]>
Commit | Line | Data |
---|---|---|
252b5132 RH |
1 | /* ELF linker support. |
2 | Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
19 | ||
20 | /* ELF linker code. */ | |
21 | ||
22 | /* This struct is used to pass information to routines called via | |
23 | elf_link_hash_traverse which must return failure. */ | |
24 | ||
25 | struct elf_info_failed | |
26 | { | |
27 | boolean failed; | |
28 | struct bfd_link_info *info; | |
29 | }; | |
30 | ||
31 | static boolean elf_link_add_object_symbols | |
32 | PARAMS ((bfd *, struct bfd_link_info *)); | |
33 | static boolean elf_link_add_archive_symbols | |
34 | PARAMS ((bfd *, struct bfd_link_info *)); | |
35 | static boolean elf_merge_symbol | |
36 | PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *, | |
37 | asection **, bfd_vma *, struct elf_link_hash_entry **, | |
38 | boolean *, boolean *, boolean *)); | |
39 | static boolean elf_export_symbol | |
40 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
41 | static boolean elf_fix_symbol_flags | |
42 | PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *)); | |
43 | static boolean elf_adjust_dynamic_symbol | |
44 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
45 | static boolean elf_link_find_version_dependencies | |
46 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
47 | static boolean elf_link_find_version_dependencies | |
48 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
49 | static boolean elf_link_assign_sym_version | |
50 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
252b5132 RH |
51 | static boolean elf_collect_hash_codes |
52 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
6b5bd373 MM |
53 | static boolean elf_link_read_relocs_from_section |
54 | PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *)); | |
23bc299b MM |
55 | static void elf_link_output_relocs |
56 | PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *)); | |
57 | static boolean elf_link_size_reloc_section | |
58 | PARAMS ((bfd *, Elf_Internal_Shdr *, asection *)); | |
31367b81 MM |
59 | static void elf_link_adjust_relocs |
60 | PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int, | |
61 | struct elf_link_hash_entry **)); | |
252b5132 RH |
62 | |
63 | /* Given an ELF BFD, add symbols to the global hash table as | |
64 | appropriate. */ | |
65 | ||
66 | boolean | |
67 | elf_bfd_link_add_symbols (abfd, info) | |
68 | bfd *abfd; | |
69 | struct bfd_link_info *info; | |
70 | { | |
71 | switch (bfd_get_format (abfd)) | |
72 | { | |
73 | case bfd_object: | |
74 | return elf_link_add_object_symbols (abfd, info); | |
75 | case bfd_archive: | |
76 | return elf_link_add_archive_symbols (abfd, info); | |
77 | default: | |
78 | bfd_set_error (bfd_error_wrong_format); | |
79 | return false; | |
80 | } | |
81 | } | |
82 | \f | |
83 | ||
84 | /* Add symbols from an ELF archive file to the linker hash table. We | |
85 | don't use _bfd_generic_link_add_archive_symbols because of a | |
86 | problem which arises on UnixWare. The UnixWare libc.so is an | |
87 | archive which includes an entry libc.so.1 which defines a bunch of | |
88 | symbols. The libc.so archive also includes a number of other | |
89 | object files, which also define symbols, some of which are the same | |
90 | as those defined in libc.so.1. Correct linking requires that we | |
91 | consider each object file in turn, and include it if it defines any | |
92 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
93 | this; it looks through the list of undefined symbols, and includes | |
94 | any object file which defines them. When this algorithm is used on | |
95 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
96 | bunch of symbols. This means that some of the other objects in the | |
97 | archive are not included in the link, which is incorrect since they | |
98 | precede libc.so.1 in the archive. | |
99 | ||
100 | Fortunately, ELF archive handling is simpler than that done by | |
101 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
102 | oddities. In ELF, if we find a symbol in the archive map, and the | |
103 | symbol is currently undefined, we know that we must pull in that | |
104 | object file. | |
105 | ||
106 | Unfortunately, we do have to make multiple passes over the symbol | |
107 | table until nothing further is resolved. */ | |
108 | ||
109 | static boolean | |
110 | elf_link_add_archive_symbols (abfd, info) | |
111 | bfd *abfd; | |
112 | struct bfd_link_info *info; | |
113 | { | |
114 | symindex c; | |
115 | boolean *defined = NULL; | |
116 | boolean *included = NULL; | |
117 | carsym *symdefs; | |
118 | boolean loop; | |
119 | ||
120 | if (! bfd_has_map (abfd)) | |
121 | { | |
122 | /* An empty archive is a special case. */ | |
123 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
124 | return true; | |
125 | bfd_set_error (bfd_error_no_armap); | |
126 | return false; | |
127 | } | |
128 | ||
129 | /* Keep track of all symbols we know to be already defined, and all | |
130 | files we know to be already included. This is to speed up the | |
131 | second and subsequent passes. */ | |
132 | c = bfd_ardata (abfd)->symdef_count; | |
133 | if (c == 0) | |
134 | return true; | |
135 | defined = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
136 | included = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
137 | if (defined == (boolean *) NULL || included == (boolean *) NULL) | |
138 | goto error_return; | |
139 | memset (defined, 0, c * sizeof (boolean)); | |
140 | memset (included, 0, c * sizeof (boolean)); | |
141 | ||
142 | symdefs = bfd_ardata (abfd)->symdefs; | |
143 | ||
144 | do | |
145 | { | |
146 | file_ptr last; | |
147 | symindex i; | |
148 | carsym *symdef; | |
149 | carsym *symdefend; | |
150 | ||
151 | loop = false; | |
152 | last = -1; | |
153 | ||
154 | symdef = symdefs; | |
155 | symdefend = symdef + c; | |
156 | for (i = 0; symdef < symdefend; symdef++, i++) | |
157 | { | |
158 | struct elf_link_hash_entry *h; | |
159 | bfd *element; | |
160 | struct bfd_link_hash_entry *undefs_tail; | |
161 | symindex mark; | |
162 | ||
163 | if (defined[i] || included[i]) | |
164 | continue; | |
165 | if (symdef->file_offset == last) | |
166 | { | |
167 | included[i] = true; | |
168 | continue; | |
169 | } | |
170 | ||
171 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
172 | false, false, false); | |
173 | ||
174 | if (h == NULL) | |
175 | { | |
176 | char *p, *copy; | |
177 | ||
178 | /* If this is a default version (the name contains @@), | |
179 | look up the symbol again without the version. The | |
180 | effect is that references to the symbol without the | |
181 | version will be matched by the default symbol in the | |
182 | archive. */ | |
183 | ||
184 | p = strchr (symdef->name, ELF_VER_CHR); | |
185 | if (p == NULL || p[1] != ELF_VER_CHR) | |
186 | continue; | |
187 | ||
188 | copy = bfd_alloc (abfd, p - symdef->name + 1); | |
189 | if (copy == NULL) | |
190 | goto error_return; | |
191 | memcpy (copy, symdef->name, p - symdef->name); | |
192 | copy[p - symdef->name] = '\0'; | |
193 | ||
194 | h = elf_link_hash_lookup (elf_hash_table (info), copy, | |
195 | false, false, false); | |
196 | ||
197 | bfd_release (abfd, copy); | |
198 | } | |
199 | ||
200 | if (h == NULL) | |
201 | continue; | |
202 | ||
203 | if (h->root.type != bfd_link_hash_undefined) | |
204 | { | |
205 | if (h->root.type != bfd_link_hash_undefweak) | |
206 | defined[i] = true; | |
207 | continue; | |
208 | } | |
209 | ||
210 | /* We need to include this archive member. */ | |
211 | ||
212 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
213 | if (element == (bfd *) NULL) | |
214 | goto error_return; | |
215 | ||
216 | if (! bfd_check_format (element, bfd_object)) | |
217 | goto error_return; | |
218 | ||
219 | /* Doublecheck that we have not included this object | |
220 | already--it should be impossible, but there may be | |
221 | something wrong with the archive. */ | |
222 | if (element->archive_pass != 0) | |
223 | { | |
224 | bfd_set_error (bfd_error_bad_value); | |
225 | goto error_return; | |
226 | } | |
227 | element->archive_pass = 1; | |
228 | ||
229 | undefs_tail = info->hash->undefs_tail; | |
230 | ||
231 | if (! (*info->callbacks->add_archive_element) (info, element, | |
232 | symdef->name)) | |
233 | goto error_return; | |
234 | if (! elf_link_add_object_symbols (element, info)) | |
235 | goto error_return; | |
236 | ||
237 | /* If there are any new undefined symbols, we need to make | |
238 | another pass through the archive in order to see whether | |
239 | they can be defined. FIXME: This isn't perfect, because | |
240 | common symbols wind up on undefs_tail and because an | |
241 | undefined symbol which is defined later on in this pass | |
242 | does not require another pass. This isn't a bug, but it | |
243 | does make the code less efficient than it could be. */ | |
244 | if (undefs_tail != info->hash->undefs_tail) | |
245 | loop = true; | |
246 | ||
247 | /* Look backward to mark all symbols from this object file | |
248 | which we have already seen in this pass. */ | |
249 | mark = i; | |
250 | do | |
251 | { | |
252 | included[mark] = true; | |
253 | if (mark == 0) | |
254 | break; | |
255 | --mark; | |
256 | } | |
257 | while (symdefs[mark].file_offset == symdef->file_offset); | |
258 | ||
259 | /* We mark subsequent symbols from this object file as we go | |
260 | on through the loop. */ | |
261 | last = symdef->file_offset; | |
262 | } | |
263 | } | |
264 | while (loop); | |
265 | ||
266 | free (defined); | |
267 | free (included); | |
268 | ||
269 | return true; | |
270 | ||
271 | error_return: | |
272 | if (defined != (boolean *) NULL) | |
273 | free (defined); | |
274 | if (included != (boolean *) NULL) | |
275 | free (included); | |
276 | return false; | |
277 | } | |
278 | ||
279 | /* This function is called when we want to define a new symbol. It | |
280 | handles the various cases which arise when we find a definition in | |
281 | a dynamic object, or when there is already a definition in a | |
282 | dynamic object. The new symbol is described by NAME, SYM, PSEC, | |
283 | and PVALUE. We set SYM_HASH to the hash table entry. We set | |
284 | OVERRIDE if the old symbol is overriding a new definition. We set | |
285 | TYPE_CHANGE_OK if it is OK for the type to change. We set | |
286 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to | |
287 | change, we mean that we shouldn't warn if the type or size does | |
288 | change. */ | |
289 | ||
290 | static boolean | |
291 | elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash, | |
292 | override, type_change_ok, size_change_ok) | |
293 | bfd *abfd; | |
294 | struct bfd_link_info *info; | |
295 | const char *name; | |
296 | Elf_Internal_Sym *sym; | |
297 | asection **psec; | |
298 | bfd_vma *pvalue; | |
299 | struct elf_link_hash_entry **sym_hash; | |
300 | boolean *override; | |
301 | boolean *type_change_ok; | |
302 | boolean *size_change_ok; | |
303 | { | |
304 | asection *sec; | |
305 | struct elf_link_hash_entry *h; | |
306 | int bind; | |
307 | bfd *oldbfd; | |
308 | boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
309 | ||
310 | *override = false; | |
311 | ||
312 | sec = *psec; | |
313 | bind = ELF_ST_BIND (sym->st_info); | |
314 | ||
315 | if (! bfd_is_und_section (sec)) | |
316 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); | |
317 | else | |
318 | h = ((struct elf_link_hash_entry *) | |
319 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); | |
320 | if (h == NULL) | |
321 | return false; | |
322 | *sym_hash = h; | |
323 | ||
324 | /* This code is for coping with dynamic objects, and is only useful | |
325 | if we are doing an ELF link. */ | |
326 | if (info->hash->creator != abfd->xvec) | |
327 | return true; | |
328 | ||
329 | /* For merging, we only care about real symbols. */ | |
330 | ||
331 | while (h->root.type == bfd_link_hash_indirect | |
332 | || h->root.type == bfd_link_hash_warning) | |
333 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
334 | ||
335 | /* If we just created the symbol, mark it as being an ELF symbol. | |
336 | Other than that, there is nothing to do--there is no merge issue | |
337 | with a newly defined symbol--so we just return. */ | |
338 | ||
339 | if (h->root.type == bfd_link_hash_new) | |
340 | { | |
341 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
342 | return true; | |
343 | } | |
344 | ||
345 | /* OLDBFD is a BFD associated with the existing symbol. */ | |
346 | ||
347 | switch (h->root.type) | |
348 | { | |
349 | default: | |
350 | oldbfd = NULL; | |
351 | break; | |
352 | ||
353 | case bfd_link_hash_undefined: | |
354 | case bfd_link_hash_undefweak: | |
355 | oldbfd = h->root.u.undef.abfd; | |
356 | break; | |
357 | ||
358 | case bfd_link_hash_defined: | |
359 | case bfd_link_hash_defweak: | |
360 | oldbfd = h->root.u.def.section->owner; | |
361 | break; | |
362 | ||
363 | case bfd_link_hash_common: | |
364 | oldbfd = h->root.u.c.p->section->owner; | |
365 | break; | |
366 | } | |
367 | ||
b4536acd ILT |
368 | /* In cases involving weak versioned symbols, we may wind up trying |
369 | to merge a symbol with itself. Catch that here, to avoid the | |
370 | confusion that results if we try to override a symbol with | |
371 | itself. */ | |
372 | if (abfd == oldbfd) | |
373 | return true; | |
374 | ||
252b5132 RH |
375 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, |
376 | respectively, is from a dynamic object. */ | |
377 | ||
378 | if ((abfd->flags & DYNAMIC) != 0) | |
379 | newdyn = true; | |
380 | else | |
381 | newdyn = false; | |
382 | ||
383 | if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0) | |
384 | olddyn = false; | |
385 | else | |
386 | olddyn = true; | |
387 | ||
388 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, | |
389 | respectively, appear to be a definition rather than reference. */ | |
390 | ||
391 | if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) | |
392 | newdef = false; | |
393 | else | |
394 | newdef = true; | |
395 | ||
396 | if (h->root.type == bfd_link_hash_undefined | |
397 | || h->root.type == bfd_link_hash_undefweak | |
398 | || h->root.type == bfd_link_hash_common) | |
399 | olddef = false; | |
400 | else | |
401 | olddef = true; | |
402 | ||
403 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old | |
404 | symbol, respectively, appears to be a common symbol in a dynamic | |
405 | object. If a symbol appears in an uninitialized section, and is | |
406 | not weak, and is not a function, then it may be a common symbol | |
407 | which was resolved when the dynamic object was created. We want | |
408 | to treat such symbols specially, because they raise special | |
409 | considerations when setting the symbol size: if the symbol | |
410 | appears as a common symbol in a regular object, and the size in | |
411 | the regular object is larger, we must make sure that we use the | |
412 | larger size. This problematic case can always be avoided in C, | |
413 | but it must be handled correctly when using Fortran shared | |
414 | libraries. | |
415 | ||
416 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
417 | likewise for OLDDYNCOMMON and OLDDEF. | |
418 | ||
419 | Note that this test is just a heuristic, and that it is quite | |
420 | possible to have an uninitialized symbol in a shared object which | |
421 | is really a definition, rather than a common symbol. This could | |
422 | lead to some minor confusion when the symbol really is a common | |
423 | symbol in some regular object. However, I think it will be | |
424 | harmless. */ | |
425 | ||
426 | if (newdyn | |
427 | && newdef | |
428 | && (sec->flags & SEC_ALLOC) != 0 | |
429 | && (sec->flags & SEC_LOAD) == 0 | |
430 | && sym->st_size > 0 | |
431 | && bind != STB_WEAK | |
432 | && ELF_ST_TYPE (sym->st_info) != STT_FUNC) | |
433 | newdyncommon = true; | |
434 | else | |
435 | newdyncommon = false; | |
436 | ||
437 | if (olddyn | |
438 | && olddef | |
439 | && h->root.type == bfd_link_hash_defined | |
440 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
441 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 | |
442 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
443 | && h->size > 0 | |
444 | && h->type != STT_FUNC) | |
445 | olddyncommon = true; | |
446 | else | |
447 | olddyncommon = false; | |
448 | ||
449 | /* It's OK to change the type if either the existing symbol or the | |
450 | new symbol is weak. */ | |
451 | ||
452 | if (h->root.type == bfd_link_hash_defweak | |
453 | || h->root.type == bfd_link_hash_undefweak | |
454 | || bind == STB_WEAK) | |
455 | *type_change_ok = true; | |
456 | ||
457 | /* It's OK to change the size if either the existing symbol or the | |
458 | new symbol is weak, or if the old symbol is undefined. */ | |
459 | ||
460 | if (*type_change_ok | |
461 | || h->root.type == bfd_link_hash_undefined) | |
462 | *size_change_ok = true; | |
463 | ||
464 | /* If both the old and the new symbols look like common symbols in a | |
465 | dynamic object, set the size of the symbol to the larger of the | |
466 | two. */ | |
467 | ||
468 | if (olddyncommon | |
469 | && newdyncommon | |
470 | && sym->st_size != h->size) | |
471 | { | |
472 | /* Since we think we have two common symbols, issue a multiple | |
473 | common warning if desired. Note that we only warn if the | |
474 | size is different. If the size is the same, we simply let | |
475 | the old symbol override the new one as normally happens with | |
476 | symbols defined in dynamic objects. */ | |
477 | ||
478 | if (! ((*info->callbacks->multiple_common) | |
479 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
480 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
481 | return false; | |
482 | ||
483 | if (sym->st_size > h->size) | |
484 | h->size = sym->st_size; | |
485 | ||
486 | *size_change_ok = true; | |
487 | } | |
488 | ||
489 | /* If we are looking at a dynamic object, and we have found a | |
490 | definition, we need to see if the symbol was already defined by | |
491 | some other object. If so, we want to use the existing | |
492 | definition, and we do not want to report a multiple symbol | |
493 | definition error; we do this by clobbering *PSEC to be | |
494 | bfd_und_section_ptr. | |
495 | ||
496 | We treat a common symbol as a definition if the symbol in the | |
497 | shared library is a function, since common symbols always | |
498 | represent variables; this can cause confusion in principle, but | |
499 | any such confusion would seem to indicate an erroneous program or | |
500 | shared library. We also permit a common symbol in a regular | |
0525d26e ILT |
501 | object to override a weak symbol in a shared object. |
502 | ||
503 | We prefer a non-weak definition in a shared library to a weak | |
504 | definition in the executable. */ | |
252b5132 RH |
505 | |
506 | if (newdyn | |
507 | && newdef | |
508 | && (olddef | |
509 | || (h->root.type == bfd_link_hash_common | |
510 | && (bind == STB_WEAK | |
0525d26e ILT |
511 | || ELF_ST_TYPE (sym->st_info) == STT_FUNC))) |
512 | && (h->root.type != bfd_link_hash_defweak | |
513 | || bind == STB_WEAK)) | |
252b5132 RH |
514 | { |
515 | *override = true; | |
516 | newdef = false; | |
517 | newdyncommon = false; | |
518 | ||
519 | *psec = sec = bfd_und_section_ptr; | |
520 | *size_change_ok = true; | |
521 | ||
522 | /* If we get here when the old symbol is a common symbol, then | |
523 | we are explicitly letting it override a weak symbol or | |
524 | function in a dynamic object, and we don't want to warn about | |
525 | a type change. If the old symbol is a defined symbol, a type | |
526 | change warning may still be appropriate. */ | |
527 | ||
528 | if (h->root.type == bfd_link_hash_common) | |
529 | *type_change_ok = true; | |
530 | } | |
531 | ||
532 | /* Handle the special case of an old common symbol merging with a | |
533 | new symbol which looks like a common symbol in a shared object. | |
534 | We change *PSEC and *PVALUE to make the new symbol look like a | |
535 | common symbol, and let _bfd_generic_link_add_one_symbol will do | |
536 | the right thing. */ | |
537 | ||
538 | if (newdyncommon | |
539 | && h->root.type == bfd_link_hash_common) | |
540 | { | |
541 | *override = true; | |
542 | newdef = false; | |
543 | newdyncommon = false; | |
544 | *pvalue = sym->st_size; | |
545 | *psec = sec = bfd_com_section_ptr; | |
546 | *size_change_ok = true; | |
547 | } | |
548 | ||
549 | /* If the old symbol is from a dynamic object, and the new symbol is | |
550 | a definition which is not from a dynamic object, then the new | |
551 | symbol overrides the old symbol. Symbols from regular files | |
552 | always take precedence over symbols from dynamic objects, even if | |
553 | they are defined after the dynamic object in the link. | |
554 | ||
555 | As above, we again permit a common symbol in a regular object to | |
556 | override a definition in a shared object if the shared object | |
0525d26e ILT |
557 | symbol is a function or is weak. |
558 | ||
559 | As above, we permit a non-weak definition in a shared object to | |
560 | override a weak definition in a regular object. */ | |
252b5132 RH |
561 | |
562 | if (! newdyn | |
563 | && (newdef | |
564 | || (bfd_is_com_section (sec) | |
565 | && (h->root.type == bfd_link_hash_defweak | |
566 | || h->type == STT_FUNC))) | |
567 | && olddyn | |
568 | && olddef | |
0525d26e ILT |
569 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
570 | && (bind != STB_WEAK | |
571 | || h->root.type == bfd_link_hash_defweak)) | |
252b5132 RH |
572 | { |
573 | /* Change the hash table entry to undefined, and let | |
574 | _bfd_generic_link_add_one_symbol do the right thing with the | |
575 | new definition. */ | |
576 | ||
577 | h->root.type = bfd_link_hash_undefined; | |
578 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
579 | *size_change_ok = true; | |
580 | ||
581 | olddef = false; | |
582 | olddyncommon = false; | |
583 | ||
584 | /* We again permit a type change when a common symbol may be | |
585 | overriding a function. */ | |
586 | ||
587 | if (bfd_is_com_section (sec)) | |
588 | *type_change_ok = true; | |
589 | ||
590 | /* This union may have been set to be non-NULL when this symbol | |
591 | was seen in a dynamic object. We must force the union to be | |
592 | NULL, so that it is correct for a regular symbol. */ | |
593 | ||
594 | h->verinfo.vertree = NULL; | |
595 | ||
596 | /* In this special case, if H is the target of an indirection, | |
597 | we want the caller to frob with H rather than with the | |
598 | indirect symbol. That will permit the caller to redefine the | |
599 | target of the indirection, rather than the indirect symbol | |
600 | itself. FIXME: This will break the -y option if we store a | |
601 | symbol with a different name. */ | |
602 | *sym_hash = h; | |
603 | } | |
604 | ||
605 | /* Handle the special case of a new common symbol merging with an | |
606 | old symbol that looks like it might be a common symbol defined in | |
607 | a shared object. Note that we have already handled the case in | |
608 | which a new common symbol should simply override the definition | |
609 | in the shared library. */ | |
610 | ||
611 | if (! newdyn | |
612 | && bfd_is_com_section (sec) | |
613 | && olddyncommon) | |
614 | { | |
615 | /* It would be best if we could set the hash table entry to a | |
616 | common symbol, but we don't know what to use for the section | |
617 | or the alignment. */ | |
618 | if (! ((*info->callbacks->multiple_common) | |
619 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
620 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
621 | return false; | |
622 | ||
623 | /* If the predumed common symbol in the dynamic object is | |
624 | larger, pretend that the new symbol has its size. */ | |
625 | ||
626 | if (h->size > *pvalue) | |
627 | *pvalue = h->size; | |
628 | ||
629 | /* FIXME: We no longer know the alignment required by the symbol | |
630 | in the dynamic object, so we just wind up using the one from | |
631 | the regular object. */ | |
632 | ||
633 | olddef = false; | |
634 | olddyncommon = false; | |
635 | ||
636 | h->root.type = bfd_link_hash_undefined; | |
637 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
638 | ||
639 | *size_change_ok = true; | |
640 | *type_change_ok = true; | |
641 | ||
642 | h->verinfo.vertree = NULL; | |
643 | } | |
644 | ||
0525d26e ILT |
645 | /* Handle the special case of a weak definition in a regular object |
646 | followed by a non-weak definition in a shared object. In this | |
b4536acd | 647 | case, we prefer the definition in the shared object. */ |
0525d26e | 648 | if (olddef |
0525d26e ILT |
649 | && h->root.type == bfd_link_hash_defweak |
650 | && newdef | |
651 | && newdyn | |
652 | && bind != STB_WEAK) | |
b4536acd ILT |
653 | { |
654 | /* To make this work we have to frob the flags so that the rest | |
655 | of the code does not think we are using the regular | |
656 | definition. */ | |
657 | h->elf_link_hash_flags &= ~ ELF_LINK_HASH_DEF_REGULAR; | |
658 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
659 | ||
660 | /* If H is the target of an indirection, we want the caller to | |
661 | use H rather than the indirect symbol. Otherwise if we are | |
662 | defining a new indirect symbol we will wind up attaching it | |
663 | to the entry we are overriding. */ | |
664 | *sym_hash = h; | |
665 | } | |
0525d26e ILT |
666 | |
667 | /* Handle the special case of a non-weak definition in a shared | |
668 | object followed by a weak definition in a regular object. In | |
669 | this case we prefer to definition in the shared object. To make | |
670 | this work we have to tell the caller to not treat the new symbol | |
671 | as a definition. */ | |
672 | if (olddef | |
673 | && olddyn | |
674 | && h->root.type != bfd_link_hash_defweak | |
675 | && newdef | |
676 | && ! newdyn | |
677 | && bind == STB_WEAK) | |
678 | *override = true; | |
679 | ||
252b5132 RH |
680 | return true; |
681 | } | |
682 | ||
683 | /* Add symbols from an ELF object file to the linker hash table. */ | |
684 | ||
685 | static boolean | |
686 | elf_link_add_object_symbols (abfd, info) | |
687 | bfd *abfd; | |
688 | struct bfd_link_info *info; | |
689 | { | |
690 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
691 | const Elf_Internal_Sym *, | |
692 | const char **, flagword *, | |
693 | asection **, bfd_vma *)); | |
694 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, | |
695 | asection *, const Elf_Internal_Rela *)); | |
696 | boolean collect; | |
697 | Elf_Internal_Shdr *hdr; | |
698 | size_t symcount; | |
699 | size_t extsymcount; | |
700 | size_t extsymoff; | |
701 | Elf_External_Sym *buf = NULL; | |
702 | struct elf_link_hash_entry **sym_hash; | |
703 | boolean dynamic; | |
704 | bfd_byte *dynver = NULL; | |
705 | Elf_External_Versym *extversym = NULL; | |
706 | Elf_External_Versym *ever; | |
707 | Elf_External_Dyn *dynbuf = NULL; | |
708 | struct elf_link_hash_entry *weaks; | |
709 | Elf_External_Sym *esym; | |
710 | Elf_External_Sym *esymend; | |
711 | ||
712 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
713 | collect = get_elf_backend_data (abfd)->collect; | |
714 | ||
715 | if ((abfd->flags & DYNAMIC) == 0) | |
716 | dynamic = false; | |
717 | else | |
718 | { | |
719 | dynamic = true; | |
720 | ||
721 | /* You can't use -r against a dynamic object. Also, there's no | |
722 | hope of using a dynamic object which does not exactly match | |
723 | the format of the output file. */ | |
724 | if (info->relocateable || info->hash->creator != abfd->xvec) | |
725 | { | |
726 | bfd_set_error (bfd_error_invalid_operation); | |
727 | goto error_return; | |
728 | } | |
729 | } | |
730 | ||
731 | /* As a GNU extension, any input sections which are named | |
732 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
733 | symbol. This differs from .gnu.warning sections, which generate | |
734 | warnings when they are included in an output file. */ | |
735 | if (! info->shared) | |
736 | { | |
737 | asection *s; | |
738 | ||
739 | for (s = abfd->sections; s != NULL; s = s->next) | |
740 | { | |
741 | const char *name; | |
742 | ||
743 | name = bfd_get_section_name (abfd, s); | |
744 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
745 | { | |
746 | char *msg; | |
747 | bfd_size_type sz; | |
748 | ||
749 | name += sizeof ".gnu.warning." - 1; | |
750 | ||
751 | /* If this is a shared object, then look up the symbol | |
752 | in the hash table. If it is there, and it is already | |
753 | been defined, then we will not be using the entry | |
754 | from this shared object, so we don't need to warn. | |
755 | FIXME: If we see the definition in a regular object | |
756 | later on, we will warn, but we shouldn't. The only | |
757 | fix is to keep track of what warnings we are supposed | |
758 | to emit, and then handle them all at the end of the | |
759 | link. */ | |
760 | if (dynamic && abfd->xvec == info->hash->creator) | |
761 | { | |
762 | struct elf_link_hash_entry *h; | |
763 | ||
764 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
765 | false, false, true); | |
766 | ||
767 | /* FIXME: What about bfd_link_hash_common? */ | |
768 | if (h != NULL | |
769 | && (h->root.type == bfd_link_hash_defined | |
770 | || h->root.type == bfd_link_hash_defweak)) | |
771 | { | |
772 | /* We don't want to issue this warning. Clobber | |
773 | the section size so that the warning does not | |
774 | get copied into the output file. */ | |
775 | s->_raw_size = 0; | |
776 | continue; | |
777 | } | |
778 | } | |
779 | ||
780 | sz = bfd_section_size (abfd, s); | |
781 | msg = (char *) bfd_alloc (abfd, sz + 1); | |
782 | if (msg == NULL) | |
783 | goto error_return; | |
784 | ||
785 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) | |
786 | goto error_return; | |
