]>
Commit | Line | Data |
---|---|---|
3d6b6a90 | 1 | /* Parse expressions for GDB. |
d92f3f08 | 2 | Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc. |
3d6b6a90 JG |
3 | Modified from expread.y by the Department of Computer Science at the |
4 | State University of New York at Buffalo, 1991. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
6c9638b4 | 20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
3d6b6a90 JG |
21 | |
22 | /* Parse an expression from text in a string, | |
23 | and return the result as a struct expression pointer. | |
24 | That structure contains arithmetic operations in reverse polish, | |
25 | with constants represented by operations that are followed by special data. | |
26 | See expression.h for the details of the format. | |
27 | What is important here is that it can be built up sequentially | |
28 | during the process of parsing; the lower levels of the tree always | |
29 | come first in the result. */ | |
30 | ||
3d6b6a90 | 31 | #include "defs.h" |
2b576293 | 32 | #include "gdb_string.h" |
3d6b6a90 | 33 | #include "symtab.h" |
1ab3bf1b | 34 | #include "gdbtypes.h" |
3d6b6a90 JG |
35 | #include "frame.h" |
36 | #include "expression.h" | |
37 | #include "value.h" | |
38 | #include "command.h" | |
39 | #include "language.h" | |
40 | #include "parser-defs.h" | |
79448221 JK |
41 | \f |
42 | /* Global variables declared in parser-defs.h (and commented there). */ | |
43 | struct expression *expout; | |
44 | int expout_size; | |
45 | int expout_ptr; | |
46 | struct block *expression_context_block; | |
47 | struct block *innermost_block; | |
79448221 JK |
48 | int arglist_len; |
49 | union type_stack_elt *type_stack; | |
50 | int type_stack_depth, type_stack_size; | |
51 | char *lexptr; | |
52 | char *namecopy; | |
53 | int paren_depth; | |
54 | int comma_terminates; | |
55 | \f | |
9da75ad3 FF |
56 | static void |
57 | free_funcalls PARAMS ((void)); | |
58 | ||
1ab3bf1b JG |
59 | static void |
60 | prefixify_expression PARAMS ((struct expression *)); | |
61 | ||
1ab3bf1b JG |
62 | static void |
63 | prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int)); | |
64 | ||
9da75ad3 FF |
65 | /* Data structure for saving values of arglist_len for function calls whose |
66 | arguments contain other function calls. */ | |
67 | ||
68 | struct funcall | |
69 | { | |
70 | struct funcall *next; | |
71 | int arglist_len; | |
72 | }; | |
73 | ||
74 | static struct funcall *funcall_chain; | |
75 | ||
3d6b6a90 JG |
76 | /* Assign machine-independent names to certain registers |
77 | (unless overridden by the REGISTER_NAMES table) */ | |
78 | ||
a332e593 SC |
79 | #ifdef NO_STD_REGS |
80 | unsigned num_std_regs = 0; | |
81 | struct std_regs std_regs[1]; | |
82 | #else | |
3d6b6a90 | 83 | struct std_regs std_regs[] = { |
a332e593 | 84 | |
3d6b6a90 JG |
85 | #ifdef PC_REGNUM |
86 | { "pc", PC_REGNUM }, | |
87 | #endif | |
88 | #ifdef FP_REGNUM | |
89 | { "fp", FP_REGNUM }, | |
90 | #endif | |
91 | #ifdef SP_REGNUM | |
92 | { "sp", SP_REGNUM }, | |
93 | #endif | |
94 | #ifdef PS_REGNUM | |
95 | { "ps", PS_REGNUM }, | |
96 | #endif | |
a332e593 | 97 | |
3d6b6a90 JG |
98 | }; |
99 | ||
100 | unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]); | |
101 | ||
a332e593 SC |
102 | #endif |
103 | ||
678fa7ff RU |
104 | /* The generic method for targets to specify how their registers are named. |
105 | The mapping can be derived from three sources: reg_names; std_regs; or | |
106 | a target specific alias hook. */ | |
107 | ||
108 | int | |
109 | target_map_name_to_register (str, len) | |
110 | char *str; | |
111 | int len; | |
112 | { | |
113 | int i; | |
114 | ||
3b3835cc RU |
115 | /* First try target specific aliases. We try these first because on some |
116 | systems standard names can be context dependent (eg. $pc on a | |
117 | multiprocessor can be could be any of several PCs). */ | |
118 | #ifdef REGISTER_NAME_ALIAS_HOOK | |
119 | i = REGISTER_NAME_ALIAS_HOOK (str, len); | |
120 | if (i >= 0) | |
121 | return i; | |
122 | #endif | |
123 | ||
124 | /* Search architectural register name space. */ | |
678fa7ff RU |
125 | for (i = 0; i < NUM_REGS; i++) |
126 | if (reg_names[i] && len == strlen (reg_names[i]) | |
127 | && STREQN (str, reg_names[i], len)) | |
128 | { | |
129 | return i; | |
130 | } | |
131 | ||
132 | /* Try standard aliases */ | |
133 | for (i = 0; i < num_std_regs; i++) | |
