197 | quote_found = '\0'; | |
4198 | else if (*p == '\\' && p[1] == quote_found) | |
4199 | /* A backslash followed by the quote character | |
c5aa993b | 4200 | doesn't end the string. */ |
c906108c SS |
4201 | ++p; |
4202 | } | |
4203 | else if (*p == '\'' || *p == '"') | |
4204 | { | |
4205 | quote_found = *p; | |
4206 | quote_pos = p; | |
4207 | } | |
4208 | } | |
4209 | if (quote_found == '\'') | |
4210 | /* A string within single quotes can be a symbol, so complete on it. */ | |
4211 | sym_text = quote_pos + 1; | |
4212 | else if (quote_found == '"') | |
4213 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 4214 | to complete it any other way. */ |
c94fdfd0 | 4215 | { |
49c4e619 | 4216 | return NULL; |
c94fdfd0 | 4217 | } |
c906108c SS |
4218 | else |
4219 | { | |
4220 | /* It is not a quoted string. Break it based on the characters | |
4221 | which are in symbols. */ | |
4222 | while (p > text) | |
4223 | { | |
95699ff0 | 4224 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' |
f55ee35c | 4225 | || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) |
c906108c SS |
4226 | --p; |
4227 | else | |
4228 | break; | |
4229 | } | |
4230 | sym_text = p; | |
4231 | } | |
4232 | } | |
4233 | ||
4234 | sym_text_len = strlen (sym_text); | |
4235 | ||
1976171a JK |
4236 | /* Prepare SYM_TEXT_LEN for compare_symbol_name. */ |
4237 | ||
4238 | if (current_language->la_language == language_cplus | |
4239 | || current_language->la_language == language_java | |
4240 | || current_language->la_language == language_fortran) | |
4241 | { | |
4242 | /* These languages may have parameters entered by user but they are never | |
4243 | present in the partial symbol tables. */ | |
4244 | ||
4245 | const char *cs = memchr (sym_text, '(', sym_text_len); | |
4246 | ||
4247 | if (cs) | |
4248 | sym_text_len = cs - sym_text; | |
4249 | } | |
4250 | gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '('); | |
4251 | ||
49c4e619 | 4252 | return_val = NULL; |
821296b7 | 4253 | back_to = make_cleanup (do_free_completion_list, &return_val); |
c906108c | 4254 | |
ccefe4c4 TT |
4255 | datum.sym_text = sym_text; |
4256 | datum.sym_text_len = sym_text_len; | |
4257 | datum.text = text; | |
4258 | datum.word = word; | |
4259 | ||
c906108c | 4260 | /* Look through the partial symtabs for all symbols which begin |
7b08b9eb JK |
4261 | by matching SYM_TEXT. Expand all CUs that you find to the list. |
4262 | The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */ | |
4263 | expand_partial_symbol_names (expand_partial_symbol_name, &datum); | |
c906108c SS |
4264 | |
4265 | /* At this point scan through the misc symbol vectors and add each | |
4266 | symbol you find to the list. Eventually we want to ignore | |
4267 | anything that isn't a text symbol (everything else will be | |
4268 | handled by the psymtab code above). */ | |
4269 | ||
4270 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
4271 | { |
4272 | QUIT; | |
4273 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
9af17804 | 4274 | |
69636828 | 4275 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); |
c5aa993b | 4276 | } |
c906108c SS |
4277 | |
4278 | /* Search upwards from currently selected frame (so that we can | |
edb3359d DJ |
4279 | complete on local vars). Also catch fields of types defined in |
4280 | this places which match our text string. Only complete on types | |
c378eb4e | 4281 | visible from current context. */ |
edb3359d DJ |
4282 | |
4283 | b = get_selected_block (0); | |
4284 | surrounding_static_block = block_static_block (b); | |
4285 | surrounding_global_block = block_global_block (b); | |
4286 | if (surrounding_static_block != NULL) | |
4287 | while (b != surrounding_static_block) | |
4288 | { | |
4289 | QUIT; | |
c906108c | 4290 | |
edb3359d DJ |
4291 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
4292 | { | |
4293 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, | |
4294 | word); | |
4295 | completion_list_add_fields (sym, sym_text, sym_text_len, text, | |
4296 | word); | |
4297 | } | |
c5aa993b | 4298 | |
edb3359d DJ |
4299 | /* Stop when we encounter an enclosing function. Do not stop for |
