]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Interface between GDB and target environments, including files and processes |
d9fcf2fb | 2 | Copyright 1990-1994, 1999, 2000 Free Software Foundation, Inc. |
c906108c SS |
3 | Contributed by Cygnus Support. Written by John Gilmore. |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #if !defined (TARGET_H) | |
23 | #define TARGET_H | |
24 | ||
25 | /* This include file defines the interface between the main part | |
26 | of the debugger, and the part which is target-specific, or | |
27 | specific to the communications interface between us and the | |
28 | target. | |
29 | ||
30 | A TARGET is an interface between the debugger and a particular | |
31 | kind of file or process. Targets can be STACKED in STRATA, | |
32 | so that more than one target can potentially respond to a request. | |
33 | In particular, memory accesses will walk down the stack of targets | |
34 | until they find a target that is interested in handling that particular | |
35 | address. STRATA are artificial boundaries on the stack, within | |
36 | which particular kinds of targets live. Strata exist so that | |
37 | people don't get confused by pushing e.g. a process target and then | |
38 | a file target, and wondering why they can't see the current values | |
39 | of variables any more (the file target is handling them and they | |
40 | never get to the process target). So when you push a file target, | |
41 | it goes into the file stratum, which is always below the process | |
42 | stratum. */ | |
43 | ||
44 | #include "bfd.h" | |
45 | #include "symtab.h" | |
46 | ||
c5aa993b JM |
47 | enum strata |
48 | { | |
49 | dummy_stratum, /* The lowest of the low */ | |
50 | file_stratum, /* Executable files, etc */ | |
51 | core_stratum, /* Core dump files */ | |
52 | download_stratum, /* Downloading of remote targets */ | |
d4f3574e SS |
53 | process_stratum, /* Executing processes */ |
54 | thread_stratum /* Executing threads */ | |
c5aa993b | 55 | }; |
c906108c | 56 | |
c5aa993b JM |
57 | enum thread_control_capabilities |
58 | { | |
0d06e24b JM |
59 | tc_none = 0, /* Default: can't control thread execution. */ |
60 | tc_schedlock = 1, /* Can lock the thread scheduler. */ | |
61 | tc_switch = 2 /* Can switch the running thread on demand. */ | |
c5aa993b | 62 | }; |
c906108c SS |
63 | |
64 | /* Stuff for target_wait. */ | |
65 | ||
66 | /* Generally, what has the program done? */ | |
c5aa993b JM |
67 | enum target_waitkind |
68 | { | |
69 | /* The program has exited. The exit status is in value.integer. */ | |
70 | TARGET_WAITKIND_EXITED, | |
c906108c | 71 | |
0d06e24b JM |
72 | /* The program has stopped with a signal. Which signal is in |
73 | value.sig. */ | |
c5aa993b | 74 | TARGET_WAITKIND_STOPPED, |
c906108c | 75 | |
c5aa993b JM |
76 | /* The program has terminated with a signal. Which signal is in |
77 | value.sig. */ | |
78 | TARGET_WAITKIND_SIGNALLED, | |
c906108c | 79 | |
c5aa993b JM |
80 | /* The program is letting us know that it dynamically loaded something |
81 | (e.g. it called load(2) on AIX). */ | |
82 | TARGET_WAITKIND_LOADED, | |
c906108c | 83 | |
0d06e24b JM |
84 | /* The program has forked. A "related" process' ID is in |
85 | value.related_pid. I.e., if the child forks, value.related_pid | |
86 | is the parent's ID. */ | |
87 | ||
c5aa993b | 88 | TARGET_WAITKIND_FORKED, |
c906108c | 89 | |
0d06e24b JM |
90 | /* The program has vforked. A "related" process's ID is in |
91 | value.related_pid. */ | |
92 | ||
c5aa993b | 93 | TARGET_WAITKIND_VFORKED, |
c906108c | 94 | |
0d06e24b JM |
95 | /* The program has exec'ed a new executable file. The new file's |
96 | pathname is pointed to by value.execd_pathname. */ | |
97 | ||
c5aa993b | 98 | TARGET_WAITKIND_EXECD, |
c906108c | 99 | |
0d06e24b JM |
100 | /* The program has entered or returned from a system call. On |
101 | HP-UX, this is used in the hardware watchpoint implementation. | |
102 | The syscall's unique integer ID number is in value.syscall_id */ | |
103 | ||
c5aa993b JM |
104 | TARGET_WAITKIND_SYSCALL_ENTRY, |
105 | TARGET_WAITKIND_SYSCALL_RETURN, | |
c906108c | 106 | |
c5aa993b JM |
107 | /* Nothing happened, but we stopped anyway. This perhaps should be handled |
108 | within target_wait, but I'm not sure target_wait should be resuming the | |
109 | inferior. */ | |
c4093a6a JM |
110 | TARGET_WAITKIND_SPURIOUS, |
111 | ||
112 | /* This is used for target async and extended-async | |
113 | only. Remote_async_wait() returns this when there is an event | |
114 | on the inferior, but the rest of the world is not interested in | |
115 | it. The inferior has not stopped, but has just sent some output | |
116 | to the console, for instance. In this case, we want to go back | |
117 | to the event loop and wait there for another event from the | |
118 | inferior, rather than being stuck in the remote_async_wait() | |
119 | function. This way the event loop is responsive to other events, | |
0d06e24b | 120 | like for instance the user typing. */ |
c4093a6a | 121 | TARGET_WAITKIND_IGNORE |