787 | ||
788 | msg[sz] = '\0'; | |
789 | ||
790 | if (! (_bfd_generic_link_add_one_symbol | |
791 | (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg, | |
792 | false, collect, (struct bfd_link_hash_entry **) NULL))) | |
793 | goto error_return; | |
794 | ||
795 | if (! info->relocateable) | |
796 | { | |
797 | /* Clobber the section size so that the warning does | |
798 | not get copied into the output file. */ | |
799 | s->_raw_size = 0; | |
800 | } | |
801 | } | |
802 | } | |
803 | } | |
804 | ||
805 | /* If this is a dynamic object, we always link against the .dynsym | |
806 | symbol table, not the .symtab symbol table. The dynamic linker | |
807 | will only see the .dynsym symbol table, so there is no reason to | |
808 | look at .symtab for a dynamic object. */ | |
809 | ||
810 | if (! dynamic || elf_dynsymtab (abfd) == 0) | |
811 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
812 | else | |
813 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
814 | ||
815 | if (dynamic) | |
816 | { | |
817 | /* Read in any version definitions. */ | |
818 | ||
819 | if (! _bfd_elf_slurp_version_tables (abfd)) | |
820 | goto error_return; | |
821 | ||
822 | /* Read in the symbol versions, but don't bother to convert them | |
823 | to internal format. */ | |
824 | if (elf_dynversym (abfd) != 0) | |
825 | { | |
826 | Elf_Internal_Shdr *versymhdr; | |
827 | ||
828 | versymhdr = &elf_tdata (abfd)->dynversym_hdr; | |
829 | extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size); | |
830 | if (extversym == NULL) | |
831 | goto error_return; | |
832 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 | |
833 | || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd) | |
834 | != versymhdr->sh_size)) | |
835 | goto error_return; | |
836 | } | |
837 | } | |
838 | ||
839 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
840 | ||
841 | /* The sh_info field of the symtab header tells us where the | |
842 | external symbols start. We don't care about the local symbols at | |
843 | this point. */ | |
844 | if (elf_bad_symtab (abfd)) | |
845 | { | |
846 | extsymcount = symcount; | |
847 | extsymoff = 0; | |
848 | } | |
849 | else | |
850 | { | |
851 | extsymcount = symcount - hdr->sh_info; | |
852 | extsymoff = hdr->sh_info; | |
853 | } | |
854 | ||
855 | buf = ((Elf_External_Sym *) | |
856 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); | |
857 | if (buf == NULL && extsymcount != 0) | |
858 | goto error_return; | |
859 | ||
860 | /* We store a pointer to the hash table entry for each external | |
861 | symbol. */ | |
862 | sym_hash = ((struct elf_link_hash_entry **) | |
863 | bfd_alloc (abfd, | |
864 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
865 | if (sym_hash == NULL) | |
866 | goto error_return; | |
867 | elf_sym_hashes (abfd) = sym_hash; | |
868 | ||
869 | if (! dynamic) | |
870 | { | |
871 | /* If we are creating a shared library, create all the dynamic | |
872 | sections immediately. We need to attach them to something, | |
873 | so we attach them to this BFD, provided it is the right | |
874 | format. FIXME: If there are no input BFD's of the same | |
875 | format as the output, we can't make a shared library. */ | |
876 | if (info->shared | |
877 | && ! elf_hash_table (info)->dynamic_sections_created | |
878 | && abfd->xvec == info->hash->creator) | |
879 | { | |
880 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
881 | goto error_return; | |
882 | } | |
883 | } | |
884 | else | |
885 | { | |
886 | asection *s; | |
887 | boolean add_needed; | |
888 | const char *name; | |
889 | bfd_size_type oldsize; | |
890 | bfd_size_type strindex; | |
891 | ||
892 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
893 | object. If the object has a DT_SONAME entry, we use it. | |
894 | Otherwise, if the generic linker stuck something in | |
895 | elf_dt_name, we use that. Otherwise, we just use the file | |
896 | name. If the generic linker put a null string into | |
897 | elf_dt_name, we don't make a DT_NEEDED entry at all, even if | |
898 | there is a DT_SONAME entry. */ | |
899 | add_needed = true; | |
900 | name = bfd_get_filename (abfd); | |
901 | if (elf_dt_name (abfd) != NULL) | |
902 | { | |
903 | name = elf_dt_name (abfd); | |
904 | if (*name == '\0') | |
905 | add_needed = false; | |
906 | } | |
907 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
908 | if (s != NULL) | |
909 | { | |
910 | Elf_External_Dyn *extdyn; | |
911 | Elf_External_Dyn *extdynend; | |
912 | int elfsec; | |
913 | unsigned long link; | |
914 | ||
915 | dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size); | |
916 | if (dynbuf == NULL) | |
917 | goto error_return; | |
918 | ||
919 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
920 | (file_ptr) 0, s->_raw_size)) | |
921 | goto error_return; | |
922 | ||
923 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
924 | if (elfsec == -1) | |
925 | goto error_return; | |
926 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
927 | ||
928 | extdyn = dynbuf; | |
929 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
930 | for (; extdyn < extdynend; extdyn++) | |
931 | { | |
932 | Elf_Internal_Dyn dyn; | |
933 | ||
934 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
935 | if (dyn.d_tag == DT_SONAME) | |
936 | { | |
937 | name = bfd_elf_string_from_elf_section (abfd, link, | |
938 | dyn.d_un.d_val); | |
939 | if (name == NULL) | |
940 | goto error_return; | |
941 | } | |
942 | if (dyn.d_tag == DT_NEEDED) | |
943 | { | |
944 | struct bfd_link_needed_list *n, **pn; | |
945 | char *fnm, *anm; | |
946 | ||
947 | n = ((struct bfd_link_needed_list *) | |
948 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); | |
949 | fnm = bfd_elf_string_from_elf_section (abfd, link, | |
950 | dyn.d_un.d_val); | |
951 | if (n == NULL || fnm == NULL) | |
952 | goto error_return; | |
953 | anm = bfd_alloc (abfd, strlen (fnm) + 1); | |
954 | if (anm == NULL) | |
955 | goto error_return; | |
956 | strcpy (anm, fnm); | |
957 | n->name = anm; | |
958 | n->by = abfd; | |
959 | n->next = NULL; | |
960 | for (pn = &elf_hash_table (info)->needed; | |
961 | *pn != NULL; | |
962 | pn = &(*pn)->next) | |
963 | ; | |
964 | *pn = n; | |
965 | } | |
966 | } | |
967 | ||
968 | free (dynbuf); | |
969 | dynbuf = NULL; | |
970 | } | |
971 | ||
972 | /* We do not want to include any of the sections in a dynamic | |
973 | object in the output file. We hack by simply clobbering the | |
974 | list of sections in the BFD. This could be handled more | |
975 | cleanly by, say, a new section flag; the existing | |
976 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
977 | still implies that the section takes up space in the output | |
978 | file. */ | |
979 | abfd->sections = NULL; | |
980 | abfd->section_count = 0; | |
981 | ||
982 | /* If this is the first dynamic object found in the link, create | |
983 | the special sections required for dynamic linking. */ | |
984 | if (! elf_hash_table (info)->dynamic_sections_created) | |
985 | { | |
986 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
987 | goto error_return; | |
988 | } | |
989 | ||
990 | if (add_needed) | |
991 | { | |
992 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
993 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
994 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, | |
995 | true, false); | |
996 | if (strindex == (bfd_size_type) -1) | |
997 | goto error_return; | |
998 | ||
999 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
1000 | { | |
1001 | asection *sdyn; | |
1002 | Elf_External_Dyn *dyncon, *dynconend; | |
1003 | ||
1004 | /* The hash table size did not change, which means that | |
1005 | the dynamic object name was already entered. If we | |
1006 | have already included this dynamic object in the | |
1007 | link, just ignore it. There is no reason to include | |
1008 | a particular dynamic object more than once. */ | |
1009 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
1010 | ".dynamic"); | |
1011 | BFD_ASSERT (sdyn != NULL); | |
1012 | ||
1013 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
1014 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
1015 | sdyn->_raw_size); | |
1016 | for (; dyncon < dynconend; dyncon++) | |
1017 | { | |
1018 | Elf_Internal_Dyn dyn; | |
1019 | ||
1020 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, | |
1021 | &dyn); | |
1022 | if (dyn.d_tag == DT_NEEDED | |
1023 | && dyn.d_un.d_val == strindex) | |
1024 | { | |
1025 | if (buf != NULL) | |
1026 | free (buf); | |
1027 | if (extversym != NULL) | |
1028 | free (extversym); | |
1029 | return true; | |
1030 | } | |
1031 | } | |
1032 | } | |
1033 | ||
1034 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
1035 | goto error_return; | |
1036 | } | |
1037 | ||
1038 | /* Save the SONAME, if there is one, because sometimes the | |
1039 | linker emulation code will need to know it. */ | |
1040 | if (*name == '\0') | |
1041 | name = bfd_get_filename (abfd); | |
1042 | elf_dt_name (abfd) = name; | |
1043 | } | |
1044 | ||
1045 | if (bfd_seek (abfd, | |
1046 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), | |
1047 | SEEK_SET) != 0 | |
1048 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
1049 | != extsymcount * sizeof (Elf_External_Sym))) | |
1050 | goto error_return; | |
1051 | ||
1052 | weaks = NULL; | |
1053 | ||
1054 | ever = extversym != NULL ? extversym + extsymoff : NULL; | |
1055 | esymend = buf + extsymcount; | |
1056 | for (esym = buf; | |
1057 | esym < esymend; | |
1058 | esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) | |
1059 | { | |
1060 | Elf_Internal_Sym sym; | |
1061 | int bind; | |
1062 | bfd_vma value; | |
1063 | asection *sec; | |
1064 | flagword flags; | |
1065 | const char *name; | |
1066 | struct elf_link_hash_entry *h; | |
1067 | boolean definition; | |
1068 | boolean size_change_ok, type_change_ok; | |
1069 | boolean new_weakdef; | |
1070 | unsigned int old_alignment; | |
1071 | ||
1072 | elf_swap_symbol_in (abfd, esym, &sym); | |
1073 | ||
1074 | flags = BSF_NO_FLAGS; | |
1075 | sec = NULL; | |
1076 | value = sym.st_value; | |
1077 | *sym_hash = NULL; | |
1078 | ||
1079 | bind = ELF_ST_BIND (sym.st_info); | |
1080 | if (bind == STB_LOCAL) | |
1081 | { | |
1082 | /* This should be impossible, since ELF requires that all | |
1083 | global symbols follow all local symbols, and that sh_info | |
1084 | point to the first global symbol. Unfortunatealy, Irix 5 | |
1085 | screws this up. */ | |
1086 | continue; | |
1087 | } | |
1088 | else if (bind == STB_GLOBAL) | |
1089 | { | |
1090 | if (sym.st_shndx != SHN_UNDEF | |
1091 | && sym.st_shndx != SHN_COMMON) | |
1092 | flags = BSF_GLOBAL; | |
1093 | else | |
1094 | flags = 0; | |
1095 | } | |
1096 | else if (bind == STB_WEAK) | |
1097 | flags = BSF_WEAK; | |
1098 | else | |
1099 | { | |
1100 | /* Leave it up to the processor backend. */ | |
1101 | } | |
1102 | ||
1103 | if (sym.st_shndx == SHN_UNDEF) | |
1104 | sec = bfd_und_section_ptr; | |
1105 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) | |
1106 | { | |
1107 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
1108 | if (sec == NULL) | |
1109 | sec = bfd_abs_section_ptr; | |
1110 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) | |
1111 | value -= sec->vma; | |
1112 | } | |
1113 | else if (sym.st_shndx == SHN_ABS) | |
1114 | sec = bfd_abs_section_ptr; | |
1115 | else if (sym.st_shndx == SHN_COMMON) | |
1116 | { | |
1117 | sec = bfd_com_section_ptr; | |
1118 | /* What ELF calls the size we call the value. What ELF | |
1119 | calls the value we call the alignment. */ | |
1120 | value = sym.st_size; | |
1121 | } | |
1122 | else | |
1123 | { | |
1124 | /* Leave it up to the processor backend. */ | |
1125 | } | |
1126 | ||
1127 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
1128 | if (name == (const char *) NULL) | |
1129 | goto error_return; | |
1130 | ||
1131 | if (add_symbol_hook) | |
1132 | { | |
1133 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
1134 | &value)) | |
1135 | goto error_return; | |
1136 | ||
1137 | /* The hook function sets the name to NULL if this symbol | |
1138 | should be skipped for some reason. */ | |
1139 | if (name == (const char *) NULL) | |
1140 | continue; | |
1141 | } | |
1142 | ||
1143 | /* Sanity check that all possibilities were handled. */ | |
1144 | if (sec == (asection *) NULL) | |
1145 | { | |
1146 | bfd_set_error (bfd_error_bad_value); | |
1147 | goto error_return; | |
1148 | } | |
1149 | ||
1150 | if (bfd_is_und_section (sec) | |
1151 | || bfd_is_com_section (sec)) | |
1152 | definition = false; | |
1153 | else | |
1154 | definition = true; | |
1155 | ||
1156 | size_change_ok = false; | |
1157 | type_change_ok = get_elf_backend_data (abfd)->type_change_ok; | |
1158 | old_alignment = 0; | |
1159 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
1160 | { | |
1161 | Elf_Internal_Versym iver; | |
1162 | unsigned int vernum = 0; | |
1163 | boolean override; | |
1164 | ||
1165 | if (ever != NULL) | |
1166 | { | |
1167 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |
1168 | vernum = iver.vs_vers & VERSYM_VERSION; | |
1169 | ||
1170 | /* If this is a hidden symbol, or if it is not version | |
1171 | 1, we append the version name to the symbol name. | |
1172 | However, we do not modify a non-hidden absolute | |
1173 | symbol, because it might be the version symbol | |
1174 | itself. FIXME: What if it isn't? */ | |
1175 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 | |
1176 | || (vernum > 1 && ! bfd_is_abs_section (sec))) | |
1177 | { | |
1178 | const char *verstr; | |
1179 | int namelen, newlen; | |
1180 | char *newname, *p; | |
1181 | ||
1182 | if (sym.st_shndx != SHN_UNDEF) | |
1183 | { | |
1184 | if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info) | |
1185 | { | |
1186 | (*_bfd_error_handler) | |
1187 | (_("%s: %s: invalid version %u (max %d)"), | |
1188 | bfd_get_filename (abfd), name, vernum, | |
1189 | elf_tdata (abfd)->dynverdef_hdr.sh_info); | |
1190 | bfd_set_error (bfd_error_bad_value); | |
1191 | goto error_return; | |
1192 | } | |
1193 | else if (vernum > 1) | |
1194 | verstr = | |
1195 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | |
1196 | else | |
1197 | verstr = ""; | |
1198 | } | |
1199 | else | |
1200 | { | |
1201 | /* We cannot simply test for the number of | |
1202 | entries in the VERNEED section since the | |
1203 | numbers for the needed versions do not start | |
1204 | at 0. */ | |
1205 | Elf_Internal_Verneed *t; | |
1206 | ||
1207 | verstr = NULL; | |
1208 | for (t = elf_tdata (abfd)->verref; | |
1209 | t != NULL; | |
1210 | t = t->vn_nextref) | |
1211 | { | |
1212 | Elf_Internal_Vernaux *a; | |
1213 | ||
1214 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
1215 | { | |
1216 | if (a->vna_other == vernum) | |
1217 | { | |
1218 | verstr = a->vna_nodename; | |
1219 | break; | |
1220 | } | |
1221 | } | |
1222 | if (a != NULL) | |
1223 | break; | |
1224 | } | |
1225 | if (verstr == NULL) | |
1226 | { | |
1227 | (*_bfd_error_handler) | |
1228 | (_("%s: %s: invalid needed version %d"), | |
1229 | bfd_get_filename (abfd), name, vernum); | |
1230 | bfd_set_error (bfd_error_bad_value); | |
1231 | goto error_return; | |
1232 | } | |
1233 | } | |
1234 | ||
1235 | namelen = strlen (name); | |
1236 | newlen = namelen + strlen (verstr) + 2; | |
1237 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0) | |
1238 | ++newlen; | |
1239 | ||
1240 | newname = (char *) bfd_alloc (abfd, newlen); | |
1241 | if (newname == NULL) | |
1242 | goto error_return; | |
1243 | strcpy (newname, name); | |
1244 | p = newname + namelen; | |
1245 | *p++ = ELF_VER_CHR; | |
1246 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0) | |
1247 | *p++ = ELF_VER_CHR; | |
1248 | strcpy (p, verstr); | |
1249 | ||
1250 | name = newname; | |
1251 | } | |
1252 | } | |
1253 | ||
1254 | if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value, | |
1255 | sym_hash, &override, &type_change_ok, | |
1256 | &size_change_ok)) | |
1257 | goto error_return; | |
1258 | ||
1259 | if (override) | |
1260 | definition = false; | |
1261 | ||
1262 | h = *sym_hash; | |
1263 | while (h->root.type == bfd_link_hash_indirect | |
1264 | || h->root.type == bfd_link_hash_warning) | |
1265 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1266 | ||
1267 | /* Remember the old alignment if this is a common symbol, so | |
1268 | that we don't reduce the alignment later on. We can't | |
1269 | check later, because _bfd_generic_link_add_one_symbol | |
1270 | will set a default for the alignment which we want to | |
1271 | override. */ | |
1272 | if (h->root.type == bfd_link_hash_common) | |
1273 | old_alignment = h->root.u.c.p->alignment_power; | |
1274 | ||
1275 | if (elf_tdata (abfd)->verdef != NULL | |
1276 | && ! override | |
1277 | && vernum > 1 | |
1278 | && definition) | |
1279 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | |
1280 | } | |
1281 | ||
1282 | if (! (_bfd_generic_link_add_one_symbol | |
1283 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
1284 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
1285 | goto error_return; | |
1286 | ||
1287 | h = *sym_hash; | |
1288 | while (h->root.type == bfd_link_hash_indirect | |
1289 | || h->root.type == bfd_link_hash_warning) | |
1290 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1291 | *sym_hash = h; | |
1292 | ||
1293 | new_weakdef = false; | |
1294 | if (dynamic | |
1295 | && definition | |
1296 | && (flags & BSF_WEAK) != 0 | |
1297 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
1298 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
1299 | && h->weakdef == NULL) | |
1300 | { | |
1301 | /* Keep a list of all weak defined non function symbols from | |
1302 | a dynamic object, using the weakdef field. Later in this | |
1303 | function we will set the weakdef field to the correct | |
1304 | value. We only put non-function symbols from dynamic | |
1305 | objects on this list, because that happens to be the only | |
1306 | time we need to know the normal symbol corresponding to a | |
1307 | weak symbol, and the information is time consuming to | |
1308 | figure out. If the weakdef field is not already NULL, | |
1309 | then this symbol was already defined by some previous | |
1310 | dynamic object, and we will be using that previous | |
1311 | definition anyhow. */ | |
1312 | ||
1313 | h->weakdef = weaks; | |
1314 | weaks = h; | |
1315 | new_weakdef = true; | |
1316 | } | |
1317 | ||
1318 | /* Set the alignment of a common symbol. */ | |
1319 | if (sym.st_shndx == SHN_COMMON | |
1320 | && h->root.type == bfd_link_hash_common) | |
1321 | { | |
1322 | unsigned int align; | |
1323 | ||
1324 | align = bfd_log2 (sym.st_value); | |
1325 | if (align > old_alignment) | |
1326 | h->root.u.c.p->alignment_power = align; | |
1327 | } | |
1328 | ||
1329 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
1330 | { | |
1331 | int old_flags; | |
1332 | boolean dynsym; | |
1333 | int new_flag; | |
1334 | ||
1335 | /* Remember the symbol size and type. */ | |
1336 | if (sym.st_size != 0 | |
1337 | && (definition || h->size == 0)) | |
1338 | { | |
1339 | if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) | |
1340 | (*_bfd_error_handler) | |
1341 | (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"), | |
1342 | name, (unsigned long) h->size, (unsigned long) sym.st_size, | |
1343 | bfd_get_filename (abfd)); | |
1344 | ||
1345 | h->size = sym.st_size; | |
1346 | } | |
1347 | ||
1348 | /* If this is a common symbol, then we always want H->SIZE | |
1349 | to be the size of the common symbol. The code just above | |
1350 | won't fix the size if a common symbol becomes larger. We | |
1351 | don't warn about a size change here, because that is | |
1352 | covered by --warn-common. */ | |
1353 | if (h->root.type == bfd_link_hash_common) | |
1354 | h->size = h->root.u.c.size; | |
1355 | ||
1356 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE | |
1357 | && (definition || h->type == STT_NOTYPE)) | |
1358 | { | |
1359 | if (h->type != STT_NOTYPE | |
1360 | && h->type != ELF_ST_TYPE (sym.st_info) | |
1361 | && ! type_change_ok) | |
1362 | (*_bfd_error_handler) | |
1363 | (_("Warning: type of symbol `%s' changed from %d to %d in %s"), | |
1364 | name, h->type, ELF_ST_TYPE (sym.st_info), | |
1365 | bfd_get_filename (abfd)); | |
1366 | ||
1367 | h->type = ELF_ST_TYPE (sym.st_info); | |
1368 | } | |
1369 | ||
1370 | if (sym.st_other != 0 | |
1371 | && (definition || h->other == 0)) | |
1372 | h->other = sym.st_other; | |
1373 | ||
1374 | /* Set a flag in the hash table entry indicating the type of | |
1375 | reference or definition we just found. Keep a count of | |
1376 | the number of dynamic symbols we find. A dynamic symbol | |
1377 | is one which is referenced or defined by both a regular | |
1378 | object and a shared object. */ | |
1379 | old_flags = h->elf_link_hash_flags; | |
1380 | dynsym = false; | |
1381 | if (! dynamic) | |
1382 | { | |
1383 | if (! definition) | |
1384 | { | |
1385 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
1386 | if (bind != STB_WEAK) | |
1387 | new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; | |
1388 | } | |
1389 | else | |
1390 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
1391 | if (info->shared | |
1392 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
1393 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
1394 | dynsym = true; | |
1395 | } | |
1396 | else | |
1397 | { | |
1398 | if (! definition) | |
1399 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
1400 | else | |
1401 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
1402 | if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
1403 | | ELF_LINK_HASH_REF_REGULAR)) != 0 | |
1404 | || (h->weakdef != NULL | |
1405 | && ! new_weakdef | |
1406 | && h->weakdef->dynindx != -1)) | |
1407 | dynsym = true; | |
1408 | } | |
1409 | ||
1410 | h->elf_link_hash_flags |= new_flag; | |
1411 | ||
1412 | /* If this symbol has a version, and it is the default | |
1413 | version, we create an indirect symbol from the default | |
1414 | name to the fully decorated name. This will cause | |
1415 | external references which do not specify a version to be | |
1416 | bound to this version of the symbol. */ | |
1417 | if (definition) | |
1418 | { | |
1419 | char *p; | |
1420 | ||
1421 | p = strchr (name, ELF_VER_CHR); | |
1422 | if (p != NULL && p[1] == ELF_VER_CHR) | |
1423 | { | |
1424 | char *shortname; | |
1425 | struct elf_link_hash_entry *hi; | |
1426 | boolean override; | |
1427 | ||
1428 | shortname = bfd_hash_allocate (&info->hash->table, | |
1429 | p - name + 1); | |
1430 | if (shortname == NULL) | |
1431 | goto error_return; | |
1432 | strncpy (shortname, name, p - name); | |
1433 | shortname[p - name] = '\0'; | |
1434 | ||
1435 | /* We are going to create a new symbol. Merge it | |
1436 | with any existing symbol with this name. For the | |
1437 | purposes of the merge, act as though we were | |
1438 | defining the symbol we just defined, although we | |
1439 | actually going to define an indirect symbol. */ | |
1440 | type_change_ok = false; | |
1441 | size_change_ok = false; | |
1442 | if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, | |
1443 | &value, &hi, &override, | |
1444 | &type_change_ok, &size_change_ok)) | |
1445 | goto error_return; | |
1446 | ||
1447 | if (! override) | |
1448 | { | |
1449 | if (! (_bfd_generic_link_add_one_symbol | |
1450 | (info, abfd, shortname, BSF_INDIRECT, | |
1451 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, | |
1452 | collect, (struct bfd_link_hash_entry **) &hi))) | |
1453 | goto error_return; | |
1454 | } | |
1455 | else | |
1456 | { | |
1457 | /* In this case the symbol named SHORTNAME is | |
1458 | overriding the indirect symbol we want to | |
1459 | add. We were planning on making SHORTNAME an | |
1460 | indirect symbol referring to NAME. SHORTNAME | |
1461 | is the name without a version. NAME is the | |
1462 | fully versioned name, and it is the default | |
1463 | version. | |
1464 | ||
1465 | Overriding means that we already saw a | |
1466 | definition for the symbol SHORTNAME in a | |
1467 | regular object, and it is overriding the | |
1468 | symbol defined in the dynamic object. | |
1469 | ||
1470 | When this happens, we actually want to change | |
1471 | NAME, the symbol we just added, to refer to | |
1472 | SHORTNAME. This will cause references to | |
1473 | NAME in the shared object to become | |
1474 | references to SHORTNAME in the regular | |
1475 | object. This is what we expect when we | |
1476 | override a function in a shared object: that | |
1477 | the references in the shared object will be | |
1478 | mapped to the definition in the regular | |
1479 | object. */ | |
1480 | ||
1481 | while (hi->root.type == bfd_link_hash_indirect | |
1482 | || hi->root.type == bfd_link_hash_warning) | |
1483 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1484 | ||
1485 | h->root.type = bfd_link_hash_indirect; | |
1486 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
1487 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) | |
1488 | { | |
1489 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; | |
1490 | hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1491 | if (hi->elf_link_hash_flags | |
1492 | & (ELF_LINK_HASH_REF_REGULAR | |
1493 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1494 | { | |
1495 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
1496 | hi)) | |
1497 | goto error_return; | |
1498 | } | |
1499 | } | |
1500 | ||
1501 | /* Now set HI to H, so that the following code | |
1502 | will set the other fields correctly. */ | |
1503 | hi = h; | |
1504 | } | |
1505 | ||
1506 | /* If there is a duplicate definition somewhere, | |
1507 | then HI may not point to an indirect symbol. We | |
1508 | will have reported an error to the user in that | |
1509 | case. */ | |
1510 | ||
1511 | if (hi->root.type == bfd_link_hash_indirect) | |
1512 | { | |
1513 | struct elf_link_hash_entry *ht; | |
1514 | ||
1515 | /* If the symbol became indirect, then we assume | |
1516 | that we have not seen a definition before. */ | |
1517 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1518 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1519 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1520 | == 0); | |
1521 | ||
1522 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1523 | ||
1524 | /* Copy down any references that we may have | |
1525 | already seen to the symbol which just became | |
1526 | indirect. */ | |
1527 | ht->elf_link_hash_flags |= | |
1528 | (hi->elf_link_hash_flags | |
1529 | & (ELF_LINK_HASH_REF_DYNAMIC | |
1530 | | ELF_LINK_HASH_REF_REGULAR | |
1531 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK)); | |
1532 | ||
1533 | /* Copy over the global and procedure linkage table | |
1534 | offset entries. These may have been already set | |
1535 | up by a check_relocs routine. */ | |
1536 | if (ht->got.offset == (bfd_vma) -1) | |
1537 | { | |
1538 | ht->got.offset = hi->got.offset; | |
1539 | hi->got.offset = (bfd_vma) -1; | |
1540 | } | |
1541 | BFD_ASSERT (hi->got.offset == (bfd_vma) -1); | |
1542 | ||
1543 | if (ht->plt.offset == (bfd_vma) -1) | |
1544 | { | |
1545 | ht->plt.offset = hi->plt.offset; | |
1546 | hi->plt.offset = (bfd_vma) -1; | |
1547 | } | |
1548 | BFD_ASSERT (hi->plt.offset == (bfd_vma) -1); | |
1549 | ||
1550 | if (ht->dynindx == -1) | |
1551 | { | |
1552 | ht->dynindx = hi->dynindx; | |
1553 | ht->dynstr_index = hi->dynstr_index; | |
1554 | hi->dynindx = -1; | |
1555 | hi->dynstr_index = 0; | |
1556 | } | |
1557 | BFD_ASSERT (hi->dynindx == -1); | |
1558 | ||
1559 | /* FIXME: There may be other information to copy | |
1560 | over for particular targets. */ | |
1561 | ||
1562 | /* See if the new flags lead us to realize that | |
1563 | the symbol must be dynamic. */ | |
1564 | if (! dynsym) | |
1565 | { | |
1566 | if (! dynamic) | |
1567 | { | |
1568 | if (info->shared | |
1569 | || ((hi->elf_link_hash_flags | |
1570 | & ELF_LINK_HASH_REF_DYNAMIC) | |
1571 | != 0)) | |
1572 | dynsym = true; | |
1573 | } | |
1574 | else | |
1575 | { | |
1576 | if ((hi->elf_link_hash_flags | |
1577 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1578 | dynsym = true; | |
1579 | } | |
1580 | } | |
1581 | } | |
1582 | ||
1583 | /* We also need to define an indirection from the | |
1584 | nondefault version of the symbol. */ | |
1585 | ||
1586 | shortname = bfd_hash_allocate (&info->hash->table, | |
1587 | strlen (name)); | |
1588 | if (shortname == NULL) | |
1589 | goto error_return; | |
1590 | strncpy (shortname, name, p - name); | |
1591 | strcpy (shortname + (p - name), p + 1); | |
1592 | ||
1593 | /* Once again, merge with any existing symbol. */ | |
1594 | type_change_ok = false; | |
1595 | size_change_ok = false; | |
1596 | if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, | |
1597 | &value, &hi, &override, | |
1598 | &type_change_ok, &size_change_ok)) | |
1599 | goto error_return; | |
1600 | ||
1601 | if (override) | |
1602 | { | |
1603 | /* Here SHORTNAME is a versioned name, so we | |
1604 | don't expect to see the type of override we | |
1605 | do in the case above. */ | |
1606 | (*_bfd_error_handler) | |
1607 | (_("%s: warning: unexpected redefinition of `%s'"), | |
1608 | bfd_get_filename (abfd), shortname); | |
1609 | } | |
1610 | else | |
1611 | { | |
1612 | if (! (_bfd_generic_link_add_one_symbol | |
1613 | (info, abfd, shortname, BSF_INDIRECT, | |
1614 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, | |
1615 | collect, (struct bfd_link_hash_entry **) &hi))) | |
1616 | goto error_return; | |
1617 | ||
1618 | /* If there is a duplicate definition somewhere, | |
1619 | then HI may not point to an indirect symbol. | |
1620 | We will have reported an error to the user in | |