4300 | non-inlined functions - the locals of the enclosing function | |
4301 | are in scope for a nested function. */ | |
4302 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
4303 | break; | |
4304 | b = BLOCK_SUPERBLOCK (b); | |
4305 | } | |
c906108c | 4306 | |
edb3359d | 4307 | /* Add fields from the file's types; symbols will be added below. */ |
c906108c | 4308 | |
edb3359d DJ |
4309 | if (surrounding_static_block != NULL) |
4310 | ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) | |
4311 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
4312 | ||
4313 | if (surrounding_global_block != NULL) | |
4314 | ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) | |
4315 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
c906108c SS |
4316 | |
4317 | /* Go through the symtabs and check the externs and statics for | |
4318 | symbols which match. */ | |
4319 | ||
11309657 | 4320 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
4321 | { |
4322 | QUIT; | |
4323 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4324 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 4325 | { |
c5aa993b JM |
4326 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4327 | } | |
4328 | } | |
c906108c | 4329 | |
11309657 | 4330 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
4331 | { |
4332 | QUIT; | |
4333 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4334 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 4335 | { |
c5aa993b JM |
4336 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4337 | } | |
4338 | } | |
c906108c | 4339 | |
9a044a89 TT |
4340 | if (current_language->la_macro_expansion == macro_expansion_c) |
4341 | { | |
4342 | struct macro_scope *scope; | |
9a044a89 TT |
4343 | |
4344 | /* Add any macros visible in the default scope. Note that this | |
4345 | may yield the occasional wrong result, because an expression | |
4346 | might be evaluated in a scope other than the default. For | |
4347 | example, if the user types "break file:line if <TAB>", the | |
4348 | resulting expression will be evaluated at "file:line" -- but | |
4349 | at there does not seem to be a way to detect this at | |
4350 | completion time. */ | |
4351 | scope = default_macro_scope (); | |
4352 | if (scope) | |
4353 | { | |
4354 | macro_for_each_in_scope (scope->file, scope->line, | |
4355 | add_macro_name, &datum); | |
4356 | xfree (scope); | |
4357 | } | |
4358 | ||
4359 | /* User-defined macros are always visible. */ | |
4360 | macro_for_each (macro_user_macros, add_macro_name, &datum); | |
4361 | } | |
4362 | ||
821296b7 | 4363 | discard_cleanups (back_to); |
c906108c SS |
4364 | return (return_val); |
4365 | } | |
4366 | ||
49c4e619 | 4367 | VEC (char_ptr) * |
f55ee35c JK |
4368 | default_make_symbol_completion_list (char *text, char *word) |
4369 | { | |
4370 | return default_make_symbol_completion_list_break_on (text, word, ""); | |
4371 | } | |
4372 | ||
49c4e619 TT |
4373 | /* Return a vector of all symbols (regardless of class) which begin by |
4374 | matching TEXT. If the answer is no symbols, then the return value | |
4375 | is NULL. */ | |
41d27058 | 4376 | |
49c4e619 | 4377 | VEC (char_ptr) * |
41d27058 JB |
4378 | make_symbol_completion_list (char *text, char *word) |
4379 | { | |
4380 | return current_language->la_make_symbol_completion_list (text, word); | |
4381 | } | |
4382 | ||
d8906c6f TJB |
4383 | /* Like make_symbol_completion_list, but suitable for use as a |
4384 | completion function. */ | |
4385 | ||
49c4e619 | 4386 | VEC (char_ptr) * |
d8906c6f TJB |
4387 | make_symbol_completion_list_fn (struct cmd_list_element *ignore, |
4388 | char *text, char *word) | |
4389 | { | |
4390 | return make_symbol_completion_list (text, word); | |
4391 | } | |
4392 | ||
c94fdfd0 EZ |
4393 | /* Like make_symbol_completion_list, but returns a list of symbols |
4394 | defined in a source file FILE. */ | |
4395 | ||
49c4e619 | 4396 | VEC (char_ptr) * |
c94fdfd0 EZ |
4397 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) |
4398 | { | |
52f0bd74 AC |
4399 | struct symbol *sym; |
4400 | struct symtab *s; | |
4401 | struct block *b; | |
8157b174 | 4402 | struct block_iterator iter; |
c94fdfd0 EZ |
