]>
Commit | Line | Data |
---|---|---|
c4d10515 | 1 | /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger. |
7b6bb8da JB |
2 | Copyright (C) 2004, 2007, 2008, 2009, 2010, 2011 |
3 | Free Software Foundation, Inc. | |
c4d10515 KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c4d10515 KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c4d10515 KB |
19 | |
20 | ||
21 | #include "defs.h" | |
22 | #include "gdb_string.h" | |
23 | #include "inferior.h" | |
24 | #include "gdbcore.h" | |
cb5c8c39 | 25 | #include "solib.h" |
c4d10515 KB |
26 | #include "solist.h" |
27 | #include "frv-tdep.h" | |
28 | #include "objfiles.h" | |
29 | #include "symtab.h" | |
30 | #include "language.h" | |
31 | #include "command.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "elf/frv.h" | |
f1838a98 | 34 | #include "exceptions.h" |
c4d10515 KB |
35 | |
36 | /* Flag which indicates whether internal debug messages should be printed. */ | |
37 | static int solib_frv_debug; | |
38 | ||
39 | /* FR-V pointers are four bytes wide. */ | |
40 | enum { FRV_PTR_SIZE = 4 }; | |
41 | ||
42 | /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */ | |
43 | ||
44 | /* External versions; the size and alignment of the fields should be | |
45 | the same as those on the target. When loaded, the placement of | |
46 | the bits in each field will be the same as on the target. */ | |
e2b7c966 KB |
47 | typedef gdb_byte ext_Elf32_Half[2]; |
48 | typedef gdb_byte ext_Elf32_Addr[4]; | |
49 | typedef gdb_byte ext_Elf32_Word[4]; | |
c4d10515 KB |
50 | |
51 | struct ext_elf32_fdpic_loadseg | |
52 | { | |
53 | /* Core address to which the segment is mapped. */ | |
54 | ext_Elf32_Addr addr; | |
55 | /* VMA recorded in the program header. */ | |
56 | ext_Elf32_Addr p_vaddr; | |
57 | /* Size of this segment in memory. */ | |
58 | ext_Elf32_Word p_memsz; | |
59 | }; | |
60 | ||
61 | struct ext_elf32_fdpic_loadmap { | |
62 | /* Protocol version number, must be zero. */ | |
63 | ext_Elf32_Half version; | |
64 | /* Number of segments in this map. */ | |
65 | ext_Elf32_Half nsegs; | |
66 | /* The actual memory map. */ | |
67 | struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */]; | |
68 | }; | |
69 | ||
70 | /* Internal versions; the types are GDB types and the data in each | |
71 | of the fields is (or will be) decoded from the external struct | |
72 | for ease of consumption. */ | |
73 | struct int_elf32_fdpic_loadseg | |
74 | { | |
75 | /* Core address to which the segment is mapped. */ | |
76 | CORE_ADDR addr; | |
77 | /* VMA recorded in the program header. */ | |
78 | CORE_ADDR p_vaddr; | |
79 | /* Size of this segment in memory. */ | |
80 | long p_memsz; | |
81 | }; | |
82 | ||
83 | struct int_elf32_fdpic_loadmap { | |
84 | /* Protocol version number, must be zero. */ | |
85 | int version; | |
86 | /* Number of segments in this map. */ | |
87 | int nsegs; | |
88 | /* The actual memory map. */ | |
89 | struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */]; | |
90 | }; | |
91 | ||
92 | /* Given address LDMADDR, fetch and decode the loadmap at that address. | |
93 | Return NULL if there is a problem reading the target memory or if | |
94 | there doesn't appear to be a loadmap at the given address. The | |
95 | allocated space (representing the loadmap) returned by this | |
96 | function may be freed via a single call to xfree(). */ | |
97 | ||
98 | static struct int_elf32_fdpic_loadmap * | |
99 | fetch_loadmap (CORE_ADDR ldmaddr) | |
100 | { | |
e17a4113 | 101 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
c4d10515 KB |
102 | struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial; |
103 | struct ext_elf32_fdpic_loadmap *ext_ldmbuf; | |
104 | struct int_elf32_fdpic_loadmap *int_ldmbuf; | |
105 | int ext_ldmbuf_size, int_ldmbuf_size; | |
106 | int version, seg, nsegs; | |
107 | ||
108 | /* Fetch initial portion of the loadmap. */ | |
e2b7c966 | 109 | if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial, |
c4d10515 KB |
110 | sizeof ext_ldmbuf_partial)) |
111 | { | |
112 | /* Problem reading the target's memory. */ | |
113 | return NULL; | |
114 | } | |
115 | ||
116 | /* Extract the version. */ | |
e2b7c966 | 117 | version = extract_unsigned_integer (ext_ldmbuf_partial.version, |
e17a4113 UW |
118 | sizeof ext_ldmbuf_partial.version, |
119 | byte_order); | |
c4d10515 KB |
120 | if (version != 0) |
121 | { | |
122 | /* We only handle version 0. */ | |
123 | return NULL; | |
124 | } | |
125 | ||
126 | /* Extract the number of segments. */ | |
e2b7c966 | 127 | nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs, |
e17a4113 UW |
128 | sizeof ext_ldmbuf_partial.nsegs, |
129 | byte_order); | |
c4d10515 | 130 | |
9bc7b6c6 KB |
131 | if (nsegs <= 0) |
132 | return NULL; | |
133 | ||
c4d10515 KB |
134 | /* Allocate space for the complete (external) loadmap. */ |
135 | ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap) | |
136 | + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg); | |
137 | ext_ldmbuf = xmalloc (ext_ldmbuf_size); | |
138 | ||
139 | /* Copy over the portion of the loadmap that's already been read. */ | |
140 | memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial); | |
141 | ||
142 | /* Read the rest of the loadmap from the target. */ | |
143 | if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial, | |
e2b7c966 | 144 | (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial, |
c4d10515 KB |
145 | ext_ldmbuf_size - sizeof ext_ldmbuf_partial)) |
146 | { | |
147 | /* Couldn't read rest of the loadmap. */ | |
148 | xfree (ext_ldmbuf); | |
149 | return NULL; | |
150 | } | |
151 | ||
152 | /* Allocate space into which to put information extract from the | |
153 | external loadsegs. I.e, allocate the internal loadsegs. */ | |
154 | int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap) | |
155 | + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg); | |
156 | int_ldmbuf = xmalloc (int_ldmbuf_size); | |
157 | ||
158 | /* Place extracted information in internal structs. */ | |
159 | int_ldmbuf->version = version; | |
160 | int_ldmbuf->nsegs = nsegs; | |
161 | for (seg = 0; seg < nsegs; seg++) | |
162 | { | |
163 | int_ldmbuf->segs[seg].addr | |
e2b7c966 | 164 | = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr, |
e17a4113 UW |