1621 | that case. */ | |
1622 | ||
1623 | if (hi->root.type == bfd_link_hash_indirect) | |
1624 | { | |
1625 | /* If the symbol became indirect, then we | |
1626 | assume that we have not seen a definition | |
1627 | before. */ | |
1628 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1629 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1630 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1631 | == 0); | |
1632 | ||
1633 | /* Copy down any references that we may have | |
1634 | already seen to the symbol which just | |
1635 | became indirect. */ | |
1636 | h->elf_link_hash_flags |= | |
1637 | (hi->elf_link_hash_flags | |
1638 | & (ELF_LINK_HASH_REF_DYNAMIC | |
1639 | | ELF_LINK_HASH_REF_REGULAR | |
1640 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK)); | |
1641 | ||
1642 | /* Copy over the global and procedure linkage | |
1643 | table offset entries. These may have been | |
1644 | already set up by a check_relocs routine. */ | |
1645 | if (h->got.offset == (bfd_vma) -1) | |
1646 | { | |
1647 | h->got.offset = hi->got.offset; | |
1648 | hi->got.offset = (bfd_vma) -1; | |
1649 | } | |
1650 | BFD_ASSERT (hi->got.offset == (bfd_vma) -1); | |
1651 | ||
1652 | if (h->plt.offset == (bfd_vma) -1) | |
1653 | { | |
1654 | h->plt.offset = hi->plt.offset; | |
1655 | hi->plt.offset = (bfd_vma) -1; | |
1656 | } | |
1657 | BFD_ASSERT (hi->got.offset == (bfd_vma) -1); | |
1658 | ||
1659 | if (h->dynindx == -1) | |
1660 | { | |
1661 | h->dynindx = hi->dynindx; | |
1662 | h->dynstr_index = hi->dynstr_index; | |
1663 | hi->dynindx = -1; | |
1664 | hi->dynstr_index = 0; | |
1665 | } | |
1666 | BFD_ASSERT (hi->dynindx == -1); | |
1667 | ||
1668 | /* FIXME: There may be other information to | |
1669 | copy over for particular targets. */ | |
1670 | ||
1671 | /* See if the new flags lead us to realize | |
1672 | that the symbol must be dynamic. */ | |
1673 | if (! dynsym) | |
1674 | { | |
1675 | if (! dynamic) | |
1676 | { | |
1677 | if (info->shared | |
1678 | || ((hi->elf_link_hash_flags | |
1679 | & ELF_LINK_HASH_REF_DYNAMIC) | |
1680 | != 0)) | |
1681 | dynsym = true; | |
1682 | } | |
1683 | else | |
1684 | { | |
1685 | if ((hi->elf_link_hash_flags | |
1686 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1687 | dynsym = true; | |
1688 | } | |
1689 | } | |
1690 | } | |
1691 | } | |
1692 | } | |
1693 | } | |
1694 | ||
1695 | if (dynsym && h->dynindx == -1) | |
1696 | { | |
1697 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1698 | goto error_return; | |
1699 | if (h->weakdef != NULL | |
1700 | && ! new_weakdef | |
1701 | && h->weakdef->dynindx == -1) | |
1702 | { | |
1703 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
1704 | h->weakdef)) | |
1705 | goto error_return; | |
1706 | } | |
1707 | } | |
1708 | } | |
1709 | } | |
1710 | ||
1711 | /* Now set the weakdefs field correctly for all the weak defined | |
1712 | symbols we found. The only way to do this is to search all the | |
1713 | symbols. Since we only need the information for non functions in | |
1714 | dynamic objects, that's the only time we actually put anything on | |
1715 | the list WEAKS. We need this information so that if a regular | |
1716 | object refers to a symbol defined weakly in a dynamic object, the | |
1717 | real symbol in the dynamic object is also put in the dynamic | |
1718 | symbols; we also must arrange for both symbols to point to the | |
1719 | same memory location. We could handle the general case of symbol | |
1720 | aliasing, but a general symbol alias can only be generated in | |
1721 | assembler code, handling it correctly would be very time | |
1722 | consuming, and other ELF linkers don't handle general aliasing | |
1723 | either. */ | |
1724 | while (weaks != NULL) | |
1725 | { | |
1726 | struct elf_link_hash_entry *hlook; | |
1727 | asection *slook; | |
1728 | bfd_vma vlook; | |
1729 | struct elf_link_hash_entry **hpp; | |
1730 | struct elf_link_hash_entry **hppend; | |
1731 | ||
1732 | hlook = weaks; | |
1733 | weaks = hlook->weakdef; | |
1734 | hlook->weakdef = NULL; | |
1735 | ||
1736 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
1737 | || hlook->root.type == bfd_link_hash_defweak | |
1738 | || hlook->root.type == bfd_link_hash_common | |
1739 | || hlook->root.type == bfd_link_hash_indirect); | |
1740 | slook = hlook->root.u.def.section; | |
1741 | vlook = hlook->root.u.def.value; | |
1742 | ||
1743 | hpp = elf_sym_hashes (abfd); | |
1744 | hppend = hpp + extsymcount; | |
1745 | for (; hpp < hppend; hpp++) | |
1746 | { | |
1747 | struct elf_link_hash_entry *h; | |
1748 | ||
1749 | h = *hpp; | |
1750 | if (h != NULL && h != hlook | |
1751 | && h->root.type == bfd_link_hash_defined | |
1752 | && h->root.u.def.section == slook | |
1753 | && h->root.u.def.value == vlook) | |
1754 | { | |
1755 | hlook->weakdef = h; | |
1756 | ||
1757 | /* If the weak definition is in the list of dynamic | |
1758 | symbols, make sure the real definition is put there | |
1759 | as well. */ | |
1760 | if (hlook->dynindx != -1 | |
1761 | && h->dynindx == -1) | |
1762 | { | |
1763 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1764 | goto error_return; | |
1765 | } | |
1766 | ||
1767 | /* If the real definition is in the list of dynamic | |
1768 | symbols, make sure the weak definition is put there | |
1769 | as well. If we don't do this, then the dynamic | |
1770 | loader might not merge the entries for the real | |
1771 | definition and the weak definition. */ | |
1772 | if (h->dynindx != -1 | |
1773 | && hlook->dynindx == -1) | |
1774 | { | |
1775 | if (! _bfd_elf_link_record_dynamic_symbol (info, hlook)) | |
1776 | goto error_return; | |
1777 | } | |
1778 | ||
1779 | break; | |
1780 | } | |
1781 | } | |
1782 | } | |
1783 | ||
1784 | if (buf != NULL) | |
1785 | { | |
1786 | free (buf); | |
1787 | buf = NULL; | |
1788 | } | |
1789 | ||
1790 | if (extversym != NULL) | |
1791 | { | |
1792 | free (extversym); | |
1793 | extversym = NULL; | |
1794 | } | |
1795 | ||
1796 | /* If this object is the same format as the output object, and it is | |
1797 | not a shared library, then let the backend look through the | |
1798 | relocs. | |
1799 | ||
1800 | This is required to build global offset table entries and to | |
1801 | arrange for dynamic relocs. It is not required for the | |
1802 | particular common case of linking non PIC code, even when linking | |
1803 | against shared libraries, but unfortunately there is no way of | |
1804 | knowing whether an object file has been compiled PIC or not. | |
1805 | Looking through the relocs is not particularly time consuming. | |
1806 | The problem is that we must either (1) keep the relocs in memory, | |
1807 | which causes the linker to require additional runtime memory or | |
1808 | (2) read the relocs twice from the input file, which wastes time. | |
1809 | This would be a good case for using mmap. | |
1810 | ||
1811 | I have no idea how to handle linking PIC code into a file of a | |
1812 | different format. It probably can't be done. */ | |
1813 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
1814 | if (! dynamic | |
1815 | && abfd->xvec == info->hash->creator | |
1816 | && check_relocs != NULL) | |
1817 | { | |
1818 | asection *o; | |
1819 | ||
1820 | for (o = abfd->sections; o != NULL; o = o->next) | |
1821 | { | |
1822 | Elf_Internal_Rela *internal_relocs; | |
1823 | boolean ok; | |
1824 | ||
1825 | if ((o->flags & SEC_RELOC) == 0 | |
1826 | || o->reloc_count == 0 | |
1827 | || ((info->strip == strip_all || info->strip == strip_debugger) | |
1828 | && (o->flags & SEC_DEBUGGING) != 0) | |
1829 | || bfd_is_abs_section (o->output_section)) | |
1830 | continue; | |
1831 | ||
1832 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
1833 | (abfd, o, (PTR) NULL, | |
1834 | (Elf_Internal_Rela *) NULL, | |
1835 | info->keep_memory)); | |
1836 | if (internal_relocs == NULL) | |
1837 | goto error_return; | |
1838 | ||
1839 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
1840 | ||
1841 | if (! info->keep_memory) | |
1842 | free (internal_relocs); | |
1843 | ||
1844 | if (! ok) | |
1845 | goto error_return; | |
1846 | } | |
1847 | } | |
1848 | ||
1849 | /* If this is a non-traditional, non-relocateable link, try to | |
1850 | optimize the handling of the .stab/.stabstr sections. */ | |
1851 | if (! dynamic | |
1852 | && ! info->relocateable | |
1853 | && ! info->traditional_format | |
1854 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
1855 | && (info->strip != strip_all && info->strip != strip_debugger)) | |
1856 | { | |
1857 | asection *stab, *stabstr; | |
1858 | ||
1859 | stab = bfd_get_section_by_name (abfd, ".stab"); | |
1860 | if (stab != NULL) | |
1861 | { | |
1862 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
1863 | ||
1864 | if (stabstr != NULL) | |
1865 | { | |
1866 | struct bfd_elf_section_data *secdata; | |
1867 | ||
1868 | secdata = elf_section_data (stab); | |
1869 | if (! _bfd_link_section_stabs (abfd, | |
1870 | &elf_hash_table (info)->stab_info, | |
1871 | stab, stabstr, | |
1872 | &secdata->stab_info)) | |
1873 | goto error_return; | |
1874 | } | |
1875 | } | |
1876 | } | |
1877 | ||
1878 | return true; | |
1879 | ||
1880 | error_return: | |
1881 | if (buf != NULL) | |
1882 | free (buf); | |
1883 | if (dynbuf != NULL) | |
1884 | free (dynbuf); | |
1885 | if (dynver != NULL) | |
1886 | free (dynver); | |
1887 | if (extversym != NULL) | |
1888 | free (extversym); | |
1889 | return false; | |
1890 | } | |
1891 | ||
1892 | /* Create some sections which will be filled in with dynamic linking | |
1893 | information. ABFD is an input file which requires dynamic sections | |
1894 | to be created. The dynamic sections take up virtual memory space | |
1895 | when the final executable is run, so we need to create them before | |
1896 | addresses are assigned to the output sections. We work out the | |
1897 | actual contents and size of these sections later. */ | |
1898 | ||
1899 | boolean | |
1900 | elf_link_create_dynamic_sections (abfd, info) | |
1901 | bfd *abfd; | |
1902 | struct bfd_link_info *info; | |
1903 | { | |
1904 | flagword flags; | |
1905 | register asection *s; | |
1906 | struct elf_link_hash_entry *h; | |
1907 | struct elf_backend_data *bed; | |
1908 | ||
1909 | if (elf_hash_table (info)->dynamic_sections_created) | |
1910 | return true; | |
1911 | ||
1912 | /* Make sure that all dynamic sections use the same input BFD. */ | |
1913 | if (elf_hash_table (info)->dynobj == NULL) | |
1914 | elf_hash_table (info)->dynobj = abfd; | |
1915 | else | |
1916 | abfd = elf_hash_table (info)->dynobj; | |
1917 | ||
1918 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
1919 | sections. */ | |
1920 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
1921 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
1922 | ||
1923 | /* A dynamically linked executable has a .interp section, but a | |
1924 | shared library does not. */ | |
1925 | if (! info->shared) | |
1926 | { | |
1927 | s = bfd_make_section (abfd, ".interp"); | |
1928 | if (s == NULL | |
1929 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1930 | return false; | |
1931 | } | |
1932 | ||
1933 | /* Create sections to hold version informations. These are removed | |
1934 | if they are not needed. */ | |
1935 | s = bfd_make_section (abfd, ".gnu.version_d"); | |
1936 | if (s == NULL | |
1937 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1938 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1939 | return false; | |
1940 | ||
1941 | s = bfd_make_section (abfd, ".gnu.version"); | |
1942 | if (s == NULL | |
1943 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1944 | || ! bfd_set_section_alignment (abfd, s, 1)) | |
1945 | return false; | |
1946 | ||
1947 | s = bfd_make_section (abfd, ".gnu.version_r"); | |
1948 | if (s == NULL | |
1949 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1950 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1951 | return false; | |
1952 | ||
1953 | s = bfd_make_section (abfd, ".dynsym"); | |
1954 | if (s == NULL | |
1955 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1956 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1957 | return false; | |
1958 | ||
1959 | s = bfd_make_section (abfd, ".dynstr"); | |
1960 | if (s == NULL | |
1961 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1962 | return false; | |
1963 | ||
1964 | /* Create a strtab to hold the dynamic symbol names. */ | |
1965 | if (elf_hash_table (info)->dynstr == NULL) | |
1966 | { | |
1967 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
1968 | if (elf_hash_table (info)->dynstr == NULL) | |
1969 | return false; | |
1970 | } | |
1971 | ||
1972 | s = bfd_make_section (abfd, ".dynamic"); | |
1973 | if (s == NULL | |
1974 | || ! bfd_set_section_flags (abfd, s, flags) | |
1975 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1976 | return false; | |
1977 | ||
1978 | /* The special symbol _DYNAMIC is always set to the start of the | |
1979 | .dynamic section. This call occurs before we have processed the | |
1980 | symbols for any dynamic object, so we don't have to worry about | |
1981 | overriding a dynamic definition. We could set _DYNAMIC in a | |
1982 | linker script, but we only want to define it if we are, in fact, | |
1983 | creating a .dynamic section. We don't want to define it if there | |
1984 | is no .dynamic section, since on some ELF platforms the start up | |
1985 | code examines it to decide how to initialize the process. */ | |
1986 | h = NULL; | |
1987 | if (! (_bfd_generic_link_add_one_symbol | |
1988 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
1989 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
1990 | (struct bfd_link_hash_entry **) &h))) | |
1991 | return false; | |
1992 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1993 | h->type = STT_OBJECT; | |
1994 | ||
1995 | if (info->shared | |
1996 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1997 | return false; | |
1998 | ||
c7ac6ff8 MM |
1999 | bed = get_elf_backend_data (abfd); |
2000 | ||
252b5132 RH |
2001 | s = bfd_make_section (abfd, ".hash"); |
2002 | if (s == NULL | |
2003 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2004 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2005 | return false; | |
c7ac6ff8 | 2006 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; |
252b5132 RH |
2007 | |
2008 | /* Let the backend create the rest of the sections. This lets the | |
2009 | backend set the right flags. The backend will normally create | |
2010 | the .got and .plt sections. */ | |
252b5132 RH |
2011 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
2012 | return false; | |
2013 | ||
2014 | elf_hash_table (info)->dynamic_sections_created = true; | |
2015 | ||
2016 | return true; | |
2017 | } | |
2018 | ||
2019 | /* Add an entry to the .dynamic table. */ | |
2020 | ||
2021 | boolean | |
2022 | elf_add_dynamic_entry (info, tag, val) | |
2023 | struct bfd_link_info *info; | |
2024 | bfd_vma tag; | |
2025 | bfd_vma val; | |
2026 | { | |
2027 | Elf_Internal_Dyn dyn; | |
2028 | bfd *dynobj; | |
2029 | asection *s; | |
2030 | size_t newsize; | |
2031 | bfd_byte *newcontents; | |
2032 | ||
2033 | dynobj = elf_hash_table (info)->dynobj; | |
2034 | ||
2035 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2036 | BFD_ASSERT (s != NULL); | |
2037 | ||
2038 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
2039 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); | |
2040 | if (newcontents == NULL) | |
2041 | return false; | |
2042 | ||
2043 | dyn.d_tag = tag; | |
2044 | dyn.d_un.d_val = val; | |
2045 | elf_swap_dyn_out (dynobj, &dyn, | |
2046 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
2047 | ||
2048 | s->_raw_size = newsize; | |
2049 | s->contents = newcontents; | |
2050 | ||
2051 | return true; | |
2052 | } | |
30b30c21 RH |
2053 | |
2054 | /* Record a new local dynamic symbol. */ | |
2055 | ||
2056 | boolean | |
2057 | elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx) | |
2058 | struct bfd_link_info *info; | |
2059 | bfd *input_bfd; | |
2060 | long input_indx; | |
2061 | { | |
2062 | struct elf_link_local_dynamic_entry *entry; | |
2063 | struct elf_link_hash_table *eht; | |
2064 | struct bfd_strtab_hash *dynstr; | |
2065 | Elf_External_Sym esym; | |
2066 | unsigned long dynstr_index; | |
2067 | char *name; | |
30b30c21 RH |
2068 | |
2069 | /* See if the entry exists already. */ | |
2070 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
2071 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
2072 | return true; | |
2073 | ||
2074 | entry = (struct elf_link_local_dynamic_entry *) | |
2075 | bfd_alloc (input_bfd, sizeof (*entry)); | |
2076 | if (entry == NULL) | |
2077 | return false; | |
2078 | ||
2079 | /* Go find the symbol, so that we can find it's name. */ | |
2080 | if (bfd_seek (input_bfd, | |
2081 | (elf_tdata (input_bfd)->symtab_hdr.sh_offset | |
2082 | + input_indx * sizeof (Elf_External_Sym)), | |
2083 | SEEK_SET) != 0 | |
2084 | || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd) | |
2085 | != sizeof (Elf_External_Sym))) | |
2086 | return false; | |
2087 | elf_swap_symbol_in (input_bfd, &esym, &entry->isym); | |
2088 | ||
2089 | name = (bfd_elf_string_from_elf_section | |
2090 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
2091 | entry->isym.st_name)); | |
2092 | ||
2093 | dynstr = elf_hash_table (info)->dynstr; | |
2094 | if (dynstr == NULL) | |
2095 | { | |
2096 | /* Create a strtab to hold the dynamic symbol names. */ | |
2097 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init (); | |
2098 | if (dynstr == NULL) | |
2099 | return false; | |
2100 | } | |
2101 | ||
2102 | dynstr_index = _bfd_stringtab_add (dynstr, name, true, false); | |
2103 | if (dynstr_index == (unsigned long) -1) | |
2104 | return false; | |
2105 | entry->isym.st_name = dynstr_index; | |
2106 | ||
2107 | eht = elf_hash_table (info); | |
2108 | ||
2109 | entry->next = eht->dynlocal; | |
2110 | eht->dynlocal = entry; | |
2111 | entry->input_bfd = input_bfd; | |
2112 | entry->input_indx = input_indx; | |
2113 | eht->dynsymcount++; | |
2114 | ||
2115 | /* The dynindx will be set at the end of size_dynamic_sections. */ | |
2116 | ||
2117 | return true; | |
2118 | } | |
252b5132 RH |
2119 | \f |
2120 | ||
6b5bd373 MM |
2121 | /* Read and swap the relocs from the section indicated by SHDR. This |
2122 | may be either a REL or a RELA section. The relocations are | |
2123 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
2124 | which should have already been allocated to contain enough space. | |
2125 | The EXTERNAL_RELOCS are a buffer where the external form of the | |
2126 | relocations should be stored. | |
2127 | ||
2128 | Returns false if something goes wrong. */ | |
2129 | ||
2130 | static boolean | |
2131 | elf_link_read_relocs_from_section (abfd, shdr, external_relocs, | |
2132 | internal_relocs) | |
2133 | bfd *abfd; | |
2134 | Elf_Internal_Shdr *shdr; | |
2135 | PTR external_relocs; | |
2136 | Elf_Internal_Rela *internal_relocs; | |
2137 | { | |
c7ac6ff8 MM |
2138 | struct elf_backend_data *bed; |
2139 | ||
6b5bd373 MM |
2140 | /* If there aren't any relocations, that's OK. */ |
2141 | if (!shdr) | |
2142 | return true; | |
2143 | ||
2144 | /* Position ourselves at the start of the section. */ | |
2145 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
2146 | return false; | |
2147 | ||
2148 | /* Read the relocations. */ | |
2149 | if (bfd_read (external_relocs, 1, shdr->sh_size, abfd) | |
2150 | != shdr->sh_size) | |
2151 | return false; | |
2152 | ||
c7ac6ff8 MM |
2153 | bed = get_elf_backend_data (abfd); |
2154 | ||
6b5bd373 MM |
2155 | /* Convert the external relocations to the internal format. */ |
2156 | if (shdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2157 | { | |
2158 | Elf_External_Rel *erel; | |
2159 | Elf_External_Rel *erelend; | |
2160 | Elf_Internal_Rela *irela; | |
c7ac6ff8 | 2161 | Elf_Internal_Rel *irel; |
6b5bd373 MM |
2162 | |
2163 | erel = (Elf_External_Rel *) external_relocs; | |
2164 | erelend = erel + shdr->sh_size / shdr->sh_entsize; | |
2165 | irela = internal_relocs; | |
c7ac6ff8 MM |
2166 | irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel |
2167 | * sizeof (Elf_Internal_Rel))); | |
2168 | for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel) | |
6b5bd373 | 2169 | { |
65388f2d | 2170 | unsigned char i; |
c7ac6ff8 MM |
2171 | |
2172 | if (bed->s->swap_reloc_in) | |
2173 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel); | |
2174 | else | |
2175 | elf_swap_reloc_in (abfd, erel, irel); | |
6b5bd373 | 2176 | |
c7ac6ff8 MM |
2177 | for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i) |
2178 | { | |
2179 | irela[i].r_offset = irel[i].r_offset; | |
2180 | irela[i].r_info = irel[i].r_info; | |
2181 | irela[i].r_addend = 0; | |
2182 | } | |
6b5bd373 MM |
2183 | } |
2184 | } | |
2185 | else | |
2186 | { | |
2187 | Elf_External_Rela *erela; | |
2188 | Elf_External_Rela *erelaend; | |
2189 | Elf_Internal_Rela *irela; | |
2190 | ||
2191 | BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela)); | |
2192 | ||
2193 | erela = (Elf_External_Rela *) external_relocs; | |
2194 | erelaend = erela + shdr->sh_size / shdr->sh_entsize; | |
2195 | irela = internal_relocs; | |
c7ac6ff8 MM |
2196 | for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel) |
2197 | { | |
2198 | if (bed->s->swap_reloca_in) | |
2199 | (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela); | |
2200 | else | |
2201 | elf_swap_reloca_in (abfd, erela, irela); | |
2202 | } | |
6b5bd373 MM |
2203 | } |
2204 | ||
2205 | return true; | |
2206 | } | |
2207 | ||
23bc299b MM |
2208 | /* Read and swap the relocs for a section O. They may have been |
2209 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
2210 | not NULL, they are used as buffers to read into. They are known to | |
2211 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
2212 | the return value is allocated using either malloc or bfd_alloc, | |
2213 | according to the KEEP_MEMORY argument. If O has two relocation | |
2214 | sections (both REL and RELA relocations), then the REL_HDR | |
2215 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
2216 | REL_HDR2 relocations. */ | |
252b5132 RH |
2217 | |
2218 | Elf_Internal_Rela * | |
2219 | NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs, | |
2220 | keep_memory) | |
2221 | bfd *abfd; | |
2222 | asection *o; | |
2223 | PTR external_relocs; | |
2224 | Elf_Internal_Rela *internal_relocs; | |
2225 | boolean keep_memory; | |
2226 | { | |
2227 | Elf_Internal_Shdr *rel_hdr; | |
2228 | PTR alloc1 = NULL; | |
2229 | Elf_Internal_Rela *alloc2 = NULL; | |
c7ac6ff8 | 2230 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
252b5132 RH |
2231 | |
2232 | if (elf_section_data (o)->relocs != NULL) | |
2233 | return elf_section_data (o)->relocs; | |
2234 | ||
2235 | if (o->reloc_count == 0) | |
2236 | return NULL; | |
2237 | ||
2238 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
2239 | ||
2240 | if (internal_relocs == NULL) | |
2241 | { | |
2242 | size_t size; | |
2243 | ||
c7ac6ff8 MM |
2244 | size = (o->reloc_count * bed->s->int_rels_per_ext_rel |
2245 | * sizeof (Elf_Internal_Rela)); | |
252b5132 RH |
2246 | if (keep_memory) |
2247 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
2248 | else | |
2249 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); | |
2250 | if (internal_relocs == NULL) | |
2251 | goto error_return; | |
2252 | } | |
2253 | ||
2254 | if (external_relocs == NULL) | |
2255 | { | |
6b5bd373 MM |
2256 | size_t size = (size_t) rel_hdr->sh_size; |
2257 | ||
2258 | if (elf_section_data (o)->rel_hdr2) | |
2259 | size += (size_t) elf_section_data (o)->rel_hdr2->sh_size; | |
2260 | alloc1 = (PTR) bfd_malloc (size); | |
252b5132 RH |
2261 | if (alloc1 == NULL) |
2262 | goto error_return; | |
2263 | external_relocs = alloc1; | |
2264 | } | |
2265 | ||
6b5bd373 MM |
2266 | if (!elf_link_read_relocs_from_section (abfd, rel_hdr, |
2267 | external_relocs, | |
2268 | internal_relocs)) | |
2269 | goto error_return; | |
2270 | if (!elf_link_read_relocs_from_section | |
2271 | (abfd, | |
2272 | elf_section_data (o)->rel_hdr2, | |
2f5116e2 | 2273 | ((bfd_byte *) external_relocs) + rel_hdr->sh_size, |
c7ac6ff8 MM |
2274 | internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize |
2275 | * bed->s->int_rels_per_ext_rel))) | |
252b5132 | 2276 | goto error_return; |
252b5132 RH |
2277 | |
2278 | /* Cache the results for next time, if we can. */ | |
2279 | if (keep_memory) | |
2280 | elf_section_data (o)->relocs = internal_relocs; | |
2281 | ||
2282 | if (alloc1 != NULL) | |
2283 | free (alloc1); | |
2284 | ||
2285 | /* Don't free alloc2, since if it was allocated we are passing it | |
2286 | back (under the name of internal_relocs). */ | |
2287 | ||
2288 | return internal_relocs; | |
2289 | ||
2290 | error_return: | |
2291 | if (alloc1 != NULL) | |
2292 | free (alloc1); | |
2293 | if (alloc2 != NULL) | |
2294 | free (alloc2); | |
2295 | return NULL; | |
2296 | } | |
2297 | \f | |
2298 | ||
2299 | /* Record an assignment to a symbol made by a linker script. We need | |
2300 | this in case some dynamic object refers to this symbol. */ | |
2301 | ||
2302 | /*ARGSUSED*/ | |
2303 | boolean | |
2304 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) | |
7442e600 | 2305 | bfd *output_bfd ATTRIBUTE_UNUSED; |
252b5132 RH |
2306 | struct bfd_link_info *info; |
2307 | const char *name; | |
2308 | boolean provide; | |
2309 | { | |
2310 | struct elf_link_hash_entry *h; | |
2311 | ||
2312 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
2313 | return true; | |
2314 | ||
2315 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); | |
2316 | if (h == NULL) | |
2317 | return false; | |
2318 | ||
2319 | if (h->root.type == bfd_link_hash_new) | |
2320 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
2321 | ||
2322 | /* If this symbol is being provided by the linker script, and it is | |
2323 | currently defined by a dynamic object, but not by a regular | |
2324 | object, then mark it as undefined so that the generic linker will | |
2325 | force the correct value. */ | |
2326 | if (provide | |
2327 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2328 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2329 | h->root.type = bfd_link_hash_undefined; | |
2330 | ||
2331 | /* If this symbol is not being provided by the linker script, and it is | |
2332 | currently defined by a dynamic object, but not by a regular object, | |
2333 | then clear out any version information because the symbol will not be | |
2334 | associated with the dynamic object any more. */ | |
2335 | if (!provide | |
2336 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2337 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2338 | h->verinfo.verdef = NULL; | |
2339 | ||
2340 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2341 | h->type = STT_OBJECT; | |
2342 | ||
2343 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
2344 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
2345 | || info->shared) | |
2346 | && h->dynindx == -1) | |
2347 | { | |
2348 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2349 | return false; | |
2350 | ||
2351 | /* If this is a weak defined symbol, and we know a corresponding | |
2352 | real symbol from the same dynamic object, make sure the real | |
2353 | symbol is also made into a dynamic symbol. */ | |
2354 | if (h->weakdef != NULL | |
2355 | && h->weakdef->dynindx == -1) | |
2356 | { | |
2357 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
2358 | return false; | |
2359 | } | |
2360 | } | |
2361 | ||
2362 | return true; | |
2363 | } | |
2364 | \f | |
2365 | /* This structure is used to pass information to | |
2366 | elf_link_assign_sym_version. */ | |
2367 | ||
2368 | struct elf_assign_sym_version_info | |
2369 | { | |
2370 | /* Output BFD. */ | |
2371 | bfd *output_bfd; | |
2372 | /* General link information. */ | |
2373 | struct bfd_link_info *info; | |
2374 | /* Version tree. */ | |
2375 | struct bfd_elf_version_tree *verdefs; | |
2376 | /* Whether we are exporting all dynamic symbols. */ | |
2377 | boolean export_dynamic; | |
252b5132 RH |
2378 | /* Whether we had a failure. */ |
2379 | boolean failed; | |
2380 | }; | |
2381 | ||
2382 | /* This structure is used to pass information to | |
2383 | elf_link_find_version_dependencies. */ | |
2384 | ||
2385 | struct elf_find_verdep_info | |
2386 | { | |
2387 | /* Output BFD. */ | |
2388 | bfd *output_bfd; | |
2389 | /* General link information. */ | |
2390 | struct bfd_link_info *info; | |
2391 | /* The number of dependencies. */ | |
2392 | unsigned int vers; | |
2393 | /* Whether we had a failure. */ | |
2394 | boolean failed; | |
2395 | }; | |
2396 | ||
2397 | /* Array used to determine the number of hash table buckets to use | |
2398 | based on the number of symbols there are. If there are fewer than | |
2399 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
2400 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
2401 | than 32771 buckets. */ | |
2402 | ||
2403 | static const size_t elf_buckets[] = | |
2404 | { | |
2405 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |
2406 | 16411, 32771, 0 | |
2407 | }; | |
2408 | ||
2409 | /* Compute bucket count for hashing table. We do not use a static set | |
2410 | of possible tables sizes anymore. Instead we determine for all | |
2411 | possible reasonable sizes of the table the outcome (i.e., the | |
2412 | number of collisions etc) and choose the best solution. The | |
2413 | weighting functions are not too simple to allow the table to grow | |
2414 | without bounds. Instead one of the weighting factors is the size. | |
2415 | Therefore the result is always a good payoff between few collisions | |
2416 | (= short chain lengths) and table size. */ | |