4403 | /* The symbol we are completing on. Points in same buffer as text. */ |
4404 | char *sym_text; | |
4405 | /* Length of sym_text. */ | |
4406 | int sym_text_len; | |
4407 | ||
4408 | /* Now look for the symbol we are supposed to complete on. | |
4409 | FIXME: This should be language-specific. */ | |
4410 | { | |
4411 | char *p; | |
4412 | char quote_found; | |
4413 | char *quote_pos = NULL; | |
4414 | ||
4415 | /* First see if this is a quoted string. */ | |
4416 | quote_found = '\0'; | |
4417 | for (p = text; *p != '\0'; ++p) | |
4418 | { | |
4419 | if (quote_found != '\0') | |
4420 | { | |
4421 | if (*p == quote_found) | |
4422 | /* Found close quote. */ | |
4423 | quote_found = '\0'; | |
4424 | else if (*p == '\\' && p[1] == quote_found) | |
4425 | /* A backslash followed by the quote character | |
4426 | doesn't end the string. */ | |
4427 | ++p; | |
4428 | } | |
4429 | else if (*p == '\'' || *p == '"') | |
4430 | { | |
4431 | quote_found = *p; | |
4432 | quote_pos = p; | |
4433 | } | |
4434 | } | |
4435 | if (quote_found == '\'') | |
4436 | /* A string within single quotes can be a symbol, so complete on it. */ | |
4437 | sym_text = quote_pos + 1; | |
4438 | else if (quote_found == '"') | |
4439 | /* A double-quoted string is never a symbol, nor does it make sense | |
4440 | to complete it any other way. */ | |
4441 | { | |
49c4e619 | 4442 | return NULL; |
c94fdfd0 EZ |
4443 | } |
4444 | else | |
4445 | { | |
69636828 AF |
4446 | /* Not a quoted string. */ |
4447 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
4448 | } |
4449 | } | |
4450 | ||
4451 | sym_text_len = strlen (sym_text); | |
4452 | ||
49c4e619 | 4453 | return_val = NULL; |
c94fdfd0 EZ |
4454 | |
4455 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
4456 | in). */ | |
4457 | s = lookup_symtab (srcfile); | |
4458 | if (s == NULL) | |
4459 | { | |
4460 | /* Maybe they typed the file with leading directories, while the | |
4461 | symbol tables record only its basename. */ | |
31889e00 | 4462 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
4463 | |
4464 | if (tail > srcfile) | |
4465 | s = lookup_symtab (tail); | |
4466 | } | |
4467 | ||
4468 | /* If we have no symtab for that file, return an empty list. */ | |
4469 | if (s == NULL) | |
4470 | return (return_val); | |
4471 | ||
4472 | /* Go through this symtab and check the externs and statics for | |
4473 | symbols which match. */ | |
4474 | ||
4475 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4476 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4477 | { |
c94fdfd0 EZ |
4478 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4479 | } | |
4480 | ||
4481 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4482 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4483 | { |
c94fdfd0 EZ |
4484 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4485 | } | |
4486 | ||
4487 | return (return_val); | |
4488 | } | |
4489 | ||
4490 | /* A helper function for make_source_files_completion_list. It adds | |
4491 | another file name to a list of possible completions, growing the | |
4492 | list as necessary. */ | |
4493 | ||
4494 | static void | |
4495 | add_filename_to_list (const char *fname, char *text, char *word, | |
49c4e619 | 4496 | VEC (char_ptr) **list) |
c94fdfd0 EZ |
4497 | { |
4498 | char *new; | |
4499 | size_t fnlen = strlen (fname); | |
4500 | ||
c94fdfd0 EZ |
4501 | if (word == text) |
4502 | { | |
4503 | /* Return exactly fname. */ | |
4504 | new = xmalloc (fnlen + 5); | |
4505 | strcpy (new, fname); | |
4506 | } | |
4507 | else if (word > text) | |
4508 | { | |
4509 | /* Return some portion of fname. */ | |
4510 | new = xmalloc (fnlen + 5); | |
4511 | strcpy (new, fname + (word - text)); | |
4512 | } | |
4513 | else | |
4514 | { | |
4515 | /* Return some of TEXT plus fname. */ | |
4516 | new = xmalloc (fnlen + (text - word) + 5); | |
4517 | strncpy (new, word, text - word); | |
4518 | new[text - word] = '\0'; | |
4519 | strcat (new, fname); | |
4520 | } | |
49c4e619 | 4521 | VEC_safe_push (char_ptr, *list, new); |
c94fdfd0 EZ |
4522 | } |
4523 | ||
4524 | static int | |
4525 | not_interesting_fname (const char *fname) | |
4526 | { | |
4527 | static const char *illegal_aliens[] = { | |