134 | if (std_regs[i].name && len == strlen (std_regs[i].name) | |
135 | && STREQN (str, std_regs[i].name, len)) | |
136 | { | |
137 | return std_regs[i].regnum; | |
138 | } | |
139 | ||
678fa7ff RU |
140 | return -1; |
141 | } | |
3d6b6a90 JG |
142 | |
143 | /* Begin counting arguments for a function call, | |
144 | saving the data about any containing call. */ | |
145 | ||
146 | void | |
147 | start_arglist () | |
148 | { | |
9da75ad3 | 149 | register struct funcall *new; |
3d6b6a90 | 150 | |
9da75ad3 | 151 | new = (struct funcall *) xmalloc (sizeof (struct funcall)); |
3d6b6a90 JG |
152 | new->next = funcall_chain; |
153 | new->arglist_len = arglist_len; | |
154 | arglist_len = 0; | |
155 | funcall_chain = new; | |
156 | } | |
157 | ||
158 | /* Return the number of arguments in a function call just terminated, | |
159 | and restore the data for the containing function call. */ | |
160 | ||
161 | int | |
162 | end_arglist () | |
163 | { | |
164 | register int val = arglist_len; | |
165 | register struct funcall *call = funcall_chain; | |
166 | funcall_chain = call->next; | |
167 | arglist_len = call->arglist_len; | |
be772100 | 168 | free ((PTR)call); |
3d6b6a90 JG |
169 | return val; |
170 | } | |
171 | ||
172 | /* Free everything in the funcall chain. | |
173 | Used when there is an error inside parsing. */ | |
174 | ||
9da75ad3 | 175 | static void |
3d6b6a90 JG |
176 | free_funcalls () |
177 | { | |
178 | register struct funcall *call, *next; | |
179 | ||
180 | for (call = funcall_chain; call; call = next) | |
181 | { | |
182 | next = call->next; | |
be772100 | 183 | free ((PTR)call); |
3d6b6a90 JG |
184 | } |
185 | } | |
186 | \f | |
187 | /* This page contains the functions for adding data to the struct expression | |
188 | being constructed. */ | |
189 | ||
190 | /* Add one element to the end of the expression. */ | |
191 | ||
192 | /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into | |
193 | a register through here */ | |
194 | ||
195 | void | |
196 | write_exp_elt (expelt) | |
197 | union exp_element expelt; | |
198 | { | |
199 | if (expout_ptr >= expout_size) | |
200 | { | |
201 | expout_size *= 2; | |
81028ab0 FF |
202 | expout = (struct expression *) |
203 | xrealloc ((char *) expout, sizeof (struct expression) | |
204 | + EXP_ELEM_TO_BYTES (expout_size)); | |
3d6b6a90 JG |
205 | } |
206 | expout->elts[expout_ptr++] = expelt; | |
207 | } | |
208 | ||
209 | void | |
210 | write_exp_elt_opcode (expelt) | |
211 | enum exp_opcode expelt; | |
212 | { | |
213 | union exp_element tmp; | |
214 | ||
215 | tmp.opcode = expelt; | |
216 | ||
217 | write_exp_elt (tmp); | |
218 | } | |
219 | ||
220 | void | |
221 | write_exp_elt_sym (expelt) | |
222 | struct symbol *expelt; | |
223 | { | |
224 | union exp_element tmp; | |
225 | ||
226 | tmp.symbol = expelt; | |
227 | ||
228 | write_exp_elt (tmp); | |
229 | } | |
230 | ||
479fdd26 JK |
231 | void |
232 | write_exp_elt_block (b) | |
233 | struct block *b; | |
234 | { | |
235 | union exp_element tmp; | |
236 | tmp.block = b; | |
237 | write_exp_elt (tmp); | |
238 | } | |
239 | ||
3d6b6a90 JG |
240 | void |
241 | write_exp_elt_longcst (expelt) | |
242 | LONGEST expelt; | |
243 | { | |
244 | union exp_element tmp; | |
245 | ||
246 | tmp.longconst = expelt; | |
247 | ||
248 | write_exp_elt (tmp); | |
249 | } | |
250 | ||
251 | void | |
252 | write_exp_elt_dblcst (expelt) | |
aa220473 | 253 | DOUBLEST expelt; |
3d6b6a90 JG |
254 | { |
255 | union exp_element tmp; | |
256 | ||
257 | tmp.doubleconst = expelt; | |
258 | ||
259 | write_exp_elt (tmp); | |
260 | } | |
261 | ||
262 | void | |
263 | write_exp_elt_type (expelt) | |
264 | struct type *expelt; | |
265 | { | |
266 | union exp_element tmp; | |
267 | ||
268 | tmp.type = expelt; | |
269 | ||
270 | write_exp_elt (tmp); | |
271 | } | |
272 | ||
273 | void | |
274 | write_exp_elt_intern (expelt) | |
275 | struct internalvar *expelt; | |
276 | { | |
277 | union exp_element tmp; | |
278 | ||
279 | tmp.internalvar = expelt; | |
280 | ||
281 | write_exp_elt (tmp); | |
282 | } | |
283 | ||
284 | /* Add a string constant to the end of the expression. | |
d1065385 FF |
285 | |
286 | String constants are stored by first writing an expression element | |
287 | that contains the length of the string, then stuffing the string | |
288 | constant itself into however many expression elements are needed | |