2417 | static size_t | |
2418 | compute_bucket_count (info) | |
2419 | struct bfd_link_info *info; | |
2420 | { | |
2421 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; | |
7442e600 | 2422 | size_t best_size = 0; |
252b5132 RH |
2423 | unsigned long int *hashcodes; |
2424 | unsigned long int *hashcodesp; | |
2425 | unsigned long int i; | |
2426 | ||
2427 | /* Compute the hash values for all exported symbols. At the same | |
2428 | time store the values in an array so that we could use them for | |
2429 | optimizations. */ | |
2430 | hashcodes = (unsigned long int *) bfd_malloc (dynsymcount | |
2431 | * sizeof (unsigned long int)); | |
2432 | if (hashcodes == NULL) | |
2433 | return 0; | |
2434 | hashcodesp = hashcodes; | |
2435 | ||
2436 | /* Put all hash values in HASHCODES. */ | |
2437 | elf_link_hash_traverse (elf_hash_table (info), | |
2438 | elf_collect_hash_codes, &hashcodesp); | |
2439 | ||
2440 | /* We have a problem here. The following code to optimize the table | |
2441 | size requires an integer type with more the 32 bits. If | |
2442 | BFD_HOST_U_64_BIT is set we know about such a type. */ | |
2443 | #ifdef BFD_HOST_U_64_BIT | |
2444 | if (info->optimize == true) | |
2445 | { | |
2446 | unsigned long int nsyms = hashcodesp - hashcodes; | |
2447 | size_t minsize; | |
2448 | size_t maxsize; | |
2449 | BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); | |
2450 | unsigned long int *counts ; | |
2451 | ||
2452 | /* Possible optimization parameters: if we have NSYMS symbols we say | |
2453 | that the hashing table must at least have NSYMS/4 and at most | |
2454 | 2*NSYMS buckets. */ | |
2455 | minsize = nsyms / 4; | |
2456 | if (minsize == 0) | |
2457 | minsize = 1; | |
2458 | best_size = maxsize = nsyms * 2; | |
2459 | ||
2460 | /* Create array where we count the collisions in. We must use bfd_malloc | |
2461 | since the size could be large. */ | |
2462 | counts = (unsigned long int *) bfd_malloc (maxsize | |
2463 | * sizeof (unsigned long int)); | |
2464 | if (counts == NULL) | |
2465 | { | |
2466 | free (hashcodes); | |
2467 | return 0; | |
2468 | } | |
2469 | ||
2470 | /* Compute the "optimal" size for the hash table. The criteria is a | |
2471 | minimal chain length. The minor criteria is (of course) the size | |
2472 | of the table. */ | |
2473 | for (i = minsize; i < maxsize; ++i) | |
2474 | { | |
2475 | /* Walk through the array of hashcodes and count the collisions. */ | |
2476 | BFD_HOST_U_64_BIT max; | |
2477 | unsigned long int j; | |
2478 | unsigned long int fact; | |
2479 | ||
2480 | memset (counts, '\0', i * sizeof (unsigned long int)); | |
2481 | ||
2482 | /* Determine how often each hash bucket is used. */ | |
2483 | for (j = 0; j < nsyms; ++j) | |
2484 | ++counts[hashcodes[j] % i]; | |
2485 | ||
2486 | /* For the weight function we need some information about the | |
2487 | pagesize on the target. This is information need not be 100% | |
2488 | accurate. Since this information is not available (so far) we | |
2489 | define it here to a reasonable default value. If it is crucial | |
2490 | to have a better value some day simply define this value. */ | |
2491 | # ifndef BFD_TARGET_PAGESIZE | |
2492 | # define BFD_TARGET_PAGESIZE (4096) | |
2493 | # endif | |
2494 | ||
2495 | /* We in any case need 2 + NSYMS entries for the size values and | |
2496 | the chains. */ | |
2497 | max = (2 + nsyms) * (ARCH_SIZE / 8); | |
2498 | ||
2499 | # if 1 | |
2500 | /* Variant 1: optimize for short chains. We add the squares | |
2501 | of all the chain lengths (which favous many small chain | |
2502 | over a few long chains). */ | |
2503 | for (j = 0; j < i; ++j) | |
2504 | max += counts[j] * counts[j]; | |
2505 | ||
2506 | /* This adds penalties for the overall size of the table. */ | |
2507 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; | |
2508 | max *= fact * fact; | |
2509 | # else | |
2510 | /* Variant 2: Optimize a lot more for small table. Here we | |
2511 | also add squares of the size but we also add penalties for | |
2512 | empty slots (the +1 term). */ | |
2513 | for (j = 0; j < i; ++j) | |
2514 | max += (1 + counts[j]) * (1 + counts[j]); | |
2515 | ||
2516 | /* The overall size of the table is considered, but not as | |
2517 | strong as in variant 1, where it is squared. */ | |
2518 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; | |
2519 | max *= fact; | |
2520 | # endif | |
2521 | ||
2522 | /* Compare with current best results. */ | |
2523 | if (max < best_chlen) | |
2524 | { | |
2525 | best_chlen = max; | |
2526 | best_size = i; | |
2527 | } | |
2528 | } | |
2529 | ||
2530 | free (counts); | |
2531 | } | |
2532 | else | |
2533 | #endif /* defined (BFD_HOST_U_64_BIT) */ | |
2534 | { | |
2535 | /* This is the fallback solution if no 64bit type is available or if we | |
2536 | are not supposed to spend much time on optimizations. We select the | |
2537 | bucket count using a fixed set of numbers. */ | |
2538 | for (i = 0; elf_buckets[i] != 0; i++) | |
2539 | { | |
2540 | best_size = elf_buckets[i]; | |
2541 | if (dynsymcount < elf_buckets[i + 1]) | |
2542 | break; | |
2543 | } | |
2544 | } | |
2545 | ||
2546 | /* Free the arrays we needed. */ | |
2547 | free (hashcodes); | |
2548 | ||
2549 | return best_size; | |
2550 | } | |
2551 | ||
2552 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
2553 | called by the ELF linker emulation before_allocation routine. We | |
2554 | must set the sizes of the sections before the linker sets the | |
2555 | addresses of the various sections. */ | |
2556 | ||
2557 | boolean | |
2558 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, | |
2559 | export_dynamic, filter_shlib, | |
2560 | auxiliary_filters, info, sinterpptr, | |
2561 | verdefs) | |
2562 | bfd *output_bfd; | |
2563 | const char *soname; | |
2564 | const char *rpath; | |
2565 | boolean export_dynamic; | |
2566 | const char *filter_shlib; | |
2567 | const char * const *auxiliary_filters; | |
2568 | struct bfd_link_info *info; | |
2569 | asection **sinterpptr; | |
2570 | struct bfd_elf_version_tree *verdefs; | |
2571 | { | |
2572 | bfd_size_type soname_indx; | |
2573 | bfd *dynobj; | |
2574 | struct elf_backend_data *bed; | |
252b5132 RH |
2575 | struct elf_assign_sym_version_info asvinfo; |
2576 | ||
2577 | *sinterpptr = NULL; | |
2578 | ||
2579 | soname_indx = (bfd_size_type) -1; | |
2580 | ||
2581 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
2582 | return true; | |
2583 | ||
2584 | /* The backend may have to create some sections regardless of whether | |
2585 | we're dynamic or not. */ | |
2586 | bed = get_elf_backend_data (output_bfd); | |
2587 | if (bed->elf_backend_always_size_sections | |
2588 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |
2589 | return false; | |
2590 | ||
2591 | dynobj = elf_hash_table (info)->dynobj; | |
2592 | ||
2593 | /* If there were no dynamic objects in the link, there is nothing to | |
2594 | do here. */ | |
2595 | if (dynobj == NULL) | |
2596 | return true; | |
2597 | ||
2598 | /* If we are supposed to export all symbols into the dynamic symbol | |
2599 | table (this is not the normal case), then do so. */ | |
2600 | if (export_dynamic) | |
2601 | { | |
2602 | struct elf_info_failed eif; | |
2603 | ||
2604 | eif.failed = false; | |
2605 | eif.info = info; | |
2606 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
2607 | (PTR) &eif); | |
2608 | if (eif.failed) | |
2609 | return false; | |
2610 | } | |
2611 | ||
2612 | if (elf_hash_table (info)->dynamic_sections_created) | |
2613 | { | |
2614 | struct elf_info_failed eif; | |
2615 | struct elf_link_hash_entry *h; | |
2616 | bfd_size_type strsize; | |
2617 | ||
2618 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
2619 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
2620 | ||
2621 | if (soname != NULL) | |
2622 | { | |
2623 | soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2624 | soname, true, true); | |
2625 | if (soname_indx == (bfd_size_type) -1 | |
2626 | || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) | |
2627 | return false; | |
2628 | } | |
2629 | ||
2630 | if (info->symbolic) | |
2631 | { | |
2632 | if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
2633 | return false; | |
2634 | } | |
2635 | ||
2636 | if (rpath != NULL) | |
2637 | { | |
2638 | bfd_size_type indx; | |
2639 | ||
2640 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, | |
2641 | true, true); | |
2642 | if (indx == (bfd_size_type) -1 | |
2643 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
2644 | return false; | |
2645 | } | |
2646 | ||
2647 | if (filter_shlib != NULL) | |
2648 | { | |
2649 | bfd_size_type indx; | |
2650 | ||
2651 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2652 | filter_shlib, true, true); | |
2653 | if (indx == (bfd_size_type) -1 | |
2654 | || ! elf_add_dynamic_entry (info, DT_FILTER, indx)) | |
2655 | return false; | |
2656 | } | |
2657 | ||
2658 | if (auxiliary_filters != NULL) | |
2659 | { | |
2660 | const char * const *p; | |
2661 | ||
2662 | for (p = auxiliary_filters; *p != NULL; p++) | |
2663 | { | |
2664 | bfd_size_type indx; | |
2665 | ||
2666 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2667 | *p, true, true); | |
2668 | if (indx == (bfd_size_type) -1 | |
2669 | || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | |
2670 | return false; | |
2671 | } | |
2672 | } | |
2673 | ||
2674 | /* Attach all the symbols to their version information. */ | |
2675 | asvinfo.output_bfd = output_bfd; | |
2676 | asvinfo.info = info; | |
2677 | asvinfo.verdefs = verdefs; | |
2678 | asvinfo.export_dynamic = export_dynamic; | |
252b5132 RH |
2679 | asvinfo.failed = false; |
2680 | ||
2681 | elf_link_hash_traverse (elf_hash_table (info), | |
2682 | elf_link_assign_sym_version, | |
2683 | (PTR) &asvinfo); | |
2684 | if (asvinfo.failed) | |
2685 | return false; | |
2686 | ||
2687 | /* Find all symbols which were defined in a dynamic object and make | |
2688 | the backend pick a reasonable value for them. */ | |
2689 | eif.failed = false; | |
2690 | eif.info = info; | |
2691 | elf_link_hash_traverse (elf_hash_table (info), | |
2692 | elf_adjust_dynamic_symbol, | |
2693 | (PTR) &eif); | |
2694 | if (eif.failed) | |
2695 | return false; | |
2696 | ||
2697 | /* Add some entries to the .dynamic section. We fill in some of the | |
2698 | values later, in elf_bfd_final_link, but we must add the entries | |
2699 | now so that we know the final size of the .dynamic section. */ | |
f0c2e336 MM |
2700 | |
2701 | /* If there are initialization and/or finalization functions to | |
2702 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |
2703 | h = (info->init_function | |
2704 | ? elf_link_hash_lookup (elf_hash_table (info), | |
2705 | info->init_function, false, | |
2706 | false, false) | |
2707 | : NULL); | |
252b5132 RH |
2708 | if (h != NULL |
2709 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
2710 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
2711 | { | |
2712 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
2713 | return false; | |
2714 | } | |
f0c2e336 MM |
2715 | h = (info->fini_function |
2716 | ? elf_link_hash_lookup (elf_hash_table (info), | |
2717 | info->fini_function, false, | |
2718 | false, false) | |
2719 | : NULL); | |
252b5132 RH |
2720 | if (h != NULL |
2721 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
2722 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
2723 | { | |
2724 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
2725 | return false; | |
2726 | } | |
f0c2e336 | 2727 | |
252b5132 RH |
2728 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); |
2729 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
2730 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
2731 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
2732 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
2733 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
2734 | sizeof (Elf_External_Sym))) | |
2735 | return false; | |
2736 | } | |
2737 | ||
2738 | /* The backend must work out the sizes of all the other dynamic | |
2739 | sections. */ | |
252b5132 RH |
2740 | if (bed->elf_backend_size_dynamic_sections |
2741 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
2742 | return false; | |
2743 | ||
2744 | if (elf_hash_table (info)->dynamic_sections_created) | |
2745 | { | |
2746 | size_t dynsymcount; | |
2747 | asection *s; | |
2748 | size_t bucketcount = 0; | |
2749 | Elf_Internal_Sym isym; | |
c7ac6ff8 | 2750 | size_t hash_entry_size; |
252b5132 RH |
2751 | |
2752 | /* Set up the version definition section. */ | |
2753 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
2754 | BFD_ASSERT (s != NULL); | |
2755 | ||
2756 | /* We may have created additional version definitions if we are | |
2757 | just linking a regular application. */ | |
2758 | verdefs = asvinfo.verdefs; | |
2759 | ||
2760 | if (verdefs == NULL) | |
30b30c21 | 2761 | _bfd_strip_section_from_output (s); |
252b5132 RH |
2762 | else |
2763 | { | |
2764 | unsigned int cdefs; | |
2765 | bfd_size_type size; | |
2766 | struct bfd_elf_version_tree *t; | |
2767 | bfd_byte *p; | |
2768 | Elf_Internal_Verdef def; | |
2769 | Elf_Internal_Verdaux defaux; | |
2770 | ||
252b5132 RH |
2771 | cdefs = 0; |
2772 | size = 0; | |
2773 | ||
2774 | /* Make space for the base version. */ | |
2775 | size += sizeof (Elf_External_Verdef); | |
2776 | size += sizeof (Elf_External_Verdaux); | |
2777 | ++cdefs; | |
2778 | ||
2779 | for (t = verdefs; t != NULL; t = t->next) | |
2780 | { | |
2781 | struct bfd_elf_version_deps *n; | |
2782 | ||
2783 | size += sizeof (Elf_External_Verdef); | |
2784 | size += sizeof (Elf_External_Verdaux); | |
2785 | ++cdefs; | |
2786 | ||
2787 | for (n = t->deps; n != NULL; n = n->next) | |
2788 | size += sizeof (Elf_External_Verdaux); | |
2789 | } | |
2790 | ||
2791 | s->_raw_size = size; | |
2792 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
2793 | if (s->contents == NULL && s->_raw_size != 0) | |
2794 | return false; | |
2795 | ||
2796 | /* Fill in the version definition section. */ | |
2797 | ||
2798 | p = s->contents; | |
2799 | ||
2800 | def.vd_version = VER_DEF_CURRENT; | |
2801 | def.vd_flags = VER_FLG_BASE; | |
2802 | def.vd_ndx = 1; | |
2803 | def.vd_cnt = 1; | |
2804 | def.vd_aux = sizeof (Elf_External_Verdef); | |
2805 | def.vd_next = (sizeof (Elf_External_Verdef) | |
2806 | + sizeof (Elf_External_Verdaux)); | |
2807 | ||
2808 | if (soname_indx != (bfd_size_type) -1) | |
2809 | { | |
3a99b017 | 2810 | def.vd_hash = bfd_elf_hash (soname); |
252b5132 RH |
2811 | defaux.vda_name = soname_indx; |
2812 | } | |
2813 | else | |
2814 | { | |
2815 | const char *name; | |
2816 | bfd_size_type indx; | |
2817 | ||
2818 | name = output_bfd->filename; | |
3a99b017 | 2819 | def.vd_hash = bfd_elf_hash (name); |
252b5132 RH |
2820 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
2821 | name, true, false); | |
2822 | if (indx == (bfd_size_type) -1) | |
2823 | return false; | |
2824 | defaux.vda_name = indx; | |
2825 | } | |
2826 | defaux.vda_next = 0; | |
2827 | ||
2828 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
2829 | (Elf_External_Verdef *)p); | |
2830 | p += sizeof (Elf_External_Verdef); | |
2831 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
2832 | (Elf_External_Verdaux *) p); | |
2833 | p += sizeof (Elf_External_Verdaux); | |
2834 | ||
2835 | for (t = verdefs; t != NULL; t = t->next) | |
2836 | { | |
2837 | unsigned int cdeps; | |
2838 | struct bfd_elf_version_deps *n; | |
2839 | struct elf_link_hash_entry *h; | |
2840 | ||
2841 | cdeps = 0; | |
2842 | for (n = t->deps; n != NULL; n = n->next) | |
2843 | ++cdeps; | |
2844 | ||
2845 | /* Add a symbol representing this version. */ | |
2846 | h = NULL; | |
2847 | if (! (_bfd_generic_link_add_one_symbol | |
2848 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | |
2849 | (bfd_vma) 0, (const char *) NULL, false, | |
2850 | get_elf_backend_data (dynobj)->collect, | |
2851 | (struct bfd_link_hash_entry **) &h))) | |
2852 | return false; | |
2853 | h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF; | |
2854 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2855 | h->type = STT_OBJECT; | |
2856 | h->verinfo.vertree = t; | |
2857 | ||
2858 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2859 | return false; | |
2860 | ||
2861 | def.vd_version = VER_DEF_CURRENT; | |
2862 | def.vd_flags = 0; | |
2863 | if (t->globals == NULL && t->locals == NULL && ! t->used) | |
2864 | def.vd_flags |= VER_FLG_WEAK; | |
2865 | def.vd_ndx = t->vernum + 1; | |
2866 | def.vd_cnt = cdeps + 1; | |
3a99b017 | 2867 | def.vd_hash = bfd_elf_hash (t->name); |
252b5132 RH |
2868 | def.vd_aux = sizeof (Elf_External_Verdef); |
2869 | if (t->next != NULL) | |
2870 | def.vd_next = (sizeof (Elf_External_Verdef) | |
2871 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |
2872 | else | |
2873 | def.vd_next = 0; | |
2874 | ||
2875 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
2876 | (Elf_External_Verdef *) p); | |
2877 | p += sizeof (Elf_External_Verdef); | |
2878 | ||
2879 | defaux.vda_name = h->dynstr_index; | |
2880 | if (t->deps == NULL) | |
2881 | defaux.vda_next = 0; | |
2882 | else | |
2883 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
2884 | t->name_indx = defaux.vda_name; | |
2885 | ||
2886 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
2887 | (Elf_External_Verdaux *) p); | |
2888 | p += sizeof (Elf_External_Verdaux); | |
2889 | ||
2890 | for (n = t->deps; n != NULL; n = n->next) | |
2891 | { | |
2892 | if (n->version_needed == NULL) | |
2893 | { | |
2894 | /* This can happen if there was an error in the | |
2895 | version script. */ | |
2896 | defaux.vda_name = 0; | |
2897 | } | |
2898 | else | |
2899 | defaux.vda_name = n->version_needed->name_indx; | |
2900 | if (n->next == NULL) | |
2901 | defaux.vda_next = 0; | |
2902 | else | |
2903 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
2904 | ||
2905 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
2906 | (Elf_External_Verdaux *) p); | |
2907 | p += sizeof (Elf_External_Verdaux); | |
2908 | } | |
2909 | } | |
2910 | ||
2911 | if (! elf_add_dynamic_entry (info, DT_VERDEF, 0) | |
2912 | || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) | |
2913 | return false; | |
2914 | ||
2915 | elf_tdata (output_bfd)->cverdefs = cdefs; | |
2916 | } | |
2917 | ||
2918 | /* Work out the size of the version reference section. */ | |
2919 | ||
2920 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
2921 | BFD_ASSERT (s != NULL); | |
2922 | { | |
2923 | struct elf_find_verdep_info sinfo; | |
2924 | ||
2925 | sinfo.output_bfd = output_bfd; | |
2926 | sinfo.info = info; | |
2927 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; | |
2928 | if (sinfo.vers == 0) | |
2929 | sinfo.vers = 1; | |
2930 | sinfo.failed = false; | |
2931 | ||
2932 | elf_link_hash_traverse (elf_hash_table (info), | |
2933 | elf_link_find_version_dependencies, | |
2934 | (PTR) &sinfo); | |
2935 | ||
2936 | if (elf_tdata (output_bfd)->verref == NULL) | |
30b30c21 | 2937 | _bfd_strip_section_from_output (s); |
252b5132 RH |
2938 | else |
2939 | { | |
2940 | Elf_Internal_Verneed *t; | |
2941 | unsigned int size; | |
2942 | unsigned int crefs; | |
2943 | bfd_byte *p; | |
2944 | ||
2945 | /* Build the version definition section. */ | |
2946 | size = 0; | |
2947 | crefs = 0; | |
2948 | for (t = elf_tdata (output_bfd)->verref; | |
2949 | t != NULL; | |
2950 | t = t->vn_nextref) | |
2951 | { | |
2952 | Elf_Internal_Vernaux *a; | |
2953 | ||
2954 | size += sizeof (Elf_External_Verneed); | |
2955 | ++crefs; | |
2956 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
2957 | size += sizeof (Elf_External_Vernaux); | |
2958 | } | |
2959 | ||
2960 | s->_raw_size = size; | |
2961 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, size); | |
2962 | if (s->contents == NULL) | |
2963 | return false; | |
2964 | ||
2965 | p = s->contents; | |
2966 | for (t = elf_tdata (output_bfd)->verref; | |
2967 | t != NULL; | |
2968 | t = t->vn_nextref) | |
2969 | { | |
2970 | unsigned int caux; | |
2971 | Elf_Internal_Vernaux *a; | |
2972 | bfd_size_type indx; | |
2973 | ||
2974 | caux = 0; | |
2975 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
2976 | ++caux; | |
2977 | ||
2978 | t->vn_version = VER_NEED_CURRENT; | |
2979 | t->vn_cnt = caux; | |
2980 | if (elf_dt_name (t->vn_bfd) != NULL) | |
2981 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2982 | elf_dt_name (t->vn_bfd), | |
2983 | true, false); | |
2984 | else | |
2985 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2986 | t->vn_bfd->filename, true, false); | |
2987 | if (indx == (bfd_size_type) -1) | |
2988 | return false; | |
2989 | t->vn_file = indx; | |
2990 | t->vn_aux = sizeof (Elf_External_Verneed); | |
2991 | if (t->vn_nextref == NULL) | |
2992 | t->vn_next = 0; | |
2993 | else | |
2994 | t->vn_next = (sizeof (Elf_External_Verneed) | |
2995 | + caux * sizeof (Elf_External_Vernaux)); | |
2996 | ||
2997 | _bfd_elf_swap_verneed_out (output_bfd, t, | |
2998 | (Elf_External_Verneed *) p); | |
2999 | p += sizeof (Elf_External_Verneed); | |
3000 | ||
3001 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3002 | { | |
3a99b017 | 3003 | a->vna_hash = bfd_elf_hash (a->vna_nodename); |
252b5132 RH |
3004 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
3005 | a->vna_nodename, true, false); | |
3006 | if (indx == (bfd_size_type) -1) | |
3007 | return false; | |
3008 | a->vna_name = indx; | |
3009 | if (a->vna_nextptr == NULL) | |
3010 | a->vna_next = 0; | |
3011 | else | |
3012 | a->vna_next = sizeof (Elf_External_Vernaux); | |
3013 | ||
3014 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |
3015 | (Elf_External_Vernaux *) p); | |
3016 | p += sizeof (Elf_External_Vernaux); | |
3017 | } | |
3018 | } | |
3019 | ||
3020 | if (! elf_add_dynamic_entry (info, DT_VERNEED, 0) | |
3021 | || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) | |
3022 | return false; | |
3023 | ||
3024 | elf_tdata (output_bfd)->cverrefs = crefs; | |
3025 | } | |
3026 | } | |
3027 | ||
30b30c21 RH |
3028 | /* Assign dynsym indicies. In a shared library we generate a |
3029 | section symbol for each output section, which come first. | |
3030 | Next come all of the back-end allocated local dynamic syms, | |
3031 | followed by the rest of the global symbols. */ | |
3032 | ||
3033 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); | |
252b5132 RH |
3034 | |
3035 | /* Work out the size of the symbol version section. */ | |
3036 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
3037 | BFD_ASSERT (s != NULL); | |
3038 | if (dynsymcount == 0 | |
3039 | || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL)) | |
3040 | { | |
30b30c21 | 3041 | _bfd_strip_section_from_output (s); |
42751cf3 MM |
3042 | /* The DYNSYMCOUNT might have changed if we were going to |
3043 | output a dynamic symbol table entry for S. */ | |
30b30c21 | 3044 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); |
252b5132 RH |
3045 | } |
3046 | else | |
3047 | { | |
3048 | s->_raw_size = dynsymcount * sizeof (Elf_External_Versym); | |
3049 | s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size); | |
3050 | if (s->contents == NULL) | |
3051 | return false; | |
3052 | ||
3053 | if (! elf_add_dynamic_entry (info, DT_VERSYM, 0)) | |
3054 | return false; | |
3055 | } | |
3056 | ||
3057 | /* Set the size of the .dynsym and .hash sections. We counted | |
3058 | the number of dynamic symbols in elf_link_add_object_symbols. | |
3059 | We will build the contents of .dynsym and .hash when we build | |
3060 | the final symbol table, because until then we do not know the | |
3061 | correct value to give the symbols. We built the .dynstr | |
3062 | section as we went along in elf_link_add_object_symbols. */ | |
3063 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
3064 | BFD_ASSERT (s != NULL); | |
3065 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
3066 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
3067 | if (s->contents == NULL && s->_raw_size != 0) | |
3068 | return false; | |
3069 | ||
3070 | /* The first entry in .dynsym is a dummy symbol. */ | |
3071 | isym.st_value = 0; | |
3072 | isym.st_size = 0; | |
3073 | isym.st_name = 0; | |
3074 | isym.st_info = 0; | |
3075 | isym.st_other = 0; | |
3076 | isym.st_shndx = 0; | |
3077 | elf_swap_symbol_out (output_bfd, &isym, | |
3078 | (PTR) (Elf_External_Sym *) s->contents); | |
3079 | ||
3080 | /* Compute the size of the hashing table. As a side effect this | |
3081 | computes the hash values for all the names we export. */ | |
3082 | bucketcount = compute_bucket_count (info); | |
3083 | ||
3084 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
3085 | BFD_ASSERT (s != NULL); | |
c7ac6ff8 MM |
3086 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; |
3087 | s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |
252b5132 RH |
3088 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); |
3089 | if (s->contents == NULL) | |
3090 | return false; | |
3091 | memset (s->contents, 0, (size_t) s->_raw_size); | |
3092 | ||
c7ac6ff8 MM |
3093 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); |
3094 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, | |
3095 | s->contents + hash_entry_size); | |
252b5132 RH |
3096 | |
3097 | elf_hash_table (info)->bucketcount = bucketcount; | |
3098 | ||
3099 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
3100 | BFD_ASSERT (s != NULL); | |
3101 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
3102 | ||
3103 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) | |
3104 | return false; | |
3105 | } | |
3106 | ||
3107 | return true; | |
3108 | } | |
3109 | \f | |
3110 | /* Fix up the flags for a symbol. This handles various cases which | |
3111 | can only be fixed after all the input files are seen. This is | |
3112 | currently called by both adjust_dynamic_symbol and | |
3113 | assign_sym_version, which is unnecessary but perhaps more robust in | |
3114 | the face of future changes. */ | |
3115 | ||
3116 | static boolean | |
3117 | elf_fix_symbol_flags (h, eif) | |
3118 | struct elf_link_hash_entry *h; | |
3119 | struct elf_info_failed *eif; | |
3120 | { | |
3121 | /* If this symbol was mentioned in a non-ELF file, try to set | |
3122 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
3123 | permit a non-ELF file to correctly refer to a symbol defined in | |
3124 | an ELF dynamic object. */ | |
3125 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) | |
3126 | { | |
3127 | if (h->root.type != bfd_link_hash_defined | |
3128 | && h->root.type != bfd_link_hash_defweak) | |
3129 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
3130 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
3131 | else | |
3132 | { | |
3133 | if (h->root.u.def.section->owner != NULL | |
3134 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
3135 | == bfd_target_elf_flavour)) | |
3136 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
3137 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
3138 | else | |
3139 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3140 | } | |
3141 | ||
3142 | if (h->dynindx == -1 | |
3143 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
3144 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
3145 | { | |
3146 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3147 | { | |
3148 | eif->failed = true; | |
3149 | return false; | |
3150 | } | |
3151 | } | |
3152 | } | |
3153 | else | |
3154 | { | |
3155 | /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol | |
3156 | was first seen in a non-ELF file. Fortunately, if the symbol | |
3157 | was first seen in an ELF file, we're probably OK unless the | |
3158 | symbol was defined in a non-ELF file. Catch that case here. | |
3159 | FIXME: We're still in trouble if the symbol was first seen in | |
3160 | a dynamic object, and then later in a non-ELF regular object. */ | |
3161 | if ((h->root.type == bfd_link_hash_defined | |
3162 | || h->root.type == bfd_link_hash_defweak) | |
3163 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
3164 | && (h->root.u.def.section->owner != NULL | |
3165 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
3166 | != bfd_target_elf_flavour) | |
3167 | : (bfd_is_abs_section (h->root.u.def.section) | |
3168 | && (h->elf_link_hash_flags | |
3169 | & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) | |
3170 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3171 | } | |
3172 | ||
3173 | /* If this is a final link, and the symbol was defined as a common | |
3174 | symbol in a regular object file, and there was no definition in | |
3175 | any dynamic object, then the linker will have allocated space for | |
3176 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR | |
3177 | flag will not have been set. */ | |
3178 | if (h->root.type == bfd_link_hash_defined | |
3179 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
3180 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
3181 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3182 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
3183 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3184 | ||
3185 | /* If -Bsymbolic was used (which means to bind references to global | |
3186 | symbols to the definition within the shared object), and this | |
3187 | symbol was defined in a regular object, then it actually doesn't | |
3188 | need a PLT entry. */ | |
3189 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 | |
3190 | && eif->info->shared | |
3191 | && eif->info->symbolic | |
3192 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
3193 | { | |
3194 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
3195 | h->plt.offset = (bfd_vma) -1; | |
3196 | } | |
3197 | ||
3198 | return true; | |
3199 | } | |
3200 | ||