4528 | "_globals_", /* inserted by coff_symtab_read */ | |
4529 | NULL | |
4530 | }; | |
4531 | int i; | |
4532 | ||
4533 | for (i = 0; illegal_aliens[i]; i++) | |
4534 | { | |
0ba1096a | 4535 | if (filename_cmp (fname, illegal_aliens[i]) == 0) |
c94fdfd0 EZ |
4536 | return 1; |
4537 | } | |
4538 | return 0; | |
4539 | } | |
4540 | ||
ccefe4c4 TT |
4541 | /* An object of this type is passed as the user_data argument to |
4542 | map_partial_symbol_filenames. */ | |
4543 | struct add_partial_filename_data | |
4544 | { | |
4545 | int *first; | |
4546 | char *text; | |
4547 | char *word; | |
4548 | int text_len; | |
49c4e619 | 4549 | VEC (char_ptr) **list; |
ccefe4c4 TT |
4550 | }; |
4551 | ||
4552 | /* A callback for map_partial_symbol_filenames. */ | |
eca864fe | 4553 | |
ccefe4c4 | 4554 | static void |
2837d59e | 4555 | maybe_add_partial_symtab_filename (const char *filename, const char *fullname, |
ccefe4c4 TT |
4556 | void *user_data) |
4557 | { | |
4558 | struct add_partial_filename_data *data = user_data; | |
4559 | ||
4560 | if (not_interesting_fname (filename)) | |
4561 | return; | |
4562 | if (!filename_seen (filename, 1, data->first) | |
0ba1096a | 4563 | && filename_ncmp (filename, data->text, data->text_len) == 0) |
ccefe4c4 TT |
4564 | { |
4565 | /* This file matches for a completion; add it to the | |
4566 | current list of matches. */ | |
49c4e619 | 4567 | add_filename_to_list (filename, data->text, data->word, data->list); |
ccefe4c4 TT |
4568 | } |
4569 | else | |
4570 | { | |
4571 | const char *base_name = lbasename (filename); | |
433759f7 | 4572 | |
ccefe4c4 TT |
4573 | if (base_name != filename |
4574 | && !filename_seen (base_name, 1, data->first) | |
0ba1096a | 4575 | && filename_ncmp (base_name, data->text, data->text_len) == 0) |
49c4e619 | 4576 | add_filename_to_list (base_name, data->text, data->word, data->list); |
ccefe4c4 TT |
4577 | } |
4578 | } | |
4579 | ||
49c4e619 TT |
4580 | /* Return a vector of all source files whose names begin with matching |
4581 | TEXT. The file names are looked up in the symbol tables of this | |
4582 | program. If the answer is no matchess, then the return value is | |
4583 | NULL. */ | |
c94fdfd0 | 4584 | |
49c4e619 | 4585 | VEC (char_ptr) * |
c94fdfd0 EZ |
4586 | make_source_files_completion_list (char *text, char *word) |
4587 | { | |
52f0bd74 | 4588 | struct symtab *s; |
52f0bd74 | 4589 | struct objfile *objfile; |
c94fdfd0 | 4590 | int first = 1; |
c94fdfd0 | 4591 | size_t text_len = strlen (text); |
49c4e619 | 4592 | VEC (char_ptr) *list = NULL; |
31889e00 | 4593 | const char *base_name; |
ccefe4c4 | 4594 | struct add_partial_filename_data datum; |
821296b7 | 4595 | struct cleanup *back_to; |
c94fdfd0 | 4596 | |
c94fdfd0 EZ |
4597 | if (!have_full_symbols () && !have_partial_symbols ()) |
4598 | return list; | |
4599 | ||
821296b7 SA |
4600 | back_to = make_cleanup (do_free_completion_list, &list); |
4601 | ||
c94fdfd0 EZ |
4602 | ALL_SYMTABS (objfile, s) |
4603 | { | |
4604 | if (not_interesting_fname (s->filename)) | |
4605 | continue; | |
4606 | if (!filename_seen (s->filename, 1, &first) | |
0ba1096a | 4607 | && filename_ncmp (s->filename, text, text_len) == 0) |
c94fdfd0 EZ |
4608 | { |
4609 | /* This file matches for a completion; add it to the current | |
4610 | list of matches. */ | |
49c4e619 | 4611 | add_filename_to_list (s->filename, text, word, &list); |
c94fdfd0 EZ |
4612 | } |
4613 | else | |
4614 | { | |
4615 | /* NOTE: We allow the user to type a base name when the | |
4616 | debug info records leading directories, but not the other | |
4617 | way around. This is what subroutines of breakpoint | |
4618 | command do when they parse file names. */ | |
31889e00 | 4619 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
4620 | if (base_name != s->filename |
4621 | && !filename_seen (base_name, 1, &first) | |
0ba1096a | 4622 | && filename_ncmp (base_name, text, text_len) == 0) |
49c4e619 | 4623 | add_filename_to_list (base_name, text, word, &list); |
c94fdfd0 EZ |
4624 | } |
4625 | } | |
4626 | ||
ccefe4c4 TT |
4627 | datum.first = &first; |
4628 | datum.text = text; | |
4629 | datum.word = word; | |
4630 | datum.text_len = text_len; | |