289 | to hold it, and then writing another expression element that contains | |
290 | the length of the string. I.E. an expression element at each end of | |
291 | the string records the string length, so you can skip over the | |
292 | expression elements containing the actual string bytes from either | |
293 | end of the string. Note that this also allows gdb to handle | |
294 | strings with embedded null bytes, as is required for some languages. | |
295 | ||
296 | Don't be fooled by the fact that the string is null byte terminated, | |
297 | this is strictly for the convenience of debugging gdb itself. Gdb | |
298 | Gdb does not depend up the string being null terminated, since the | |
299 | actual length is recorded in expression elements at each end of the | |
300 | string. The null byte is taken into consideration when computing how | |
301 | many expression elements are required to hold the string constant, of | |
302 | course. */ | |
303 | ||
3d6b6a90 JG |
304 | |
305 | void | |
306 | write_exp_string (str) | |
307 | struct stoken str; | |
308 | { | |
309 | register int len = str.length; | |
d1065385 FF |
310 | register int lenelt; |
311 | register char *strdata; | |
3d6b6a90 | 312 | |
d1065385 FF |
313 | /* Compute the number of expression elements required to hold the string |
314 | (including a null byte terminator), along with one expression element | |
315 | at each end to record the actual string length (not including the | |
316 | null byte terminator). */ | |
3d6b6a90 | 317 | |
81028ab0 | 318 | lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); |
d1065385 FF |
319 | |
320 | /* Ensure that we have enough available expression elements to store | |
321 | everything. */ | |
322 | ||
323 | if ((expout_ptr + lenelt) >= expout_size) | |
3d6b6a90 | 324 | { |
d1065385 | 325 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); |
3d6b6a90 | 326 | expout = (struct expression *) |
1ab3bf1b | 327 | xrealloc ((char *) expout, (sizeof (struct expression) |
81028ab0 | 328 | + EXP_ELEM_TO_BYTES (expout_size))); |
3d6b6a90 | 329 | } |
d1065385 FF |
330 | |
331 | /* Write the leading length expression element (which advances the current | |
332 | expression element index), then write the string constant followed by a | |
333 | terminating null byte, and then write the trailing length expression | |
334 | element. */ | |
335 | ||
336 | write_exp_elt_longcst ((LONGEST) len); | |
337 | strdata = (char *) &expout->elts[expout_ptr]; | |
338 | memcpy (strdata, str.ptr, len); | |
339 | *(strdata + len) = '\0'; | |
340 | expout_ptr += lenelt - 2; | |
3d6b6a90 JG |
341 | write_exp_elt_longcst ((LONGEST) len); |
342 | } | |
81028ab0 FF |
343 | |
344 | /* Add a bitstring constant to the end of the expression. | |
345 | ||
346 | Bitstring constants are stored by first writing an expression element | |
347 | that contains the length of the bitstring (in bits), then stuffing the | |
348 | bitstring constant itself into however many expression elements are | |
349 | needed to hold it, and then writing another expression element that | |
350 | contains the length of the bitstring. I.E. an expression element at | |
351 | each end of the bitstring records the bitstring length, so you can skip | |
352 | over the expression elements containing the actual bitstring bytes from | |
353 | either end of the bitstring. */ | |
354 | ||
355 | void | |
356 | write_exp_bitstring (str) | |
357 | struct stoken str; | |
358 | { | |
359 | register int bits = str.length; /* length in bits */ | |
360 | register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
361 | register int lenelt; | |
362 | register char *strdata; | |
363 | ||
364 | /* Compute the number of expression elements required to hold the bitstring, | |
365 | along with one expression element at each end to record the actual | |
366 | bitstring length in bits. */ | |
367 | ||
368 | lenelt = 2 + BYTES_TO_EXP_ELEM (len); | |
369 | ||
370 | /* Ensure that we have enough available expression elements to store | |
371 | everything. */ | |
372 | ||
373 | if ((expout_ptr + lenelt) >= expout_size) | |
374 | { | |
375 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
376 | expout = (struct expression *) | |
377 | xrealloc ((char *) expout, (sizeof (struct expression) | |
378 | + EXP_ELEM_TO_BYTES (expout_size))); | |
379 | } | |
380 | ||
381 | /* Write the leading length expression element (which advances the current | |