165 | sizeof (ext_ldmbuf->segs[seg].addr), |
166 | byte_order); | |
c4d10515 | 167 | int_ldmbuf->segs[seg].p_vaddr |
e2b7c966 | 168 | = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr, |
e17a4113 UW |
169 | sizeof (ext_ldmbuf->segs[seg].p_vaddr), |
170 | byte_order); | |
c4d10515 | 171 | int_ldmbuf->segs[seg].p_memsz |
e2b7c966 | 172 | = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz, |
e17a4113 UW |
173 | sizeof (ext_ldmbuf->segs[seg].p_memsz), |
174 | byte_order); | |
c4d10515 KB |
175 | } |
176 | ||
d5c560f7 | 177 | xfree (ext_ldmbuf); |
c4d10515 KB |
178 | return int_ldmbuf; |
179 | } | |
180 | ||
181 | /* External link_map and elf32_fdpic_loadaddr struct definitions. */ | |
182 | ||
e2b7c966 | 183 | typedef gdb_byte ext_ptr[4]; |
c4d10515 KB |
184 | |
185 | struct ext_elf32_fdpic_loadaddr | |
186 | { | |
187 | ext_ptr map; /* struct elf32_fdpic_loadmap *map; */ | |
188 | ext_ptr got_value; /* void *got_value; */ | |
189 | }; | |
190 | ||
191 | struct ext_link_map | |
192 | { | |
193 | struct ext_elf32_fdpic_loadaddr l_addr; | |
194 | ||
195 | /* Absolute file name object was found in. */ | |
196 | ext_ptr l_name; /* char *l_name; */ | |
197 | ||
198 | /* Dynamic section of the shared object. */ | |
199 | ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */ | |
200 | ||
201 | /* Chain of loaded objects. */ | |
202 | ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */ | |
203 | }; | |
204 | ||
205 | /* Link map info to include in an allocated so_list entry */ | |
206 | ||
207 | struct lm_info | |
208 | { | |
209 | /* The loadmap, digested into an easier to use form. */ | |
210 | struct int_elf32_fdpic_loadmap *map; | |
211 | /* The GOT address for this link map entry. */ | |
212 | CORE_ADDR got_value; | |
186993b4 KB |
213 | /* The link map address, needed for frv_fetch_objfile_link_map(). */ |
214 | CORE_ADDR lm_addr; | |
c4d10515 KB |
215 | |
216 | /* Cached dynamic symbol table and dynamic relocs initialized and | |
217 | used only by find_canonical_descriptor_in_load_object(). | |
218 | ||
219 | Note: kevinb/2004-02-26: It appears that calls to | |
220 | bfd_canonicalize_dynamic_reloc() will use the same symbols as | |
221 | those supplied to the first call to this function. Therefore, | |
222 | it's important to NOT free the asymbol ** data structure | |
223 | supplied to the first call. Thus the caching of the dynamic | |
224 | symbols (dyn_syms) is critical for correct operation. The | |
225 | caching of the dynamic relocations could be dispensed with. */ | |
226 | asymbol **dyn_syms; | |
227 | arelent **dyn_relocs; | |
228 | int dyn_reloc_count; /* number of dynamic relocs. */ | |
229 | ||
230 | }; | |
231 | ||
232 | /* The load map, got value, etc. are not available from the chain | |
233 | of loaded shared objects. ``main_executable_lm_info'' provides | |
234 | a way to get at this information so that it doesn't need to be | |
235 | frequently recomputed. Initialized by frv_relocate_main_executable(). */ | |
236 | static struct lm_info *main_executable_lm_info; | |
237 | ||
238 | static void frv_relocate_main_executable (void); | |
239 | static CORE_ADDR main_got (void); | |
240 | static int enable_break2 (void); | |
241 | ||
242 | /* | |
243 | ||
244 | LOCAL FUNCTION | |
245 | ||
246 | bfd_lookup_symbol -- lookup the value for a specific symbol | |
247 | ||
248 | SYNOPSIS | |
249 | ||
250 | CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname) | |
251 | ||
252 | DESCRIPTION | |
253 | ||
254 | An expensive way to lookup the value of a single symbol for | |
255 | bfd's that are only temporary anyway. This is used by the | |
256 | shared library support to find the address of the debugger | |
257 | interface structures in the shared library. | |
258 | ||
259 | Note that 0 is specifically allowed as an error return (no | |
260 | such symbol). | |
261 | */ | |
262 | ||
263 | static CORE_ADDR | |
264 | bfd_lookup_symbol (bfd *abfd, char *symname) | |
265 | { | |
266 | long storage_needed; | |
267 | asymbol *sym; | |
268 | asymbol **symbol_table; | |
269 | unsigned int number_of_symbols; | |
270 | unsigned int i; | |
271 | struct cleanup *back_to; | |
272 | CORE_ADDR symaddr = 0; | |
273 | ||
274 | storage_needed = bfd_get_symtab_upper_bound (abfd); | |
275 | ||
276 | if (storage_needed > 0) | |
277 | { | |
278 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
279 | back_to = make_cleanup (xfree, symbol_table); | |
280 | number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); | |
281 | ||
282 | for (i = 0; i < number_of_symbols; i++) | |
283 | { | |
284 | sym = *symbol_table++; | |
285 | if (strcmp (sym->name, symname) == 0) | |
286 | { | |
287 | /* Bfd symbols are section relative. */ | |
288 | symaddr = sym->value + sym->section->vma; | |
289 | break; | |
290 | } | |
291 | } | |
292 | do_cleanups (back_to); | |
293 | } | |
294 | ||
295 | if (symaddr) | |
296 | return symaddr; | |
297 | ||
298 | /* Look for the symbol in the dynamic string table too. */ | |
299 | ||
300 | storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); | |
301 | ||
302 | if (storage_needed > 0) | |
303 | { | |
304 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
305 | back_to = make_cleanup (xfree, symbol_table); | |
306 | number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table); | |
307 | ||
308 | for (i = 0; i < number_of_symbols; i++) | |
309 | { | |
310 | sym = *symbol_table++; | |
311 | if (strcmp (sym->name, symname) == 0) | |
312 | { | |
313 | /* Bfd symbols are section relative. */ | |
314 | symaddr = sym->value + sym->section->vma; | |
315 | break; | |
316 | } | |
317 | } | |
318 | do_cleanups (back_to); | |
319 | } | |
320 | ||
321 | return symaddr; | |
322 | } | |
323 | ||
324 | ||
325 | /* | |
326 | ||
327 | LOCAL FUNCTION | |
328 | ||
329 | open_symbol_file_object | |
330 | ||
331 | SYNOPSIS | |
332 | ||
333 | void open_symbol_file_object (void *from_tty) | |
334 | ||
335 | DESCRIPTION | |
336 | ||
337 | If no open symbol file, attempt to locate and open the main symbol | |
338 | file. | |
339 | ||
340 | If FROM_TTYP dereferences to a non-zero integer, allow messages to | |
341 | be printed. This parameter is a pointer rather than an int because | |
342 | open_symbol_file_object() is called via catch_errors() and | |