4631 | datum.list = &list; | |
74e2f255 DE |
4632 | map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum, |
4633 | 0 /*need_fullname*/); | |
821296b7 | 4634 | discard_cleanups (back_to); |
c94fdfd0 EZ |
4635 | |
4636 | return list; | |
4637 | } | |
4638 | ||
c906108c SS |
4639 | /* Determine if PC is in the prologue of a function. The prologue is the area |
4640 | between the first instruction of a function, and the first executable line. | |
4641 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4642 | ||
4643 | If non-zero, func_start is where we think the prologue starts, possibly | |
c378eb4e | 4644 | by previous examination of symbol table information. */ |
c906108c SS |
4645 | |
4646 | int | |
d80b854b | 4647 | in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
4648 | { |
4649 | struct symtab_and_line sal; | |
4650 | CORE_ADDR func_addr, func_end; | |
4651 | ||
54cf9c03 EZ |
4652 | /* We have several sources of information we can consult to figure |
4653 | this out. | |
4654 | - Compilers usually emit line number info that marks the prologue | |
4655 | as its own "source line". So the ending address of that "line" | |
4656 | is the end of the prologue. If available, this is the most | |
4657 | reliable method. | |
4658 | - The minimal symbols and partial symbols, which can usually tell | |
4659 | us the starting and ending addresses of a function. | |
4660 | - If we know the function's start address, we can call the | |
a433963d | 4661 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
4662 | instruction stream and guess where the prologue ends. |
4663 | - Our `func_start' argument; if non-zero, this is the caller's | |
4664 | best guess as to the function's entry point. At the time of | |
4665 | this writing, handle_inferior_event doesn't get this right, so | |
4666 | it should be our last resort. */ | |
4667 | ||
4668 | /* Consult the partial symbol table, to find which function | |
4669 | the PC is in. */ | |
4670 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4671 | { | |
4672 | CORE_ADDR prologue_end; | |
c906108c | 4673 | |
54cf9c03 EZ |
4674 | /* We don't even have minsym information, so fall back to using |
4675 | func_start, if given. */ | |
4676 | if (! func_start) | |
4677 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 4678 | |
d80b854b | 4679 | prologue_end = gdbarch_skip_prologue (gdbarch, func_start); |
c906108c | 4680 | |
54cf9c03 EZ |
4681 | return func_start <= pc && pc < prologue_end; |
4682 | } | |
c906108c | 4683 | |
54cf9c03 EZ |
4684 | /* If we have line number information for the function, that's |
4685 | usually pretty reliable. */ | |
4686 | sal = find_pc_line (func_addr, 0); | |
c906108c | 4687 | |
54cf9c03 EZ |
4688 | /* Now sal describes the source line at the function's entry point, |
4689 | which (by convention) is the prologue. The end of that "line", | |
4690 | sal.end, is the end of the prologue. | |
4691 | ||
4692 | Note that, for functions whose source code is all on a single | |
4693 | line, the line number information doesn't always end up this way. | |
4694 | So we must verify that our purported end-of-prologue address is | |
4695 | *within* the function, not at its start or end. */ | |
4696 | if (sal.line == 0 | |
4697 | || sal.end <= func_addr | |
4698 | || func_end <= sal.end) | |
4699 | { | |
4700 | /* We don't have any good line number info, so use the minsym | |
4701 | information, together with the architecture-specific prologue | |
4702 | scanning code. */ | |
d80b854b | 4703 | CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr); |
c906108c | 4704 | |
54cf9c03 EZ |
4705 | return func_addr <= pc && pc < prologue_end; |
4706 | } | |
c906108c | 4707 | |
54cf9c03 EZ |
4708 | /* We have line number info, and it looks good. */ |
4709 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4710 | } |
4711 | ||
634aa483 AC |
4712 | /* Given PC at the function's start address, attempt to find the |
4713 | prologue end using SAL information. Return zero if the skip fails. | |
4714 | ||
4715 | A non-optimized prologue traditionally has one SAL for the function | |
4716 | and a second for the function body. A single line function has | |
