]>
Commit | Line | Data |
---|---|---|
a76d924d DJ |
1 | /* Parts of target interface that deal with accessing memory and memory-like |
2 | objects. | |
3 | ||
42a4f53d | 4 | Copyright (C) 2006-2019 Free Software Foundation, Inc. |
a76d924d DJ |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
a76d924d DJ |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
a76d924d DJ |
20 | |
21 | #include "defs.h" | |
268a13a5 | 22 | #include "gdbsupport/vec.h" |
a76d924d DJ |
23 | #include "target.h" |
24 | #include "memory-map.h" | |
25 | ||
268a13a5 | 26 | #include "gdbsupport/gdb_sys_time.h" |
325fac50 | 27 | #include <algorithm> |
a76d924d | 28 | |
55089490 TT |
29 | static bool |
30 | compare_block_starting_address (const memory_write_request &a_req, | |
31 | const memory_write_request &b_req) | |
a76d924d | 32 | { |
55089490 | 33 | return a_req.begin < b_req.begin; |
a76d924d DJ |
34 | } |
35 | ||
36 | /* Adds to RESULT all memory write requests from BLOCK that are | |
37 | in [BEGIN, END) range. | |
38 | ||
39 | If any memory request is only partially in the specified range, | |
40 | that part of the memory request will be added. */ | |
41 | ||
42 | static void | |
55089490 TT |
43 | claim_memory (const std::vector<memory_write_request> &blocks, |
44 | std::vector<memory_write_request> *result, | |
a76d924d DJ |
45 | ULONGEST begin, |
46 | ULONGEST end) | |
47 | { | |
a76d924d DJ |
48 | ULONGEST claimed_begin; |
49 | ULONGEST claimed_end; | |
a76d924d | 50 | |
55089490 | 51 | for (const memory_write_request &r : blocks) |
a76d924d DJ |
52 | { |
53 | /* If the request doesn't overlap [BEGIN, END), skip it. We | |
54 | must handle END == 0 meaning the top of memory; we don't yet | |
55 | check for R->end == 0, which would also mean the top of | |
56 | memory, but there's an assertion in | |
57 | target_write_memory_blocks which checks for that. */ | |
58 | ||
55089490 | 59 | if (begin >= r.end) |
a76d924d | 60 | continue; |
55089490 | 61 | if (end != 0 && end <= r.begin) |
a76d924d DJ |
62 | continue; |
63 | ||
55089490 | 64 | claimed_begin = std::max (begin, r.begin); |
a76d924d | 65 | if (end == 0) |
55089490 | 66 | claimed_end = r.end; |
a76d924d | 67 | else |
55089490 | 68 | claimed_end = std::min (end, r.end); |
a76d924d | 69 | |
55089490 TT |
70 | if (claimed_begin == r.begin && claimed_end == r.end) |
71 | result->push_back (r); | |
a76d924d DJ |
72 | else |
73 | { | |
55089490 TT |
74 | struct memory_write_request n = r; |
75 | ||
76 | n.begin = claimed_begin; | |
77 | n.end = claimed_end; | |
78 | n.data += claimed_begin - r.begin; | |
5d502164 | 79 | |
55089490 | 80 | result->push_back (n); |
a76d924d DJ |
81 | } |
82 | } | |
83 | } | |
84 | ||
85 | /* Given a vector of struct memory_write_request objects in BLOCKS, | |
86 | add memory requests for flash memory into FLASH_BLOCKS, and for | |
87 | regular memory to REGULAR_BLOCKS. */ | |
88 | ||
89 | static void | |
55089490 TT |
90 | split_regular_and_flash_blocks (const std::vector<memory_write_request> &blocks, |
91 | std::vector<memory_write_request> *regular_blocks, | |
92 | std::vector<memory_write_request> *flash_blocks) | |
a76d924d DJ |
93 | { |
94 | struct mem_region *region; | |
95 | CORE_ADDR cur_address; | |
96 | ||
97 | /* This implementation runs in O(length(regions)*length(blocks)) time. | |
98 | However, in most cases the number of blocks will be small, so this does | |
99 | not matter. | |
100 | ||
101 | Note also that it's extremely unlikely that a memory write request | |
102 | will span more than one memory region, however for safety we handle | |
103 | such situations. */ | |
104 | ||
105 | cur_address = 0; | |
106 | while (1) | |
107 | { | |