3201 | /* Make the backend pick a good value for a dynamic symbol. This is | |
3202 | called via elf_link_hash_traverse, and also calls itself | |
3203 | recursively. */ | |
3204 | ||
3205 | static boolean | |
3206 | elf_adjust_dynamic_symbol (h, data) | |
3207 | struct elf_link_hash_entry *h; | |
3208 | PTR data; | |
3209 | { | |
3210 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
3211 | bfd *dynobj; | |
3212 | struct elf_backend_data *bed; | |
3213 | ||
3214 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
3215 | if (h->root.type == bfd_link_hash_indirect) | |
3216 | return true; | |
3217 | ||
3218 | /* Fix the symbol flags. */ | |
3219 | if (! elf_fix_symbol_flags (h, eif)) | |
3220 | return false; | |
3221 | ||
3222 | /* If this symbol does not require a PLT entry, and it is not | |
3223 | defined by a dynamic object, or is not referenced by a regular | |
3224 | object, ignore it. We do have to handle a weak defined symbol, | |
3225 | even if no regular object refers to it, if we decided to add it | |
3226 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
3227 | about symbols which are defined by one dynamic object and | |
3228 | referenced by another one? */ | |
3229 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 | |
3230 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
3231 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3232 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 | |
3233 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
3234 | { | |
3235 | h->plt.offset = (bfd_vma) -1; | |
3236 | return true; | |
3237 | } | |
3238 | ||
3239 | /* If we've already adjusted this symbol, don't do it again. This | |
3240 | can happen via a recursive call. */ | |
3241 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
3242 | return true; | |
3243 | ||
3244 | /* Don't look at this symbol again. Note that we must set this | |
3245 | after checking the above conditions, because we may look at a | |
3246 | symbol once, decide not to do anything, and then get called | |
3247 | recursively later after REF_REGULAR is set below. */ | |
3248 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
3249 | ||
3250 | /* If this is a weak definition, and we know a real definition, and | |
3251 | the real symbol is not itself defined by a regular object file, | |
3252 | then get a good value for the real definition. We handle the | |
3253 | real symbol first, for the convenience of the backend routine. | |
3254 | ||
3255 | Note that there is a confusing case here. If the real definition | |
3256 | is defined by a regular object file, we don't get the real symbol | |
3257 | from the dynamic object, but we do get the weak symbol. If the | |
3258 | processor backend uses a COPY reloc, then if some routine in the | |
3259 | dynamic object changes the real symbol, we will not see that | |
3260 | change in the corresponding weak symbol. This is the way other | |
3261 | ELF linkers work as well, and seems to be a result of the shared | |
3262 | library model. | |
3263 | ||
3264 | I will clarify this issue. Most SVR4 shared libraries define the | |
3265 | variable _timezone and define timezone as a weak synonym. The | |
3266 | tzset call changes _timezone. If you write | |
3267 | extern int timezone; | |
3268 | int _timezone = 5; | |
3269 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
3270 | you might expect that, since timezone is a synonym for _timezone, | |
3271 | the same number will print both times. However, if the processor | |
3272 | backend uses a COPY reloc, then actually timezone will be copied | |
3273 | into your process image, and, since you define _timezone | |
3274 | yourself, _timezone will not. Thus timezone and _timezone will | |
3275 | wind up at different memory locations. The tzset call will set | |
3276 | _timezone, leaving timezone unchanged. */ | |
3277 | ||
3278 | if (h->weakdef != NULL) | |
3279 | { | |
3280 | struct elf_link_hash_entry *weakdef; | |
3281 | ||
3282 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
3283 | || h->root.type == bfd_link_hash_defweak); | |
3284 | weakdef = h->weakdef; | |
3285 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
3286 | || weakdef->root.type == bfd_link_hash_defweak); | |
3287 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
3288 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
3289 | { | |
3290 | /* This symbol is defined by a regular object file, so we | |
3291 | will not do anything special. Clear weakdef for the | |
3292 | convenience of the processor backend. */ | |
3293 | h->weakdef = NULL; | |
3294 | } | |
3295 | else | |
3296 | { | |
3297 | /* There is an implicit reference by a regular object file | |
3298 | via the weak symbol. */ | |
3299 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
3300 | if (h->weakdef->elf_link_hash_flags | |
3301 | & ELF_LINK_HASH_REF_REGULAR_NONWEAK) | |
3302 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; | |
3303 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif)) | |
3304 | return false; | |
3305 | } | |
3306 | } | |
3307 | ||
3308 | /* If a symbol has no type and no size and does not require a PLT | |
3309 | entry, then we are probably about to do the wrong thing here: we | |
3310 | are probably going to create a COPY reloc for an empty object. | |
3311 | This case can arise when a shared object is built with assembly | |
3312 | code, and the assembly code fails to set the symbol type. */ | |
3313 | if (h->size == 0 | |
3314 | && h->type == STT_NOTYPE | |
3315 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
3316 | (*_bfd_error_handler) | |
3317 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
3318 | h->root.root.string); | |
3319 | ||
3320 | dynobj = elf_hash_table (eif->info)->dynobj; | |
3321 | bed = get_elf_backend_data (dynobj); | |
3322 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
3323 | { | |
3324 | eif->failed = true; | |
3325 | return false; | |
3326 | } | |
3327 | ||
3328 | return true; | |
3329 | } | |
3330 | \f | |
3331 | /* This routine is used to export all defined symbols into the dynamic | |
3332 | symbol table. It is called via elf_link_hash_traverse. */ | |
3333 | ||
3334 | static boolean | |
3335 | elf_export_symbol (h, data) | |
3336 | struct elf_link_hash_entry *h; | |
3337 | PTR data; | |
3338 | { | |
3339 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
3340 | ||
3341 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
3342 | if (h->root.type == bfd_link_hash_indirect) | |
3343 | return true; | |
3344 | ||
3345 | if (h->dynindx == -1 | |
3346 | && (h->elf_link_hash_flags | |
3347 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
3348 | { | |
3349 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3350 | { | |
3351 | eif->failed = true; | |
3352 | return false; | |
3353 | } | |
3354 | } | |
3355 | ||
3356 | return true; | |
3357 | } | |
3358 | \f | |
3359 | /* Look through the symbols which are defined in other shared | |
3360 | libraries and referenced here. Update the list of version | |
3361 | dependencies. This will be put into the .gnu.version_r section. | |
3362 | This function is called via elf_link_hash_traverse. */ | |
3363 | ||
3364 | static boolean | |
3365 | elf_link_find_version_dependencies (h, data) | |
3366 | struct elf_link_hash_entry *h; | |
3367 | PTR data; | |
3368 | { | |
3369 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; | |
3370 | Elf_Internal_Verneed *t; | |
3371 | Elf_Internal_Vernaux *a; | |
3372 | ||
3373 | /* We only care about symbols defined in shared objects with version | |
3374 | information. */ | |
3375 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3376 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
3377 | || h->dynindx == -1 | |
3378 | || h->verinfo.verdef == NULL) | |
3379 | return true; | |
3380 | ||
3381 | /* See if we already know about this version. */ | |
3382 | for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) | |
3383 | { | |
3384 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
3385 | continue; | |
3386 | ||
3387 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3388 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
3389 | return true; | |
3390 | ||
3391 | break; | |
3392 | } | |
3393 | ||
3394 | /* This is a new version. Add it to tree we are building. */ | |
3395 | ||
3396 | if (t == NULL) | |
3397 | { | |
3398 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t); | |
3399 | if (t == NULL) | |
3400 | { | |
3401 | rinfo->failed = true; | |
3402 | return false; | |
3403 | } | |
3404 | ||
3405 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
3406 | t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; | |
3407 | elf_tdata (rinfo->output_bfd)->verref = t; | |
3408 | } | |
3409 | ||
3410 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a); | |
3411 | ||
3412 | /* Note that we are copying a string pointer here, and testing it | |
3413 | above. If bfd_elf_string_from_elf_section is ever changed to | |
3414 | discard the string data when low in memory, this will have to be | |
3415 | fixed. */ | |
3416 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
3417 | ||
3418 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
3419 | a->vna_nextptr = t->vn_auxptr; | |
3420 | ||
3421 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
3422 | ++rinfo->vers; | |
3423 | ||
3424 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
3425 | ||
3426 | t->vn_auxptr = a; | |
3427 | ||
3428 | return true; | |
3429 | } | |
3430 | ||
3431 | /* Figure out appropriate versions for all the symbols. We may not | |
3432 | have the version number script until we have read all of the input | |
3433 | files, so until that point we don't know which symbols should be | |
3434 | local. This function is called via elf_link_hash_traverse. */ | |
3435 | ||
3436 | static boolean | |
3437 | elf_link_assign_sym_version (h, data) | |
3438 | struct elf_link_hash_entry *h; | |
3439 | PTR data; | |
3440 | { | |
3441 | struct elf_assign_sym_version_info *sinfo = | |
3442 | (struct elf_assign_sym_version_info *) data; | |
3443 | struct bfd_link_info *info = sinfo->info; | |
3444 | struct elf_info_failed eif; | |
3445 | char *p; | |
3446 | ||
3447 | /* Fix the symbol flags. */ | |
3448 | eif.failed = false; | |
3449 | eif.info = info; | |
3450 | if (! elf_fix_symbol_flags (h, &eif)) | |
3451 | { | |
3452 | if (eif.failed) | |
3453 | sinfo->failed = true; | |
3454 | return false; | |
3455 | } | |
3456 | ||
3457 | /* We only need version numbers for symbols defined in regular | |
3458 | objects. */ | |
3459 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
3460 | return true; | |
3461 | ||
3462 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
3463 | if (p != NULL && h->verinfo.vertree == NULL) | |
3464 | { | |
3465 | struct bfd_elf_version_tree *t; | |
3466 | boolean hidden; | |
3467 | ||
3468 | hidden = true; | |
3469 | ||
3470 | /* There are two consecutive ELF_VER_CHR characters if this is | |
3471 | not a hidden symbol. */ | |
3472 | ++p; | |
3473 | if (*p == ELF_VER_CHR) | |
3474 | { | |
3475 | hidden = false; | |
3476 | ++p; | |
3477 | } | |
3478 | ||
3479 | /* If there is no version string, we can just return out. */ | |
3480 | if (*p == '\0') | |
3481 | { | |
3482 | if (hidden) | |
3483 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
3484 | return true; | |
3485 | } | |
3486 | ||
3487 | /* Look for the version. If we find it, it is no longer weak. */ | |
3488 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
3489 | { | |
3490 | if (strcmp (t->name, p) == 0) | |
3491 | { | |
3492 | int len; | |
3493 | char *alc; | |
3494 | struct bfd_elf_version_expr *d; | |
3495 | ||
3496 | len = p - h->root.root.string; | |
3497 | alc = bfd_alloc (sinfo->output_bfd, len); | |
3498 | if (alc == NULL) | |
3499 | return false; | |
3500 | strncpy (alc, h->root.root.string, len - 1); | |
3501 | alc[len - 1] = '\0'; | |
3502 | if (alc[len - 2] == ELF_VER_CHR) | |
3503 | alc[len - 2] = '\0'; | |
3504 | ||
3505 | h->verinfo.vertree = t; | |
3506 | t->used = true; | |
3507 | d = NULL; | |
3508 | ||
3509 | if (t->globals != NULL) | |
3510 | { | |
3511 | for (d = t->globals; d != NULL; d = d->next) | |
3512 | if ((*d->match) (d, alc)) | |
3513 | break; | |
3514 | } | |
3515 | ||
3516 | /* See if there is anything to force this symbol to | |
3517 | local scope. */ | |
3518 | if (d == NULL && t->locals != NULL) | |
3519 | { | |
3520 | for (d = t->locals; d != NULL; d = d->next) | |
3521 | { | |
3522 | if ((*d->match) (d, alc)) | |
3523 | { | |
3524 | if (h->dynindx != -1 | |
3525 | && info->shared | |
3526 | && ! sinfo->export_dynamic) | |
3527 | { | |
252b5132 RH |
3528 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
3529 | h->elf_link_hash_flags &=~ | |
3530 | ELF_LINK_HASH_NEEDS_PLT; | |
3531 | h->dynindx = -1; | |
3532 | h->plt.offset = (bfd_vma) -1; | |
3533 | /* FIXME: The name of the symbol has | |
3534 | already been recorded in the dynamic | |
3535 | string table section. */ | |
3536 | } | |
3537 | ||
3538 | break; | |
3539 | } | |
3540 | } | |
3541 | } | |
3542 | ||
3543 | bfd_release (sinfo->output_bfd, alc); | |
3544 | break; | |
3545 | } | |
3546 | } | |
3547 | ||
3548 | /* If we are building an application, we need to create a | |
3549 | version node for this version. */ | |
3550 | if (t == NULL && ! info->shared) | |
3551 | { | |
3552 | struct bfd_elf_version_tree **pp; | |
3553 | int version_index; | |
3554 | ||
3555 | /* If we aren't going to export this symbol, we don't need | |
3556 | to worry about it. */ | |
3557 | if (h->dynindx == -1) | |
3558 | return true; | |
3559 | ||
3560 | t = ((struct bfd_elf_version_tree *) | |
3561 | bfd_alloc (sinfo->output_bfd, sizeof *t)); | |
3562 | if (t == NULL) | |
3563 | { | |
3564 | sinfo->failed = true; | |
3565 | return false; | |
3566 | } | |
3567 | ||
3568 | t->next = NULL; | |
3569 | t->name = p; | |
3570 | t->globals = NULL; | |
3571 | t->locals = NULL; | |
3572 | t->deps = NULL; | |
3573 | t->name_indx = (unsigned int) -1; | |
3574 | t->used = true; | |
3575 | ||
3576 | version_index = 1; | |
3577 | for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) | |
3578 | ++version_index; | |
3579 | t->vernum = version_index; | |
3580 | ||
3581 | *pp = t; | |
3582 | ||
3583 | h->verinfo.vertree = t; | |
3584 | } | |
3585 | else if (t == NULL) | |
3586 | { | |
3587 | /* We could not find the version for a symbol when | |
3588 | generating a shared archive. Return an error. */ | |
3589 | (*_bfd_error_handler) | |
3590 | (_("%s: undefined versioned symbol name %s"), | |
3591 | bfd_get_filename (sinfo->output_bfd), h->root.root.string); | |
3592 | bfd_set_error (bfd_error_bad_value); | |
3593 | sinfo->failed = true; | |
3594 | return false; | |
3595 | } | |
3596 | ||
3597 | if (hidden) | |
3598 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
3599 | } | |
3600 | ||
3601 | /* If we don't have a version for this symbol, see if we can find | |
3602 | something. */ | |
3603 | if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) | |
3604 | { | |
3605 | struct bfd_elf_version_tree *t; | |
3606 | struct bfd_elf_version_tree *deflt; | |
3607 | struct bfd_elf_version_expr *d; | |
3608 | ||
3609 | /* See if can find what version this symbol is in. If the | |
3610 | symbol is supposed to be local, then don't actually register | |
3611 | it. */ | |
3612 | deflt = NULL; | |
3613 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
3614 | { | |
3615 | if (t->globals != NULL) | |
3616 | { | |
3617 | for (d = t->globals; d != NULL; d = d->next) | |
3618 | { | |
3619 | if ((*d->match) (d, h->root.root.string)) | |
3620 | { | |
3621 | h->verinfo.vertree = t; | |
3622 | break; | |
3623 | } | |
3624 | } | |
3625 | ||
3626 | if (d != NULL) | |
3627 | break; | |
3628 | } | |
3629 | ||
3630 | if (t->locals != NULL) | |
3631 | { | |
3632 | for (d = t->locals; d != NULL; d = d->next) | |
3633 | { | |
3634 | if (d->pattern[0] == '*' && d->pattern[1] == '\0') | |
3635 | deflt = t; | |
3636 | else if ((*d->match) (d, h->root.root.string)) | |
3637 | { | |
3638 | h->verinfo.vertree = t; | |
3639 | if (h->dynindx != -1 | |
3640 | && info->shared | |
3641 | && ! sinfo->export_dynamic) | |
3642 | { | |
252b5132 RH |
3643 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
3644 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
3645 | h->dynindx = -1; | |
3646 | h->plt.offset = (bfd_vma) -1; | |
3647 | /* FIXME: The name of the symbol has already | |
3648 | been recorded in the dynamic string table | |
3649 | section. */ | |
3650 | } | |
3651 | break; | |
3652 | } | |
3653 | } | |
3654 | ||
3655 | if (d != NULL) | |
3656 | break; | |
3657 | } | |
3658 | } | |
3659 | ||
3660 | if (deflt != NULL && h->verinfo.vertree == NULL) | |
3661 | { | |
3662 | h->verinfo.vertree = deflt; | |
3663 | if (h->dynindx != -1 | |
3664 | && info->shared | |
3665 | && ! sinfo->export_dynamic) | |
3666 | { | |
252b5132 RH |
3667 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
3668 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
3669 | h->dynindx = -1; | |
3670 | h->plt.offset = (bfd_vma) -1; | |
3671 | /* FIXME: The name of the symbol has already been | |
3672 | recorded in the dynamic string table section. */ | |
3673 | } | |
3674 | } | |
3675 | } | |
3676 | ||
3677 | return true; | |
3678 | } | |
252b5132 RH |
3679 | \f |
3680 | /* Final phase of ELF linker. */ | |
3681 | ||
3682 | /* A structure we use to avoid passing large numbers of arguments. */ | |
3683 | ||
3684 | struct elf_final_link_info | |
3685 | { | |
3686 | /* General link information. */ | |
3687 | struct bfd_link_info *info; | |
3688 | /* Output BFD. */ | |
3689 | bfd *output_bfd; | |
3690 | /* Symbol string table. */ | |
3691 | struct bfd_strtab_hash *symstrtab; | |
3692 | /* .dynsym section. */ | |
3693 | asection *dynsym_sec; | |
3694 | /* .hash section. */ | |
3695 | asection *hash_sec; | |
3696 | /* symbol version section (.gnu.version). */ | |
3697 | asection *symver_sec; | |
3698 | /* Buffer large enough to hold contents of any section. */ | |
3699 | bfd_byte *contents; | |
3700 | /* Buffer large enough to hold external relocs of any section. */ | |
3701 | PTR external_relocs; | |
3702 | /* Buffer large enough to hold internal relocs of any section. */ | |
3703 | Elf_Internal_Rela *internal_relocs; | |
3704 | /* Buffer large enough to hold external local symbols of any input | |
3705 | BFD. */ | |
3706 | Elf_External_Sym *external_syms; | |
3707 | /* Buffer large enough to hold internal local symbols of any input | |
3708 | BFD. */ | |
3709 | Elf_Internal_Sym *internal_syms; | |
3710 | /* Array large enough to hold a symbol index for each local symbol | |
3711 | of any input BFD. */ | |
3712 | long *indices; | |
3713 | /* Array large enough to hold a section pointer for each local | |
3714 | symbol of any input BFD. */ | |
3715 | asection **sections; | |
3716 | /* Buffer to hold swapped out symbols. */ | |
3717 | Elf_External_Sym *symbuf; | |
3718 | /* Number of swapped out symbols in buffer. */ | |
3719 | size_t symbuf_count; | |
3720 | /* Number of symbols which fit in symbuf. */ | |
3721 | size_t symbuf_size; | |
3722 | }; | |
3723 | ||
3724 | static boolean elf_link_output_sym | |
3725 | PARAMS ((struct elf_final_link_info *, const char *, | |
3726 | Elf_Internal_Sym *, asection *)); | |
3727 | static boolean elf_link_flush_output_syms | |
3728 | PARAMS ((struct elf_final_link_info *)); | |
3729 | static boolean elf_link_output_extsym | |
3730 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
3731 | static boolean elf_link_input_bfd | |
3732 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
3733 | static boolean elf_reloc_link_order | |
3734 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
3735 | struct bfd_link_order *)); | |
3736 | ||
3737 | /* This struct is used to pass information to elf_link_output_extsym. */ | |
3738 | ||
3739 | struct elf_outext_info | |
3740 | { | |
3741 | boolean failed; | |
3742 | boolean localsyms; | |
3743 | struct elf_final_link_info *finfo; | |
3744 | }; | |
3745 | ||
23bc299b MM |
3746 | /* Compute the size of, and allocate space for, REL_HDR which is the |
3747 | section header for a section containing relocations for O. */ | |
3748 | ||
3749 | static boolean | |
3750 | elf_link_size_reloc_section (abfd, rel_hdr, o) | |
3751 | bfd *abfd; | |
3752 | Elf_Internal_Shdr *rel_hdr; | |
3753 | asection *o; | |
3754 | { | |
3755 | register struct elf_link_hash_entry **p, **pend; | |
3756 | ||
3757 | /* We are overestimating the size required for the relocation | |
3758 | sections, in the case that we are using both REL and RELA | |
3759 | relocations for a single section. In that case, RELOC_COUNT will | |
3760 | be the total number of relocations required, and we allocate | |
3761 | space for that many REL relocations as well as that many RELA | |
3762 | relocations. This approximation is wasteful of disk space. | |
3763 | However, until we keep track of how many of each kind of | |
3764 | relocation is required, it's difficult to calculate the right | |
3765 | value. */ | |
3766 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
3767 | ||
3768 | /* The contents field must last into write_object_contents, so we | |
3769 | allocate it with bfd_alloc rather than malloc. */ | |
3770 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
3771 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
3772 | return false; | |
3773 | ||
3774 | p = ((struct elf_link_hash_entry **) | |
3775 | bfd_malloc (o->reloc_count | |
3776 | * sizeof (struct elf_link_hash_entry *))); | |
3777 | if (p == NULL && o->reloc_count != 0) | |
3778 | return false; | |
3779 | ||
3780 | elf_section_data (o)->rel_hashes = p; | |
3781 | pend = p + o->reloc_count; | |
3782 | for (; p < pend; p++) | |
3783 | *p = NULL; | |
3784 | ||
3785 | return true; | |
3786 | } | |
3787 | ||
31367b81 MM |
3788 | /* When performing a relocateable link, the input relocations are |
3789 | preserved. But, if they reference global symbols, the indices | |
3790 | referenced must be updated. Update all the relocations in | |
3791 | REL_HDR (there are COUNT of them), using the data in REL_HASH. */ | |
3792 | ||
3793 | static void | |
3794 | elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash) | |
3795 | bfd *abfd; | |
3796 | Elf_Internal_Shdr *rel_hdr; | |
3797 | unsigned int count; | |
3798 | struct elf_link_hash_entry **rel_hash; | |
3799 | { | |
3800 | unsigned int i; | |
3801 | ||
3802 | for (i = 0; i < count; i++, rel_hash++) | |
3803 | { | |
3804 | if (*rel_hash == NULL) | |
3805 | continue; | |
3806 | ||
3807 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
3808 | ||
3809 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
3810 | { | |
3811 | Elf_External_Rel *erel; | |
3812 | Elf_Internal_Rel irel; | |
3813 | ||
3814 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
3815 | elf_swap_reloc_in (abfd, erel, &irel); | |
3816 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
3817 | ELF_R_TYPE (irel.r_info)); | |
3818 | elf_swap_reloc_out (abfd, &irel, erel); | |
3819 | } | |
3820 | else | |
3821 | { | |
3822 | Elf_External_Rela *erela; | |
3823 | Elf_Internal_Rela irela; | |
3824 | ||
3825 | BFD_ASSERT (rel_hdr->sh_entsize | |
3826 | == sizeof (Elf_External_Rela)); | |
3827 | ||
3828 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
3829 | elf_swap_reloca_in (abfd, erela, &irela); | |
3830 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
3831 | ELF_R_TYPE (irela.r_info)); | |
3832 | elf_swap_reloca_out (abfd, &irela, erela); | |
3833 | } | |
3834 | } | |
3835 | } | |
3836 | ||
252b5132 RH |
3837 | /* Do the final step of an ELF link. */ |
3838 | ||
3839 | boolean | |
3840 | elf_bfd_final_link (abfd, info) | |
3841 | bfd *abfd; | |
3842 | struct bfd_link_info *info; | |
3843 | { | |
3844 | boolean dynamic; | |
3845 | bfd *dynobj; | |
3846 | struct elf_final_link_info finfo; | |
3847 | register asection *o; | |
3848 | register struct bfd_link_order *p; | |
3849 | register bfd *sub; | |
3850 | size_t max_contents_size; | |
3851 | size_t max_external_reloc_size; | |
3852 | size_t max_internal_reloc_count; | |
3853 | size_t max_sym_count; | |
3854 | file_ptr off; | |
3855 | Elf_Internal_Sym elfsym; | |
3856 | unsigned int i; | |
3857 | Elf_Internal_Shdr *symtab_hdr; | |
3858 | Elf_Internal_Shdr *symstrtab_hdr; | |
3859 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
3860 | struct elf_outext_info eoinfo; | |
3861 | ||
3862 | if (info->shared) | |
3863 | abfd->flags |= DYNAMIC; | |
3864 | ||
3865 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
3866 | dynobj = elf_hash_table (info)->dynobj; | |
3867 | ||
3868 | finfo.info = info; | |
3869 | finfo.output_bfd = abfd; | |
3870 | finfo.symstrtab = elf_stringtab_init (); | |
3871 | if (finfo.symstrtab == NULL) | |
3872 | return false; | |
3873 | ||
3874 | if (! dynamic) | |
3875 | { | |
3876 | finfo.dynsym_sec = NULL; | |
3877 | finfo.hash_sec = NULL; | |
3878 | finfo.symver_sec = NULL; | |
3879 | } | |
3880 | else | |
3881 | { | |
3882 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
3883 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
3884 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); | |
3885 | finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
3886 | /* Note that it is OK if symver_sec is NULL. */ | |
3887 | } | |
3888 | ||
3889 | finfo.contents = NULL; | |
3890 | finfo.external_relocs = NULL; | |
3891 | finfo.internal_relocs = NULL; | |
3892 | finfo.external_syms = NULL; | |
3893 | finfo.internal_syms = NULL; | |
3894 | finfo.indices = NULL; | |
3895 | finfo.sections = NULL; | |
3896 | finfo.symbuf = NULL; | |
3897 | finfo.symbuf_count = 0; | |
3898 | ||
3899 | /* Count up the number of relocations we will output for each output | |
3900 | section, so that we know the sizes of the reloc sections. We | |
3901 | also figure out some maximum sizes. */ | |
3902 | max_contents_size = 0; | |
3903 | max_external_reloc_size = 0; | |
3904 | max_internal_reloc_count = 0; | |
3905 | max_sym_count = 0; | |
3906 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
3907 | { | |
3908 | o->reloc_count = 0; | |
3909 | ||
3910 | for (p = o->link_order_head; p != NULL; p = p->next) | |
3911 | { | |
3912 | if (p->type == bfd_section_reloc_link_order | |
3913 | || p->type == bfd_symbol_reloc_link_order) | |
3914 | ++o->reloc_count; | |
3915 | else if (p->type == bfd_indirect_link_order) | |
3916 | { | |
3917 | asection *sec; | |
3918 | ||
3919 | sec = p->u.indirect.section; | |
3920 | ||
3921 | /* Mark all sections which are to be included in the | |
3922 | link. This will normally be every section. We need | |
3923 | to do this so that we can identify any sections which | |
3924 | the linker has decided to not include. */ | |
3925 | sec->linker_mark = true; | |
3926 | ||
3927 | if (info->relocateable) | |
3928 | o->reloc_count += sec->reloc_count; | |
3929 | ||
3930 | if (sec->_raw_size > max_contents_size) | |
3931 | max_contents_size = sec->_raw_size; | |
3932 | if (sec->_cooked_size > max_contents_size) | |
3933 | max_contents_size = sec->_cooked_size; | |
3934 | ||
3935 | /* We are interested in just local symbols, not all | |
3936 | symbols. */ | |
3937 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour | |
3938 | && (sec->owner->flags & DYNAMIC) == 0) | |
3939 | { | |
3940 | size_t sym_count; | |
3941 | ||
3942 | if (elf_bad_symtab (sec->owner)) | |
3943 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
3944 | / sizeof (Elf_External_Sym)); | |
3945 | else | |
3946 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
3947 | ||
3948 | if (sym_count > max_sym_count) | |
3949 | max_sym_count = sym_count; | |
3950 | ||
3951 | if ((sec->flags & SEC_RELOC) != 0) | |
3952 | { | |
3953 | size_t ext_size; | |
3954 | ||
3955 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; | |
3956 | if (ext_size > max_external_reloc_size) | |
3957 | max_external_reloc_size = ext_size; | |
3958 | if (sec->reloc_count > max_internal_reloc_count) | |
3959 | max_internal_reloc_count = sec->reloc_count; | |
3960 | } | |
3961 | } | |
3962 | } | |
3963 | } | |
3964 | ||
3965 | if (o->reloc_count > 0) | |
3966 | o->flags |= SEC_RELOC; | |
3967 | else | |
3968 | { | |
3969 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
3970 | set it (this is probably a bug) and if it is set | |
3971 | assign_section_numbers will create a reloc section. */ | |
3972 | o->flags &=~ SEC_RELOC; | |
3973 | } | |
3974 | ||
3975 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
3976 | zero. This is done in elf_fake_sections as well, but forcing | |
3977 | the VMA to 0 here will ensure that relocs against these | |
3978 | sections are handled correctly. */ | |
3979 | if ((o->flags & SEC_ALLOC) == 0 | |
3980 | && ! o->user_set_vma) | |
3981 | o->vma = 0; | |
3982 | } | |
3983 | ||
3984 | /* Figure out the file positions for everything but the symbol table | |
3985 | and the relocs. We set symcount to force assign_section_numbers | |
3986 | to create a symbol table. */ | |
3987 | bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; | |
3988 | BFD_ASSERT (! abfd->output_has_begun); | |
3989 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
3990 | goto error_return; | |
3991 | ||
3992 | /* That created the reloc sections. Set their sizes, and assign | |
3993 | them file positions, and allocate some buffers. */ | |
3994 | for (o = abfd->sections; o != NULL; o = o->next) | |
3995 | { | |
3996 | if ((o->flags & SEC_RELOC) != 0) | |
3997 | { | |
23bc299b MM |
3998 | if (!elf_link_size_reloc_section (abfd, |
3999 | &elf_section_data (o)->rel_hdr, | |
4000 | o)) | |
252b5132 RH |
4001 | goto error_return; |
4002 | ||
23bc299b MM |
4003 | if (elf_section_data (o)->rel_hdr2 |
4004 | && !elf_link_size_reloc_section (abfd, | |