4717 | them both pointing at the same line. | |
4718 | ||
4719 | An optimized prologue is similar but the prologue may contain | |
4720 | instructions (SALs) from the instruction body. Need to skip those | |
4721 | while not getting into the function body. | |
4722 | ||
4723 | The functions end point and an increasing SAL line are used as | |
4724 | indicators of the prologue's endpoint. | |
4725 | ||
7475b06c TJB |
4726 | This code is based on the function refine_prologue_limit |
4727 | (found in ia64). */ | |
634aa483 AC |
4728 | |
4729 | CORE_ADDR | |
d80b854b | 4730 | skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) |
634aa483 AC |
4731 | { |
4732 | struct symtab_and_line prologue_sal; | |
4733 | CORE_ADDR start_pc; | |
4734 | CORE_ADDR end_pc; | |
d54be744 | 4735 | struct block *bl; |
634aa483 AC |
4736 | |
4737 | /* Get an initial range for the function. */ | |
4738 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
d80b854b | 4739 | start_pc += gdbarch_deprecated_function_start_offset (gdbarch); |
634aa483 AC |
4740 | |
4741 | prologue_sal = find_pc_line (start_pc, 0); | |
4742 | if (prologue_sal.line != 0) | |
4743 | { | |
e5dd4106 | 4744 | /* For languages other than assembly, treat two consecutive line |
d54be744 DJ |
4745 | entries at the same address as a zero-instruction prologue. |
4746 | The GNU assembler emits separate line notes for each instruction | |
4747 | in a multi-instruction macro, but compilers generally will not | |
4748 | do this. */ | |
4749 | if (prologue_sal.symtab->language != language_asm) | |
4750 | { | |
4751 | struct linetable *linetable = LINETABLE (prologue_sal.symtab); | |
d54be744 DJ |
4752 | int idx = 0; |
4753 | ||
4754 | /* Skip any earlier lines, and any end-of-sequence marker | |
4755 | from a previous function. */ | |
4756 | while (linetable->item[idx].pc != prologue_sal.pc | |
4757 | || linetable->item[idx].line == 0) | |
4758 | idx++; | |
4759 | ||
4760 | if (idx+1 < linetable->nitems | |
4761 | && linetable->item[idx+1].line != 0 | |
4762 | && linetable->item[idx+1].pc == start_pc) | |
4763 | return start_pc; | |
4764 | } | |
4765 | ||
576c2025 FF |
4766 | /* If there is only one sal that covers the entire function, |
4767 | then it is probably a single line function, like | |
c378eb4e | 4768 | "foo(){}". */ |
91934273 | 4769 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4770 | return 0; |
d54be744 | 4771 | |
634aa483 AC |
4772 | while (prologue_sal.end < end_pc) |
4773 | { | |
4774 | struct symtab_and_line sal; | |
4775 | ||
4776 | sal = find_pc_line (prologue_sal.end, 0); | |
4777 | if (sal.line == 0) | |
4778 | break; | |
4779 | /* Assume that a consecutive SAL for the same (or larger) | |
4780 | line mark the prologue -> body transition. */ | |
4781 | if (sal.line >= prologue_sal.line) | |
4782 | break; | |
edb3359d DJ |
4783 | |
4784 | /* The line number is smaller. Check that it's from the | |
4785 | same function, not something inlined. If it's inlined, | |
4786 | then there is no point comparing the line numbers. */ | |
4787 | bl = block_for_pc (prologue_sal.end); | |
4788 | while (bl) | |
4789 | { | |
4790 | if (block_inlined_p (bl)) | |
4791 | break; | |
4792 | if (BLOCK_FUNCTION (bl)) | |
4793 | { | |
4794 | bl = NULL; | |
4795 | break; | |
4796 | } | |
4797 | bl = BLOCK_SUPERBLOCK (bl); | |
4798 | } | |
4799 | if (bl != NULL) | |
4800 | break; | |
4801 | ||
634aa483 AC |
4802 | /* The case in which compiler's optimizer/scheduler has |
4803 | moved instructions into the prologue. We look ahead in | |
4804 | the function looking for address ranges whose | |
4805 | corresponding line number is less the first one that we | |
4806 | found for the function. This is more conservative then | |
4807 | refine_prologue_limit which scans a large number of SALs | |
c378eb4e | 4808 | looking for any in the prologue. */ |
634aa483 AC |
4809 | prologue_sal = sal; |
4810 | } | |
4811 | } | |
d54be744 DJ |
4812 | |
4813 | if (prologue_sal.end < end_pc) | |
4814 | /* Return the end of this line, or zero if we could not find a | |
4815 | line. */ | |
4816 | return prologue_sal.end; | |
4817 | else | |
4818 | /* Don't return END_PC, which is past the end of the function. */ | |