55089490 | 108 | std::vector<memory_write_request> *r; |
a76d924d | 109 | |
5d502164 | 110 | region = lookup_mem_region (cur_address); |
a76d924d DJ |
111 | r = region->attrib.mode == MEM_FLASH ? flash_blocks : regular_blocks; |
112 | cur_address = region->hi; | |
113 | claim_memory (blocks, r, region->lo, region->hi); | |
114 | ||
115 | if (cur_address == 0) | |
116 | break; | |
117 | } | |
118 | } | |
119 | ||
120 | /* Given an ADDRESS, if BEGIN is non-NULL this function sets *BEGIN | |
121 | to the start of the flash block containing the address. Similarly, | |
122 | if END is non-NULL *END will be set to the address one past the end | |
123 | of the block containing the address. */ | |
124 | ||
125 | static void | |
126 | block_boundaries (CORE_ADDR address, CORE_ADDR *begin, CORE_ADDR *end) | |
127 | { | |
128 | struct mem_region *region; | |
129 | unsigned blocksize; | |
d9b477e3 | 130 | CORE_ADDR offset_in_region; |
a76d924d DJ |
131 | |
132 | region = lookup_mem_region (address); | |
133 | gdb_assert (region->attrib.mode == MEM_FLASH); | |
134 | blocksize = region->attrib.blocksize; | |
d9b477e3 KB |
135 | |
136 | offset_in_region = address - region->lo; | |
137 | ||
a76d924d | 138 | if (begin) |
d9b477e3 | 139 | *begin = region->lo + offset_in_region / blocksize * blocksize; |
a76d924d | 140 | if (end) |
d9b477e3 | 141 | *end = region->lo + (offset_in_region + blocksize - 1) / blocksize * blocksize; |
a76d924d DJ |
142 | } |
143 | ||
144 | /* Given the list of memory requests to be WRITTEN, this function | |
145 | returns write requests covering each group of flash blocks which must | |
146 | be erased. */ | |
147 | ||
55089490 TT |
148 | static std::vector<memory_write_request> |
149 | blocks_to_erase (const std::vector<memory_write_request> &written) | |
a76d924d | 150 | { |
55089490 | 151 | std::vector<memory_write_request> result; |
a76d924d | 152 | |
55089490 | 153 | for (const memory_write_request &request : written) |
a76d924d DJ |
154 | { |
155 | CORE_ADDR begin, end; | |
156 | ||
55089490 TT |
157 | block_boundaries (request.begin, &begin, 0); |
158 | block_boundaries (request.end - 1, 0, &end); | |
a76d924d | 159 | |
55089490 TT |
160 | if (!result.empty () && result.back ().end >= begin) |
161 | result.back ().end = end; | |
a76d924d | 162 | else |
55089490 | 163 | result.emplace_back (begin, end); |
a76d924d DJ |
164 | } |
165 | ||
166 | return result; | |
167 | } | |
168 | ||
169 | /* Given ERASED_BLOCKS, a list of blocks that will be erased with | |
170 | flash erase commands, and WRITTEN_BLOCKS, the list of memory | |
171 | addresses that will be written, compute the set of memory addresses | |
172 | that will be erased but not rewritten (e.g. padding within a block | |
173 | which is only partially filled by "load"). */ | |
174 | ||
55089490 TT |
175 | static std::vector<memory_write_request> |
176 | compute_garbled_blocks (const std::vector<memory_write_request> &erased_blocks, | |
177 | const std::vector<memory_write_request> &written_blocks) | |
a76d924d | 178 | { |
55089490 | 179 | std::vector<memory_write_request> result; |
a76d924d | 180 | |
55089490 TT |
181 | unsigned j; |
182 | unsigned je = written_blocks.size (); | |
a76d924d DJ |
183 | |
184 | /* Look at each erased memory_write_request in turn, and | |
185 | see what part of it is subsequently written to. | |
186 | ||
187 | This implementation is O(length(erased) * length(written)). If | |
188 | the lists are sorted at this point it could be rewritten more | |
189 | efficiently, but the complexity is not generally worthwhile. */ | |
190 | ||
55089490 | 191 | for (const memory_write_request &erased_iter : erased_blocks) |
a76d924d DJ |