4005 | elf_section_data (o)->rel_hdr2, | |
4006 | o)) | |
252b5132 | 4007 | goto error_return; |
252b5132 RH |
4008 | } |
4009 | } | |
4010 | ||
4011 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
4012 | ||
4013 | /* We have now assigned file positions for all the sections except | |
4014 | .symtab and .strtab. We start the .symtab section at the current | |
4015 | file position, and write directly to it. We build the .strtab | |
4016 | section in memory. */ | |
4017 | bfd_get_symcount (abfd) = 0; | |
4018 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
4019 | /* sh_name is set in prep_headers. */ | |
4020 | symtab_hdr->sh_type = SHT_SYMTAB; | |
4021 | symtab_hdr->sh_flags = 0; | |
4022 | symtab_hdr->sh_addr = 0; | |
4023 | symtab_hdr->sh_size = 0; | |
4024 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
4025 | /* sh_link is set in assign_section_numbers. */ | |
4026 | /* sh_info is set below. */ | |
4027 | /* sh_offset is set just below. */ | |
4028 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
4029 | ||
4030 | off = elf_tdata (abfd)->next_file_pos; | |
4031 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | |
4032 | ||
4033 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
4034 | incorrect. We do not yet know the size of the .symtab section. | |
4035 | We correct next_file_pos below, after we do know the size. */ | |
4036 | ||
4037 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
4038 | continuously seeking to the right position in the file. */ | |
4039 | if (! info->keep_memory || max_sym_count < 20) | |
4040 | finfo.symbuf_size = 20; | |
4041 | else | |
4042 | finfo.symbuf_size = max_sym_count; | |
4043 | finfo.symbuf = ((Elf_External_Sym *) | |
4044 | bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); | |
4045 | if (finfo.symbuf == NULL) | |
4046 | goto error_return; | |
4047 | ||
4048 | /* Start writing out the symbol table. The first symbol is always a | |
4049 | dummy symbol. */ | |
4050 | if (info->strip != strip_all || info->relocateable) | |
4051 | { | |
4052 | elfsym.st_value = 0; | |
4053 | elfsym.st_size = 0; | |
4054 | elfsym.st_info = 0; | |
4055 | elfsym.st_other = 0; | |
4056 | elfsym.st_shndx = SHN_UNDEF; | |
4057 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
4058 | &elfsym, bfd_und_section_ptr)) | |
4059 | goto error_return; | |
4060 | } | |
4061 | ||
4062 | #if 0 | |
4063 | /* Some standard ELF linkers do this, but we don't because it causes | |
4064 | bootstrap comparison failures. */ | |
4065 | /* Output a file symbol for the output file as the second symbol. | |
4066 | We output this even if we are discarding local symbols, although | |
4067 | I'm not sure if this is correct. */ | |
4068 | elfsym.st_value = 0; | |
4069 | elfsym.st_size = 0; | |
4070 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
4071 | elfsym.st_other = 0; | |
4072 | elfsym.st_shndx = SHN_ABS; | |
4073 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), | |
4074 | &elfsym, bfd_abs_section_ptr)) | |
4075 | goto error_return; | |
4076 | #endif | |
4077 | ||
4078 | /* Output a symbol for each section. We output these even if we are | |
4079 | discarding local symbols, since they are used for relocs. These | |
4080 | symbols have no names. We store the index of each one in the | |
4081 | index field of the section, so that we can find it again when | |
4082 | outputting relocs. */ | |
4083 | if (info->strip != strip_all || info->relocateable) | |
4084 | { | |
4085 | elfsym.st_size = 0; | |
4086 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
4087 | elfsym.st_other = 0; | |
4088 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
4089 | { | |
4090 | o = section_from_elf_index (abfd, i); | |
4091 | if (o != NULL) | |
4092 | o->target_index = bfd_get_symcount (abfd); | |
4093 | elfsym.st_shndx = i; | |
4094 | if (info->relocateable || o == NULL) | |
4095 | elfsym.st_value = 0; | |
4096 | else | |
4097 | elfsym.st_value = o->vma; | |
4098 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
4099 | &elfsym, o)) | |
4100 | goto error_return; | |
4101 | } | |
4102 | } | |
4103 | ||
4104 | /* Allocate some memory to hold information read in from the input | |
4105 | files. */ | |
4106 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); | |
4107 | finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); | |
4108 | finfo.internal_relocs = ((Elf_Internal_Rela *) | |
4109 | bfd_malloc (max_internal_reloc_count | |
c7ac6ff8 MM |
4110 | * sizeof (Elf_Internal_Rela) |
4111 | * bed->s->int_rels_per_ext_rel)); | |
252b5132 RH |
4112 | finfo.external_syms = ((Elf_External_Sym *) |
4113 | bfd_malloc (max_sym_count | |
4114 | * sizeof (Elf_External_Sym))); | |
4115 | finfo.internal_syms = ((Elf_Internal_Sym *) | |
4116 | bfd_malloc (max_sym_count | |
4117 | * sizeof (Elf_Internal_Sym))); | |
4118 | finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long)); | |
4119 | finfo.sections = ((asection **) | |
4120 | bfd_malloc (max_sym_count * sizeof (asection *))); | |
4121 | if ((finfo.contents == NULL && max_contents_size != 0) | |
4122 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
4123 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
4124 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
4125 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
4126 | || (finfo.indices == NULL && max_sym_count != 0) | |
4127 | || (finfo.sections == NULL && max_sym_count != 0)) | |
4128 | goto error_return; | |
4129 | ||
4130 | /* Since ELF permits relocations to be against local symbols, we | |
4131 | must have the local symbols available when we do the relocations. | |
4132 | Since we would rather only read the local symbols once, and we | |
4133 | would rather not keep them in memory, we handle all the | |
4134 | relocations for a single input file at the same time. | |
4135 | ||
4136 | Unfortunately, there is no way to know the total number of local | |
4137 | symbols until we have seen all of them, and the local symbol | |
4138 | indices precede the global symbol indices. This means that when | |
4139 | we are generating relocateable output, and we see a reloc against | |
4140 | a global symbol, we can not know the symbol index until we have | |
4141 | finished examining all the local symbols to see which ones we are | |
4142 | going to output. To deal with this, we keep the relocations in | |
4143 | memory, and don't output them until the end of the link. This is | |
4144 | an unfortunate waste of memory, but I don't see a good way around | |
4145 | it. Fortunately, it only happens when performing a relocateable | |
4146 | link, which is not the common case. FIXME: If keep_memory is set | |
4147 | we could write the relocs out and then read them again; I don't | |
4148 | know how bad the memory loss will be. */ | |
4149 | ||
4150 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
4151 | sub->output_has_begun = false; | |
4152 | for (o = abfd->sections; o != NULL; o = o->next) | |
4153 | { | |
4154 | for (p = o->link_order_head; p != NULL; p = p->next) | |
4155 | { | |
4156 | if (p->type == bfd_indirect_link_order | |
4157 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
4158 | == bfd_target_elf_flavour)) | |
4159 | { | |
4160 | sub = p->u.indirect.section->owner; | |
4161 | if (! sub->output_has_begun) | |
4162 | { | |
4163 | if (! elf_link_input_bfd (&finfo, sub)) | |
4164 | goto error_return; | |
4165 | sub->output_has_begun = true; | |
4166 | } | |
4167 | } | |
4168 | else if (p->type == bfd_section_reloc_link_order | |
4169 | || p->type == bfd_symbol_reloc_link_order) | |
4170 | { | |
4171 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
4172 | goto error_return; | |
4173 | } | |
4174 | else | |
4175 | { | |
4176 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
4177 | goto error_return; | |
4178 | } | |
4179 | } | |
4180 | } | |
4181 | ||
4182 | /* That wrote out all the local symbols. Finish up the symbol table | |
4183 | with the global symbols. */ | |
4184 | ||
4185 | if (info->strip != strip_all && info->shared) | |
4186 | { | |
4187 | /* Output any global symbols that got converted to local in a | |
4188 | version script. We do this in a separate step since ELF | |
4189 | requires all local symbols to appear prior to any global | |
4190 | symbols. FIXME: We should only do this if some global | |
4191 | symbols were, in fact, converted to become local. FIXME: | |
4192 | Will this work correctly with the Irix 5 linker? */ | |
4193 | eoinfo.failed = false; | |
4194 | eoinfo.finfo = &finfo; | |
4195 | eoinfo.localsyms = true; | |
4196 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
4197 | (PTR) &eoinfo); | |
4198 | if (eoinfo.failed) | |
4199 | return false; | |
4200 | } | |
4201 | ||
30b30c21 | 4202 | /* The sh_info field records the index of the first non local symbol. */ |
252b5132 | 4203 | symtab_hdr->sh_info = bfd_get_symcount (abfd); |
30b30c21 | 4204 | |
252b5132 | 4205 | if (dynamic) |
30b30c21 RH |
4206 | { |
4207 | Elf_Internal_Sym sym; | |
4208 | Elf_External_Sym *dynsym = | |
4209 | (Elf_External_Sym *)finfo.dynsym_sec->contents; | |
4210 | unsigned long last_local = 0; | |
4211 | ||
4212 | /* Write out the section symbols for the output sections. */ | |
4213 | if (info->shared) | |
4214 | { | |
4215 | asection *s; | |
4216 | ||
4217 | sym.st_size = 0; | |
4218 | sym.st_name = 0; | |
4219 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
4220 | sym.st_other = 0; | |
4221 | ||
4222 | for (s = abfd->sections; s != NULL; s = s->next) | |
4223 | { | |
4224 | int indx; | |
4225 | indx = elf_section_data (s)->this_idx; | |
4226 | BFD_ASSERT (indx > 0); | |
4227 | sym.st_shndx = indx; | |
4228 | sym.st_value = s->vma; | |
4229 | ||
4230 | elf_swap_symbol_out (abfd, &sym, | |
4231 | dynsym + elf_section_data (s)->dynindx); | |
4232 | } | |
4233 | ||
4234 | last_local = bfd_count_sections (abfd); | |
4235 | } | |
4236 | ||
4237 | /* Write out the local dynsyms. */ | |
4238 | if (elf_hash_table (info)->dynlocal) | |
4239 | { | |
4240 | struct elf_link_local_dynamic_entry *e; | |
4241 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
4242 | { | |
318da145 | 4243 | asection *s; |
30b30c21 RH |
4244 | |
4245 | sym.st_size = e->isym.st_size; | |
4246 | sym.st_other = e->isym.st_other; | |
4247 | ||
4248 | /* Note that we saved a word of storage and overwrote | |
4249 | the original st_name with the dynstr_index. */ | |
4250 | sym.st_name = e->isym.st_name; | |
4251 | ||
4252 | /* Whatever binding the symbol had before, it's now local. */ | |
4253 | sym.st_info = ELF_ST_INFO (STB_LOCAL, | |
4254 | ELF_ST_TYPE (e->isym.st_info)); | |
4255 | ||
4256 | s = bfd_section_from_elf_index (e->input_bfd, e->isym.st_shndx); | |
4257 | ||
4258 | sym.st_shndx = elf_section_data (s->output_section)->this_idx; | |
4259 | sym.st_value = (s->output_section->vma | |
4260 | + s->output_offset | |
4261 | + e->isym.st_value); | |
4262 | ||
4263 | if (last_local < e->dynindx) | |
4264 | last_local = e->dynindx; | |
4265 | ||
4266 | elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx); | |
4267 | } | |
4268 | } | |
4269 | ||
4270 | elf_section_data (finfo.dynsym_sec->output_section) | |
4271 | ->this_hdr.sh_info = last_local; | |
4272 | } | |
252b5132 RH |
4273 | |
4274 | /* We get the global symbols from the hash table. */ | |
4275 | eoinfo.failed = false; | |
4276 | eoinfo.localsyms = false; | |
4277 | eoinfo.finfo = &finfo; | |
4278 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
4279 | (PTR) &eoinfo); | |
4280 | if (eoinfo.failed) | |
4281 | return false; | |
4282 | ||
4283 | /* Flush all symbols to the file. */ | |
4284 | if (! elf_link_flush_output_syms (&finfo)) | |
4285 | return false; | |
4286 | ||
4287 | /* Now we know the size of the symtab section. */ | |
4288 | off += symtab_hdr->sh_size; | |
4289 | ||
4290 | /* Finish up and write out the symbol string table (.strtab) | |
4291 | section. */ | |
4292 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
4293 | /* sh_name was set in prep_headers. */ | |
4294 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
4295 | symstrtab_hdr->sh_flags = 0; | |
4296 | symstrtab_hdr->sh_addr = 0; | |
4297 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
4298 | symstrtab_hdr->sh_entsize = 0; | |
4299 | symstrtab_hdr->sh_link = 0; | |
4300 | symstrtab_hdr->sh_info = 0; | |
4301 | /* sh_offset is set just below. */ | |
4302 | symstrtab_hdr->sh_addralign = 1; | |
4303 | ||
4304 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); | |
4305 | elf_tdata (abfd)->next_file_pos = off; | |
4306 | ||
4307 | if (bfd_get_symcount (abfd) > 0) | |
4308 | { | |
4309 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
4310 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
4311 | return false; | |
4312 | } | |
4313 | ||
4314 | /* Adjust the relocs to have the correct symbol indices. */ | |
4315 | for (o = abfd->sections; o != NULL; o = o->next) | |
4316 | { | |
4317 | struct elf_link_hash_entry **rel_hash; | |
4318 | Elf_Internal_Shdr *rel_hdr; | |
4319 | ||
4320 | if ((o->flags & SEC_RELOC) == 0) | |
4321 | continue; | |
4322 | ||
31367b81 MM |
4323 | elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr, |
4324 | elf_section_data (o)->rel_count, | |
4325 | elf_section_data (o)->rel_hashes); | |
4326 | if (elf_section_data (o)->rel_hdr2 != NULL) | |
4327 | elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2, | |
4328 | elf_section_data (o)->rel_count2, | |
4329 | (elf_section_data (o)->rel_hashes | |
4330 | + elf_section_data (o)->rel_count)); | |
252b5132 RH |
4331 | |
4332 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
4333 | trying to swap the relocs out itself. */ | |
4334 | o->reloc_count = 0; | |
4335 | } | |
4336 | ||
4337 | /* If we are linking against a dynamic object, or generating a | |
4338 | shared library, finish up the dynamic linking information. */ | |
4339 | if (dynamic) | |
4340 | { | |
4341 | Elf_External_Dyn *dyncon, *dynconend; | |
4342 | ||
4343 | /* Fix up .dynamic entries. */ | |
4344 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
4345 | BFD_ASSERT (o != NULL); | |
4346 | ||
4347 | dyncon = (Elf_External_Dyn *) o->contents; | |
4348 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
4349 | for (; dyncon < dynconend; dyncon++) | |
4350 | { | |
4351 | Elf_Internal_Dyn dyn; | |
4352 | const char *name; | |
4353 | unsigned int type; | |
4354 | ||
4355 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
4356 | ||
4357 | switch (dyn.d_tag) | |
4358 | { | |
4359 | default: | |
4360 | break; | |
252b5132 | 4361 | case DT_INIT: |
f0c2e336 | 4362 | name = info->init_function; |
252b5132 RH |
4363 | goto get_sym; |
4364 | case DT_FINI: | |
f0c2e336 | 4365 | name = info->fini_function; |
252b5132 RH |
4366 | get_sym: |
4367 | { | |
4368 | struct elf_link_hash_entry *h; | |
4369 | ||
4370 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
4371 | false, false, true); | |
4372 | if (h != NULL | |
4373 | && (h->root.type == bfd_link_hash_defined | |
4374 | || h->root.type == bfd_link_hash_defweak)) | |
4375 | { | |
4376 | dyn.d_un.d_val = h->root.u.def.value; | |
4377 | o = h->root.u.def.section; | |
4378 | if (o->output_section != NULL) | |
4379 | dyn.d_un.d_val += (o->output_section->vma | |
4380 | + o->output_offset); | |
4381 | else | |
4382 | { | |
4383 | /* The symbol is imported from another shared | |
4384 | library and does not apply to this one. */ | |
4385 | dyn.d_un.d_val = 0; | |
4386 | } | |
4387 | ||
4388 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4389 | } | |
4390 | } | |
4391 | break; | |
4392 | ||
4393 | case DT_HASH: | |
4394 | name = ".hash"; | |
4395 | goto get_vma; | |
4396 | case DT_STRTAB: | |
4397 | name = ".dynstr"; | |
4398 | goto get_vma; | |
4399 | case DT_SYMTAB: | |
4400 | name = ".dynsym"; | |
4401 | goto get_vma; | |
4402 | case DT_VERDEF: | |
4403 | name = ".gnu.version_d"; | |
4404 | goto get_vma; | |
4405 | case DT_VERNEED: | |
4406 | name = ".gnu.version_r"; | |
4407 | goto get_vma; | |
4408 | case DT_VERSYM: | |
4409 | name = ".gnu.version"; | |
4410 | get_vma: | |
4411 | o = bfd_get_section_by_name (abfd, name); | |
4412 | BFD_ASSERT (o != NULL); | |
4413 | dyn.d_un.d_ptr = o->vma; | |
4414 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4415 | break; | |
4416 | ||
4417 | case DT_REL: | |
4418 | case DT_RELA: | |
4419 | case DT_RELSZ: | |
4420 | case DT_RELASZ: | |
4421 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
4422 | type = SHT_REL; | |
4423 | else | |
4424 | type = SHT_RELA; | |
4425 | dyn.d_un.d_val = 0; | |
4426 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
4427 | { | |
4428 | Elf_Internal_Shdr *hdr; | |
4429 | ||
4430 | hdr = elf_elfsections (abfd)[i]; | |
4431 | if (hdr->sh_type == type | |
4432 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
4433 | { | |
4434 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
4435 | dyn.d_un.d_val += hdr->sh_size; | |
4436 | else | |
4437 | { | |
4438 | if (dyn.d_un.d_val == 0 | |
4439 | || hdr->sh_addr < dyn.d_un.d_val) | |
4440 | dyn.d_un.d_val = hdr->sh_addr; | |
4441 | } | |
4442 | } | |
4443 | } | |
4444 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4445 | break; | |
4446 | } | |
4447 | } | |
4448 | } | |
4449 | ||
4450 | /* If we have created any dynamic sections, then output them. */ | |
4451 | if (dynobj != NULL) | |
4452 | { | |
4453 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
4454 | goto error_return; | |
4455 | ||
4456 | for (o = dynobj->sections; o != NULL; o = o->next) | |
4457 | { | |
4458 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
4459 | || o->_raw_size == 0) | |
4460 | continue; | |
4461 | if ((o->flags & SEC_LINKER_CREATED) == 0) | |
4462 | { | |
4463 | /* At this point, we are only interested in sections | |
4464 | created by elf_link_create_dynamic_sections. */ | |
4465 | continue; | |
4466 | } | |
4467 | if ((elf_section_data (o->output_section)->this_hdr.sh_type | |
4468 | != SHT_STRTAB) | |
4469 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
4470 | { | |
4471 | if (! bfd_set_section_contents (abfd, o->output_section, | |
4472 | o->contents, o->output_offset, | |
4473 | o->_raw_size)) | |
4474 | goto error_return; | |
4475 | } | |
4476 | else | |
4477 | { | |
4478 | file_ptr off; | |
4479 | ||
4480 | /* The contents of the .dynstr section are actually in a | |
4481 | stringtab. */ | |
4482 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
4483 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
4484 | || ! _bfd_stringtab_emit (abfd, | |
4485 | elf_hash_table (info)->dynstr)) | |
4486 | goto error_return; | |
4487 | } | |
4488 | } | |
4489 | } | |
4490 | ||
4491 | /* If we have optimized stabs strings, output them. */ | |
4492 | if (elf_hash_table (info)->stab_info != NULL) | |
4493 | { | |
4494 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) | |
4495 | goto error_return; | |
4496 | } | |
4497 | ||
4498 | if (finfo.symstrtab != NULL) | |
4499 | _bfd_stringtab_free (finfo.symstrtab); | |
4500 | if (finfo.contents != NULL) | |
4501 | free (finfo.contents); | |
4502 | if (finfo.external_relocs != NULL) | |
4503 | free (finfo.external_relocs); | |
4504 | if (finfo.internal_relocs != NULL) | |
4505 | free (finfo.internal_relocs); | |
4506 | if (finfo.external_syms != NULL) | |
4507 | free (finfo.external_syms); | |
4508 | if (finfo.internal_syms != NULL) | |
4509 | free (finfo.internal_syms); | |
4510 | if (finfo.indices != NULL) | |
4511 | free (finfo.indices); | |
4512 | if (finfo.sections != NULL) | |
4513 | free (finfo.sections); | |
4514 | if (finfo.symbuf != NULL) | |
4515 | free (finfo.symbuf); | |
4516 | for (o = abfd->sections; o != NULL; o = o->next) | |
4517 | { | |
4518 | if ((o->flags & SEC_RELOC) != 0 | |
4519 | && elf_section_data (o)->rel_hashes != NULL) | |
4520 | free (elf_section_data (o)->rel_hashes); | |
4521 | } | |
4522 | ||
4523 | elf_tdata (abfd)->linker = true; | |
4524 | ||
4525 | return true; | |
4526 | ||
4527 | error_return: | |
4528 | if (finfo.symstrtab != NULL) | |
4529 | _bfd_stringtab_free (finfo.symstrtab); | |
4530 | if (finfo.contents != NULL) | |
4531 | free (finfo.contents); | |
4532 | if (finfo.external_relocs != NULL) | |
4533 | free (finfo.external_relocs); | |
4534 | if (finfo.internal_relocs != NULL) | |
4535 | free (finfo.internal_relocs); | |
4536 | if (finfo.external_syms != NULL) | |
4537 | free (finfo.external_syms); | |
4538 | if (finfo.internal_syms != NULL) | |
4539 | free (finfo.internal_syms); | |
4540 | if (finfo.indices != NULL) | |
4541 | free (finfo.indices); | |
4542 | if (finfo.sections != NULL) | |
4543 | free (finfo.sections); | |
4544 | if (finfo.symbuf != NULL) | |
4545 | free (finfo.symbuf); | |
4546 | for (o = abfd->sections; o != NULL; o = o->next) | |
4547 | { | |
4548 | if ((o->flags & SEC_RELOC) != 0 | |
4549 | && elf_section_data (o)->rel_hashes != NULL) | |
4550 | free (elf_section_data (o)->rel_hashes); | |
4551 | } | |
4552 | ||
4553 | return false; | |
4554 | } | |
4555 | ||
4556 | /* Add a symbol to the output symbol table. */ | |
4557 | ||
4558 | static boolean | |
4559 | elf_link_output_sym (finfo, name, elfsym, input_sec) | |
4560 | struct elf_final_link_info *finfo; | |
4561 | const char *name; | |
4562 | Elf_Internal_Sym *elfsym; | |
4563 | asection *input_sec; | |
4564 | { | |
4565 | boolean (*output_symbol_hook) PARAMS ((bfd *, | |
4566 | struct bfd_link_info *info, | |
4567 | const char *, | |
4568 | Elf_Internal_Sym *, | |
4569 | asection *)); | |
4570 | ||
4571 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
4572 | elf_backend_link_output_symbol_hook; | |
4573 | if (output_symbol_hook != NULL) | |
4574 | { | |
4575 | if (! ((*output_symbol_hook) | |
4576 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
4577 | return false; | |
4578 | } | |
4579 | ||
4580 | if (name == (const char *) NULL || *name == '\0') | |
4581 | elfsym->st_name = 0; | |
4582 | else if (input_sec->flags & SEC_EXCLUDE) | |
4583 | elfsym->st_name = 0; | |
4584 | else | |
4585 | { | |
4586 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
4587 | name, true, | |
4588 | false); | |
4589 | if (elfsym->st_name == (unsigned long) -1) | |
4590 | return false; | |
4591 | } | |
4592 | ||
4593 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
4594 | { | |
4595 | if (! elf_link_flush_output_syms (finfo)) | |
4596 | return false; | |
4597 | } | |
4598 | ||
4599 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
4600 | (PTR) (finfo->symbuf + finfo->symbuf_count)); | |
4601 | ++finfo->symbuf_count; | |
4602 | ||
4603 | ++ bfd_get_symcount (finfo->output_bfd); | |
4604 | ||
4605 | return true; | |
4606 | } | |
4607 | ||
4608 | /* Flush the output symbols to the file. */ | |
4609 | ||
4610 | static boolean | |
4611 | elf_link_flush_output_syms (finfo) | |
4612 | struct elf_final_link_info *finfo; | |
4613 | { | |
4614 | if (finfo->symbuf_count > 0) | |
4615 | { | |
4616 | Elf_Internal_Shdr *symtab; | |
4617 | ||
4618 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
4619 | ||
4620 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, | |
4621 | SEEK_SET) != 0 | |
4622 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
4623 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
4624 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
4625 | return false; | |
4626 | ||
4627 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); | |
4628 | ||
4629 | finfo->symbuf_count = 0; | |
4630 | } | |
4631 | ||
4632 | return true; | |
4633 | } | |
4634 | ||
4635 | /* Add an external symbol to the symbol table. This is called from | |
4636 | the hash table traversal routine. When generating a shared object, | |
4637 | we go through the symbol table twice. The first time we output | |
4638 | anything that might have been forced to local scope in a version | |
4639 | script. The second time we output the symbols that are still | |
4640 | global symbols. */ | |
4641 | ||
4642 | static boolean | |
4643 | elf_link_output_extsym (h, data) | |
4644 | struct elf_link_hash_entry *h; | |
4645 | PTR data; | |
4646 | { | |
4647 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; | |
4648 | struct elf_final_link_info *finfo = eoinfo->finfo; | |
4649 | boolean strip; | |
4650 | Elf_Internal_Sym sym; | |
4651 | asection *input_sec; | |
4652 | ||
4653 | /* Decide whether to output this symbol in this pass. */ | |
4654 | if (eoinfo->localsyms) | |
4655 | { | |
4656 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) | |
4657 | return true; | |
4658 | } | |
4659 | else | |
4660 | { | |
4661 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
4662 | return true; | |
4663 | } | |
4664 | ||
4665 | /* If we are not creating a shared library, and this symbol is | |
4666 | referenced by a shared library but is not defined anywhere, then | |
4667 | warn that it is undefined. If we do not do this, the runtime | |
4668 | linker will complain that the symbol is undefined when the | |
4669 | program is run. We don't have to worry about symbols that are | |
4670 | referenced by regular files, because we will already have issued | |
4671 | warnings for them. */ | |
4672 | if (! finfo->info->relocateable | |
4673 | && ! (finfo->info->shared | |
252b5132 RH |
4674 | && !finfo->info->no_undefined) |
4675 | && h->root.type == bfd_link_hash_undefined | |
4676 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
4677 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
4678 | { | |
4679 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
4680 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
4681 | (asection *) NULL, 0))) | |
4682 | { | |
4683 | eoinfo->failed = true; | |
4684 | return false; | |
4685 | } | |
4686 | } | |
4687 | ||
4688 | /* We don't want to output symbols that have never been mentioned by | |
4689 | a regular file, or that we have been told to strip. However, if | |
4690 | h->indx is set to -2, the symbol is used by a reloc and we must | |
4691 | output it. */ | |
4692 | if (h->indx == -2) | |
4693 | strip = false; | |
4694 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
4695 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
4696 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
4697 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
4698 | strip = true; | |
4699 | else if (finfo->info->strip == strip_all | |
4700 | || (finfo->info->strip == strip_some | |
4701 | && bfd_hash_lookup (finfo->info->keep_hash, | |
4702 | h->root.root.string, | |
4703 | false, false) == NULL)) | |
4704 | strip = true; | |
4705 | else | |
4706 | strip = false; | |
4707 | ||
4708 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
4709 | nothing else to do. */ | |
4710 | if (strip && h->dynindx == -1) | |
4711 | return true; | |
4712 | ||
4713 | sym.st_value = 0; | |
4714 | sym.st_size = h->size; | |
4715 | sym.st_other = h->other; | |
4716 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
4717 | sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); | |
4718 | else if (h->root.type == bfd_link_hash_undefweak | |
4719 | || h->root.type == bfd_link_hash_defweak) | |
4720 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
4721 | else | |
4722 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
4723 | ||
4724 | switch (h->root.type) | |
4725 | { | |
4726 | default: | |
4727 | case bfd_link_hash_new: | |
4728 | abort (); | |
4729 | return false; | |
4730 | ||
4731 | case bfd_link_hash_undefined: | |
4732 | input_sec = bfd_und_section_ptr; | |
4733 | sym.st_shndx = SHN_UNDEF; | |
4734 | break; | |
4735 | ||
4736 | case bfd_link_hash_undefweak: | |
4737 | input_sec = bfd_und_section_ptr; | |
4738 | sym.st_shndx = SHN_UNDEF; | |
4739 | break; | |
4740 | ||
4741 | case bfd_link_hash_defined: | |
4742 | case bfd_link_hash_defweak: | |
4743 | { | |
4744 | input_sec = h->root.u.def.section; | |
4745 | if (input_sec->output_section != NULL) | |
4746 | { | |
4747 | sym.st_shndx = | |
4748 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
4749 | input_sec->output_section); | |
4750 | if (sym.st_shndx == (unsigned short) -1) | |
4751 | { | |
4752 | (*_bfd_error_handler) | |
4753 | (_("%s: could not find output section %s for input section %s"), | |
4754 | bfd_get_filename (finfo->output_bfd), | |
4755 | input_sec->output_section->name, | |
4756 | input_sec->name); | |
4757 | eoinfo->failed = true; | |
4758 | return false; | |
4759 | } | |
4760 | ||
4761 | /* ELF symbols in relocateable files are section relative, | |
4762 | but in nonrelocateable files they are virtual | |
4763 | addresses. */ | |
4764 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
4765 | if (! finfo->info->relocateable) | |
4766 | sym.st_value += input_sec->output_section->vma; | |
4767 | } | |
4768 | else | |
4769 | { | |
4770 | BFD_ASSERT (input_sec->owner == NULL | |
4771 | || (input_sec->owner->flags & DYNAMIC) != 0); | |
4772 | sym.st_shndx = SHN_UNDEF; | |
4773 | input_sec = bfd_und_section_ptr; | |
4774 | } | |
4775 | } | |
4776 | break; | |
4777 | ||
4778 | case bfd_link_hash_common: | |
4779 | input_sec = h->root.u.c.p->section; | |
4780 | sym.st_shndx = SHN_COMMON; | |
4781 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
4782 | break; | |
4783 | ||
4784 | case bfd_link_hash_indirect: | |
4785 | /* These symbols are created by symbol versioning. They point | |
4786 | to the decorated version of the name. For example, if the | |
4787 | symbol foo@@GNU_1.2 is the default, which should be used when | |
4788 | foo is used with no version, then we add an indirect symbol | |
4789 | foo which points to foo@@GNU_1.2. We ignore these symbols, | |
4790 | since the indirected symbol is already in the hash table. If | |
4791 | the indirect symbol is non-ELF, fall through and output it. */ | |
4792 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0) | |