4819 | return prologue_sal.pc; | |
634aa483 | 4820 | } |
c906108c | 4821 | \f |
50641945 | 4822 | struct symtabs_and_lines |
f8eba3c6 | 4823 | decode_line_spec (char *string, int flags) |
50641945 FN |
4824 | { |
4825 | struct symtabs_and_lines sals; | |
0378c332 | 4826 | struct symtab_and_line cursal; |
9af17804 | 4827 | |
50641945 | 4828 | if (string == 0) |
8a3fe4f8 | 4829 | error (_("Empty line specification.")); |
9af17804 | 4830 | |
c378eb4e MS |
4831 | /* We use whatever is set as the current source line. We do not try |
4832 | and get a default or it will recursively call us! */ | |
0378c332 | 4833 | cursal = get_current_source_symtab_and_line (); |
9af17804 | 4834 | |
f8eba3c6 TT |
4835 | sals = decode_line_1 (&string, flags, |
4836 | cursal.symtab, cursal.line); | |
0378c332 | 4837 | |
50641945 | 4838 | if (*string) |
8a3fe4f8 | 4839 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4840 | return sals; |
4841 | } | |
c5aa993b | 4842 | |
51cc5b07 AC |
4843 | /* Track MAIN */ |
4844 | static char *name_of_main; | |
01f8c46d | 4845 | enum language language_of_main = language_unknown; |
51cc5b07 AC |
4846 | |
4847 | void | |
4848 | set_main_name (const char *name) | |
4849 | { | |
4850 | if (name_of_main != NULL) | |
4851 | { | |
4852 | xfree (name_of_main); | |
4853 | name_of_main = NULL; | |
01f8c46d | 4854 | language_of_main = language_unknown; |
51cc5b07 AC |
4855 | } |
4856 | if (name != NULL) | |
4857 | { | |
4858 | name_of_main = xstrdup (name); | |
01f8c46d | 4859 | language_of_main = language_unknown; |
51cc5b07 AC |
4860 | } |
4861 | } | |
4862 | ||
ea53e89f JB |
4863 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4864 | accordingly. */ | |
4865 | ||
4866 | static void | |
4867 | find_main_name (void) | |
4868 | { | |
cd6c7346 | 4869 | const char *new_main_name; |
ea53e89f JB |
4870 | |
4871 | /* Try to see if the main procedure is in Ada. */ | |
4872 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4873 | be to add a new method in the language vector, and call this | |
4874 | method for each language until one of them returns a non-empty | |
4875 | name. This would allow us to remove this hard-coded call to | |
4876 | an Ada function. It is not clear that this is a better approach | |
4877 | at this point, because all methods need to be written in a way | |
c378eb4e | 4878 | such that false positives never be returned. For instance, it is |
ea53e89f JB |
4879 | important that a method does not return a wrong name for the main |
4880 | procedure if the main procedure is actually written in a different | |
4881 | language. It is easy to guaranty this with Ada, since we use a | |
4882 | special symbol generated only when the main in Ada to find the name | |
c378eb4e | 4883 | of the main procedure. It is difficult however to see how this can |
ea53e89f JB |
4884 | be guarantied for languages such as C, for instance. This suggests |
4885 | that order of call for these methods becomes important, which means | |
4886 | a more complicated approach. */ | |
4887 | new_main_name = ada_main_name (); | |
4888 | if (new_main_name != NULL) | |
9af17804 | 4889 | { |
ea53e89f JB |
4890 | set_main_name (new_main_name); |
4891 | return; | |
4892 | } | |
4893 | ||
a766d390 DE |
4894 | new_main_name = go_main_name (); |
4895 | if (new_main_name != NULL) | |
4896 | { | |
4897 | set_main_name (new_main_name); | |
4898 | return; | |
4899 | } | |
4900 | ||
cd6c7346 PM |
4901 | new_main_name = pascal_main_name (); |
4902 | if (new_main_name != NULL) | |
9af17804 | 4903 | { |
cd6c7346 PM |
4904 | set_main_name (new_main_name); |
4905 | return; | |
4906 | } | |
4907 | ||
ea53e89f JB |
4908 | /* The languages above didn't identify the name of the main procedure. |
4909 | Fallback to "main". */ | |
4910 | set_main_name ("main"); | |
4911 | } | |
4912 | ||
51cc5b07 AC |
4913 | char * |
4914 | main_name (void) | |
4915 | { | |
ea53e89f JB |
4916 | if (name_of_main == NULL) |
4917 | find_main_name (); | |
4918 | ||
4919 | return name_of_main; | |
51cc5b07 AC |
4920 | } |
4921 | ||
ea53e89f JB |
4922 | /* Handle ``executable_changed'' events for the symtab module. */ |
4923 | ||