192 | { |
193 | /* Make a deep copy -- it will be modified inside the loop, but | |
194 | we don't want to modify original vector. */ | |
55089490 | 195 | struct memory_write_request erased = erased_iter; |
a76d924d DJ |
196 | |
197 | for (j = 0; j != je;) | |
198 | { | |
55089490 | 199 | const memory_write_request *written = &written_blocks[j]; |
a76d924d DJ |
200 | |
201 | /* Now try various cases. */ | |
202 | ||
203 | /* If WRITTEN is fully to the left of ERASED, check the next | |
204 | written memory_write_request. */ | |
205 | if (written->end <= erased.begin) | |
206 | { | |
207 | ++j; | |
208 | continue; | |
209 | } | |
210 | ||
211 | /* If WRITTEN is fully to the right of ERASED, then ERASED | |
212 | is not written at all. WRITTEN might affect other | |
213 | blocks. */ | |
214 | if (written->begin >= erased.end) | |
215 | { | |
55089490 | 216 | result.push_back (erased); |
a76d924d DJ |
217 | goto next_erased; |
218 | } | |
219 | ||
220 | /* If all of ERASED is completely written, we can move on to | |
221 | the next erased region. */ | |
222 | if (written->begin <= erased.begin | |
223 | && written->end >= erased.end) | |
224 | { | |
225 | goto next_erased; | |
226 | } | |
227 | ||
228 | /* If there is an unwritten part at the beginning of ERASED, | |
229 | then we should record that part and try this inner loop | |
230 | again for the remainder. */ | |
231 | if (written->begin > erased.begin) | |
232 | { | |
55089490 | 233 | result.emplace_back (erased.begin, written->begin); |
a76d924d DJ |
234 | erased.begin = written->begin; |
235 | continue; | |
236 | } | |
237 | ||
238 | /* If there is an unwritten part at the end of ERASED, we | |
239 | forget about the part that was written to and wait to see | |
240 | if the next write request writes more of ERASED. We can't | |
241 | push it yet. */ | |
242 | if (written->end < erased.end) | |
243 | { | |
244 | erased.begin = written->end; | |
245 | ++j; | |
246 | continue; | |
247 | } | |
248 | } | |
249 | ||
250 | /* If we ran out of write requests without doing anything about | |
251 | ERASED, then that means it's really erased. */ | |
55089490 | 252 | result.push_back (erased); |
a76d924d DJ |
253 | |
254 | next_erased: | |
255 | ; | |
256 | } | |
257 | ||
258 | return result; | |
259 | } | |
260 | ||
a76d924d | 261 | int |
55089490 | 262 | target_write_memory_blocks (const std::vector<memory_write_request> &requests, |
a76d924d DJ |
263 | enum flash_preserve_mode preserve_flash_p, |
264 | void (*progress_cb) (ULONGEST, void *)) | |
265 | { | |
55089490 | 266 | std::vector<memory_write_request> blocks = requests; |
55089490 TT |
267 | std::vector<memory_write_request> regular; |
268 | std::vector<memory_write_request> flash; | |
269 | std::vector<memory_write_request> erased, garbled; | |
a76d924d DJ |
270 | |
271 | /* END == 0 would represent wraparound: a write to the very last | |
272 | byte of the address space. This file was not written with that | |
273 | possibility in mind. This is fixable, but a lot of work for a | |
274 | rare problem; so for now, fail noisily here instead of obscurely | |
275 | later. */ | |
55089490 TT |
276 | for (const memory_write_request &iter : requests) |
277 | gdb_assert (iter.end != 0); | |
a76d924d DJ |
278 | |
279 | /* Sort the blocks by their start address. */ | |
55089490 | 280 | std::sort (blocks.begin (), blocks.end (), compare_block_starting_address); |
a76d924d DJ |
281 | |
282 | /* Split blocks into list of regular memory blocks, | |
c378eb4e | 283 | and list of flash memory blocks. */ |
a76d924d DJ |
284 | split_regular_and_flash_blocks (blocks, ®ular, &flash); |
285 | ||
286 | /* If a variable is added to forbid flash write, even during "load", | |