382 | expression element index), then write the bitstring constant, and then | |
383 | write the trailing length expression element. */ | |
384 | ||
385 | write_exp_elt_longcst ((LONGEST) bits); | |
386 | strdata = (char *) &expout->elts[expout_ptr]; | |
387 | memcpy (strdata, str.ptr, len); | |
388 | expout_ptr += lenelt - 2; | |
389 | write_exp_elt_longcst ((LONGEST) bits); | |
390 | } | |
abe28b92 JK |
391 | |
392 | /* Add the appropriate elements for a minimal symbol to the end of | |
3fb93d86 JK |
393 | the expression. The rationale behind passing in text_symbol_type and |
394 | data_symbol_type was so that Modula-2 could pass in WORD for | |
395 | data_symbol_type. Perhaps it still is useful to have those types vary | |
396 | based on the language, but they no longer have names like "int", so | |
397 | the initial rationale is gone. */ | |
398 | ||
399 | static struct type *msym_text_symbol_type; | |
400 | static struct type *msym_data_symbol_type; | |
401 | static struct type *msym_unknown_symbol_type; | |
abe28b92 JK |
402 | |
403 | void | |
404 | write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type) | |
405 | struct minimal_symbol *msymbol; | |
406 | struct type *text_symbol_type; | |
407 | struct type *data_symbol_type; | |
408 | { | |
409 | write_exp_elt_opcode (OP_LONG); | |
4461196e | 410 | write_exp_elt_type (lookup_pointer_type (builtin_type_void)); |
abe28b92 JK |
411 | write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol)); |
412 | write_exp_elt_opcode (OP_LONG); | |
413 | ||
414 | write_exp_elt_opcode (UNOP_MEMVAL); | |
415 | switch (msymbol -> type) | |
416 | { | |
417 | case mst_text: | |
418 | case mst_file_text: | |
ae6d035d | 419 | case mst_solib_trampoline: |
3fb93d86 | 420 | write_exp_elt_type (msym_text_symbol_type); |
abe28b92 JK |
421 | break; |
422 | ||
423 | case mst_data: | |
424 | case mst_file_data: | |
425 | case mst_bss: | |
426 | case mst_file_bss: | |
3fb93d86 | 427 | write_exp_elt_type (msym_data_symbol_type); |
abe28b92 JK |
428 | break; |
429 | ||
430 | default: | |
3fb93d86 | 431 | write_exp_elt_type (msym_unknown_symbol_type); |
abe28b92 JK |
432 | break; |
433 | } | |
434 | write_exp_elt_opcode (UNOP_MEMVAL); | |
435 | } | |
3d6b6a90 | 436 | \f |
c700638c PB |
437 | /* Recognize tokens that start with '$'. These include: |
438 | ||
439 | $regname A native register name or a "standard | |
440 | register name". | |
441 | ||
442 | $variable A convenience variable with a name chosen | |
443 | by the user. | |
444 | ||
445 | $digits Value history with index <digits>, starting | |
446 | from the first value which has index 1. | |
447 | ||
448 | $$digits Value history with index <digits> relative | |
449 | to the last value. I.E. $$0 is the last | |
450 | value, $$1 is the one previous to that, $$2 | |
451 | is the one previous to $$1, etc. | |
452 | ||
453 | $ | $0 | $$0 The last value in the value history. | |
454 | ||
455 | $$ An abbreviation for the second to the last | |
456 | value in the value history, I.E. $$1 | |
457 | ||
458 | */ | |
459 | ||
460 | void | |
461 | write_dollar_variable (str) | |
462 | struct stoken str; | |
463 | { | |
464 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
465 | and $$digits (equivalent to $<-digits> if you could type that). */ | |
466 | ||
467 | int negate = 0; | |
468 | int i = 1; | |
469 | /* Double dollar means negate the number and add -1 as well. | |
470 | Thus $$ alone means -1. */ | |
471 | if (str.length >= 2 && str.ptr[1] == '$') | |
472 | { | |
473 | negate = 1; | |
474 | i = 2; | |
475 | } | |
476 | if (i == str.length) | |
477 | { | |
478 | /* Just dollars (one or two) */ | |
479 | i = - negate; | |
480 | goto handle_last; | |
481 | } | |
482 | /* Is the rest of the token digits? */ | |
483 | for (; i < str.length; i++) | |
484 | if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) | |
485 | break; | |
486 | if (i == str.length) | |
487 | { | |
488 | i = atoi (str.ptr + 1 + negate); | |
489 | if (negate) | |
490 | i = - i; | |
491 | goto handle_last; | |
492 | } | |
493 | ||
494 | /* Handle tokens that refer to machine registers: | |
495 | $ followed by a register name. */ | |
678fa7ff RU |
496 | i = target_map_name_to_register( str.ptr + 1, str.length - 1 ); |
497 | if( i >= 0 ) | |
498 | goto handle_register; | |
c700638c PB |
499 | |
500 | /* Any other names starting in $ are debugger internal variables. */ | |