c906108c SS |
122 | }; |
123 | ||
124 | /* The numbering of these signals is chosen to match traditional unix | |
125 | signals (insofar as various unices use the same numbers, anyway). | |
126 | It is also the numbering of the GDB remote protocol. Other remote | |
127 | protocols, if they use a different numbering, should make sure to | |
cd0fc7c3 | 128 | translate appropriately. |
c906108c | 129 | |
cd0fc7c3 SS |
130 | Since these numbers have actually made it out into other software |
131 | (stubs, etc.), you mustn't disturb the assigned numbering. If you | |
132 | need to add new signals here, add them to the end of the explicitly | |
133 | numbered signals. | |
134 | ||
135 | This is based strongly on Unix/POSIX signals for several reasons: | |
c906108c SS |
136 | (1) This set of signals represents a widely-accepted attempt to |
137 | represent events of this sort in a portable fashion, (2) we want a | |
138 | signal to make it from wait to child_wait to the user intact, (3) many | |
139 | remote protocols use a similar encoding. However, it is | |
140 | recognized that this set of signals has limitations (such as not | |
141 | distinguishing between various kinds of SIGSEGV, or not | |
142 | distinguishing hitting a breakpoint from finishing a single step). | |
143 | So in the future we may get around this either by adding additional | |
144 | signals for breakpoint, single-step, etc., or by adding signal | |
145 | codes; the latter seems more in the spirit of what BSD, System V, | |
146 | etc. are doing to address these issues. */ | |
147 | ||
148 | /* For an explanation of what each signal means, see | |
149 | target_signal_to_string. */ | |
150 | ||
c5aa993b JM |
151 | enum target_signal |
152 | { | |
153 | /* Used some places (e.g. stop_signal) to record the concept that | |
154 | there is no signal. */ | |
155 | TARGET_SIGNAL_0 = 0, | |
156 | TARGET_SIGNAL_FIRST = 0, | |
157 | TARGET_SIGNAL_HUP = 1, | |
158 | TARGET_SIGNAL_INT = 2, | |
159 | TARGET_SIGNAL_QUIT = 3, | |
160 | TARGET_SIGNAL_ILL = 4, | |
161 | TARGET_SIGNAL_TRAP = 5, | |
162 | TARGET_SIGNAL_ABRT = 6, | |
163 | TARGET_SIGNAL_EMT = 7, | |
164 | TARGET_SIGNAL_FPE = 8, | |
165 | TARGET_SIGNAL_KILL = 9, | |
166 | TARGET_SIGNAL_BUS = 10, | |
167 | TARGET_SIGNAL_SEGV = 11, | |
168 | TARGET_SIGNAL_SYS = 12, | |
169 | TARGET_SIGNAL_PIPE = 13, | |
170 | TARGET_SIGNAL_ALRM = 14, | |
171 | TARGET_SIGNAL_TERM = 15, | |
172 | TARGET_SIGNAL_URG = 16, | |
173 | TARGET_SIGNAL_STOP = 17, | |
174 | TARGET_SIGNAL_TSTP = 18, | |
175 | TARGET_SIGNAL_CONT = 19, | |
176 | TARGET_SIGNAL_CHLD = 20, | |
177 | TARGET_SIGNAL_TTIN = 21, | |
178 | TARGET_SIGNAL_TTOU = 22, | |
179 | TARGET_SIGNAL_IO = 23, | |
180 | TARGET_SIGNAL_XCPU = 24, | |
181 | TARGET_SIGNAL_XFSZ = 25, | |
182 | TARGET_SIGNAL_VTALRM = 26, | |
183 | TARGET_SIGNAL_PROF = 27, | |
184 | TARGET_SIGNAL_WINCH = 28, | |
185 | TARGET_SIGNAL_LOST = 29, | |
186 | TARGET_SIGNAL_USR1 = 30, | |
187 | TARGET_SIGNAL_USR2 = 31, | |
188 | TARGET_SIGNAL_PWR = 32, | |
189 | /* Similar to SIGIO. Perhaps they should have the same number. */ | |
190 | TARGET_SIGNAL_POLL = 33, | |
191 | TARGET_SIGNAL_WIND = 34, | |
192 | TARGET_SIGNAL_PHONE = 35, | |
193 | TARGET_SIGNAL_WAITING = 36, | |
194 | TARGET_SIGNAL_LWP = 37, | |
195 | TARGET_SIGNAL_DANGER = 38, | |
196 | TARGET_SIGNAL_GRANT = 39, | |
197 | TARGET_SIGNAL_RETRACT = 40, | |
198 | TARGET_SIGNAL_MSG = 41, | |
199 | TARGET_SIGNAL_SOUND = 42, | |
200 | TARGET_SIGNAL_SAK = 43, | |
201 | TARGET_SIGNAL_PRIO = 44, | |
202 | TARGET_SIGNAL_REALTIME_33 = 45, | |
203 | TARGET_SIGNAL_REALTIME_34 = 46, | |
204 | TARGET_SIGNAL_REALTIME_35 = 47, | |
205 | TARGET_SIGNAL_REALTIME_36 = 48, | |
206 | TARGET_SIGNAL_REALTIME_37 = 49, | |
207 | TARGET_SIGNAL_REALTIME_38 = 50, | |
208 | TARGET_SIGNAL_REALTIME_39 = 51, | |
209 | TARGET_SIGNAL_REALTIME_40 = 52, | |
210 | TARGET_SIGNAL_REALTIME_41 = 53, | |
211 | TARGET_SIGNAL_REALTIME_42 = 54, | |
212 | TARGET_SIGNAL_REALTIME_43 = 55, | |
213 | TARGET_SIGNAL_REALTIME_44 = 56, | |
214 | TARGET_SIGNAL_REALTIME_45 = 57, | |
215 | TARGET_SIGNAL_REALTIME_46 = 58, | |
216 | TARGET_SIGNAL_REALTIME_47 = 59, | |
217 | TARGET_SIGNAL_REALTIME_48 = 60, | |
218 | TARGET_SIGNAL_REALTIME_49 = 61, | |
219 | TARGET_SIGNAL_REALTIME_50 = 62, | |
220 | TARGET_SIGNAL_REALTIME_51 = 63, | |
221 | TARGET_SIGNAL_REALTIME_52 = 64, | |
222 | TARGET_SIGNAL_REALTIME_53 = 65, | |
223 | TARGET_SIGNAL_REALTIME_54 = 66, | |
224 | TARGET_SIGNAL_REALTIME_55 = 67, | |
225 | TARGET_SIGNAL_REALTIME_56 = 68, | |
226 | TARGET_SIGNAL_REALTIME_57 = 69, | |
227 | TARGET_SIGNAL_REALTIME_58 = 70, | |
228 | TARGET_SIGNAL_REALTIME_59 = 71, | |
229 | TARGET_SIGNAL_REALTIME_60 = 72, | |
230 | TARGET_SIGNAL_REALTIME_61 = 73, | |
231 | TARGET_SIGNAL_REALTIME_62 = 74, | |
232 | TARGET_SIGNAL_REALTIME_63 = 75, | |
233 | ||
234 | /* Used internally by Solaris threads. See signal(5) on Solaris. */ | |
235 | TARGET_SIGNAL_CANCEL = 76, | |
cd0fc7c3 | 236 | |
d4f3574e SS |
237 | /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now |