343 | catch_errors() requires a pointer argument. */ | |
344 | ||
345 | static int | |
346 | open_symbol_file_object (void *from_ttyp) | |
347 | { | |
348 | /* Unimplemented. */ | |
349 | return 0; | |
350 | } | |
351 | ||
352 | /* Cached value for lm_base(), below. */ | |
353 | static CORE_ADDR lm_base_cache = 0; | |
354 | ||
186993b4 KB |
355 | /* Link map address for main module. */ |
356 | static CORE_ADDR main_lm_addr = 0; | |
357 | ||
c4d10515 KB |
358 | /* Return the address from which the link map chain may be found. On |
359 | the FR-V, this may be found in a number of ways. Assuming that the | |
360 | main executable has already been relocated, the easiest way to find | |
361 | this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A | |
362 | pointer to the start of the link map will be located at the word found | |
363 | at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker | |
364 | reserve area mandated by the ABI.) */ | |
365 | ||
366 | static CORE_ADDR | |
367 | lm_base (void) | |
368 | { | |
e17a4113 | 369 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
c4d10515 KB |
370 | struct minimal_symbol *got_sym; |
371 | CORE_ADDR addr; | |
e2b7c966 | 372 | gdb_byte buf[FRV_PTR_SIZE]; |
c4d10515 | 373 | |
89a7ee67 KB |
374 | /* One of our assumptions is that the main executable has been relocated. |
375 | Bail out if this has not happened. (Note that post_create_inferior() | |
376 | in infcmd.c will call solib_add prior to solib_create_inferior_hook(). | |
377 | If we allow this to happen, lm_base_cache will be initialized with | |
378 | a bogus value. */ | |
379 | if (main_executable_lm_info == 0) | |
380 | return 0; | |
381 | ||
c4d10515 KB |
382 | /* If we already have a cached value, return it. */ |
383 | if (lm_base_cache) | |
384 | return lm_base_cache; | |
385 | ||
386 | got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, | |
387 | symfile_objfile); | |
388 | if (got_sym == 0) | |
389 | { | |
390 | if (solib_frv_debug) | |
391 | fprintf_unfiltered (gdb_stdlog, | |
392 | "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n"); | |
393 | return 0; | |
394 | } | |
395 | ||
396 | addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8; | |
397 | ||
398 | if (solib_frv_debug) | |
399 | fprintf_unfiltered (gdb_stdlog, | |
400 | "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n", | |
bb599908 | 401 | hex_string_custom (addr, 8)); |
c4d10515 KB |
402 | |
403 | if (target_read_memory (addr, buf, sizeof buf) != 0) | |
404 | return 0; | |
e17a4113 | 405 | lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order); |
c4d10515 KB |
406 | |
407 | if (solib_frv_debug) | |
408 | fprintf_unfiltered (gdb_stdlog, | |
409 | "lm_base: lm_base_cache = %s\n", | |
bb599908 | 410 | hex_string_custom (lm_base_cache, 8)); |
c4d10515 KB |
411 | |
412 | return lm_base_cache; | |
413 | } | |
414 | ||
415 | ||
416 | /* LOCAL FUNCTION | |
417 | ||
418 | frv_current_sos -- build a list of currently loaded shared objects | |
419 | ||
420 | SYNOPSIS | |
421 | ||
422 | struct so_list *frv_current_sos () | |
423 | ||
424 | DESCRIPTION | |
425 | ||
426 | Build a list of `struct so_list' objects describing the shared | |
427 | objects currently loaded in the inferior. This list does not | |
428 | include an entry for the main executable file. | |
429 | ||
430 | Note that we only gather information directly available from the | |
431 | inferior --- we don't examine any of the shared library files | |
432 | themselves. The declaration of `struct so_list' says which fields | |
433 | we provide values for. */ | |
434 | ||
435 | static struct so_list * | |
436 | frv_current_sos (void) | |
437 | { | |
e17a4113 | 438 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
c4d10515 KB |
439 | CORE_ADDR lm_addr, mgot; |
440 | struct so_list *sos_head = NULL; | |
441 | struct so_list **sos_next_ptr = &sos_head; | |
442 | ||
7c699b81 KB |
443 | /* Make sure that the main executable has been relocated. This is |
444 | required in order to find the address of the global offset table, | |
445 | which in turn is used to find the link map info. (See lm_base() | |
446 | for details.) | |
447 | ||
448 | Note that the relocation of the main executable is also performed | |
449 | by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core | |
450 | files, this hook is called too late in order to be of benefit to | |
451 | SOLIB_ADD. SOLIB_ADD eventually calls this this function, | |
452 | frv_current_sos, and also precedes the call to | |
453 | SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in | |
454 | infcmd.c.) */ | |
455 | if (main_executable_lm_info == 0 && core_bfd != NULL) | |
456 | frv_relocate_main_executable (); | |
457 | ||
458 | /* Fetch the GOT corresponding to the main executable. */ | |
c4d10515 KB |
459 | mgot = main_got (); |
460 | ||
461 | /* Locate the address of the first link map struct. */ | |
462 | lm_addr = lm_base (); | |
463 | ||
464 | /* We have at least one link map entry. Fetch the the lot of them, | |
465 | building the solist chain. */ | |
466 | while (lm_addr) | |
467 | { | |
468 | struct ext_link_map lm_buf; | |
469 | CORE_ADDR got_addr; | |
470 | ||
471 | if (solib_frv_debug) | |
472 | fprintf_unfiltered (gdb_stdlog, | |
473 | "current_sos: reading link_map entry at %s\n", | |
bb599908 | 474 | hex_string_custom (lm_addr, 8)); |
c4d10515 | 475 | |
3e43a32a MS |
476 | if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, |
477 | sizeof (lm_buf)) != 0) | |
c4d10515 | 478 | { |
3e43a32a MS |
479 | warning (_("frv_current_sos: Unable to read link map entry. " |
480 | "Shared object chain may be incomplete.")); | |
c4d10515 KB |
481 | break; |
482 | } | |
483 | ||
484 | got_addr | |
e2b7c966 | 485 | = extract_unsigned_integer (lm_buf.l_addr.got_value, |
e17a4113 UW |
486 | sizeof (lm_buf.l_addr.got_value), |
487 | byte_order); | |
c4d10515 KB |
488 | /* If the got_addr is the same as mgotr, then we're looking at the |
489 | entry for the main executable. By convention, we don't include | |
490 | this in the list of shared objects. */ | |
491 | if (got_addr != mgot) | |
492 | { | |
493 | int errcode; | |
494 | char *name_buf; | |
495 | struct int_elf32_fdpic_loadmap *loadmap; | |
496 | struct so_list *sop; | |