4793 | return true; | |
4794 | ||
4795 | /* Fall through. */ | |
4796 | case bfd_link_hash_warning: | |
4797 | /* We can't represent these symbols in ELF, although a warning | |
4798 | symbol may have come from a .gnu.warning.SYMBOL section. We | |
4799 | just put the target symbol in the hash table. If the target | |
4800 | symbol does not really exist, don't do anything. */ | |
4801 | if (h->root.u.i.link->type == bfd_link_hash_new) | |
4802 | return true; | |
4803 | return (elf_link_output_extsym | |
4804 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); | |
4805 | } | |
4806 | ||
4807 | /* Give the processor backend a chance to tweak the symbol value, | |
4808 | and also to finish up anything that needs to be done for this | |
4809 | symbol. */ | |
4810 | if ((h->dynindx != -1 | |
4811 | || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
4812 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
4813 | { | |
4814 | struct elf_backend_data *bed; | |
4815 | ||
4816 | bed = get_elf_backend_data (finfo->output_bfd); | |
4817 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
4818 | (finfo->output_bfd, finfo->info, h, &sym))) | |
4819 | { | |
4820 | eoinfo->failed = true; | |
4821 | return false; | |
4822 | } | |
4823 | } | |
4824 | ||
4825 | /* If we are marking the symbol as undefined, and there are no | |
4826 | non-weak references to this symbol from a regular object, then | |
4827 | mark the symbol as weak undefined. We can't do this earlier, | |
4828 | because it might not be marked as undefined until the | |
4829 | finish_dynamic_symbol routine gets through with it. */ | |
4830 | if (sym.st_shndx == SHN_UNDEF | |
4831 | && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type) | |
4832 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
4833 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0) | |
4834 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
4835 | ||
4836 | /* If this symbol should be put in the .dynsym section, then put it | |
4837 | there now. We have already know the symbol index. We also fill | |
4838 | in the entry in the .hash section. */ | |
4839 | if (h->dynindx != -1 | |
4840 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
4841 | { | |
4842 | size_t bucketcount; | |
4843 | size_t bucket; | |
c7ac6ff8 | 4844 | size_t hash_entry_size; |
252b5132 RH |
4845 | bfd_byte *bucketpos; |
4846 | bfd_vma chain; | |
4847 | ||
4848 | sym.st_name = h->dynstr_index; | |
4849 | ||
4850 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
4851 | (PTR) (((Elf_External_Sym *) | |
4852 | finfo->dynsym_sec->contents) | |
4853 | + h->dynindx)); | |
4854 | ||
4855 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
4856 | bucket = h->elf_hash_value % bucketcount; | |
c7ac6ff8 MM |
4857 | hash_entry_size |
4858 | = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize; | |
252b5132 | 4859 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents |
c7ac6ff8 MM |
4860 | + (bucket + 2) * hash_entry_size); |
4861 | chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos); | |
4862 | bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos); | |
4863 | bfd_put (8 * hash_entry_size, finfo->output_bfd, chain, | |
4864 | ((bfd_byte *) finfo->hash_sec->contents | |
4865 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); | |
252b5132 RH |
4866 | |
4867 | if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL) | |
4868 | { | |
4869 | Elf_Internal_Versym iversym; | |
4870 | ||
4871 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
4872 | { | |
4873 | if (h->verinfo.verdef == NULL) | |
4874 | iversym.vs_vers = 0; | |
4875 | else | |
4876 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | |
4877 | } | |
4878 | else | |
4879 | { | |
4880 | if (h->verinfo.vertree == NULL) | |
4881 | iversym.vs_vers = 1; | |
4882 | else | |
4883 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; | |
4884 | } | |
4885 | ||
4886 | if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0) | |
4887 | iversym.vs_vers |= VERSYM_HIDDEN; | |
4888 | ||
4889 | _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, | |
4890 | (((Elf_External_Versym *) | |
4891 | finfo->symver_sec->contents) | |
4892 | + h->dynindx)); | |
4893 | } | |
4894 | } | |
4895 | ||
4896 | /* If we're stripping it, then it was just a dynamic symbol, and | |
4897 | there's nothing else to do. */ | |
4898 | if (strip) | |
4899 | return true; | |
4900 | ||
4901 | h->indx = bfd_get_symcount (finfo->output_bfd); | |
4902 | ||
4903 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) | |
4904 | { | |
4905 | eoinfo->failed = true; | |
4906 | return false; | |
4907 | } | |
4908 | ||
4909 | return true; | |
4910 | } | |
4911 | ||
23bc299b MM |
4912 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which |
4913 | originated from the section given by INPUT_REL_HDR) to the | |
4914 | OUTPUT_BFD. */ | |
4915 | ||
4916 | static void | |
4917 | elf_link_output_relocs (output_bfd, input_section, input_rel_hdr, | |
4918 | internal_relocs) | |
4919 | bfd *output_bfd; | |
4920 | asection *input_section; | |
4921 | Elf_Internal_Shdr *input_rel_hdr; | |
4922 | Elf_Internal_Rela *internal_relocs; | |
4923 | { | |
4924 | Elf_Internal_Rela *irela; | |
4925 | Elf_Internal_Rela *irelaend; | |
4926 | Elf_Internal_Shdr *output_rel_hdr; | |
4927 | asection *output_section; | |
7442e600 | 4928 | unsigned int *rel_countp = NULL; |
23bc299b MM |
4929 | |
4930 | output_section = input_section->output_section; | |
4931 | output_rel_hdr = NULL; | |
4932 | ||
4933 | if (elf_section_data (output_section)->rel_hdr.sh_entsize | |
4934 | == input_rel_hdr->sh_entsize) | |
4935 | { | |
4936 | output_rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
4937 | rel_countp = &elf_section_data (output_section)->rel_count; | |
4938 | } | |
4939 | else if (elf_section_data (output_section)->rel_hdr2 | |
4940 | && (elf_section_data (output_section)->rel_hdr2->sh_entsize | |
4941 | == input_rel_hdr->sh_entsize)) | |
4942 | { | |
4943 | output_rel_hdr = elf_section_data (output_section)->rel_hdr2; | |
4944 | rel_countp = &elf_section_data (output_section)->rel_count2; | |
4945 | } | |
4946 | ||
4947 | BFD_ASSERT (output_rel_hdr != NULL); | |
4948 | ||
4949 | irela = internal_relocs; | |
4950 | irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
4951 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
4952 | { | |
4953 | Elf_External_Rel *erel; | |
4954 | ||
4955 | erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp); | |
4956 | for (; irela < irelaend; irela++, erel++) | |
4957 | { | |
4958 | Elf_Internal_Rel irel; | |
4959 | ||
4960 | irel.r_offset = irela->r_offset; | |
4961 | irel.r_info = irela->r_info; | |
4962 | BFD_ASSERT (irela->r_addend == 0); | |
4963 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
4964 | } | |
4965 | } | |
4966 | else | |
4967 | { | |
4968 | Elf_External_Rela *erela; | |
4969 | ||
4970 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
4971 | == sizeof (Elf_External_Rela)); | |
4972 | erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp); | |
4973 | for (; irela < irelaend; irela++, erela++) | |
4974 | elf_swap_reloca_out (output_bfd, irela, erela); | |
4975 | } | |
4976 | ||
4977 | /* Bump the counter, so that we know where to add the next set of | |
4978 | relocations. */ | |
4979 | *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
4980 | } | |
4981 | ||
252b5132 RH |
4982 | /* Link an input file into the linker output file. This function |
4983 | handles all the sections and relocations of the input file at once. | |
4984 | This is so that we only have to read the local symbols once, and | |
4985 | don't have to keep them in memory. */ | |
4986 | ||
4987 | static boolean | |
4988 | elf_link_input_bfd (finfo, input_bfd) | |
4989 | struct elf_final_link_info *finfo; | |
4990 | bfd *input_bfd; | |
4991 | { | |
4992 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
4993 | bfd *, asection *, bfd_byte *, | |
4994 | Elf_Internal_Rela *, | |
4995 | Elf_Internal_Sym *, asection **)); | |
4996 | bfd *output_bfd; | |
4997 | Elf_Internal_Shdr *symtab_hdr; | |
4998 | size_t locsymcount; | |
4999 | size_t extsymoff; | |
5000 | Elf_External_Sym *external_syms; | |
5001 | Elf_External_Sym *esym; | |
5002 | Elf_External_Sym *esymend; | |
5003 | Elf_Internal_Sym *isym; | |
5004 | long *pindex; | |
5005 | asection **ppsection; | |
5006 | asection *o; | |
c7ac6ff8 | 5007 | struct elf_backend_data *bed; |
252b5132 RH |
5008 | |
5009 | output_bfd = finfo->output_bfd; | |
c7ac6ff8 MM |
5010 | bed = get_elf_backend_data (output_bfd); |
5011 | relocate_section = bed->elf_backend_relocate_section; | |
252b5132 RH |
5012 | |
5013 | /* If this is a dynamic object, we don't want to do anything here: | |
5014 | we don't want the local symbols, and we don't want the section | |
5015 | contents. */ | |
5016 | if ((input_bfd->flags & DYNAMIC) != 0) | |
5017 | return true; | |
5018 | ||
5019 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5020 | if (elf_bad_symtab (input_bfd)) | |
5021 | { | |
5022 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
5023 | extsymoff = 0; | |
5024 | } | |
5025 | else | |
5026 | { | |
5027 | locsymcount = symtab_hdr->sh_info; | |
5028 | extsymoff = symtab_hdr->sh_info; | |
5029 | } | |
5030 | ||
5031 | /* Read the local symbols. */ | |
5032 | if (symtab_hdr->contents != NULL) | |
5033 | external_syms = (Elf_External_Sym *) symtab_hdr->contents; | |
5034 | else if (locsymcount == 0) | |
5035 | external_syms = NULL; | |
5036 | else | |
5037 | { | |
5038 | external_syms = finfo->external_syms; | |
5039 | if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
5040 | || (bfd_read (external_syms, sizeof (Elf_External_Sym), | |
5041 | locsymcount, input_bfd) | |
5042 | != locsymcount * sizeof (Elf_External_Sym))) | |
5043 | return false; | |
5044 | } | |
5045 | ||
5046 | /* Swap in the local symbols and write out the ones which we know | |
5047 | are going into the output file. */ | |
5048 | esym = external_syms; | |
5049 | esymend = esym + locsymcount; | |
5050 | isym = finfo->internal_syms; | |
5051 | pindex = finfo->indices; | |
5052 | ppsection = finfo->sections; | |
5053 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
5054 | { | |
5055 | asection *isec; | |
5056 | const char *name; | |
5057 | Elf_Internal_Sym osym; | |
5058 | ||
5059 | elf_swap_symbol_in (input_bfd, esym, isym); | |
5060 | *pindex = -1; | |
5061 | ||
5062 | if (elf_bad_symtab (input_bfd)) | |
5063 | { | |
5064 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
5065 | { | |
5066 | *ppsection = NULL; | |
5067 | continue; | |
5068 | } | |
5069 | } | |
5070 | ||
5071 | if (isym->st_shndx == SHN_UNDEF) | |
5072 | isec = bfd_und_section_ptr; | |
5073 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) | |
5074 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
5075 | else if (isym->st_shndx == SHN_ABS) | |
5076 | isec = bfd_abs_section_ptr; | |
5077 | else if (isym->st_shndx == SHN_COMMON) | |
5078 | isec = bfd_com_section_ptr; | |
5079 | else | |
5080 | { | |
5081 | /* Who knows? */ | |
5082 | isec = NULL; | |
5083 | } | |
5084 | ||
5085 | *ppsection = isec; | |
5086 | ||
5087 | /* Don't output the first, undefined, symbol. */ | |
5088 | if (esym == external_syms) | |
5089 | continue; | |
5090 | ||
5091 | /* If we are stripping all symbols, we don't want to output this | |
5092 | one. */ | |
5093 | if (finfo->info->strip == strip_all) | |
5094 | continue; | |
5095 | ||
5096 | /* We never output section symbols. Instead, we use the section | |
5097 | symbol of the corresponding section in the output file. */ | |
5098 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
5099 | continue; | |
5100 | ||
5101 | /* If we are discarding all local symbols, we don't want to | |
5102 | output this one. If we are generating a relocateable output | |
5103 | file, then some of the local symbols may be required by | |
5104 | relocs; we output them below as we discover that they are | |
5105 | needed. */ | |
5106 | if (finfo->info->discard == discard_all) | |
5107 | continue; | |
5108 | ||
5109 | /* If this symbol is defined in a section which we are | |
5110 | discarding, we don't need to keep it, but note that | |
5111 | linker_mark is only reliable for sections that have contents. | |
5112 | For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE | |
5113 | as well as linker_mark. */ | |
5114 | if (isym->st_shndx > 0 | |
5115 | && isym->st_shndx < SHN_LORESERVE | |
5116 | && isec != NULL | |
5117 | && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0) | |
5118 | || (! finfo->info->relocateable | |
5119 | && (isec->flags & SEC_EXCLUDE) != 0))) | |
5120 | continue; | |
5121 | ||
5122 | /* Get the name of the symbol. */ | |
5123 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
5124 | isym->st_name); | |
5125 | if (name == NULL) | |
5126 | return false; | |
5127 | ||
5128 | /* See if we are discarding symbols with this name. */ | |
5129 | if ((finfo->info->strip == strip_some | |
5130 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
5131 | == NULL)) | |
5132 | || (finfo->info->discard == discard_l | |
5133 | && bfd_is_local_label_name (input_bfd, name))) | |
5134 | continue; | |
5135 | ||
5136 | /* If we get here, we are going to output this symbol. */ | |
5137 | ||
5138 | osym = *isym; | |
5139 | ||
5140 | /* Adjust the section index for the output file. */ | |
5141 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
5142 | isec->output_section); | |
5143 | if (osym.st_shndx == (unsigned short) -1) | |
5144 | return false; | |
5145 | ||
5146 | *pindex = bfd_get_symcount (output_bfd); | |
5147 | ||
5148 | /* ELF symbols in relocateable files are section relative, but | |
5149 | in executable files they are virtual addresses. Note that | |
5150 | this code assumes that all ELF sections have an associated | |
5151 | BFD section with a reasonable value for output_offset; below | |
5152 | we assume that they also have a reasonable value for | |
5153 | output_section. Any special sections must be set up to meet | |
5154 | these requirements. */ | |
5155 | osym.st_value += isec->output_offset; | |
5156 | if (! finfo->info->relocateable) | |
5157 | osym.st_value += isec->output_section->vma; | |
5158 | ||
5159 | if (! elf_link_output_sym (finfo, name, &osym, isec)) | |
5160 | return false; | |
5161 | } | |
5162 | ||
5163 | /* Relocate the contents of each section. */ | |
5164 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
5165 | { | |
5166 | bfd_byte *contents; | |
5167 | ||
5168 | if (! o->linker_mark) | |
5169 | { | |
5170 | /* This section was omitted from the link. */ | |
5171 | continue; | |
5172 | } | |
5173 | ||
5174 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
5175 | || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) | |
5176 | continue; | |
5177 | ||
5178 | if ((o->flags & SEC_LINKER_CREATED) != 0) | |
5179 | { | |
5180 | /* Section was created by elf_link_create_dynamic_sections | |
5181 | or somesuch. */ | |
5182 | continue; | |
5183 | } | |
5184 | ||
5185 | /* Get the contents of the section. They have been cached by a | |
5186 | relaxation routine. Note that o is a section in an input | |
5187 | file, so the contents field will not have been set by any of | |
5188 | the routines which work on output files. */ | |
5189 | if (elf_section_data (o)->this_hdr.contents != NULL) | |
5190 | contents = elf_section_data (o)->this_hdr.contents; | |
5191 | else | |
5192 | { | |
5193 | contents = finfo->contents; | |
5194 | if (! bfd_get_section_contents (input_bfd, o, contents, | |
5195 | (file_ptr) 0, o->_raw_size)) | |
5196 | return false; | |
5197 | } | |
5198 | ||
5199 | if ((o->flags & SEC_RELOC) != 0) | |
5200 | { | |
5201 | Elf_Internal_Rela *internal_relocs; | |
5202 | ||
5203 | /* Get the swapped relocs. */ | |
5204 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
5205 | (input_bfd, o, finfo->external_relocs, | |
5206 | finfo->internal_relocs, false)); | |
5207 | if (internal_relocs == NULL | |
5208 | && o->reloc_count > 0) | |
5209 | return false; | |
5210 | ||
5211 | /* Relocate the section by invoking a back end routine. | |
5212 | ||
5213 | The back end routine is responsible for adjusting the | |
5214 | section contents as necessary, and (if using Rela relocs | |
5215 | and generating a relocateable output file) adjusting the | |
5216 | reloc addend as necessary. | |
5217 | ||
5218 | The back end routine does not have to worry about setting | |
5219 | the reloc address or the reloc symbol index. | |
5220 | ||
5221 | The back end routine is given a pointer to the swapped in | |
5222 | internal symbols, and can access the hash table entries | |
5223 | for the external symbols via elf_sym_hashes (input_bfd). | |
5224 | ||
5225 | When generating relocateable output, the back end routine | |
5226 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
5227 | output symbol is going to be a section symbol | |
5228 | corresponding to the output section, which will require | |
5229 | the addend to be adjusted. */ | |
5230 | ||
5231 | if (! (*relocate_section) (output_bfd, finfo->info, | |
5232 | input_bfd, o, contents, | |
5233 | internal_relocs, | |
5234 | finfo->internal_syms, | |
5235 | finfo->sections)) | |
5236 | return false; | |
5237 | ||
5238 | if (finfo->info->relocateable) | |
5239 | { | |
5240 | Elf_Internal_Rela *irela; | |
5241 | Elf_Internal_Rela *irelaend; | |
5242 | struct elf_link_hash_entry **rel_hash; | |
5243 | Elf_Internal_Shdr *input_rel_hdr; | |
252b5132 RH |
5244 | |
5245 | /* Adjust the reloc addresses and symbol indices. */ | |
5246 | ||
5247 | irela = internal_relocs; | |
c7ac6ff8 MM |
5248 | irelaend = |
5249 | irela + o->reloc_count * bed->s->int_rels_per_ext_rel; | |
252b5132 | 5250 | rel_hash = (elf_section_data (o->output_section)->rel_hashes |
31367b81 MM |
5251 | + elf_section_data (o->output_section)->rel_count |
5252 | + elf_section_data (o->output_section)->rel_count2); | |
252b5132 RH |
5253 | for (; irela < irelaend; irela++, rel_hash++) |
5254 | { | |
5255 | unsigned long r_symndx; | |
5256 | Elf_Internal_Sym *isym; | |
5257 | asection *sec; | |
5258 | ||
5259 | irela->r_offset += o->output_offset; | |
5260 | ||
5261 | r_symndx = ELF_R_SYM (irela->r_info); | |
5262 | ||
5263 | if (r_symndx == 0) | |
5264 | continue; | |
5265 | ||
5266 | if (r_symndx >= locsymcount | |
5267 | || (elf_bad_symtab (input_bfd) | |
5268 | && finfo->sections[r_symndx] == NULL)) | |
5269 | { | |
5270 | struct elf_link_hash_entry *rh; | |
5271 | long indx; | |
5272 | ||
5273 | /* This is a reloc against a global symbol. We | |
5274 | have not yet output all the local symbols, so | |
5275 | we do not know the symbol index of any global | |
5276 | symbol. We set the rel_hash entry for this | |
5277 | reloc to point to the global hash table entry | |
5278 | for this symbol. The symbol index is then | |
5279 | set at the end of elf_bfd_final_link. */ | |
5280 | indx = r_symndx - extsymoff; | |
5281 | rh = elf_sym_hashes (input_bfd)[indx]; | |
5282 | while (rh->root.type == bfd_link_hash_indirect | |
5283 | || rh->root.type == bfd_link_hash_warning) | |
5284 | rh = (struct elf_link_hash_entry *) rh->root.u.i.link; | |
5285 | ||
5286 | /* Setting the index to -2 tells | |
5287 | elf_link_output_extsym that this symbol is | |
5288 | used by a reloc. */ | |
5289 | BFD_ASSERT (rh->indx < 0); | |
5290 | rh->indx = -2; | |
5291 | ||
5292 | *rel_hash = rh; | |
5293 | ||
5294 | continue; | |
5295 | } | |
5296 | ||
5297 | /* This is a reloc against a local symbol. */ | |
5298 | ||
5299 | *rel_hash = NULL; | |
5300 | isym = finfo->internal_syms + r_symndx; | |
5301 | sec = finfo->sections[r_symndx]; | |
5302 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
5303 | { | |
5304 | /* I suppose the backend ought to fill in the | |
5305 | section of any STT_SECTION symbol against a | |
5306 | processor specific section. If we have | |
5307 | discarded a section, the output_section will | |
5308 | be the absolute section. */ | |
5309 | if (sec != NULL | |
5310 | && (bfd_is_abs_section (sec) | |
5311 | || (sec->output_section != NULL | |
5312 | && bfd_is_abs_section (sec->output_section)))) | |
5313 | r_symndx = 0; | |
5314 | else if (sec == NULL || sec->owner == NULL) | |
5315 | { | |
5316 | bfd_set_error (bfd_error_bad_value); | |
5317 | return false; | |
5318 | } | |
5319 | else | |
5320 | { | |
5321 | r_symndx = sec->output_section->target_index; | |
5322 | BFD_ASSERT (r_symndx != 0); | |
5323 | } | |
5324 | } | |
5325 | else | |
5326 | { | |
5327 | if (finfo->indices[r_symndx] == -1) | |
5328 | { | |
5329 | unsigned long link; | |
5330 | const char *name; | |
5331 | asection *osec; | |
5332 | ||
5333 | if (finfo->info->strip == strip_all) | |
5334 | { | |
5335 | /* You can't do ld -r -s. */ | |
5336 | bfd_set_error (bfd_error_invalid_operation); | |
5337 | return false; | |
5338 | } | |
5339 | ||
5340 | /* This symbol was skipped earlier, but | |
5341 | since it is needed by a reloc, we | |
5342 | must output it now. */ | |
5343 | link = symtab_hdr->sh_link; | |
5344 | name = bfd_elf_string_from_elf_section (input_bfd, | |
5345 | link, | |
5346 | isym->st_name); | |
5347 | if (name == NULL) | |
5348 | return false; | |
5349 | ||
5350 | osec = sec->output_section; | |
5351 | isym->st_shndx = | |
5352 | _bfd_elf_section_from_bfd_section (output_bfd, | |
5353 | osec); | |
5354 | if (isym->st_shndx == (unsigned short) -1) | |
5355 | return false; | |
5356 | ||
5357 | isym->st_value += sec->output_offset; | |
5358 | if (! finfo->info->relocateable) | |
5359 | isym->st_value += osec->vma; | |
5360 | ||
5361 | finfo->indices[r_symndx] = bfd_get_symcount (output_bfd); | |
5362 | ||
5363 | if (! elf_link_output_sym (finfo, name, isym, sec)) | |
5364 | return false; | |
5365 | } | |
5366 | ||
5367 | r_symndx = finfo->indices[r_symndx]; | |
5368 | } | |
5369 | ||
5370 | irela->r_info = ELF_R_INFO (r_symndx, | |
5371 | ELF_R_TYPE (irela->r_info)); | |
5372 | } | |
5373 | ||
5374 | /* Swap out the relocs. */ | |
5375 | input_rel_hdr = &elf_section_data (o)->rel_hdr; | |
23bc299b MM |
5376 | elf_link_output_relocs (output_bfd, o, |
5377 | input_rel_hdr, | |
5378 | internal_relocs); | |
5379 | internal_relocs | |
5380 | += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
5381 | input_rel_hdr = elf_section_data (o)->rel_hdr2; | |
5382 | if (input_rel_hdr) | |
5383 | elf_link_output_relocs (output_bfd, o, | |
5384 | input_rel_hdr, | |
5385 | internal_relocs); | |
252b5132 RH |
5386 | } |
5387 | } | |
5388 | ||
5389 | /* Write out the modified section contents. */ | |
5390 | if (elf_section_data (o)->stab_info == NULL) | |
5391 | { | |
5392 | if (! (o->flags & SEC_EXCLUDE) && | |
5393 | ! bfd_set_section_contents (output_bfd, o->output_section, | |
5394 | contents, o->output_offset, | |
5395 | (o->_cooked_size != 0 | |
5396 | ? o->_cooked_size | |
5397 | : o->_raw_size))) | |
5398 | return false; | |
5399 | } | |
5400 | else | |
5401 | { | |
5402 | if (! (_bfd_write_section_stabs | |
5403 | (output_bfd, &elf_hash_table (finfo->info)->stab_info, | |
5404 | o, &elf_section_data (o)->stab_info, contents))) | |
5405 | return false; | |
5406 | } | |
5407 | } | |
5408 | ||
5409 | return true; | |
5410 | } | |
5411 | ||
5412 | /* Generate a reloc when linking an ELF file. This is a reloc | |
5413 | requested by the linker, and does come from any input file. This | |
5414 | is used to build constructor and destructor tables when linking | |
5415 | with -Ur. */ | |
5416 | ||
5417 | static boolean | |
5418 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
5419 | bfd *output_bfd; | |
5420 | struct bfd_link_info *info; | |
5421 | asection *output_section; | |
5422 | struct bfd_link_order *link_order; | |
5423 | { | |
5424 | reloc_howto_type *howto; | |
5425 | long indx; | |
5426 | bfd_vma offset; | |
5427 | bfd_vma addend; | |
5428 | struct elf_link_hash_entry **rel_hash_ptr; | |
5429 | Elf_Internal_Shdr *rel_hdr; | |
5430 | ||
5431 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
5432 | if (howto == NULL) | |
5433 | { | |
5434 | bfd_set_error (bfd_error_bad_value); | |
5435 | return false; | |
5436 | } | |
5437 | ||
5438 | addend = link_order->u.reloc.p->addend; | |
5439 | ||
5440 | /* Figure out the symbol index. */ | |
5441 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
31367b81 MM |
5442 | + elf_section_data (output_section)->rel_count |
5443 | + elf_section_data (output_section)->rel_count2); | |
252b5132 RH |
5444 | if (link_order->type == bfd_section_reloc_link_order) |
5445 | { | |
5446 | indx = link_order->u.reloc.p->u.section->target_index; | |
5447 | BFD_ASSERT (indx != 0); | |
5448 | *rel_hash_ptr = NULL; | |
5449 | } | |
5450 | else | |
5451 | { | |
5452 | struct elf_link_hash_entry *h; | |
5453 | ||
5454 | /* Treat a reloc against a defined symbol as though it were | |
5455 | actually against the section. */ | |
5456 | h = ((struct elf_link_hash_entry *) | |
5457 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
5458 | link_order->u.reloc.p->u.name, | |
5459 | false, false, true)); | |
5460 | if (h != NULL | |
5461 | && (h->root.type == bfd_link_hash_defined | |
5462 | || h->root.type == bfd_link_hash_defweak)) | |
5463 | { | |
5464 | asection *section; | |
5465 | ||
5466 | section = h->root.u.def.section; | |
5467 | indx = section->output_section->target_index; | |
5468 | *rel_hash_ptr = NULL; | |
5469 | /* It seems that we ought to add the symbol value to the | |
5470 | addend here, but in practice it has already been added | |
5471 | because it was passed to constructor_callback. */ | |
5472 | addend += section->output_section->vma + section->output_offset; | |
5473 | } | |
5474 | else if (h != NULL) | |
5475 | { | |
5476 | /* Setting the index to -2 tells elf_link_output_extsym that | |
5477 | this symbol is used by a reloc. */ | |
5478 | h->indx = -2; | |
5479 | *rel_hash_ptr = h; | |
5480 | indx = 0; | |
5481 | } | |
5482 | else | |
5483 | { | |
5484 | if (! ((*info->callbacks->unattached_reloc) | |
5485 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
5486 | (asection *) NULL, (bfd_vma) 0))) | |
5487 | return false; | |
5488 | indx = 0; | |
5489 | } | |
5490 | } | |
5491 | ||
5492 | /* If this is an inplace reloc, we must write the addend into the | |
5493 | object file. */ | |
5494 | if (howto->partial_inplace && addend != 0) | |
5495 | { | |
5496 | bfd_size_type size; | |
5497 | bfd_reloc_status_type rstat; | |
5498 | bfd_byte *buf; | |
5499 | boolean ok; | |
5500 | ||
5501 | size = bfd_get_reloc_size (howto); | |
5502 | buf = (bfd_byte *) bfd_zmalloc (size); | |
5503 | if (buf == (bfd_byte *) NULL) | |
5504 | return false; | |
5505 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); | |
5506 | switch (rstat) | |
5507 | { | |
5508 | case bfd_reloc_ok: | |
5509 | break; | |
5510 | default: | |
5511 | case bfd_reloc_outofrange: | |
5512 | abort (); | |
5513 | case bfd_reloc_overflow: | |
5514 | if (! ((*info->callbacks->reloc_overflow) | |
5515 | (info, | |
5516 | (link_order->type == bfd_section_reloc_link_order | |
5517 | ? bfd_section_name (output_bfd, | |
5518 | link_order->u.reloc.p->u.section) | |
5519 | : link_order->u.reloc.p->u.name), | |
5520 | howto->name, addend, (bfd *) NULL, (asection *) NULL, | |
5521 | (bfd_vma) 0))) | |
5522 | { | |
5523 | free (buf); | |
5524 | return false; | |
5525 | } | |
5526 | break; | |
5527 | } | |
5528 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
5529 | (file_ptr) link_order->offset, size); | |
5530 | free (buf); | |
5531 | if (! ok) | |
5532 | return false; | |
5533 | } | |
5534 | ||
5535 | /* The address of a reloc is relative to the section in a | |
5536 | relocateable file, and is a virtual address in an executable | |
5537 | file. */ | |
5538 | offset = link_order->offset; | |
5539 | if (! info->relocateable) | |
5540 | offset += output_section->vma; | |
5541 | ||
5542 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
5543 | ||
5544 | if (rel_hdr->sh_type == SHT_REL) | |
5545 | { | |
5546 | Elf_Internal_Rel irel; | |
5547 | Elf_External_Rel *erel; | |
5548 | ||
5549 | irel.r_offset = offset; | |
5550 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
5551 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
0525d26e | 5552 | + elf_section_data (output_section)->rel_count); |
252b5132 RH |
5553 | elf_swap_reloc_out (output_bfd, &irel, erel); |
5554 | } | |
5555 | else | |
5556 | { | |
5557 | Elf_Internal_Rela irela; | |
5558 | Elf_External_Rela *erela; | |
5559 | ||
5560 | irela.r_offset = offset; | |
5561 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
5562 | irela.r_addend = addend; | |
5563 | erela = ((Elf_External_Rela *) rel_hdr->contents | |
0525d26e | 5564 | + elf_section_data (output_section)->rel_count); |
252b5132 RH |
5565 | elf_swap_reloca_out (output_bfd, &irela, erela); |
5566 | } | |
5567 | ||
0525d26e | 5568 | ++elf_section_data (output_section)->rel_count; |
252b5132 RH |
5569 | |
5570 | return true; | |
5571 | } | |
5572 | ||
5573 | \f | |
5574 | /* Allocate a pointer to live in a linker created section. */ | |
5575 | ||
5576 | boolean | |
5577 | elf_create_pointer_linker_section (abfd, info, lsect, h, rel) | |
5578 | bfd *abfd; | |
5579 | struct bfd_link_info *info; | |
5580 | elf_linker_section_t *lsect; | |
5581 | struct elf_link_hash_entry *h; | |
5582 | const Elf_Internal_Rela *rel; | |
5583 | { | |
5584 | elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; | |
5585 | elf_linker_section_pointers_t *linker_section_ptr; | |
5586 | unsigned long r_symndx = ELF_R_SYM (rel->r_info);; | |
5587 | ||
5588 | BFD_ASSERT (lsect != NULL); | |
5589 | ||
5590 | /* Is this a global symbol? */ | |
5591 | if (h != NULL) | |
5592 | { | |
5593 | /* Has this symbol already been allocated, if so, our work is done */ | |