238 | Linux does, and we can't disturb the numbering, since it's part | |
239 | of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32 | |
240 | is number 76. */ | |
241 | TARGET_SIGNAL_REALTIME_32, | |
242 | ||
c906108c | 243 | #if defined(MACH) || defined(__MACH__) |
c5aa993b JM |
244 | /* Mach exceptions */ |
245 | TARGET_EXC_BAD_ACCESS, | |
246 | TARGET_EXC_BAD_INSTRUCTION, | |
247 | TARGET_EXC_ARITHMETIC, | |
248 | TARGET_EXC_EMULATION, | |
249 | TARGET_EXC_SOFTWARE, | |
250 | TARGET_EXC_BREAKPOINT, | |
c906108c | 251 | #endif |
c5aa993b | 252 | TARGET_SIGNAL_INFO, |
c906108c | 253 | |
c5aa993b JM |
254 | /* Some signal we don't know about. */ |
255 | TARGET_SIGNAL_UNKNOWN, | |
c906108c | 256 | |
c5aa993b JM |
257 | /* Use whatever signal we use when one is not specifically specified |
258 | (for passing to proceed and so on). */ | |
259 | TARGET_SIGNAL_DEFAULT, | |
c906108c | 260 | |
c5aa993b JM |
261 | /* Last and unused enum value, for sizing arrays, etc. */ |
262 | TARGET_SIGNAL_LAST | |
263 | }; | |
c906108c | 264 | |
c5aa993b JM |
265 | struct target_waitstatus |
266 | { | |
267 | enum target_waitkind kind; | |
268 | ||
269 | /* Forked child pid, execd pathname, exit status or signal number. */ | |
270 | union | |
271 | { | |
272 | int integer; | |
273 | enum target_signal sig; | |
274 | int related_pid; | |
275 | char *execd_pathname; | |
276 | int syscall_id; | |
277 | } | |
278 | value; | |
279 | }; | |
c906108c | 280 | |
2acceee2 | 281 | /* Possible types of events that the inferior handler will have to |
0d06e24b | 282 | deal with. */ |
2acceee2 JM |
283 | enum inferior_event_type |
284 | { | |
0d06e24b | 285 | /* There is a request to quit the inferior, abandon it. */ |
2acceee2 JM |
286 | INF_QUIT_REQ, |
287 | /* Process a normal inferior event which will result in target_wait | |
0d06e24b | 288 | being called. */ |
2acceee2 | 289 | INF_REG_EVENT, |
0d06e24b | 290 | /* Deal with an error on the inferior. */ |
2acceee2 | 291 | INF_ERROR, |
0d06e24b | 292 | /* We are called because a timer went off. */ |
2acceee2 | 293 | INF_TIMER, |
0d06e24b | 294 | /* We are called to do stuff after the inferior stops. */ |
c2d11a7d JM |
295 | INF_EXEC_COMPLETE, |
296 | /* We are called to do some stuff after the inferior stops, but we | |
297 | are expected to reenter the proceed() and | |
298 | handle_inferior_event() functions. This is used only in case of | |
0d06e24b | 299 | 'step n' like commands. */ |
c2d11a7d | 300 | INF_EXEC_CONTINUE |
2acceee2 JM |
301 | }; |
302 | ||
c906108c SS |
303 | /* Return the string for a signal. */ |
304 | extern char *target_signal_to_string PARAMS ((enum target_signal)); | |
305 | ||
306 | /* Return the name (SIGHUP, etc.) for a signal. */ | |
307 | extern char *target_signal_to_name PARAMS ((enum target_signal)); | |
308 | ||
309 | /* Given a name (SIGHUP, etc.), return its signal. */ | |
310 | enum target_signal target_signal_from_name PARAMS ((char *)); | |
c906108c | 311 | \f |
c5aa993b | 312 | |
c906108c SS |
313 | /* If certain kinds of activity happen, target_wait should perform |
314 | callbacks. */ | |
315 | /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible | |
0d06e24b | 316 | on TARGET_ACTIVITY_FD. */ |
c906108c SS |
317 | extern int target_activity_fd; |
318 | /* Returns zero to leave the inferior alone, one to interrupt it. */ | |
319 | extern int (*target_activity_function) PARAMS ((void)); | |
320 | \f | |
0d06e24b JM |
321 | struct thread_info; /* fwd decl for parameter list below: */ |
322 | ||
c906108c | 323 | struct target_ops |
c5aa993b JM |
324 | { |
325 | char *to_shortname; /* Name this target type */ | |
326 | char *to_longname; /* Name for printing */ | |
327 | char *to_doc; /* Documentation. Does not include trailing | |
c906108c | 328 | newline, and starts with a one-line descrip- |
0d06e24b | 329 | tion (probably similar to to_longname). */ |
c5aa993b JM |
330 | void (*to_open) PARAMS ((char *, int)); |
331 | void (*to_close) PARAMS ((int)); | |
332 | void (*to_attach) PARAMS ((char *, int)); | |
333 | void (*to_post_attach) PARAMS ((int)); | |
334 | void (*to_require_attach) PARAMS ((char *, int)); | |
335 | void (*to_detach) PARAMS ((char *, int)); | |
336 | void (*to_require_detach) PARAMS ((int, char *, int)); | |
337 | void (*to_resume) PARAMS ((int, int, enum target_signal)); | |
338 | int (*to_wait) PARAMS ((int, struct target_waitstatus *)); | |
339 | void (*to_post_wait) PARAMS ((int, int)); | |
340 | void (*to_fetch_registers) PARAMS ((int)); | |
341 | void (*to_store_registers) PARAMS ((int)); | |
342 | void (*to_prepare_to_store) PARAMS ((void)); | |
343 | ||
344 | /* Transfer LEN bytes of memory between GDB address MYADDR and | |
345 | target address MEMADDR. If WRITE, transfer them to the target, else | |
346 | transfer them from the target. TARGET is the target from which we | |
347 | get this function. | |
348 | ||
349 | Return value, N, is one of the following: | |
350 | ||
351 | 0 means that we can't handle this. If errno has been set, it is the | |