497 | CORE_ADDR addr; | |
498 | ||
499 | /* Fetch the load map address. */ | |
e2b7c966 | 500 | addr = extract_unsigned_integer (lm_buf.l_addr.map, |
e17a4113 UW |
501 | sizeof lm_buf.l_addr.map, |
502 | byte_order); | |
c4d10515 KB |
503 | loadmap = fetch_loadmap (addr); |
504 | if (loadmap == NULL) | |
505 | { | |
3e43a32a MS |
506 | warning (_("frv_current_sos: Unable to fetch load map. " |
507 | "Shared object chain may be incomplete.")); | |
c4d10515 KB |
508 | break; |
509 | } | |
510 | ||
511 | sop = xcalloc (1, sizeof (struct so_list)); | |
512 | sop->lm_info = xcalloc (1, sizeof (struct lm_info)); | |
513 | sop->lm_info->map = loadmap; | |
514 | sop->lm_info->got_value = got_addr; | |
186993b4 | 515 | sop->lm_info->lm_addr = lm_addr; |
c4d10515 | 516 | /* Fetch the name. */ |
e2b7c966 | 517 | addr = extract_unsigned_integer (lm_buf.l_name, |
e17a4113 UW |
518 | sizeof (lm_buf.l_name), |
519 | byte_order); | |
c4d10515 KB |
520 | target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1, |
521 | &errcode); | |
522 | ||
523 | if (solib_frv_debug) | |
524 | fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n", | |
525 | name_buf); | |
526 | ||
527 | if (errcode != 0) | |
8a3fe4f8 AC |
528 | warning (_("Can't read pathname for link map entry: %s."), |
529 | safe_strerror (errcode)); | |
c4d10515 KB |
530 | else |
531 | { | |
532 | strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1); | |
533 | sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
534 | xfree (name_buf); | |
535 | strcpy (sop->so_original_name, sop->so_name); | |
536 | } | |
537 | ||
538 | *sos_next_ptr = sop; | |
539 | sos_next_ptr = &sop->next; | |
540 | } | |
186993b4 KB |
541 | else |
542 | { | |
543 | main_lm_addr = lm_addr; | |
544 | } | |
c4d10515 | 545 | |
e17a4113 UW |
546 | lm_addr = extract_unsigned_integer (lm_buf.l_next, |
547 | sizeof (lm_buf.l_next), byte_order); | |
c4d10515 KB |
548 | } |
549 | ||
550 | enable_break2 (); | |
551 | ||
552 | return sos_head; | |
553 | } | |
554 | ||
555 | ||
556 | /* Return 1 if PC lies in the dynamic symbol resolution code of the | |
557 | run time loader. */ | |
558 | ||
559 | static CORE_ADDR interp_text_sect_low; | |
560 | static CORE_ADDR interp_text_sect_high; | |
561 | static CORE_ADDR interp_plt_sect_low; | |
562 | static CORE_ADDR interp_plt_sect_high; | |
563 | ||
564 | static int | |
565 | frv_in_dynsym_resolve_code (CORE_ADDR pc) | |
566 | { | |
567 | return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) | |
568 | || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) | |
569 | || in_plt_section (pc, NULL)); | |
570 | } | |
571 | ||
572 | /* Given a loadmap and an address, return the displacement needed | |
573 | to relocate the address. */ | |
574 | ||
63807e1d | 575 | static CORE_ADDR |
c4d10515 KB |
576 | displacement_from_map (struct int_elf32_fdpic_loadmap *map, |
577 | CORE_ADDR addr) | |
578 | { | |
579 | int seg; | |
580 | ||
581 | for (seg = 0; seg < map->nsegs; seg++) | |
582 | { | |
583 | if (map->segs[seg].p_vaddr <= addr | |
584 | && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz) | |
585 | { | |
586 | return map->segs[seg].addr - map->segs[seg].p_vaddr; | |
587 | } | |
588 | } | |
589 | ||
590 | return 0; | |
591 | } | |
592 | ||
593 | /* Print a warning about being unable to set the dynamic linker | |
594 | breakpoint. */ | |
595 | ||
596 | static void | |
597 | enable_break_failure_warning (void) | |
598 | { | |
8a3fe4f8 | 599 | warning (_("Unable to find dynamic linker breakpoint function.\n" |
c4d10515 | 600 | "GDB will be unable to debug shared library initializers\n" |
8a3fe4f8 | 601 | "and track explicitly loaded dynamic code.")); |
c4d10515 KB |
602 | } |
603 | ||
604 | /* | |
605 | ||
606 | LOCAL FUNCTION | |
607 | ||
608 | enable_break -- arrange for dynamic linker to hit breakpoint | |
609 | ||
610 | SYNOPSIS | |
611 | ||
612 | int enable_break (void) | |
613 | ||
614 | DESCRIPTION | |
615 | ||
616 | The dynamic linkers has, as part of its debugger interface, support | |
617 | for arranging for the inferior to hit a breakpoint after mapping in | |
618 | the shared libraries. This function enables that breakpoint. | |
619 | ||
620 | On the FR-V, using the shared library (FDPIC) ABI, the symbol | |
621 | _dl_debug_addr points to the r_debug struct which contains | |
622 | a field called r_brk. r_brk is the address of the function | |
623 | descriptor upon which a breakpoint must be placed. Being a | |
624 | function descriptor, we must extract the entry point in order | |
625 | to set the breakpoint. | |
626 | ||
627 | Our strategy will be to get the .interp section from the | |
628 | executable. This section will provide us with the name of the | |
629 | interpreter. We'll open the interpreter and then look up | |
630 | the address of _dl_debug_addr. We then relocate this address | |
631 | using the interpreter's loadmap. Once the relocated address | |
632 | is known, we fetch the value (address) corresponding to r_brk | |
633 | and then use that value to fetch the entry point of the function | |
634 | we're interested in. | |
635 | ||
636 | */ | |
637 | ||
c4d10515 KB |
638 | static int enable_break2_done = 0; |
639 | ||
640 | static int | |
641 | enable_break2 (void) | |
642 | { | |
e17a4113 | 643 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
c4d10515 KB |
644 | int success = 0; |
645 | char **bkpt_namep; | |
646 | asection *interp_sect; | |
647 | ||
cb7db0f2 | 648 | if (enable_break2_done) |
c4d10515 KB |
649 | return 1; |
650 | ||
c4d10515 KB |
651 | interp_text_sect_low = interp_text_sect_high = 0; |
652 | interp_plt_sect_low = interp_plt_sect_high = 0; | |
653 | ||
654 | /* Find the .interp section; if not found, warn the user and drop | |
655 | into the old breakpoint at symbol code. */ | |
656 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
657 | if (interp_sect) | |
658 | { | |
659 | unsigned int interp_sect_size; | |
e2b7c966 | 660 | gdb_byte *buf; |
c4d10515 | 661 | bfd *tmp_bfd = NULL; |
c4d10515 KB |
662 | int status; |
663 | CORE_ADDR addr, interp_loadmap_addr; | |
e2b7c966 | 664 | gdb_byte addr_buf[FRV_PTR_SIZE]; |
c4d10515 | 665 | struct int_elf32_fdpic_loadmap *ldm; |
f1838a98 | 666 | volatile struct gdb_exception ex; |