287 | it should be checked here. Similarly, if this function is used | |
288 | for other situations besides "load" in which writing to flash | |
289 | is undesirable, that should be checked here. */ | |
290 | ||
291 | /* Find flash blocks to erase. */ | |
292 | erased = blocks_to_erase (flash); | |
a76d924d DJ |
293 | |
294 | /* Find what flash regions will be erased, and not overwritten; then | |
295 | either preserve or discard the old contents. */ | |
296 | garbled = compute_garbled_blocks (erased, flash); | |
a76d924d | 297 | |
55089490 TT |
298 | std::vector<gdb::unique_xmalloc_ptr<gdb_byte>> mem_holders; |
299 | if (!garbled.empty ()) | |
a76d924d DJ |
300 | { |
301 | if (preserve_flash_p == flash_preserve) | |
302 | { | |
a76d924d DJ |
303 | /* Read in regions that must be preserved and add them to |
304 | the list of blocks we read. */ | |
55089490 | 305 | for (memory_write_request &iter : garbled) |
a76d924d | 306 | { |
55089490 TT |
307 | gdb_assert (iter.data == NULL); |
308 | gdb::unique_xmalloc_ptr<gdb_byte> holder | |
309 | ((gdb_byte *) xmalloc (iter.end - iter.begin)); | |
310 | iter.data = holder.get (); | |
311 | mem_holders.push_back (std::move (holder)); | |
312 | int err = target_read_memory (iter.begin, iter.data, | |
313 | iter.end - iter.begin); | |
a76d924d | 314 | if (err != 0) |
55089490 | 315 | return err; |
a76d924d | 316 | |
55089490 | 317 | flash.push_back (iter); |
a76d924d DJ |
318 | } |
319 | ||
55089490 TT |
320 | std::sort (flash.begin (), flash.end (), |
321 | compare_block_starting_address); | |
a76d924d DJ |
322 | } |
323 | } | |
324 | ||
325 | /* We could coalesce adjacent memory blocks here, to reduce the | |
326 | number of write requests for small sections. However, we would | |
327 | have to reallocate and copy the data pointers, which could be | |
328 | large; large sections are more common in loadable objects than | |
329 | large numbers of small sections (although the reverse can be true | |
330 | in object files). So, we issue at least one write request per | |
331 | passed struct memory_write_request. The remote stub will still | |
332 | have the opportunity to batch flash requests. */ | |
333 | ||
334 | /* Write regular blocks. */ | |
55089490 | 335 | for (const memory_write_request &iter : regular) |
a76d924d DJ |
336 | { |
337 | LONGEST len; | |
338 | ||
8b88a78e | 339 | len = target_write_with_progress (current_top_target (), |
a76d924d | 340 | TARGET_OBJECT_MEMORY, NULL, |
55089490 TT |
341 | iter.data, iter.begin, |
342 | iter.end - iter.begin, | |
343 | progress_cb, iter.baton); | |
344 | if (len < (LONGEST) (iter.end - iter.begin)) | |
a76d924d DJ |
345 | { |
346 | /* Call error? */ | |
55089490 | 347 | return -1; |
a76d924d DJ |
348 | } |
349 | } | |
350 | ||
55089490 | 351 | if (!erased.empty ()) |
a76d924d DJ |
352 | { |
353 | /* Erase all pages. */ | |
55089490 TT |
354 | for (const memory_write_request &iter : erased) |
355 | target_flash_erase (iter.begin, iter.end - iter.begin); | |
a76d924d DJ |
356 | |
357 | /* Write flash data. */ | |
55089490 | 358 | for (const memory_write_request &iter : flash) |
a76d924d DJ |
359 | { |
360 | LONGEST len; | |
361 | ||
8b88a78e | 362 | len = target_write_with_progress (current_top_target (), |
a76d924d | 363 | TARGET_OBJECT_FLASH, NULL, |
55089490 TT |
364 | iter.data, iter.begin, |
365 | iter.end - iter.begin, | |
366 | progress_cb, iter.baton); | |
367 | if (len < (LONGEST) (iter.end - iter.begin)) | |
a76d924d DJ |
368 | error (_("Error writing data to flash")); |
369 | } | |
370 | ||
371 | target_flash_done (); | |
372 | } | |
373 | ||
55089490 | 374 | return 0; |
a76d924d | 375 | } |