352 | error which prevented us from doing it (FIXME: What about bfd_error?). | |
353 | ||
354 | positive (call it N) means that we have transferred N bytes | |
355 | starting at MEMADDR. We might be able to handle more bytes | |
356 | beyond this length, but no promises. | |
357 | ||
358 | negative (call its absolute value N) means that we cannot | |
359 | transfer right at MEMADDR, but we could transfer at least | |
360 | something at MEMADDR + N. */ | |
361 | ||
362 | int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr, | |
363 | int len, int write, | |
364 | struct target_ops * target)); | |
c906108c SS |
365 | |
366 | #if 0 | |
c5aa993b | 367 | /* Enable this after 4.12. */ |
c906108c | 368 | |
c5aa993b JM |
369 | /* Search target memory. Start at STARTADDR and take LEN bytes of |
370 | target memory, and them with MASK, and compare to DATA. If they | |
371 | match, set *ADDR_FOUND to the address we found it at, store the data | |
372 | we found at LEN bytes starting at DATA_FOUND, and return. If | |
373 | not, add INCREMENT to the search address and keep trying until | |
374 | the search address is outside of the range [LORANGE,HIRANGE). | |
c906108c | 375 | |
0d06e24b JM |
376 | If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and |
377 | return. */ | |
378 | ||
c5aa993b JM |
379 | void (*to_search) PARAMS ((int len, char *data, char *mask, |
380 | CORE_ADDR startaddr, int increment, | |
381 | CORE_ADDR lorange, CORE_ADDR hirange, | |
382 | CORE_ADDR * addr_found, char *data_found)); | |
c906108c SS |
383 | |
384 | #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \ | |
0d06e24b JM |
385 | (*current_target.to_search) (len, data, mask, startaddr, increment, \ |
386 | lorange, hirange, addr_found, data_found) | |
c5aa993b JM |
387 | #endif /* 0 */ |
388 | ||
389 | void (*to_files_info) PARAMS ((struct target_ops *)); | |
390 | int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *)); | |
391 | int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *)); | |
392 | void (*to_terminal_init) PARAMS ((void)); | |
393 | void (*to_terminal_inferior) PARAMS ((void)); | |
394 | void (*to_terminal_ours_for_output) PARAMS ((void)); | |
395 | void (*to_terminal_ours) PARAMS ((void)); | |
396 | void (*to_terminal_info) PARAMS ((char *, int)); | |
397 | void (*to_kill) PARAMS ((void)); | |
398 | void (*to_load) PARAMS ((char *, int)); | |
399 | int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *)); | |
400 | void (*to_create_inferior) PARAMS ((char *, char *, char **)); | |
401 | void (*to_post_startup_inferior) PARAMS ((int)); | |
402 | void (*to_acknowledge_created_inferior) PARAMS ((int)); | |
403 | void (*to_clone_and_follow_inferior) PARAMS ((int, int *)); | |
404 | void (*to_post_follow_inferior_by_clone) PARAMS ((void)); | |
405 | int (*to_insert_fork_catchpoint) PARAMS ((int)); | |
406 | int (*to_remove_fork_catchpoint) PARAMS ((int)); | |
407 | int (*to_insert_vfork_catchpoint) PARAMS ((int)); | |
408 | int (*to_remove_vfork_catchpoint) PARAMS ((int)); | |
409 | int (*to_has_forked) PARAMS ((int, int *)); | |
410 | int (*to_has_vforked) PARAMS ((int, int *)); | |
411 | int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void)); | |
412 | void (*to_post_follow_vfork) PARAMS ((int, int, int, int)); | |
413 | int (*to_insert_exec_catchpoint) PARAMS ((int)); | |
414 | int (*to_remove_exec_catchpoint) PARAMS ((int)); | |
415 | int (*to_has_execd) PARAMS ((int, char **)); | |
416 | int (*to_reported_exec_events_per_exec_call) PARAMS ((void)); | |
417 | int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *)); | |
418 | int (*to_has_exited) PARAMS ((int, int, int *)); | |
419 | void (*to_mourn_inferior) PARAMS ((void)); | |
420 | int (*to_can_run) PARAMS ((void)); | |
421 | void (*to_notice_signals) PARAMS ((int pid)); | |
422 | int (*to_thread_alive) PARAMS ((int pid)); | |
423 | void (*to_find_new_threads) PARAMS ((void)); | |
ed9a39eb | 424 | char *(*to_pid_to_str) PARAMS ((int)); |
0d06e24b | 425 | char *(*to_extra_thread_info) PARAMS ((struct thread_info *)); |
c5aa993b JM |
426 | void (*to_stop) PARAMS ((void)); |
427 | int (*to_query) PARAMS ((int /*char */ , char *, char *, int *)); | |
d9fcf2fb | 428 | void (*to_rcmd) (char *command, struct ui_file *output); |
c5aa993b JM |
429 | struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int)); |
430 | struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void)); | |
431 | char *(*to_pid_to_exec_file) PARAMS ((int pid)); | |
432 | char *(*to_core_file_to_sym_file) PARAMS ((char *)); | |
433 | enum strata to_stratum; | |
434 | struct target_ops | |
435 | *DONT_USE; /* formerly to_next */ | |
436 | int to_has_all_memory; | |
437 | int to_has_memory; | |
438 | int to_has_stack; | |
439 | int to_has_registers; | |
440 | int to_has_execution; | |
441 | int to_has_thread_control; /* control thread execution */ | |
c5aa993b JM |
442 | struct section_table |
443 | *to_sections; | |
444 | struct section_table | |
445 | *to_sections_end; | |
6426a772 JM |
446 | /* ASYNC target controls */ |
447 | int (*to_can_async_p) (void); | |