c4d10515 KB |
667 | |
668 | /* Read the contents of the .interp section into a local buffer; | |
669 | the contents specify the dynamic linker this program uses. */ | |
670 | interp_sect_size = bfd_section_size (exec_bfd, interp_sect); | |
671 | buf = alloca (interp_sect_size); | |
672 | bfd_get_section_contents (exec_bfd, interp_sect, | |
673 | buf, 0, interp_sect_size); | |
674 | ||
675 | /* Now we need to figure out where the dynamic linker was | |
676 | loaded so that we can load its symbols and place a breakpoint | |
677 | in the dynamic linker itself. | |
678 | ||
679 | This address is stored on the stack. However, I've been unable | |
680 | to find any magic formula to find it for Solaris (appears to | |
681 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
682 | mechanism to find the dynamic linker's base address. */ | |
683 | ||
f1838a98 UW |
684 | TRY_CATCH (ex, RETURN_MASK_ALL) |
685 | { | |
686 | tmp_bfd = solib_bfd_open (buf); | |
687 | } | |
c4d10515 KB |
688 | if (tmp_bfd == NULL) |
689 | { | |
690 | enable_break_failure_warning (); | |
691 | return 0; | |
692 | } | |
693 | ||
1cf3db46 | 694 | status = frv_fdpic_loadmap_addresses (target_gdbarch, |
c4d10515 KB |
695 | &interp_loadmap_addr, 0); |
696 | if (status < 0) | |
697 | { | |
8a3fe4f8 | 698 | warning (_("Unable to determine dynamic linker loadmap address.")); |
c4d10515 KB |
699 | enable_break_failure_warning (); |
700 | bfd_close (tmp_bfd); | |
701 | return 0; | |
702 | } | |
703 | ||
704 | if (solib_frv_debug) | |
705 | fprintf_unfiltered (gdb_stdlog, | |
706 | "enable_break: interp_loadmap_addr = %s\n", | |
bb599908 | 707 | hex_string_custom (interp_loadmap_addr, 8)); |
c4d10515 KB |
708 | |
709 | ldm = fetch_loadmap (interp_loadmap_addr); | |
710 | if (ldm == NULL) | |
711 | { | |
8a3fe4f8 | 712 | warning (_("Unable to load dynamic linker loadmap at address %s."), |
bb599908 | 713 | hex_string_custom (interp_loadmap_addr, 8)); |
c4d10515 KB |
714 | enable_break_failure_warning (); |
715 | bfd_close (tmp_bfd); | |
716 | return 0; | |
717 | } | |
718 | ||
719 | /* Record the relocated start and end address of the dynamic linker | |
720 | text and plt section for svr4_in_dynsym_resolve_code. */ | |
721 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); | |
722 | if (interp_sect) | |
723 | { | |
724 | interp_text_sect_low | |
725 | = bfd_section_vma (tmp_bfd, interp_sect); | |
726 | interp_text_sect_low | |
727 | += displacement_from_map (ldm, interp_text_sect_low); | |
728 | interp_text_sect_high | |
729 | = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
730 | } | |
731 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
732 | if (interp_sect) | |
733 | { | |
734 | interp_plt_sect_low = | |
735 | bfd_section_vma (tmp_bfd, interp_sect); | |
736 | interp_plt_sect_low | |
737 | += displacement_from_map (ldm, interp_plt_sect_low); | |
738 | interp_plt_sect_high = | |
739 | interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
740 | } | |
741 | ||
742 | addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr"); | |
743 | if (addr == 0) | |
744 | { | |
3e43a32a MS |
745 | warning (_("Could not find symbol _dl_debug_addr " |
746 | "in dynamic linker")); | |
c4d10515 KB |
747 | enable_break_failure_warning (); |
748 | bfd_close (tmp_bfd); | |
749 | return 0; | |
750 | } | |
751 | ||
752 | if (solib_frv_debug) | |
753 | fprintf_unfiltered (gdb_stdlog, | |
3e43a32a MS |
754 | "enable_break: _dl_debug_addr " |
755 | "(prior to relocation) = %s\n", | |
bb599908 | 756 | hex_string_custom (addr, 8)); |
c4d10515 KB |
757 | |
758 | addr += displacement_from_map (ldm, addr); | |
759 | ||
760 | if (solib_frv_debug) | |
761 | fprintf_unfiltered (gdb_stdlog, | |
3e43a32a MS |
762 | "enable_break: _dl_debug_addr " |
763 | "(after relocation) = %s\n", | |
bb599908 | 764 | hex_string_custom (addr, 8)); |
c4d10515 KB |
765 | |
766 | /* Fetch the address of the r_debug struct. */ | |
767 | if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0) | |
768 | { | |
3e43a32a MS |
769 | warning (_("Unable to fetch contents of _dl_debug_addr " |
770 | "(at address %s) from dynamic linker"), | |
bb599908 | 771 | hex_string_custom (addr, 8)); |
c4d10515 | 772 | } |
e17a4113 | 773 | addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); |
c4d10515 | 774 | |
cb7db0f2 MF |
775 | if (solib_frv_debug) |
776 | fprintf_unfiltered (gdb_stdlog, | |
777 | "enable_break: _dl_debug_addr[0..3] = %s\n", | |
778 | hex_string_custom (addr, 8)); | |
779 | ||
780 | /* If it's zero, then the ldso hasn't initialized yet, and so | |
781 | there are no shared libs yet loaded. */ | |
782 | if (addr == 0) | |
783 | { | |
784 | if (solib_frv_debug) | |
785 | fprintf_unfiltered (gdb_stdlog, | |
786 | "enable_break: ldso not yet initialized\n"); | |
787 | /* Do not warn, but mark to run again. */ | |
788 | return 0; | |
789 | } | |
790 | ||
c4d10515 KB |
791 | /* Fetch the r_brk field. It's 8 bytes from the start of |
792 | _dl_debug_addr. */ | |
793 | if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0) | |
794 | { | |
3e43a32a MS |
795 | warning (_("Unable to fetch _dl_debug_addr->r_brk " |
796 | "(at address %s) from dynamic linker"), | |
bb599908 | 797 | hex_string_custom (addr + 8, 8)); |
c4d10515 KB |
798 | enable_break_failure_warning (); |
799 | bfd_close (tmp_bfd); | |
800 | return 0; | |
801 | } | |
e17a4113 | 802 | addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); |
c4d10515 KB |
803 | |
804 | /* Now fetch the function entry point. */ | |
805 | if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0) | |
806 | { | |
3e43a32a MS |
807 | warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point " |
808 | "(at address %s) from dynamic linker"), | |
bb599908 | 809 | hex_string_custom (addr, 8)); |
c4d10515 KB |
810 | enable_break_failure_warning (); |
811 | bfd_close (tmp_bfd); | |
812 | return 0; | |
813 | } | |
e17a4113 | 814 | addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order); |
c4d10515 KB |
815 | |
816 | /* We're done with the temporary bfd. */ | |
817 | bfd_close (tmp_bfd); | |
818 | ||
819 | /* We're also done with the loadmap. */ | |
820 | xfree (ldm); | |
821 | ||
cb7db0f2 MF |
822 | /* Remove all the solib event breakpoints. Their addresses |