501 | ||
502 | write_exp_elt_opcode (OP_INTERNALVAR); | |
503 | write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1)); | |
504 | write_exp_elt_opcode (OP_INTERNALVAR); | |
505 | return; | |
506 | handle_last: | |
507 | write_exp_elt_opcode (OP_LAST); | |
508 | write_exp_elt_longcst ((LONGEST) i); | |
509 | write_exp_elt_opcode (OP_LAST); | |
510 | return; | |
511 | handle_register: | |
512 | write_exp_elt_opcode (OP_REGISTER); | |
513 | write_exp_elt_longcst (i); | |
514 | write_exp_elt_opcode (OP_REGISTER); | |
515 | return; | |
516 | } | |
517 | \f | |
3d6b6a90 JG |
518 | /* Return a null-terminated temporary copy of the name |
519 | of a string token. */ | |
520 | ||
521 | char * | |
522 | copy_name (token) | |
523 | struct stoken token; | |
524 | { | |
4ed3a9ea | 525 | memcpy (namecopy, token.ptr, token.length); |
3d6b6a90 JG |
526 | namecopy[token.length] = 0; |
527 | return namecopy; | |
528 | } | |
529 | \f | |
530 | /* Reverse an expression from suffix form (in which it is constructed) | |
531 | to prefix form (in which we can conveniently print or execute it). */ | |
532 | ||
1ab3bf1b | 533 | static void |
3d6b6a90 JG |
534 | prefixify_expression (expr) |
535 | register struct expression *expr; | |
536 | { | |
81028ab0 FF |
537 | register int len = |
538 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); | |
3d6b6a90 JG |
539 | register struct expression *temp; |
540 | register int inpos = expr->nelts, outpos = 0; | |
541 | ||
542 | temp = (struct expression *) alloca (len); | |
543 | ||
544 | /* Copy the original expression into temp. */ | |
4ed3a9ea | 545 | memcpy (temp, expr, len); |
3d6b6a90 JG |
546 | |
547 | prefixify_subexp (temp, expr, inpos, outpos); | |
548 | } | |
549 | ||
550 | /* Return the number of exp_elements in the subexpression of EXPR | |
551 | whose last exp_element is at index ENDPOS - 1 in EXPR. */ | |
552 | ||
8d2755a9 | 553 | int |
3d6b6a90 JG |
554 | length_of_subexp (expr, endpos) |
555 | register struct expression *expr; | |
556 | register int endpos; | |
557 | { | |
558 | register int oplen = 1; | |
559 | register int args = 0; | |
560 | register int i; | |
561 | ||
d1065385 | 562 | if (endpos < 1) |
3d6b6a90 JG |
563 | error ("?error in length_of_subexp"); |
564 | ||
565 | i = (int) expr->elts[endpos - 1].opcode; | |
566 | ||
567 | switch (i) | |
568 | { | |
569 | /* C++ */ | |
570 | case OP_SCOPE: | |
81028ab0 FF |
571 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); |
572 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
3d6b6a90 JG |
573 | break; |
574 | ||
575 | case OP_LONG: | |
576 | case OP_DOUBLE: | |
479fdd26 | 577 | case OP_VAR_VALUE: |
3d6b6a90 JG |
578 | oplen = 4; |
579 | break; | |
580 | ||
581 | case OP_TYPE: | |
582 | case OP_BOOL: | |
3d6b6a90 JG |
583 | case OP_LAST: |
584 | case OP_REGISTER: | |
585 | case OP_INTERNALVAR: | |
586 | oplen = 3; | |
587 | break; | |
588 | ||
ead95f8a | 589 | case OP_COMPLEX: |
a91a6192 SS |
590 | oplen = 1; |
591 | args = 2; | |
592 | break; | |
593 | ||
3d6b6a90 | 594 | case OP_FUNCALL: |
a91a6192 | 595 | case OP_F77_UNDETERMINED_ARGLIST: |
3d6b6a90 | 596 | oplen = 3; |
d1065385 | 597 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); |
3d6b6a90 JG |
598 | break; |
599 | ||
600 | case UNOP_MAX: | |
601 | case UNOP_MIN: | |
602 | oplen = 3; | |
3d6b6a90 JG |
603 | break; |
604 | ||
605 | case BINOP_VAL: | |
606 | case UNOP_CAST: | |
607 | case UNOP_MEMVAL: | |
608 | oplen = 3; | |
609 | args = 1; | |
610 | break; | |
611 | ||
612 | case UNOP_ABS: | |
613 | case UNOP_CAP: | |
614 | case UNOP_CHR: | |
615 | case UNOP_FLOAT: | |
616 | case UNOP_HIGH: | |
617 | case UNOP_ODD: | |
618 | case UNOP_ORD: | |
619 | case UNOP_TRUNC: | |
620 | oplen = 1; | |
621 | args = 1; | |
622 | break; | |
623 | ||
dcda44a0 | 624 | case OP_LABELED: |
2640f7e1 JG |
625 | case STRUCTOP_STRUCT: |
626 | case STRUCTOP_PTR: | |
627 | args = 1; | |
d1065385 | 628 | /* fall through */ |
3d6b6a90 JG |
629 | case OP_M2_STRING: |
630 | case OP_STRING: | |
3c02944a | 631 | case OP_NAME: |
0e4ca328 | 632 | case OP_EXPRSTRING: |
81028ab0 FF |
633 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); |
634 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
635 | break; | |
636 | ||
637 | case OP_BITSTRING: | |
638 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
639 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