448 | int (*to_is_async_p) (void); | |
0d06e24b JM |
449 | void (*to_async) (void (*cb) (enum inferior_event_type, void *context), |
450 | void *context); | |
ed9a39eb | 451 | int to_async_mask_value; |
c5aa993b | 452 | int to_magic; |
0d06e24b JM |
453 | /* Need sub-structure for target machine related rather than comm related? |
454 | */ | |
c5aa993b | 455 | }; |
c906108c SS |
456 | |
457 | /* Magic number for checking ops size. If a struct doesn't end with this | |
458 | number, somebody changed the declaration but didn't change all the | |
459 | places that initialize one. */ | |
460 | ||
461 | #define OPS_MAGIC 3840 | |
462 | ||
463 | /* The ops structure for our "current" target process. This should | |
464 | never be NULL. If there is no target, it points to the dummy_target. */ | |
465 | ||
c5aa993b | 466 | extern struct target_ops current_target; |
c906108c SS |
467 | |
468 | /* An item on the target stack. */ | |
469 | ||
470 | struct target_stack_item | |
c5aa993b JM |
471 | { |
472 | struct target_stack_item *next; | |
473 | struct target_ops *target_ops; | |
474 | }; | |
c906108c SS |
475 | |
476 | /* The target stack. */ | |
477 | ||
478 | extern struct target_stack_item *target_stack; | |
479 | ||
480 | /* Define easy words for doing these operations on our current target. */ | |
481 | ||
482 | #define target_shortname (current_target.to_shortname) | |
483 | #define target_longname (current_target.to_longname) | |
484 | ||
485 | /* The open routine takes the rest of the parameters from the command, | |
486 | and (if successful) pushes a new target onto the stack. | |
487 | Targets should supply this routine, if only to provide an error message. */ | |
0d06e24b | 488 | |
c906108c | 489 | #define target_open(name, from_tty) \ |
0d06e24b | 490 | (*current_target.to_open) (name, from_tty) |
c906108c SS |
491 | |
492 | /* Does whatever cleanup is required for a target that we are no longer | |
493 | going to be calling. Argument says whether we are quitting gdb and | |
494 | should not get hung in case of errors, or whether we want a clean | |
495 | termination even if it takes a while. This routine is automatically | |
496 | always called just before a routine is popped off the target stack. | |
497 | Closing file descriptors and freeing memory are typical things it should | |
498 | do. */ | |
499 | ||
500 | #define target_close(quitting) \ | |
0d06e24b | 501 | (*current_target.to_close) (quitting) |
c906108c SS |
502 | |
503 | /* Attaches to a process on the target side. Arguments are as passed | |
504 | to the `attach' command by the user. This routine can be called | |
505 | when the target is not on the target-stack, if the target_can_run | |
506 | routine returns 1; in that case, it must push itself onto the stack. | |
507 | Upon exit, the target should be ready for normal operations, and | |
508 | should be ready to deliver the status of the process immediately | |
509 | (without waiting) to an upcoming target_wait call. */ | |
510 | ||
511 | #define target_attach(args, from_tty) \ | |
0d06e24b | 512 | (*current_target.to_attach) (args, from_tty) |
c906108c SS |
513 | |
514 | /* The target_attach operation places a process under debugger control, | |
515 | and stops the process. | |
516 | ||
517 | This operation provides a target-specific hook that allows the | |
0d06e24b | 518 | necessary bookkeeping to be performed after an attach completes. */ |
c906108c | 519 | #define target_post_attach(pid) \ |
0d06e24b | 520 | (*current_target.to_post_attach) (pid) |
c906108c SS |
521 | |
522 | /* Attaches to a process on the target side, if not already attached. | |
523 | (If already attached, takes no action.) | |
524 | ||
525 | This operation can be used to follow the child process of a fork. | |
526 | On some targets, such child processes of an original inferior process | |
527 | are automatically under debugger control, and thus do not require an | |
528 | actual attach operation. */ | |
529 | ||
530 | #define target_require_attach(args, from_tty) \ | |
0d06e24b | 531 | (*current_target.to_require_attach) (args, from_tty) |
c906108c SS |
532 | |
533 | /* Takes a program previously attached to and detaches it. | |
534 | The program may resume execution (some targets do, some don't) and will | |
535 | no longer stop on signals, etc. We better not have left any breakpoints | |
536 | in the program or it'll die when it hits one. ARGS is arguments | |
537 | typed by the user (e.g. a signal to send the process). FROM_TTY | |
538 | says whether to be verbose or not. */ | |
539 | ||
540 | extern void | |
541 | target_detach PARAMS ((char *, int)); | |
542 | ||
543 | /* Detaches from a process on the target side, if not already dettached. | |
544 | (If already detached, takes no action.) | |
545 | ||
546 | This operation can be used to follow the parent process of a fork. | |
547 | On some targets, such child processes of an original inferior process | |
548 | are automatically under debugger control, and thus do require an actual | |
549 | detach operation. | |