823 | may have changed since the last time we ran the program. */ | |
824 | remove_solib_event_breakpoints (); | |
825 | ||
c4d10515 | 826 | /* Now (finally!) create the solib breakpoint. */ |
a6d9a66e | 827 | create_solib_event_breakpoint (target_gdbarch, addr); |
c4d10515 | 828 | |
cb7db0f2 MF |
829 | enable_break2_done = 1; |
830 | ||
c4d10515 KB |
831 | return 1; |
832 | } | |
833 | ||
834 | /* Tell the user we couldn't set a dynamic linker breakpoint. */ | |
835 | enable_break_failure_warning (); | |
836 | ||
837 | /* Failure return. */ | |
838 | return 0; | |
839 | } | |
840 | ||
841 | static int | |
842 | enable_break (void) | |
843 | { | |
844 | asection *interp_sect; | |
845 | ||
abd0a5fa | 846 | if (symfile_objfile == NULL) |
c4d10515 | 847 | { |
abd0a5fa JK |
848 | if (solib_frv_debug) |
849 | fprintf_unfiltered (gdb_stdlog, | |
850 | "enable_break: No symbol file found.\n"); | |
851 | return 0; | |
852 | } | |
c4d10515 | 853 | |
abd0a5fa JK |
854 | if (!symfile_objfile->ei.entry_point_p) |
855 | { | |
c4d10515 KB |
856 | if (solib_frv_debug) |
857 | fprintf_unfiltered (gdb_stdlog, | |
abd0a5fa JK |
858 | "enable_break: Symbol file has no entry point.\n"); |
859 | return 0; | |
c4d10515 | 860 | } |
abd0a5fa JK |
861 | |
862 | /* Check for the presence of a .interp section. If there is no | |
863 | such section, the executable is statically linked. */ | |
864 | ||
865 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
866 | ||
867 | if (interp_sect == NULL) | |
c4d10515 KB |
868 | { |
869 | if (solib_frv_debug) | |
870 | fprintf_unfiltered (gdb_stdlog, | |
abd0a5fa JK |
871 | "enable_break: No .interp section found.\n"); |
872 | return 0; | |
c4d10515 KB |
873 | } |
874 | ||
abd0a5fa JK |
875 | create_solib_event_breakpoint (target_gdbarch, |
876 | symfile_objfile->ei.entry_point); | |
877 | ||
878 | if (solib_frv_debug) | |
879 | fprintf_unfiltered (gdb_stdlog, | |
3e43a32a MS |
880 | "enable_break: solib event breakpoint " |
881 | "placed at entry point: %s\n", | |
882 | hex_string_custom (symfile_objfile->ei.entry_point, | |
883 | 8)); | |
c4d10515 KB |
884 | return 1; |
885 | } | |
886 | ||
887 | /* | |
888 | ||
889 | LOCAL FUNCTION | |
890 | ||
891 | special_symbol_handling -- additional shared library symbol handling | |
892 | ||
893 | SYNOPSIS | |
894 | ||
895 | void special_symbol_handling () | |
896 | ||
897 | DESCRIPTION | |
898 | ||
899 | Once the symbols from a shared object have been loaded in the usual | |
900 | way, we are called to do any system specific symbol handling that | |
901 | is needed. | |
902 | ||
903 | */ | |
904 | ||
905 | static void | |
906 | frv_special_symbol_handling (void) | |
907 | { | |
908 | /* Nothing needed (yet) for FRV. */ | |
909 | } | |
910 | ||
911 | static void | |
912 | frv_relocate_main_executable (void) | |
913 | { | |
914 | int status; | |
9bc7b6c6 | 915 | CORE_ADDR exec_addr, interp_addr; |
c4d10515 KB |
916 | struct int_elf32_fdpic_loadmap *ldm; |
917 | struct cleanup *old_chain; | |
918 | struct section_offsets *new_offsets; | |
919 | int changed; | |
920 | struct obj_section *osect; | |
921 | ||
9bc7b6c6 KB |
922 | status = frv_fdpic_loadmap_addresses (target_gdbarch, |
923 | &interp_addr, &exec_addr); | |
c4d10515 | 924 | |
9bc7b6c6 | 925 | if (status < 0 || (exec_addr == 0 && interp_addr == 0)) |
c4d10515 KB |
926 | { |
927 | /* Not using FDPIC ABI, so do nothing. */ | |
928 | return; | |
929 | } | |
930 | ||
931 | /* Fetch the loadmap located at ``exec_addr''. */ | |
932 | ldm = fetch_loadmap (exec_addr); | |
933 | if (ldm == NULL) | |
8a3fe4f8 | 934 | error (_("Unable to load the executable's loadmap.")); |
c4d10515 KB |
935 | |
936 | if (main_executable_lm_info) | |
937 | xfree (main_executable_lm_info); | |
938 | main_executable_lm_info = xcalloc (1, sizeof (struct lm_info)); | |
939 | main_executable_lm_info->map = ldm; | |
940 | ||
941 | new_offsets = xcalloc (symfile_objfile->num_sections, | |
942 | sizeof (struct section_offsets)); | |
943 | old_chain = make_cleanup (xfree, new_offsets); | |
944 | changed = 0; | |
945 | ||
946 | ALL_OBJFILE_OSECTIONS (symfile_objfile, osect) | |
947 | { | |
948 | CORE_ADDR orig_addr, addr, offset; | |
949 | int osect_idx; | |
950 | int seg; | |
951 | ||
952 | osect_idx = osect->the_bfd_section->index; | |
953 | ||
954 | /* Current address of section. */ | |
aded6f54 | 955 | addr = obj_section_addr (osect); |
c4d10515 KB |
956 | /* Offset from where this section started. */ |
957 | offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx); | |
958 | /* Original address prior to any past relocations. */ | |
959 | orig_addr = addr - offset; | |
960 | ||
961 | for (seg = 0; seg < ldm->nsegs; seg++) | |
962 | { | |
963 | if (ldm->segs[seg].p_vaddr <= orig_addr | |
964 | && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz) | |
965 | { | |
966 | new_offsets->offsets[osect_idx] | |
967 | = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr; | |
968 | ||
969 | if (new_offsets->offsets[osect_idx] != offset) | |
970 | changed = 1; | |
971 | break; | |
972 | } | |
973 | } | |
974 | } | |
975 | ||
976 | if (changed) | |
977 | objfile_relocate (symfile_objfile, new_offsets); | |
978 | ||
979 | do_cleanups (old_chain); | |
980 | ||
981 | /* Now that symfile_objfile has been relocated, we can compute the | |
982 | GOT value and stash it away. */ | |
983 | main_executable_lm_info->got_value = main_got (); | |
984 | } | |
985 | ||
986 | /* | |
987 | ||
988 | GLOBAL FUNCTION | |
989 | ||
990 | frv_solib_create_inferior_hook -- shared library startup support | |
991 | ||
992 | SYNOPSIS | |
993 | ||
7095b863 | 994 | void frv_solib_create_inferior_hook () |
c4d10515 KB |
995 | |
996 | DESCRIPTION | |
997 | ||
998 | When gdb starts up the inferior, it nurses it along (through the | |
999 | shell) until it is ready to execute it's first instruction. At this | |
1000 | point, this function gets called via expansion of the macro | |
1001 | SOLIB_CREATE_INFERIOR_HOOK. | |
1002 | ||
1003 | For the FR-V shared library ABI (FDPIC), the main executable | |
1004 | needs to be relocated. The shared library breakpoints also need | |
1005 | to be enabled. | |
1006 | */ | |
1007 | ||
1008 | static void | |
268a4a75 | 1009 | frv_solib_create_inferior_hook (int from_tty) |
c4d10515 KB |