5594 | if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
5595 | rel->r_addend, | |
5596 | lsect->which)) | |
5597 | return true; | |
5598 | ||
5599 | ptr_linker_section_ptr = &h->linker_section_pointer; | |
5600 | /* Make sure this symbol is output as a dynamic symbol. */ | |
5601 | if (h->dynindx == -1) | |
5602 | { | |
5603 | if (! elf_link_record_dynamic_symbol (info, h)) | |
5604 | return false; | |
5605 | } | |
5606 | ||
5607 | if (lsect->rel_section) | |
5608 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
5609 | } | |
5610 | ||
5611 | else /* Allocation of a pointer to a local symbol */ | |
5612 | { | |
5613 | elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); | |
5614 | ||
5615 | /* Allocate a table to hold the local symbols if first time */ | |
5616 | if (!ptr) | |
5617 | { | |
5618 | unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; | |
5619 | register unsigned int i; | |
5620 | ||
5621 | ptr = (elf_linker_section_pointers_t **) | |
5622 | bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *)); | |
5623 | ||
5624 | if (!ptr) | |
5625 | return false; | |
5626 | ||
5627 | elf_local_ptr_offsets (abfd) = ptr; | |
5628 | for (i = 0; i < num_symbols; i++) | |
5629 | ptr[i] = (elf_linker_section_pointers_t *)0; | |
5630 | } | |
5631 | ||
5632 | /* Has this symbol already been allocated, if so, our work is done */ | |
5633 | if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx], | |
5634 | rel->r_addend, | |
5635 | lsect->which)) | |
5636 | return true; | |
5637 | ||
5638 | ptr_linker_section_ptr = &ptr[r_symndx]; | |
5639 | ||
5640 | if (info->shared) | |
5641 | { | |
5642 | /* If we are generating a shared object, we need to | |
5643 | output a R_<xxx>_RELATIVE reloc so that the | |
5644 | dynamic linker can adjust this GOT entry. */ | |
5645 | BFD_ASSERT (lsect->rel_section != NULL); | |
5646 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
5647 | } | |
5648 | } | |
5649 | ||
5650 | /* Allocate space for a pointer in the linker section, and allocate a new pointer record | |
5651 | from internal memory. */ | |
5652 | BFD_ASSERT (ptr_linker_section_ptr != NULL); | |
5653 | linker_section_ptr = (elf_linker_section_pointers_t *) | |
5654 | bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t)); | |
5655 | ||
5656 | if (!linker_section_ptr) | |
5657 | return false; | |
5658 | ||
5659 | linker_section_ptr->next = *ptr_linker_section_ptr; | |
5660 | linker_section_ptr->addend = rel->r_addend; | |
5661 | linker_section_ptr->which = lsect->which; | |
5662 | linker_section_ptr->written_address_p = false; | |
5663 | *ptr_linker_section_ptr = linker_section_ptr; | |
5664 | ||
5665 | #if 0 | |
5666 | if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset) | |
5667 | { | |
5668 | linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8); | |
5669 | lsect->hole_offset += ARCH_SIZE / 8; | |
5670 | lsect->sym_offset += ARCH_SIZE / 8; | |
5671 | if (lsect->sym_hash) /* Bump up symbol value if needed */ | |
5672 | { | |
5673 | lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8; | |
5674 | #ifdef DEBUG | |
5675 | fprintf (stderr, "Bump up %s by %ld, current value = %ld\n", | |
5676 | lsect->sym_hash->root.root.string, | |
5677 | (long)ARCH_SIZE / 8, | |
5678 | (long)lsect->sym_hash->root.u.def.value); | |
5679 | #endif | |
5680 | } | |
5681 | } | |
5682 | else | |
5683 | #endif | |
5684 | linker_section_ptr->offset = lsect->section->_raw_size; | |
5685 | ||
5686 | lsect->section->_raw_size += ARCH_SIZE / 8; | |
5687 | ||
5688 | #ifdef DEBUG | |
5689 | fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n", | |
5690 | lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size); | |
5691 | #endif | |
5692 | ||
5693 | return true; | |
5694 | } | |
5695 | ||
5696 | \f | |
5697 | #if ARCH_SIZE==64 | |
5698 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR) | |
5699 | #endif | |
5700 | #if ARCH_SIZE==32 | |
5701 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR) | |
5702 | #endif | |
5703 | ||
5704 | /* Fill in the address for a pointer generated in alinker section. */ | |
5705 | ||
5706 | bfd_vma | |
5707 | elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc) | |
5708 | bfd *output_bfd; | |
5709 | bfd *input_bfd; | |
5710 | struct bfd_link_info *info; | |
5711 | elf_linker_section_t *lsect; | |
5712 | struct elf_link_hash_entry *h; | |
5713 | bfd_vma relocation; | |
5714 | const Elf_Internal_Rela *rel; | |
5715 | int relative_reloc; | |
5716 | { | |
5717 | elf_linker_section_pointers_t *linker_section_ptr; | |
5718 | ||
5719 | BFD_ASSERT (lsect != NULL); | |
5720 | ||
5721 | if (h != NULL) /* global symbol */ | |
5722 | { | |
5723 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
5724 | rel->r_addend, | |
5725 | lsect->which); | |
5726 | ||
5727 | BFD_ASSERT (linker_section_ptr != NULL); | |
5728 | ||
5729 | if (! elf_hash_table (info)->dynamic_sections_created | |
5730 | || (info->shared | |
5731 | && info->symbolic | |
5732 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
5733 | { | |
5734 | /* This is actually a static link, or it is a | |
5735 | -Bsymbolic link and the symbol is defined | |
5736 | locally. We must initialize this entry in the | |
5737 | global section. | |
5738 | ||
5739 | When doing a dynamic link, we create a .rela.<xxx> | |
5740 | relocation entry to initialize the value. This | |
5741 | is done in the finish_dynamic_symbol routine. */ | |
5742 | if (!linker_section_ptr->written_address_p) | |
5743 | { | |
5744 | linker_section_ptr->written_address_p = true; | |
5745 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
5746 | lsect->section->contents + linker_section_ptr->offset); | |
5747 | } | |
5748 | } | |
5749 | } | |
5750 | else /* local symbol */ | |
5751 | { | |
5752 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); | |
5753 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); | |
5754 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL); | |
5755 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx], | |
5756 | rel->r_addend, | |
5757 | lsect->which); | |
5758 | ||
5759 | BFD_ASSERT (linker_section_ptr != NULL); | |
5760 | ||
5761 | /* Write out pointer if it hasn't been rewritten out before */ | |
5762 | if (!linker_section_ptr->written_address_p) | |
5763 | { | |
5764 | linker_section_ptr->written_address_p = true; | |
5765 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
5766 | lsect->section->contents + linker_section_ptr->offset); | |
5767 | ||
5768 | if (info->shared) | |
5769 | { | |
5770 | asection *srel = lsect->rel_section; | |
5771 | Elf_Internal_Rela outrel; | |
5772 | ||
5773 | /* We need to generate a relative reloc for the dynamic linker. */ | |
5774 | if (!srel) | |
5775 | lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
5776 | lsect->rel_name); | |
5777 | ||
5778 | BFD_ASSERT (srel != NULL); | |
5779 | ||
5780 | outrel.r_offset = (lsect->section->output_section->vma | |
5781 | + lsect->section->output_offset | |
5782 | + linker_section_ptr->offset); | |
5783 | outrel.r_info = ELF_R_INFO (0, relative_reloc); | |
5784 | outrel.r_addend = 0; | |
5785 | elf_swap_reloca_out (output_bfd, &outrel, | |
5786 | (((Elf_External_Rela *) | |
5787 | lsect->section->contents) | |
0525d26e ILT |
5788 | + elf_section_data (lsect->section)->rel_count)); |
5789 | ++elf_section_data (lsect->section)->rel_count; | |
252b5132 RH |
5790 | } |
5791 | } | |
5792 | } | |
5793 | ||
5794 | relocation = (lsect->section->output_offset | |
5795 | + linker_section_ptr->offset | |
5796 | - lsect->hole_offset | |
5797 | - lsect->sym_offset); | |
5798 | ||
5799 | #ifdef DEBUG | |
5800 | fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", | |
5801 | lsect->name, (long)relocation, (long)relocation); | |
5802 | #endif | |
5803 | ||
5804 | /* Subtract out the addend, because it will get added back in by the normal | |
5805 | processing. */ | |
5806 | return relocation - linker_section_ptr->addend; | |
5807 | } | |
5808 | \f | |
5809 | /* Garbage collect unused sections. */ | |
5810 | ||
5811 | static boolean elf_gc_mark | |
5812 | PARAMS ((struct bfd_link_info *info, asection *sec, | |
5813 | asection * (*gc_mark_hook) | |
5814 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
5815 | struct elf_link_hash_entry *, Elf_Internal_Sym *)))); | |
5816 | ||
5817 | static boolean elf_gc_sweep | |
5818 | PARAMS ((struct bfd_link_info *info, | |
5819 | boolean (*gc_sweep_hook) | |
5820 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, | |
5821 | const Elf_Internal_Rela *relocs)))); | |
5822 | ||
5823 | static boolean elf_gc_sweep_symbol | |
5824 | PARAMS ((struct elf_link_hash_entry *h, PTR idxptr)); | |
5825 | ||
5826 | static boolean elf_gc_allocate_got_offsets | |
5827 | PARAMS ((struct elf_link_hash_entry *h, PTR offarg)); | |
5828 | ||
5829 | static boolean elf_gc_propagate_vtable_entries_used | |
5830 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); | |
5831 | ||
5832 | static boolean elf_gc_smash_unused_vtentry_relocs | |
5833 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); | |
5834 | ||
5835 | /* The mark phase of garbage collection. For a given section, mark | |
5836 | it, and all the sections which define symbols to which it refers. */ | |
5837 | ||
5838 | static boolean | |
5839 | elf_gc_mark (info, sec, gc_mark_hook) | |
5840 | struct bfd_link_info *info; | |
5841 | asection *sec; | |
5842 | asection * (*gc_mark_hook) | |
5843 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
5844 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
5845 | { | |
5846 | boolean ret = true; | |
5847 | ||
5848 | sec->gc_mark = 1; | |
5849 | ||
5850 | /* Look through the section relocs. */ | |
5851 | ||
5852 | if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0) | |
5853 | { | |
5854 | Elf_Internal_Rela *relstart, *rel, *relend; | |
5855 | Elf_Internal_Shdr *symtab_hdr; | |
5856 | struct elf_link_hash_entry **sym_hashes; | |
5857 | size_t nlocsyms; | |
5858 | size_t extsymoff; | |
5859 | Elf_External_Sym *locsyms, *freesyms = NULL; | |
5860 | bfd *input_bfd = sec->owner; | |
c7ac6ff8 | 5861 | struct elf_backend_data *bed = get_elf_backend_data (input_bfd); |
252b5132 RH |
5862 | |
5863 | /* GCFIXME: how to arrange so that relocs and symbols are not | |
5864 | reread continually? */ | |
5865 | ||
5866 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5867 | sym_hashes = elf_sym_hashes (input_bfd); | |
5868 | ||
5869 | /* Read the local symbols. */ | |
5870 | if (elf_bad_symtab (input_bfd)) | |
5871 | { | |
5872 | nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
5873 | extsymoff = 0; | |
5874 | } | |
5875 | else | |
5876 | extsymoff = nlocsyms = symtab_hdr->sh_info; | |
5877 | if (symtab_hdr->contents) | |
5878 | locsyms = (Elf_External_Sym *) symtab_hdr->contents; | |
5879 | else if (nlocsyms == 0) | |
5880 | locsyms = NULL; | |
5881 | else | |
5882 | { | |
5883 | locsyms = freesyms = | |
5884 | bfd_malloc (nlocsyms * sizeof (Elf_External_Sym)); | |
5885 | if (freesyms == NULL | |
5886 | || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
5887 | || (bfd_read (locsyms, sizeof (Elf_External_Sym), | |
5888 | nlocsyms, input_bfd) | |
5889 | != nlocsyms * sizeof (Elf_External_Sym))) | |
5890 | { | |
5891 | ret = false; | |
5892 | goto out1; | |
5893 | } | |
5894 | } | |
5895 | ||
5896 | /* Read the relocations. */ | |
5897 | relstart = (NAME(_bfd_elf,link_read_relocs) | |
5898 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, | |
5899 | info->keep_memory)); | |
5900 | if (relstart == NULL) | |
5901 | { | |
5902 | ret = false; | |
5903 | goto out1; | |
5904 | } | |
c7ac6ff8 | 5905 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
252b5132 RH |
5906 | |
5907 | for (rel = relstart; rel < relend; rel++) | |
5908 | { | |
5909 | unsigned long r_symndx; | |
5910 | asection *rsec; | |
5911 | struct elf_link_hash_entry *h; | |
5912 | Elf_Internal_Sym s; | |
5913 | ||
5914 | r_symndx = ELF_R_SYM (rel->r_info); | |
5915 | if (r_symndx == 0) | |
5916 | continue; | |
5917 | ||
5918 | if (elf_bad_symtab (sec->owner)) | |
5919 | { | |
5920 | elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); | |
5921 | if (ELF_ST_BIND (s.st_info) == STB_LOCAL) | |
5922 | rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s); | |
5923 | else | |
5924 | { | |
5925 | h = sym_hashes[r_symndx - extsymoff]; | |
5926 | rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL); | |
5927 | } | |
5928 | } | |
5929 | else if (r_symndx >= nlocsyms) | |
5930 | { | |
5931 | h = sym_hashes[r_symndx - extsymoff]; | |
5932 | rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL); | |
5933 | } | |
5934 | else | |
5935 | { | |
5936 | elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); | |
5937 | rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s); | |
5938 | } | |
5939 | ||
5940 | if (rsec && !rsec->gc_mark) | |
5941 | if (!elf_gc_mark (info, rsec, gc_mark_hook)) | |
5942 | { | |
5943 | ret = false; | |
5944 | goto out2; | |
5945 | } | |
5946 | } | |
5947 | ||
5948 | out2: | |
5949 | if (!info->keep_memory) | |
5950 | free (relstart); | |
5951 | out1: | |
5952 | if (freesyms) | |
5953 | free (freesyms); | |
5954 | } | |
5955 | ||
5956 | return ret; | |
5957 | } | |
5958 | ||
5959 | /* The sweep phase of garbage collection. Remove all garbage sections. */ | |
5960 | ||
5961 | static boolean | |
5962 | elf_gc_sweep (info, gc_sweep_hook) | |
5963 | struct bfd_link_info *info; | |
5964 | boolean (*gc_sweep_hook) | |
5965 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, | |
5966 | const Elf_Internal_Rela *relocs)); | |
5967 | { | |
5968 | bfd *sub; | |
5969 | ||
5970 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
5971 | { | |
5972 | asection *o; | |
5973 | ||
5974 | for (o = sub->sections; o != NULL; o = o->next) | |
5975 | { | |
5976 | /* Keep special sections. Keep .debug sections. */ | |
5977 | if ((o->flags & SEC_LINKER_CREATED) | |
5978 | || (o->flags & SEC_DEBUGGING)) | |
5979 | o->gc_mark = 1; | |
5980 | ||
5981 | if (o->gc_mark) | |
5982 | continue; | |
5983 | ||
5984 | /* Skip sweeping sections already excluded. */ | |
5985 | if (o->flags & SEC_EXCLUDE) | |
5986 | continue; | |
5987 | ||
5988 | /* Since this is early in the link process, it is simple | |
5989 | to remove a section from the output. */ | |
5990 | o->flags |= SEC_EXCLUDE; | |
5991 | ||
5992 | /* But we also have to update some of the relocation | |
5993 | info we collected before. */ | |
5994 | if (gc_sweep_hook | |
5995 | && (o->flags & SEC_RELOC) && o->reloc_count > 0) | |
5996 | { | |
5997 | Elf_Internal_Rela *internal_relocs; | |
5998 | boolean r; | |
5999 | ||
6000 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
6001 | (o->owner, o, NULL, NULL, info->keep_memory)); | |
6002 | if (internal_relocs == NULL) | |
6003 | return false; | |
6004 | ||
6005 | r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs); | |
6006 | ||
6007 | if (!info->keep_memory) | |
6008 | free (internal_relocs); | |
6009 | ||
6010 | if (!r) | |
6011 | return false; | |
6012 | } | |
6013 | } | |
6014 | } | |
6015 | ||
6016 | /* Remove the symbols that were in the swept sections from the dynamic | |
6017 | symbol table. GCFIXME: Anyone know how to get them out of the | |
6018 | static symbol table as well? */ | |
6019 | { | |
6020 | int i = 0; | |
6021 | ||
6022 | elf_link_hash_traverse (elf_hash_table (info), | |
6023 | elf_gc_sweep_symbol, | |
6024 | (PTR) &i); | |
6025 | ||
6026 | elf_hash_table (info)->dynsymcount = i; | |
6027 | } | |
6028 | ||
6029 | return true; | |
6030 | } | |
6031 | ||
6032 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ | |
6033 | ||
6034 | static boolean | |
6035 | elf_gc_sweep_symbol (h, idxptr) | |
6036 | struct elf_link_hash_entry *h; | |
6037 | PTR idxptr; | |
6038 | { | |
6039 | int *idx = (int *) idxptr; | |
6040 | ||
6041 | if (h->dynindx != -1 | |
6042 | && ((h->root.type != bfd_link_hash_defined | |
6043 | && h->root.type != bfd_link_hash_defweak) | |
6044 | || h->root.u.def.section->gc_mark)) | |
6045 | h->dynindx = (*idx)++; | |
6046 | ||
6047 | return true; | |
6048 | } | |
6049 | ||
6050 | /* Propogate collected vtable information. This is called through | |
6051 | elf_link_hash_traverse. */ | |
6052 | ||
6053 | static boolean | |
6054 | elf_gc_propagate_vtable_entries_used (h, okp) | |
6055 | struct elf_link_hash_entry *h; | |
6056 | PTR okp; | |
6057 | { | |
6058 | /* Those that are not vtables. */ | |
6059 | if (h->vtable_parent == NULL) | |
6060 | return true; | |
6061 | ||
6062 | /* Those vtables that do not have parents, we cannot merge. */ | |
6063 | if (h->vtable_parent == (struct elf_link_hash_entry *) -1) | |
6064 | return true; | |
6065 | ||
6066 | /* If we've already been done, exit. */ | |
6067 | if (h->vtable_entries_used && h->vtable_entries_used[-1]) | |
6068 | return true; | |
6069 | ||
6070 | /* Make sure the parent's table is up to date. */ | |
6071 | elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp); | |
6072 | ||
6073 | if (h->vtable_entries_used == NULL) | |
6074 | { | |
6075 | /* None of this table's entries were referenced. Re-use the | |
6076 | parent's table. */ | |
6077 | h->vtable_entries_used = h->vtable_parent->vtable_entries_used; | |
6078 | h->vtable_entries_size = h->vtable_parent->vtable_entries_size; | |
6079 | } | |
6080 | else | |
6081 | { | |
6082 | size_t n; | |
6083 | boolean *cu, *pu; | |
6084 | ||
6085 | /* Or the parent's entries into ours. */ | |
6086 | cu = h->vtable_entries_used; | |
6087 | cu[-1] = true; | |
6088 | pu = h->vtable_parent->vtable_entries_used; | |
6089 | if (pu != NULL) | |
6090 | { | |
6091 | n = h->vtable_parent->vtable_entries_size / FILE_ALIGN; | |
6092 | while (--n != 0) | |
6093 | { | |
6094 | if (*pu) *cu = true; | |
6095 | pu++, cu++; | |
6096 | } | |
6097 | } | |
6098 | } | |
6099 | ||
6100 | return true; | |
6101 | } | |
6102 | ||
6103 | static boolean | |
6104 | elf_gc_smash_unused_vtentry_relocs (h, okp) | |
6105 | struct elf_link_hash_entry *h; | |
6106 | PTR okp; | |
6107 | { | |
6108 | asection *sec; | |
6109 | bfd_vma hstart, hend; | |
6110 | Elf_Internal_Rela *relstart, *relend, *rel; | |
c7ac6ff8 | 6111 | struct elf_backend_data *bed; |
252b5132 RH |
6112 | |
6113 | /* Take care of both those symbols that do not describe vtables as | |
6114 | well as those that are not loaded. */ | |
6115 | if (h->vtable_parent == NULL) | |
6116 | return true; | |
6117 | ||
6118 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
6119 | || h->root.type == bfd_link_hash_defweak); | |
6120 | ||
6121 | sec = h->root.u.def.section; | |
6122 | hstart = h->root.u.def.value; | |
6123 | hend = hstart + h->size; | |
6124 | ||
6125 | relstart = (NAME(_bfd_elf,link_read_relocs) | |
6126 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true)); | |
6127 | if (!relstart) | |
6128 | return *(boolean *)okp = false; | |
c7ac6ff8 MM |
6129 | bed = get_elf_backend_data (sec->owner); |
6130 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
252b5132 RH |
6131 | |
6132 | for (rel = relstart; rel < relend; ++rel) | |
6133 | if (rel->r_offset >= hstart && rel->r_offset < hend) | |
6134 | { | |
6135 | /* If the entry is in use, do nothing. */ | |
6136 | if (h->vtable_entries_used | |
6137 | && (rel->r_offset - hstart) < h->vtable_entries_size) | |
6138 | { | |
6139 | bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN; | |
6140 | if (h->vtable_entries_used[entry]) | |
6141 | continue; | |
6142 | } | |
6143 | /* Otherwise, kill it. */ | |
6144 | rel->r_offset = rel->r_info = rel->r_addend = 0; | |
6145 | } | |
6146 | ||
6147 | return true; | |
6148 | } | |
6149 | ||
6150 | /* Do mark and sweep of unused sections. */ | |
6151 | ||
6152 | boolean | |
6153 | elf_gc_sections (abfd, info) | |
6154 | bfd *abfd; | |
6155 | struct bfd_link_info *info; | |
6156 | { | |
6157 | boolean ok = true; | |
6158 | bfd *sub; | |
6159 | asection * (*gc_mark_hook) | |
6160 | PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *, | |
6161 | struct elf_link_hash_entry *h, Elf_Internal_Sym *)); | |
6162 | ||
6163 | if (!get_elf_backend_data (abfd)->can_gc_sections | |
6164 | || info->relocateable | |
6165 | || elf_hash_table (info)->dynamic_sections_created) | |
6166 | return true; | |
6167 | ||
6168 | /* Apply transitive closure to the vtable entry usage info. */ | |
6169 | elf_link_hash_traverse (elf_hash_table (info), | |
6170 | elf_gc_propagate_vtable_entries_used, | |
6171 | (PTR) &ok); | |
6172 | if (!ok) | |
6173 | return false; | |
6174 | ||
6175 | /* Kill the vtable relocations that were not used. */ | |
6176 | elf_link_hash_traverse (elf_hash_table (info), | |
6177 | elf_gc_smash_unused_vtentry_relocs, | |
6178 | (PTR) &ok); | |
6179 | if (!ok) | |
6180 | return false; | |
6181 | ||
6182 | /* Grovel through relocs to find out who stays ... */ | |
6183 | ||
6184 | gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook; | |
6185 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
6186 | { | |
6187 | asection *o; | |
6188 | for (o = sub->sections; o != NULL; o = o->next) | |
6189 | { | |
6190 | if (o->flags & SEC_KEEP) | |
6191 | if (!elf_gc_mark (info, o, gc_mark_hook)) | |
6192 | return false; | |
6193 | } | |
6194 | } | |
6195 | ||
6196 | /* ... and mark SEC_EXCLUDE for those that go. */ | |
6197 | if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook)) | |
6198 | return false; | |
6199 | ||
6200 | return true; | |
6201 | } | |
6202 | \f | |
6203 | /* Called from check_relocs to record the existance of a VTINHERIT reloc. */ | |
6204 | ||
6205 | boolean | |
6206 | elf_gc_record_vtinherit (abfd, sec, h, offset) | |
6207 | bfd *abfd; | |
6208 | asection *sec; | |
6209 | struct elf_link_hash_entry *h; | |
6210 | bfd_vma offset; | |
6211 | { | |
6212 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | |
6213 | struct elf_link_hash_entry **search, *child; | |
6214 | bfd_size_type extsymcount; | |
6215 | ||
6216 | /* The sh_info field of the symtab header tells us where the | |
6217 | external symbols start. We don't care about the local symbols at | |
6218 | this point. */ | |
6219 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym); | |
6220 | if (!elf_bad_symtab (abfd)) | |
6221 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; | |
6222 | ||
6223 | sym_hashes = elf_sym_hashes (abfd); | |
6224 | sym_hashes_end = sym_hashes + extsymcount; | |
6225 | ||
6226 | /* Hunt down the child symbol, which is in this section at the same | |
6227 | offset as the relocation. */ | |
6228 | for (search = sym_hashes; search != sym_hashes_end; ++search) | |
6229 | { | |
6230 | if ((child = *search) != NULL | |
6231 | && (child->root.type == bfd_link_hash_defined | |
6232 | || child->root.type == bfd_link_hash_defweak) | |
6233 | && child->root.u.def.section == sec | |
6234 | && child->root.u.def.value == offset) | |
6235 | goto win; | |
6236 | } | |
6237 | ||
6238 | (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT", | |
6239 | bfd_get_filename (abfd), sec->name, | |
6240 | (unsigned long)offset); | |
6241 | bfd_set_error (bfd_error_invalid_operation); | |
6242 | return false; | |
6243 | ||
6244 | win: | |
6245 | if (!h) | |
6246 | { | |
6247 | /* This *should* only be the absolute section. It could potentially | |
6248 | be that someone has defined a non-global vtable though, which | |
6249 | would be bad. It isn't worth paging in the local symbols to be | |
6250 | sure though; that case should simply be handled by the assembler. */ | |
6251 | ||
6252 | child->vtable_parent = (struct elf_link_hash_entry *) -1; | |
6253 | } | |
6254 | else | |
6255 | child->vtable_parent = h; | |
6256 | ||
6257 | return true; | |
6258 | } | |
6259 | ||
6260 | /* Called from check_relocs to record the existance of a VTENTRY reloc. */ | |
6261 | ||
6262 | boolean | |
6263 | elf_gc_record_vtentry (abfd, sec, h, addend) | |
7442e600 ILT |
6264 | bfd *abfd ATTRIBUTE_UNUSED; |
6265 | asection *sec ATTRIBUTE_UNUSED; | |
252b5132 RH |
6266 | struct elf_link_hash_entry *h; |
6267 | bfd_vma addend; | |
6268 | { | |
6269 | if (addend >= h->vtable_entries_size) | |
6270 | { | |
6271 | size_t size, bytes; | |
6272 | boolean *ptr = h->vtable_entries_used; | |
6273 | ||
6274 | /* While the symbol is undefined, we have to be prepared to handle | |
6275 | a zero size. */ | |
6276 | if (h->root.type == bfd_link_hash_undefined) | |
6277 | size = addend; | |
6278 | else | |
6279 | { | |
6280 | size = h->size; | |
6281 | if (size < addend) | |
6282 | { | |
6283 | /* Oops! We've got a reference past the defined end of | |
6284 | the table. This is probably a bug -- shall we warn? */ | |
6285 | size = addend; | |
6286 | } | |
6287 | } | |
6288 | ||
6289 | /* Allocate one extra entry for use as a "done" flag for the | |
6290 | consolidation pass. */ | |
6291 | bytes = (size / FILE_ALIGN + 1) * sizeof(boolean); | |
6292 | ||
6293 | if (ptr) | |
6294 | { | |
6295 | size_t oldbytes; | |
6296 | ||
6297 | ptr = realloc (ptr-1, bytes); | |
6298 | if (ptr == NULL) | |
6299 | return false; | |
6300 | ||
6301 | oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean); | |
6302 | memset (ptr + oldbytes, 0, bytes - oldbytes); | |
6303 | } | |
6304 | else | |
6305 | { | |
6306 | ptr = calloc (1, bytes); | |
6307 | if (ptr == NULL) | |
6308 | return false; | |
6309 | } | |
6310 | ||
6311 | /* And arrange for that done flag to be at index -1. */ | |
6312 | h->vtable_entries_used = ptr+1; | |
6313 | h->vtable_entries_size = size; | |
6314 | } | |
6315 | h->vtable_entries_used[addend / FILE_ALIGN] = true; | |
6316 | ||
6317 | return true; | |
6318 | } | |
6319 | ||
6320 | /* And an accompanying bit to work out final got entry offsets once | |
6321 | we're done. Should be called from final_link. */ | |
6322 | ||
6323 | boolean | |
6324 | elf_gc_common_finalize_got_offsets (abfd, info) | |
6325 | bfd *abfd; | |
6326 | struct bfd_link_info *info; | |
6327 | { | |
6328 | bfd *i; | |
6329 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
6330 | bfd_vma gotoff; | |
6331 | ||
6332 | /* The GOT offset is relative to the .got section, but the GOT header is | |
6333 | put into the .got.plt section, if the backend uses it. */ | |
6334 | if (bed->want_got_plt) | |
6335 | gotoff = 0; | |
6336 | else | |
6337 | gotoff = bed->got_header_size; | |
6338 | ||
6339 | /* Do the local .got entries first. */ | |
6340 | for (i = info->input_bfds; i; i = i->link_next) | |
6341 | { | |
6342 | bfd_signed_vma *local_got = elf_local_got_refcounts (i); | |
6343 | bfd_size_type j, locsymcount; | |
6344 | Elf_Internal_Shdr *symtab_hdr; | |
6345 | ||
6346 | if (!local_got) | |
6347 | continue; | |
6348 | ||
6349 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
6350 | if (elf_bad_symtab (i)) | |
6351 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
6352 | else | |
6353 | locsymcount = symtab_hdr->sh_info; | |
6354 | ||
6355 | for (j = 0; j < locsymcount; ++j) | |
6356 | { | |
6357 | if (local_got[j] > 0) | |
6358 | { | |
6359 | local_got[j] = gotoff; | |
6360 | gotoff += ARCH_SIZE / 8; | |
6361 | } | |
6362 | else | |
6363 | local_got[j] = (bfd_vma) -1; | |
6364 | } | |
6365 | } | |
6366 | ||
6367 | /* Then the global .got and .plt entries. */ | |
6368 | elf_link_hash_traverse (elf_hash_table (info), | |
6369 | elf_gc_allocate_got_offsets, | |
6370 | (PTR) &gotoff); | |
6371 | return true; | |
6372 | } | |
6373 | ||
6374 | /* We need a special top-level link routine to convert got reference counts | |
6375 | to real got offsets. */ | |
6376 | ||
6377 | static boolean | |
6378 | elf_gc_allocate_got_offsets (h, offarg) | |
6379 | struct elf_link_hash_entry *h; | |
6380 | PTR offarg; | |
6381 | { | |
6382 | bfd_vma *off = (bfd_vma *) offarg; | |
6383 | ||
6384 | if (h->got.refcount > 0) | |
6385 | { | |
6386 | h->got.offset = off[0]; | |
6387 | off[0] += ARCH_SIZE / 8; | |
6388 | } | |
6389 | else | |
6390 | h->got.offset = (bfd_vma) -1; | |
6391 | ||
6392 | return true; | |
6393 | } | |
6394 | ||
6395 | /* Many folk need no more in the way of final link than this, once | |
6396 | got entry reference counting is enabled. */ | |
6397 | ||
6398 | boolean | |
6399 | elf_gc_common_final_link (abfd, info) | |
6400 | bfd *abfd; | |
6401 | struct bfd_link_info *info; | |
6402 | { | |
6403 | if (!elf_gc_common_finalize_got_offsets (abfd, info)) | |
6404 | return false; | |
6405 | ||
6406 | /* Invoke the regular ELF backend linker to do all the work. */ | |
6407 | return elf_bfd_final_link (abfd, info); | |
6408 | } | |
6409 | ||
6410 | /* This function will be called though elf_link_hash_traverse to store | |
6411 | all hash value of the exported symbols in an array. */ | |
6412 | ||
6413 | static boolean | |
6414 | elf_collect_hash_codes (h, data) | |
6415 | struct elf_link_hash_entry *h; | |
6416 | PTR data; | |
6417 | { | |
6418 | unsigned long **valuep = (unsigned long **) data; | |
6419 | const char *name; | |
6420 | char *p; | |
6421 | unsigned long ha; | |
6422 | char *alc = NULL; | |
6423 | ||
6424 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
6425 | if (h->dynindx == -1) | |
6426 | return true; | |
6427 | ||
6428 | name = h->root.root.string; | |
6429 | p = strchr (name, ELF_VER_CHR); | |
6430 | if (p != NULL) | |
6431 | { | |
6432 | alc = bfd_malloc (p - name + 1); | |
6433 | memcpy (alc, name, p - name); | |
6434 | alc[p - name] = '\0'; | |
6435 | name = alc; | |
6436 | } | |
6437 | ||
6438 | /* Compute the hash value. */ | |
6439 | ha = bfd_elf_hash (name); | |
6440 | ||
6441 | /* Store the found hash value in the array given as the argument. */ | |
6442 | *(*valuep)++ = ha; | |
6443 | ||
6444 | /* And store it in the struct so that we can put it in the hash table | |
6445 | later. */ | |
6446 | h->elf_hash_value = ha; | |
6447 | ||
6448 | if (alc != NULL) | |
6449 | free (alc); | |
6450 | ||
6451 | return true; | |
6452 | } |