550 | ||
551 | PID is the process id of the child to detach from. | |
552 | ARGS is arguments typed by the user (e.g. a signal to send the process). | |
553 | FROM_TTY says whether to be verbose or not. */ | |
554 | ||
0d06e24b JM |
555 | #define target_require_detach(pid, args, from_tty) \ |
556 | (*current_target.to_require_detach) (pid, args, from_tty) | |
c906108c SS |
557 | |
558 | /* Resume execution of the target process PID. STEP says whether to | |
559 | single-step or to run free; SIGGNAL is the signal to be given to | |
560 | the target, or TARGET_SIGNAL_0 for no signal. The caller may not | |
561 | pass TARGET_SIGNAL_DEFAULT. */ | |
562 | ||
563 | #define target_resume(pid, step, siggnal) \ | |
0d06e24b | 564 | (*current_target.to_resume) (pid, step, siggnal) |
c906108c SS |
565 | |
566 | /* Wait for process pid to do something. Pid = -1 to wait for any pid | |
567 | to do something. Return pid of child, or -1 in case of error; | |
568 | store status through argument pointer STATUS. Note that it is | |
569 | *not* OK to return_to_top_level out of target_wait without popping | |
570 | the debugging target from the stack; GDB isn't prepared to get back | |
571 | to the prompt with a debugging target but without the frame cache, | |
572 | stop_pc, etc., set up. */ | |
573 | ||
574 | #define target_wait(pid, status) \ | |
0d06e24b | 575 | (*current_target.to_wait) (pid, status) |
c906108c SS |
576 | |
577 | /* The target_wait operation waits for a process event to occur, and | |
578 | thereby stop the process. | |
579 | ||
580 | On some targets, certain events may happen in sequences. gdb's | |
581 | correct response to any single event of such a sequence may require | |
582 | knowledge of what earlier events in the sequence have been seen. | |
583 | ||
584 | This operation provides a target-specific hook that allows the | |
0d06e24b | 585 | necessary bookkeeping to be performed to track such sequences. */ |
c906108c SS |
586 | |
587 | #define target_post_wait(pid, status) \ | |
0d06e24b | 588 | (*current_target.to_post_wait) (pid, status) |
c906108c SS |
589 | |
590 | /* Fetch register REGNO, or all regs if regno == -1. No result. */ | |
591 | ||
592 | #define target_fetch_registers(regno) \ | |
0d06e24b | 593 | (*current_target.to_fetch_registers) (regno) |
c906108c SS |
594 | |
595 | /* Store at least register REGNO, or all regs if REGNO == -1. | |
596 | It can store as many registers as it wants to, so target_prepare_to_store | |
597 | must have been previously called. Calls error() if there are problems. */ | |
598 | ||
599 | #define target_store_registers(regs) \ | |
0d06e24b | 600 | (*current_target.to_store_registers) (regs) |
c906108c SS |
601 | |
602 | /* Get ready to modify the registers array. On machines which store | |
603 | individual registers, this doesn't need to do anything. On machines | |
604 | which store all the registers in one fell swoop, this makes sure | |
605 | that REGISTERS contains all the registers from the program being | |
606 | debugged. */ | |
607 | ||
608 | #define target_prepare_to_store() \ | |
0d06e24b | 609 | (*current_target.to_prepare_to_store) () |
c906108c | 610 | |
ed9a39eb JM |
611 | extern int |
612 | target_read_string PARAMS ((CORE_ADDR, char **, int, int *)); | |
c906108c SS |
613 | |
614 | extern int | |
615 | target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len)); | |
616 | ||
617 | extern int | |
618 | target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len, | |
c5aa993b | 619 | asection * bfd_section)); |
c906108c | 620 | |
c906108c SS |
621 | extern int |
622 | target_write_memory PARAMS ((CORE_ADDR, char *, int)); | |
623 | ||
624 | extern int | |
625 | xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *)); | |
626 | ||
627 | extern int | |
628 | child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *)); | |
629 | ||
917317f4 JM |
630 | /* Make a single attempt at transfering LEN bytes. On a successful |
631 | transfer, the number of bytes actually transfered is returned and | |
632 | ERR is set to 0. When a transfer fails, -1 is returned (the number | |
633 | of bytes actually transfered is not defined) and ERR is set to a | |
0d06e24b | 634 | non-zero error indication. */ |
917317f4 | 635 | |
ed9a39eb JM |
636 | extern int |
637 | target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err); | |
917317f4 | 638 | |
ed9a39eb JM |
639 | extern int |
640 | target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err); | |
917317f4 | 641 | |
c906108c | 642 | extern char * |
ed9a39eb | 643 | child_pid_to_exec_file PARAMS ((int)); |
c906108c SS |
644 | |
645 | extern char * | |
ed9a39eb | 646 | child_core_file_to_sym_file PARAMS ((char *)); |
c906108c SS |
647 | |
648 | #if defined(CHILD_POST_ATTACH) | |
649 | extern void | |
650 | child_post_attach PARAMS ((int)); | |
651 | #endif | |
652 | ||
653 | extern void | |
654 | child_post_wait PARAMS ((int, int)); | |
655 | ||
656 | extern void | |
657 | child_post_startup_inferior PARAMS ((int)); | |
658 | ||
659 | extern void | |