640 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
3d6b6a90 JG |
641 | break; |
642 | ||
c4413e2c FF |
643 | case OP_ARRAY: |
644 | oplen = 4; | |
645 | args = longest_to_int (expr->elts[endpos - 2].longconst); | |
646 | args -= longest_to_int (expr->elts[endpos - 3].longconst); | |
647 | args += 1; | |
648 | break; | |
649 | ||
3d6b6a90 | 650 | case TERNOP_COND: |
f91a9e05 PB |
651 | case TERNOP_SLICE: |
652 | case TERNOP_SLICE_COUNT: | |
3d6b6a90 JG |
653 | args = 3; |
654 | break; | |
655 | ||
656 | /* Modula-2 */ | |
54bbbfb4 | 657 | case MULTI_SUBSCRIPT: |
a91a6192 | 658 | oplen = 3; |
d1065385 | 659 | args = 1 + longest_to_int (expr->elts[endpos- 2].longconst); |
3d6b6a90 JG |
660 | break; |
661 | ||
662 | case BINOP_ASSIGN_MODIFY: | |
663 | oplen = 3; | |
664 | args = 2; | |
665 | break; | |
666 | ||
667 | /* C++ */ | |
668 | case OP_THIS: | |
669 | oplen = 2; | |
670 | break; | |
671 | ||
672 | default: | |
673 | args = 1 + (i < (int) BINOP_END); | |
674 | } | |
675 | ||
676 | while (args > 0) | |
677 | { | |
678 | oplen += length_of_subexp (expr, endpos - oplen); | |
679 | args--; | |
680 | } | |
681 | ||
682 | return oplen; | |
683 | } | |
684 | ||
685 | /* Copy the subexpression ending just before index INEND in INEXPR | |
686 | into OUTEXPR, starting at index OUTBEG. | |
687 | In the process, convert it from suffix to prefix form. */ | |
688 | ||
689 | static void | |
690 | prefixify_subexp (inexpr, outexpr, inend, outbeg) | |
691 | register struct expression *inexpr; | |
692 | struct expression *outexpr; | |
693 | register int inend; | |
694 | int outbeg; | |
695 | { | |
696 | register int oplen = 1; | |
697 | register int args = 0; | |
698 | register int i; | |
699 | int *arglens; | |
700 | enum exp_opcode opcode; | |
701 | ||
702 | /* Compute how long the last operation is (in OPLEN), | |
703 | and also how many preceding subexpressions serve as | |
704 | arguments for it (in ARGS). */ | |
705 | ||
706 | opcode = inexpr->elts[inend - 1].opcode; | |
707 | switch (opcode) | |
708 | { | |
709 | /* C++ */ | |
710 | case OP_SCOPE: | |
81028ab0 FF |
711 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); |
712 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
3d6b6a90 JG |
713 | break; |
714 | ||
715 | case OP_LONG: | |
716 | case OP_DOUBLE: | |
479fdd26 | 717 | case OP_VAR_VALUE: |
3d6b6a90 JG |
718 | oplen = 4; |
719 | break; | |
720 | ||
721 | case OP_TYPE: | |
722 | case OP_BOOL: | |
3d6b6a90 JG |
723 | case OP_LAST: |
724 | case OP_REGISTER: | |
725 | case OP_INTERNALVAR: | |
726 | oplen = 3; | |
727 | break; | |
728 | ||
ead95f8a | 729 | case OP_COMPLEX: |
a91a6192 SS |
730 | oplen = 1; |
731 | args = 2; | |
732 | break; | |
733 | ||
3d6b6a90 | 734 | case OP_FUNCALL: |
a91a6192 | 735 | case OP_F77_UNDETERMINED_ARGLIST: |
3d6b6a90 | 736 | oplen = 3; |
d1065385 | 737 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); |
3d6b6a90 JG |
738 | break; |
739 | ||
740 | case UNOP_MIN: | |
741 | case UNOP_MAX: | |
742 | oplen = 3; | |
3d6b6a90 JG |
743 | break; |
744 | ||
745 | case UNOP_CAST: | |
746 | case UNOP_MEMVAL: | |
747 | oplen = 3; | |
748 | args = 1; | |
749 | break; | |
750 | ||
751 | case UNOP_ABS: | |
752 | case UNOP_CAP: | |
753 | case UNOP_CHR: | |
754 | case UNOP_FLOAT: | |
755 | case UNOP_HIGH: | |
756 | case UNOP_ODD: | |
757 | case UNOP_ORD: | |
758 | case UNOP_TRUNC: | |
759 | oplen=1; | |
760 | args=1; | |
761 | break; | |
762 | ||
61c1724b | 763 | case STRUCTOP_STRUCT: |
2640f7e1 | 764 | case STRUCTOP_PTR: |
dcda44a0 | 765 | case OP_LABELED: |
2640f7e1 | 766 | args = 1; |
d1065385 | 767 | /* fall through */ |
3d6b6a90 JG |
768 | case OP_M2_STRING: |
769 | case OP_STRING: | |
3c02944a | 770 | case OP_NAME: |
0e4ca328 | 771 | case OP_EXPRSTRING: |
81028ab0 FF |
772 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); |
773 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
774 | break; | |
775 | ||
776 | case OP_BITSTRING: | |
777 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
778 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
779 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
3d6b6a90 JG |
780 | break; |
781 | ||
c4413e2c FF |
782 | case OP_ARRAY: |
783 | oplen = 4; | |
784 | args = longest_to_int (inexpr->elts[inend - 2].longconst); | |
785 | args -= longest_to_int (inexpr->elts[inend - 3].longconst); | |
786 | args += 1; | |
787 | break; | |
788 | ||