1010 | { |
1011 | /* Relocate main executable. */ | |
1012 | frv_relocate_main_executable (); | |
1013 | ||
1014 | /* Enable shared library breakpoints. */ | |
1015 | if (!enable_break ()) | |
1016 | { | |
8a3fe4f8 | 1017 | warning (_("shared library handler failed to enable breakpoint")); |
c4d10515 KB |
1018 | return; |
1019 | } | |
1020 | } | |
1021 | ||
1022 | static void | |
1023 | frv_clear_solib (void) | |
1024 | { | |
1025 | lm_base_cache = 0; | |
c4d10515 | 1026 | enable_break2_done = 0; |
186993b4 | 1027 | main_lm_addr = 0; |
7c699b81 KB |
1028 | if (main_executable_lm_info != 0) |
1029 | { | |
1030 | xfree (main_executable_lm_info->map); | |
1031 | xfree (main_executable_lm_info->dyn_syms); | |
1032 | xfree (main_executable_lm_info->dyn_relocs); | |
1033 | xfree (main_executable_lm_info); | |
1034 | main_executable_lm_info = 0; | |
1035 | } | |
c4d10515 KB |
1036 | } |
1037 | ||
1038 | static void | |
1039 | frv_free_so (struct so_list *so) | |
1040 | { | |
1041 | xfree (so->lm_info->map); | |
1042 | xfree (so->lm_info->dyn_syms); | |
1043 | xfree (so->lm_info->dyn_relocs); | |
1044 | xfree (so->lm_info); | |
1045 | } | |
1046 | ||
1047 | static void | |
1048 | frv_relocate_section_addresses (struct so_list *so, | |
0542c86d | 1049 | struct target_section *sec) |
c4d10515 KB |
1050 | { |
1051 | int seg; | |
1052 | struct int_elf32_fdpic_loadmap *map; | |
1053 | ||
1054 | map = so->lm_info->map; | |
1055 | ||
1056 | for (seg = 0; seg < map->nsegs; seg++) | |
1057 | { | |
1058 | if (map->segs[seg].p_vaddr <= sec->addr | |
1059 | && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz) | |
1060 | { | |
1061 | CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr; | |
433759f7 | 1062 | |
c4d10515 KB |
1063 | sec->addr += displ; |
1064 | sec->endaddr += displ; | |
1065 | break; | |
1066 | } | |
1067 | } | |
1068 | } | |
1069 | ||
1070 | /* Return the GOT address associated with the main executable. Return | |
1071 | 0 if it can't be found. */ | |
1072 | ||
1073 | static CORE_ADDR | |
1074 | main_got (void) | |
1075 | { | |
1076 | struct minimal_symbol *got_sym; | |
1077 | ||
3e43a32a MS |
1078 | got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", |
1079 | NULL, symfile_objfile); | |
c4d10515 KB |
1080 | if (got_sym == 0) |
1081 | return 0; | |
1082 | ||
1083 | return SYMBOL_VALUE_ADDRESS (got_sym); | |
1084 | } | |
1085 | ||
1086 | /* Find the global pointer for the given function address ADDR. */ | |
1087 | ||
1088 | CORE_ADDR | |
1089 | frv_fdpic_find_global_pointer (CORE_ADDR addr) | |
1090 | { | |
1091 | struct so_list *so; | |
1092 | ||
1093 | so = master_so_list (); | |
1094 | while (so) | |
1095 | { | |
1096 | int seg; | |
1097 | struct int_elf32_fdpic_loadmap *map; | |
1098 | ||
1099 | map = so->lm_info->map; | |
1100 | ||
1101 | for (seg = 0; seg < map->nsegs; seg++) | |
1102 | { | |
1103 | if (map->segs[seg].addr <= addr | |
1104 | && addr < map->segs[seg].addr + map->segs[seg].p_memsz) | |
1105 | return so->lm_info->got_value; | |
1106 | } | |
1107 | ||
1108 | so = so->next; | |
1109 | } | |
1110 | ||
1111 | /* Didn't find it it any of the shared objects. So assume it's in the | |
1112 | main executable. */ | |
1113 | return main_got (); | |
1114 | } | |
1115 | ||
1116 | /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */ | |
1117 | static CORE_ADDR find_canonical_descriptor_in_load_object | |
1118 | (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *); | |
1119 | ||
1120 | /* Given a function entry point, attempt to find the canonical descriptor | |
1121 | associated with that entry point. Return 0 if no canonical descriptor | |
1122 | could be found. */ | |
1123 | ||
1124 | CORE_ADDR | |
1125 | frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point) | |
1126 | { | |
1127 | char *name; | |
1128 | CORE_ADDR addr; | |
1129 | CORE_ADDR got_value; | |
1130 | struct int_elf32_fdpic_loadmap *ldm = 0; | |
1131 | struct symbol *sym; | |
1132 | int status; | |
1133 | CORE_ADDR exec_loadmap_addr; | |
1134 | ||
1135 | /* Fetch the corresponding global pointer for the entry point. */ | |
1136 | got_value = frv_fdpic_find_global_pointer (entry_point); | |
1137 | ||
1138 | /* Attempt to find the name of the function. If the name is available, | |
1139 | it'll be used as an aid in finding matching functions in the dynamic | |
1140 | symbol table. */ | |
1141 | sym = find_pc_function (entry_point); | |
1142 | if (sym == 0) | |
1143 | name = 0; | |
1144 | else | |
1145 | name = SYMBOL_LINKAGE_NAME (sym); | |
1146 | ||
1147 | /* Check the main executable. */ | |
1148 | addr = find_canonical_descriptor_in_load_object | |
1149 | (entry_point, got_value, name, symfile_objfile->obfd, | |
1150 | main_executable_lm_info); | |
1151 | ||
1152 | /* If descriptor not found via main executable, check each load object | |
1153 | in list of shared objects. */ | |
1154 | if (addr == 0) | |
1155 | { | |
1156 | struct so_list *so; | |
1157 | ||
1158 | so = master_so_list (); | |
1159 | while (so) | |
1160 | { | |
1161 | addr = find_canonical_descriptor_in_load_object | |
1162 | (entry_point, got_value, name, so->abfd, so->lm_info); | |
1163 | ||
1164 | if (addr != 0) | |
1165 | break; | |
1166 | ||
1167 | so = so->next; | |
1168 | } | |
1169 | } | |
1170 | ||
1171 | return addr; | |
1172 | } | |
1173 | ||
1174 | static CORE_ADDR | |
1175 | find_canonical_descriptor_in_load_object | |
1176 | (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd, | |
1177 | struct lm_info *lm) | |
1178 | { | |
e17a4113 | 1179 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
c4d10515 KB |
1180 | arelent *rel; |
1181 | unsigned int i; | |
1182 | CORE_ADDR addr = 0; | |
1183 | ||
1184 | /* Nothing to do if no bfd. */ | |
1185 | if (abfd == 0) | |
1186 | return 0; | |
1187 | ||
35e08e03 KB |
1188 | /* Nothing to do if no link map. */ |
1189 | if (lm == 0) | |
1190 | return 0; | |
1191 | ||
c4d10515 KB |
1192 | /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations. |
1193 | (More about this later.) But in order to fetch the relocs, we | |
1194 | need to first fetch the dynamic symbols. These symbols need to | |
1195 | be cached due to the way that bfd_canonicalize_dynamic_reloc() | |
1196 | works. (See the comments in the declaration of struct lm_info | |