660 | child_acknowledge_created_inferior PARAMS ((int)); | |
661 | ||
662 | extern void | |
663 | child_clone_and_follow_inferior PARAMS ((int, int *)); | |
664 | ||
665 | extern void | |
666 | child_post_follow_inferior_by_clone PARAMS ((void)); | |
667 | ||
668 | extern int | |
669 | child_insert_fork_catchpoint PARAMS ((int)); | |
670 | ||
671 | extern int | |
672 | child_remove_fork_catchpoint PARAMS ((int)); | |
673 | ||
674 | extern int | |
675 | child_insert_vfork_catchpoint PARAMS ((int)); | |
676 | ||
677 | extern int | |
678 | child_remove_vfork_catchpoint PARAMS ((int)); | |
679 | ||
680 | extern int | |
681 | child_has_forked PARAMS ((int, int *)); | |
682 | ||
683 | extern int | |
684 | child_has_vforked PARAMS ((int, int *)); | |
685 | ||
686 | extern void | |
687 | child_acknowledge_created_inferior PARAMS ((int)); | |
688 | ||
689 | extern int | |
690 | child_can_follow_vfork_prior_to_exec PARAMS ((void)); | |
691 | ||
692 | extern void | |
693 | child_post_follow_vfork PARAMS ((int, int, int, int)); | |
694 | ||
695 | extern int | |
696 | child_insert_exec_catchpoint PARAMS ((int)); | |
697 | ||
698 | extern int | |
699 | child_remove_exec_catchpoint PARAMS ((int)); | |
700 | ||
701 | extern int | |
702 | child_has_execd PARAMS ((int, char **)); | |
703 | ||
704 | extern int | |
705 | child_reported_exec_events_per_exec_call PARAMS ((void)); | |
706 | ||
707 | extern int | |
708 | child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *)); | |
709 | ||
710 | extern int | |
711 | child_has_exited PARAMS ((int, int, int *)); | |
712 | ||
713 | extern int | |
714 | child_thread_alive PARAMS ((int)); | |
715 | ||
716 | /* From exec.c */ | |
717 | ||
718 | extern void | |
719 | print_section_info PARAMS ((struct target_ops *, bfd *)); | |
720 | ||
721 | /* Print a line about the current target. */ | |
722 | ||
723 | #define target_files_info() \ | |
0d06e24b | 724 | (*current_target.to_files_info) (¤t_target) |
c906108c SS |
725 | |
726 | /* Insert a breakpoint at address ADDR in the target machine. | |
727 | SAVE is a pointer to memory allocated for saving the | |
728 | target contents. It is guaranteed by the caller to be long enough | |
729 | to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or | |
730 | an errno value. */ | |
731 | ||
732 | #define target_insert_breakpoint(addr, save) \ | |
0d06e24b | 733 | (*current_target.to_insert_breakpoint) (addr, save) |
c906108c SS |
734 | |
735 | /* Remove a breakpoint at address ADDR in the target machine. | |
736 | SAVE is a pointer to the same save area | |
737 | that was previously passed to target_insert_breakpoint. | |
738 | Result is 0 for success, or an errno value. */ | |
739 | ||
740 | #define target_remove_breakpoint(addr, save) \ | |
0d06e24b | 741 | (*current_target.to_remove_breakpoint) (addr, save) |
c906108c SS |
742 | |
743 | /* Initialize the terminal settings we record for the inferior, | |
744 | before we actually run the inferior. */ | |
745 | ||
746 | #define target_terminal_init() \ | |
0d06e24b | 747 | (*current_target.to_terminal_init) () |
c906108c SS |
748 | |
749 | /* Put the inferior's terminal settings into effect. | |
750 | This is preparation for starting or resuming the inferior. */ | |
751 | ||
752 | #define target_terminal_inferior() \ | |
0d06e24b | 753 | (*current_target.to_terminal_inferior) () |
c906108c SS |
754 | |
755 | /* Put some of our terminal settings into effect, | |
756 | enough to get proper results from our output, | |
757 | but do not change into or out of RAW mode | |
758 | so that no input is discarded. | |
759 | ||
760 | After doing this, either terminal_ours or terminal_inferior | |
761 | should be called to get back to a normal state of affairs. */ | |
762 | ||
763 | #define target_terminal_ours_for_output() \ | |
0d06e24b | 764 | (*current_target.to_terminal_ours_for_output) () |
c906108c SS |
765 | |
766 | /* Put our terminal settings into effect. | |
767 | First record the inferior's terminal settings | |
768 | so they can be restored properly later. */ | |
769 | ||
770 | #define target_terminal_ours() \ | |
0d06e24b | 771 | (*current_target.to_terminal_ours) () |
c906108c SS |
772 | |
773 | /* Print useful information about our terminal status, if such a thing | |
774 | exists. */ | |
775 | ||
776 | #define target_terminal_info(arg, from_tty) \ | |
0d06e24b | 777 | (*current_target.to_terminal_info) (arg, from_tty) |
c906108c SS |
778 | |
779 | /* Kill the inferior process. Make it go away. */ | |
780 | ||
781 | #define target_kill() \ | |
0d06e24b | 782 | (*current_target.to_kill) () |
c906108c | 783 | |
0d06e24b JM |
784 | /* Load an executable file into the target process. This is expected |
785 | to not only bring new code into the target process, but also to | |
786 | update GDB's symbol tables to match. */ | |
c906108c | 787 | |
11cf8741 | 788 | extern void target_load (char *arg, int from_tty); |
c906108c SS |
789 | |
790 | /* Look up a symbol in the target's symbol table. NAME is the symbol | |
0d06e24b JM |
791 | name. ADDRP is a CORE_ADDR * pointing to where the value of the |