4924 | static void | |
781b42b0 | 4925 | symtab_observer_executable_changed (void) |
ea53e89f JB |
4926 | { |
4927 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4928 | set_main_name (NULL); | |
4929 | } | |
51cc5b07 | 4930 | |
a6c727b2 DJ |
4931 | /* Return 1 if the supplied producer string matches the ARM RealView |
4932 | compiler (armcc). */ | |
4933 | ||
4934 | int | |
4935 | producer_is_realview (const char *producer) | |
4936 | { | |
4937 | static const char *const arm_idents[] = { | |
4938 | "ARM C Compiler, ADS", | |
4939 | "Thumb C Compiler, ADS", | |
4940 | "ARM C++ Compiler, ADS", | |
4941 | "Thumb C++ Compiler, ADS", | |
4942 | "ARM/Thumb C/C++ Compiler, RVCT", | |
4943 | "ARM C/C++ Compiler, RVCT" | |
4944 | }; | |
4945 | int i; | |
4946 | ||
4947 | if (producer == NULL) | |
4948 | return 0; | |
4949 | ||
4950 | for (i = 0; i < ARRAY_SIZE (arm_idents); i++) | |
4951 | if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0) | |
4952 | return 1; | |
4953 | ||
4954 | return 0; | |
4955 | } | |
ed0616c6 | 4956 | |
c906108c | 4957 | void |
fba45db2 | 4958 | _initialize_symtab (void) |
c906108c | 4959 | { |
1bedd215 AC |
4960 | add_info ("variables", variables_info, _("\ |
4961 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4962 | if (dbx_commands) |
1bedd215 AC |
4963 | add_com ("whereis", class_info, variables_info, _("\ |
4964 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4965 | |
4966 | add_info ("functions", functions_info, | |
1bedd215 | 4967 | _("All function names, or those matching REGEXP.")); |
c906108c SS |
4968 | |
4969 | /* FIXME: This command has at least the following problems: | |
4970 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4971 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4972 | typedef struct foo *FOO |
4973 | type_print prints "FOO" when we want to make it (in this situation) | |
4974 | print "struct foo *". | |
c906108c SS |
4975 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4976 | there is much disagreement "info types" can be fixed). */ | |
4977 | add_info ("types", types_info, | |
1bedd215 | 4978 | _("All type names, or those matching REGEXP.")); |
c906108c | 4979 | |
c906108c | 4980 | add_info ("sources", sources_info, |
1bedd215 | 4981 | _("Source files in the program.")); |
c906108c SS |
4982 | |
4983 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4984 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4985 | |
4986 | if (xdb_commands) | |
4987 | { | |
1bedd215 AC |
4988 | add_com ("lf", class_info, sources_info, |
4989 | _("Source files in the program")); | |
4990 | add_com ("lg", class_info, variables_info, _("\ | |
4991 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4992 | } |
4993 | ||
717d2f5a JB |
4994 | add_setshow_enum_cmd ("multiple-symbols", no_class, |
4995 | multiple_symbols_modes, &multiple_symbols_mode, | |
4996 | _("\ | |
4997 | Set the debugger behavior when more than one symbol are possible matches\n\ | |
4998 | in an expression."), _("\ | |
4999 | Show how the debugger handles ambiguities in expressions."), _("\ | |
5000 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
5001 | NULL, NULL, &setlist, &showlist); | |
5002 | ||
c011a4f4 DE |
5003 | add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, |
5004 | &basenames_may_differ, _("\ | |
5005 | Set whether a source file may have multiple base names."), _("\ | |
5006 | Show whether a source file may have multiple base names."), _("\ | |
5007 | (A \"base name\" is the name of a file with the directory part removed.\n\ | |
5008 | Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ | |
5009 | If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ | |
5010 | before comparing them. Canonicalization is an expensive operation,\n\ | |
5011 | but it allows the same file be known by more than one base name.\n\ | |
5012 | If not set (the default), all source files are assumed to have just\n\ | |
5013 | one base name, and gdb will do file name comparisons more efficiently."), | |
5014 | NULL, NULL, | |
5015 | &setlist, &showlist); | |
5016 | ||
ea53e89f | 5017 | observer_attach_executable_changed (symtab_observer_executable_changed); |
c906108c | 5018 | } |