1197 | for more information.) */ | |
1198 | if (lm->dyn_syms == NULL) | |
1199 | { | |
1200 | long storage_needed; | |
1201 | unsigned int number_of_symbols; | |
1202 | ||
1203 | /* Determine amount of space needed to hold the dynamic symbol table. */ | |
1204 | storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); | |
1205 | ||
1206 | /* If there are no dynamic symbols, there's nothing to do. */ | |
1207 | if (storage_needed <= 0) | |
1208 | return 0; | |
1209 | ||
1210 | /* Allocate space for the dynamic symbol table. */ | |
1211 | lm->dyn_syms = (asymbol **) xmalloc (storage_needed); | |
1212 | ||
1213 | /* Fetch the dynamic symbol table. */ | |
1214 | number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms); | |
1215 | ||
1216 | if (number_of_symbols == 0) | |
1217 | return 0; | |
1218 | } | |
1219 | ||
1220 | /* Fetch the dynamic relocations if not already cached. */ | |
1221 | if (lm->dyn_relocs == NULL) | |
1222 | { | |
1223 | long storage_needed; | |
1224 | ||
1225 | /* Determine amount of space needed to hold the dynamic relocs. */ | |
1226 | storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd); | |
1227 | ||
1228 | /* Bail out if there are no dynamic relocs. */ | |
1229 | if (storage_needed <= 0) | |
1230 | return 0; | |
1231 | ||
1232 | /* Allocate space for the relocs. */ | |
1233 | lm->dyn_relocs = (arelent **) xmalloc (storage_needed); | |
1234 | ||
1235 | /* Fetch the dynamic relocs. */ | |
1236 | lm->dyn_reloc_count | |
1237 | = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms); | |
1238 | } | |
1239 | ||
1240 | /* Search the dynamic relocs. */ | |
1241 | for (i = 0; i < lm->dyn_reloc_count; i++) | |
1242 | { | |
1243 | rel = lm->dyn_relocs[i]; | |
1244 | ||
1245 | /* Relocs of interest are those which meet the following | |
1246 | criteria: | |
1247 | ||
1248 | - the names match (assuming the caller could provide | |
1249 | a name which matches ``entry_point''). | |
1250 | - the relocation type must be R_FRV_FUNCDESC. Relocs | |
1251 | of this type are used (by the dynamic linker) to | |
1252 | look up the address of a canonical descriptor (allocating | |
1253 | it if need be) and initializing the GOT entry referred | |
1254 | to by the offset to the address of the descriptor. | |
1255 | ||
1256 | These relocs of interest may be used to obtain a | |
1257 | candidate descriptor by first adjusting the reloc's | |
1258 | address according to the link map and then dereferencing | |
1259 | this address (which is a GOT entry) to obtain a descriptor | |
1260 | address. */ | |
1261 | if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0) | |
1262 | && rel->howto->type == R_FRV_FUNCDESC) | |
1263 | { | |
e2b7c966 | 1264 | gdb_byte buf [FRV_PTR_SIZE]; |
c4d10515 KB |
1265 | |
1266 | /* Compute address of address of candidate descriptor. */ | |
1267 | addr = rel->address + displacement_from_map (lm->map, rel->address); | |
1268 | ||
1269 | /* Fetch address of candidate descriptor. */ | |
1270 | if (target_read_memory (addr, buf, sizeof buf) != 0) | |
1271 | continue; | |
e17a4113 | 1272 | addr = extract_unsigned_integer (buf, sizeof buf, byte_order); |
c4d10515 KB |
1273 | |
1274 | /* Check for matching entry point. */ | |
1275 | if (target_read_memory (addr, buf, sizeof buf) != 0) | |
1276 | continue; | |
e17a4113 UW |
1277 | if (extract_unsigned_integer (buf, sizeof buf, byte_order) |
1278 | != entry_point) | |
c4d10515 KB |
1279 | continue; |
1280 | ||
1281 | /* Check for matching got value. */ | |
1282 | if (target_read_memory (addr + 4, buf, sizeof buf) != 0) | |
1283 | continue; | |
e17a4113 UW |
1284 | if (extract_unsigned_integer (buf, sizeof buf, byte_order) |
1285 | != got_value) | |
c4d10515 KB |
1286 | continue; |
1287 | ||
1288 | /* Match was successful! Exit loop. */ | |
1289 | break; | |
1290 | } | |
1291 | } | |
1292 | ||
1293 | return addr; | |
1294 | } | |
1295 | ||
186993b4 KB |
1296 | /* Given an objfile, return the address of its link map. This value is |
1297 | needed for TLS support. */ | |
1298 | CORE_ADDR | |
1299 | frv_fetch_objfile_link_map (struct objfile *objfile) | |
1300 | { | |
1301 | struct so_list *so; | |
1302 | ||
1303 | /* Cause frv_current_sos() to be run if it hasn't been already. */ | |
1304 | if (main_lm_addr == 0) | |
1305 | solib_add (0, 0, 0, 1); | |
1306 | ||
1307 | /* frv_current_sos() will set main_lm_addr for the main executable. */ | |
1308 | if (objfile == symfile_objfile) | |
1309 | return main_lm_addr; | |
1310 | ||
1311 | /* The other link map addresses may be found by examining the list | |
1312 | of shared libraries. */ | |
1313 | for (so = master_so_list (); so; so = so->next) | |
1314 | { | |
1315 | if (so->objfile == objfile) | |
1316 | return so->lm_info->lm_addr; | |
1317 | } | |
1318 | ||
1319 | /* Not found! */ | |
1320 | return 0; | |
1321 | } | |
1322 | ||
917630e4 | 1323 | struct target_so_ops frv_so_ops; |
c4d10515 | 1324 | |
63807e1d PA |
1325 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
1326 | extern initialize_file_ftype _initialize_frv_solib; | |
1327 | ||
c4d10515 KB |
1328 | void |
1329 | _initialize_frv_solib (void) | |
1330 | { | |
1331 | frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses; | |
1332 | frv_so_ops.free_so = frv_free_so; | |
1333 | frv_so_ops.clear_solib = frv_clear_solib; | |
1334 | frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook; | |
1335 | frv_so_ops.special_symbol_handling = frv_special_symbol_handling; | |
1336 | frv_so_ops.current_sos = frv_current_sos; | |
1337 | frv_so_ops.open_symbol_file_object = open_symbol_file_object; | |
1338 | frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code; | |
831a0c44 | 1339 | frv_so_ops.bfd_open = solib_bfd_open; |
c4d10515 | 1340 | |
c4d10515 | 1341 | /* Debug this file's internals. */ |
85c07804 AC |
1342 | add_setshow_zinteger_cmd ("solib-frv", class_maintenance, |
1343 | &solib_frv_debug, _("\ | |
1344 | Set internal debugging of shared library code for FR-V."), _("\ | |
1345 | Show internal debugging of shared library code for FR-V."), _("\ | |
1346 | When non-zero, FR-V solib specific internal debugging is enabled."), | |
1347 | NULL, | |
1348 | NULL, /* FIXME: i18n: */ | |
1349 | &setdebuglist, &showdebuglist); | |
c4d10515 | 1350 | } |