3d6b6a90 | 789 | case TERNOP_COND: |
f91a9e05 PB |
790 | case TERNOP_SLICE: |
791 | case TERNOP_SLICE_COUNT: | |
3d6b6a90 JG |
792 | args = 3; |
793 | break; | |
794 | ||
795 | case BINOP_ASSIGN_MODIFY: | |
796 | oplen = 3; | |
797 | args = 2; | |
798 | break; | |
799 | ||
800 | /* Modula-2 */ | |
54bbbfb4 | 801 | case MULTI_SUBSCRIPT: |
a91a6192 | 802 | oplen = 3; |
d1065385 | 803 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); |
3d6b6a90 JG |
804 | break; |
805 | ||
806 | /* C++ */ | |
807 | case OP_THIS: | |
808 | oplen = 2; | |
809 | break; | |
810 | ||
811 | default: | |
812 | args = 1 + ((int) opcode < (int) BINOP_END); | |
813 | } | |
814 | ||
815 | /* Copy the final operator itself, from the end of the input | |
816 | to the beginning of the output. */ | |
817 | inend -= oplen; | |
4ed3a9ea | 818 | memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], |
81028ab0 | 819 | EXP_ELEM_TO_BYTES (oplen)); |
3d6b6a90 JG |
820 | outbeg += oplen; |
821 | ||
822 | /* Find the lengths of the arg subexpressions. */ | |
823 | arglens = (int *) alloca (args * sizeof (int)); | |
824 | for (i = args - 1; i >= 0; i--) | |
825 | { | |
826 | oplen = length_of_subexp (inexpr, inend); | |
827 | arglens[i] = oplen; | |
828 | inend -= oplen; | |
829 | } | |
830 | ||
831 | /* Now copy each subexpression, preserving the order of | |
832 | the subexpressions, but prefixifying each one. | |
833 | In this loop, inend starts at the beginning of | |
834 | the expression this level is working on | |
835 | and marches forward over the arguments. | |
836 | outbeg does similarly in the output. */ | |
837 | for (i = 0; i < args; i++) | |
838 | { | |
839 | oplen = arglens[i]; | |
840 | inend += oplen; | |
841 | prefixify_subexp (inexpr, outexpr, inend, outbeg); | |
842 | outbeg += oplen; | |
843 | } | |
844 | } | |
845 | \f | |
846 | /* This page contains the two entry points to this file. */ | |
847 | ||
848 | /* Read an expression from the string *STRINGPTR points to, | |
849 | parse it, and return a pointer to a struct expression that we malloc. | |
850 | Use block BLOCK as the lexical context for variable names; | |
851 | if BLOCK is zero, use the block of the selected stack frame. | |
852 | Meanwhile, advance *STRINGPTR to point after the expression, | |
853 | at the first nonwhite character that is not part of the expression | |
854 | (possibly a null character). | |
855 | ||
856 | If COMMA is nonzero, stop if a comma is reached. */ | |
857 | ||
858 | struct expression * | |
859 | parse_exp_1 (stringptr, block, comma) | |
860 | char **stringptr; | |
861 | struct block *block; | |
862 | int comma; | |
863 | { | |
864 | struct cleanup *old_chain; | |
865 | ||
866 | lexptr = *stringptr; | |
867 | ||
868 | paren_depth = 0; | |
869 | type_stack_depth = 0; | |
870 | ||
871 | comma_terminates = comma; | |
872 | ||
873 | if (lexptr == 0 || *lexptr == 0) | |
874 | error_no_arg ("expression to compute"); | |
875 | ||
876 | old_chain = make_cleanup (free_funcalls, 0); | |
877 | funcall_chain = 0; | |
878 | ||
879 | expression_context_block = block ? block : get_selected_block (); | |
880 | ||
881 | namecopy = (char *) alloca (strlen (lexptr) + 1); | |
882 | expout_size = 10; | |
883 | expout_ptr = 0; | |
884 | expout = (struct expression *) | |
81028ab0 | 885 | xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size)); |
3d6b6a90 JG |
886 | expout->language_defn = current_language; |
887 | make_cleanup (free_current_contents, &expout); | |
888 | ||
889 | if (current_language->la_parser ()) | |
890 | current_language->la_error (NULL); | |
891 | ||
892 | discard_cleanups (old_chain); | |
54bbbfb4 FF |
893 | |
894 | /* Record the actual number of expression elements, and then | |
895 | reallocate the expression memory so that we free up any | |
896 | excess elements. */ | |
897 | ||
3d6b6a90 JG |
898 | expout->nelts = expout_ptr; |
899 | expout = (struct expression *) | |
1ab3bf1b | 900 | xrealloc ((char *) expout, |
81028ab0 | 901 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));; |
54bbbfb4 FF |
902 | |
903 | /* Convert expression from postfix form as generated by yacc | |
904 | parser, to a prefix form. */ | |
905 | ||
199b2450 | 906 | DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form"); |
3d6b6a90 | 907 | prefixify_expression (expout); |
199b2450 | 908 | DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form"); |
54bbbfb4 | 909 | |
3d6b6a90 JG |
910 | *stringptr = lexptr; |
911 | return expout; | |
912 | } | |
913 | ||
914 | /* Parse STRING as an expression, and complain if this fails | |
915 | to use up all of the contents of STRING. */ | |
916 | ||
917 | struct expression * | |
918 | parse_expression (string) | |
919 | char *string; | |
920 | { | |
921 | register struct expression *exp; | |
922 | exp = parse_exp_1 (&string, 0, 0); | |
923 | if (*string) | |
924 | error ("Junk after end of expression."); | |
925 | return exp; | |
926 | } | |
f843c95f JK |
927 | \f |
928 | /* Stuff for maintaining a stack of types. Currently just used by C, but | |
929 | probably useful for any language which declares its types "backwards". */ | |
3d6b6a90 JG |
930 | |
931 | void | |
932 | push_type (tp) | |
933 | enum type_pieces tp; | |
934 | { | |
935 | if (type_stack_depth == type_stack_size) | |
936 | { | |
937 | type_stack_size *= 2; | |
938 | type_stack = (union type_stack_elt *) | |
1ab3bf1b | 939 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); |
3d6b6a90 JG |
940 | } |
941 | type_stack[type_stack_depth++].piece = tp; | |
942 | } | |
943 | ||
944 | void | |
945 | push_type_int (n) | |
946 | int n; | |
947 | { | |
948 | if (type_stack_depth == type_stack_size) | |
949 | { | |
950 | type_stack_size *= 2; | |
951 | type_stack = (union type_stack_elt *) | |
1ab3bf1b | 952 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); |
3d6b6a90 JG |
953 | } |
954 | type_stack[type_stack_depth++].int_val = n; | |
955 | } | |
956 | ||
957 | enum type_pieces | |
958 | pop_type () | |
959 | { | |
960 | if (type_stack_depth) | |
961 | return type_stack[--type_stack_depth].piece; | |
962 | return tp_end; | |
963 | } | |
964 | ||
965 | int | |
966 | pop_type_int () | |
967 | { | |
968 | if (type_stack_depth) | |
969 | return type_stack[--type_stack_depth].int_val; | |
970 | /* "Can't happen". */ | |
971 | return 0; | |
972 | } | |
973 | ||
f843c95f JK |
974 | /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE |
975 | as modified by all the stuff on the stack. */ | |
976 | struct type * | |
977 | follow_types (follow_type) | |
978 | struct type *follow_type; | |
979 | { | |
980 | int done = 0; | |
981 | int array_size; | |
982 | struct type *range_type; | |
983 | ||
984 | while (!done) | |
985 | switch (pop_type ()) | |
986 | { | |
987 | case tp_end: | |
988 | done = 1; | |
989 | break; | |
990 | case tp_pointer: | |
991 | follow_type = lookup_pointer_type (follow_type); | |
992 | break; | |
993 | case tp_reference: | |
994 | follow_type = lookup_reference_type (follow_type); | |
995 | break; | |
996 | case tp_array: | |
997 | array_size = pop_type_int (); | |
36633dcc JK |
998 | /* FIXME-type-allocation: need a way to free this type when we are |
999 | done with it. */ | |
fda36387 PB |
1000 | range_type = |
1001 | create_range_type ((struct type *) NULL, | |
1002 | builtin_type_int, 0, | |
1003 | array_size >= 0 ? array_size - 1 : 0); | |
1004 | follow_type = | |
1005 | create_array_type ((struct type *) NULL, | |
1006 | follow_type, range_type); | |
1007 | if (array_size < 0) | |
1008 | TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type) | |
1009 | = BOUND_CANNOT_BE_DETERMINED; | |
f843c95f JK |
1010 | break; |
1011 | case tp_function: | |
36633dcc JK |
1012 | /* FIXME-type-allocation: need a way to free this type when we are |
1013 | done with it. */ | |
f843c95f JK |
1014 | follow_type = lookup_function_type (follow_type); |
1015 | break; | |
1016 | } | |
1017 | return follow_type; | |
1018 | } | |
1019 | \f | |
3d6b6a90 JG |
1020 | void |
1021 | _initialize_parse () | |
1022 | { | |
1023 | type_stack_size = 80; | |
1024 | type_stack_depth = 0; | |
1025 | type_stack = (union type_stack_elt *) | |
1026 | xmalloc (type_stack_size * sizeof (*type_stack)); | |
3fb93d86 JK |
1027 | |
1028 | msym_text_symbol_type = | |
eedb3363 | 1029 | init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL); |
3fb93d86 JK |
1030 | TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int; |
1031 | msym_data_symbol_type = | |
1032 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0, | |
eedb3363 | 1033 | "<data variable, no debug info>", NULL); |
3fb93d86 | 1034 | msym_unknown_symbol_type = |
eedb3363 JK |
1035 | init_type (TYPE_CODE_INT, 1, 0, |
1036 | "<variable (not text or data), no debug info>", | |
3fb93d86 | 1037 | NULL); |
3d6b6a90 | 1038 | } |