792 | symbol should be returned. The result is 0 if successful, nonzero | |
793 | if the symbol does not exist in the target environment. This | |
794 | function should not call error() if communication with the target | |
795 | is interrupted, since it is called from symbol reading, but should | |
796 | return nonzero, possibly doing a complain(). */ | |
c906108c | 797 | |
0d06e24b JM |
798 | #define target_lookup_symbol(name, addrp) \ |
799 | (*current_target.to_lookup_symbol) (name, addrp) | |
c906108c SS |
800 | |
801 | /* Start an inferior process and set inferior_pid to its pid. | |
802 | EXEC_FILE is the file to run. | |
803 | ALLARGS is a string containing the arguments to the program. | |
804 | ENV is the environment vector to pass. Errors reported with error(). | |
805 | On VxWorks and various standalone systems, we ignore exec_file. */ | |
c5aa993b | 806 | |
c906108c | 807 | #define target_create_inferior(exec_file, args, env) \ |
0d06e24b | 808 | (*current_target.to_create_inferior) (exec_file, args, env) |
c906108c SS |
809 | |
810 | ||
811 | /* Some targets (such as ttrace-based HPUX) don't allow us to request | |
812 | notification of inferior events such as fork and vork immediately | |
813 | after the inferior is created. (This because of how gdb gets an | |
814 | inferior created via invoking a shell to do it. In such a scenario, | |
815 | if the shell init file has commands in it, the shell will fork and | |
816 | exec for each of those commands, and we will see each such fork | |
817 | event. Very bad.) | |
c5aa993b | 818 | |
0d06e24b JM |
819 | Such targets will supply an appropriate definition for this function. */ |
820 | ||
c906108c | 821 | #define target_post_startup_inferior(pid) \ |
0d06e24b | 822 | (*current_target.to_post_startup_inferior) (pid) |
c906108c SS |
823 | |
824 | /* On some targets, the sequence of starting up an inferior requires | |
0d06e24b JM |
825 | some synchronization between gdb and the new inferior process, PID. */ |
826 | ||
c906108c | 827 | #define target_acknowledge_created_inferior(pid) \ |
0d06e24b | 828 | (*current_target.to_acknowledge_created_inferior) (pid) |
c906108c SS |
829 | |
830 | /* An inferior process has been created via a fork() or similar | |
831 | system call. This function will clone the debugger, then ensure | |
832 | that CHILD_PID is attached to by that debugger. | |
833 | ||
834 | FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*, | |
835 | and FALSE otherwise. (The original and clone debuggers can use this | |
836 | to determine which they are, if need be.) | |
837 | ||
838 | (This is not a terribly useful feature without a GUI to prevent | |
0d06e24b JM |
839 | the two debuggers from competing for shell input.) */ |
840 | ||
c906108c | 841 | #define target_clone_and_follow_inferior(child_pid,followed_child) \ |
0d06e24b | 842 | (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child) |
c906108c SS |
843 | |
844 | /* This operation is intended to be used as the last in a sequence of | |
845 | steps taken when following both parent and child of a fork. This | |
846 | is used by a clone of the debugger, which will follow the child. | |
847 | ||
848 | The original debugger has detached from this process, and the | |
849 | clone has attached to it. | |
850 | ||
851 | On some targets, this requires a bit of cleanup to make it work | |
0d06e24b JM |
852 | correctly. */ |
853 | ||
c906108c | 854 | #define target_post_follow_inferior_by_clone() \ |
0d06e24b JM |
855 | (*current_target.to_post_follow_inferior_by_clone) () |
856 | ||
857 | /* On some targets, we can catch an inferior fork or vfork event when | |
858 | it occurs. These functions insert/remove an already-created | |
859 | catchpoint for such events. */ | |
c906108c | 860 | |
c906108c | 861 | #define target_insert_fork_catchpoint(pid) \ |
0d06e24b | 862 | (*current_target.to_insert_fork_catchpoint) (pid) |
c906108c SS |
863 | |
864 | #define target_remove_fork_catchpoint(pid) \ | |
0d06e24b | 865 | (*current_target.to_remove_fork_catchpoint) (pid) |
c906108c SS |
866 | |
867 | #define target_insert_vfork_catchpoint(pid) \ | |
0d06e24b | 868 | (*current_target.to_insert_vfork_catchpoint) (pid) |
c906108c SS |
869 | |
870 | #define target_remove_vfork_catchpoint(pid) \ | |
0d06e24b | 871 | (*current_target.to_remove_vfork_catchpoint) (pid) |
c906108c SS |
872 | |
873 | /* Returns TRUE if PID has invoked the fork() system call. And, | |
874 | also sets CHILD_PID to the process id of the other ("child") | |
0d06e24b JM |
875 | inferior process that was created by that call. */ |
876 | ||
c906108c | 877 | #define target_has_forked(pid,child_pid) \ |
0d06e24b JM |
878 | (*current_target.to_has_forked) (pid,child_pid) |
879 | ||
880 | /* Returns TRUE if PID has invoked the vfork() system call. And, | |
881 | also sets CHILD_PID to the process id of the other ("child") | |
882 | inferior process that was created by that call. */ | |
c906108c | 883 | |
c906108c | 884 | #define target_has_vforked(pid,child_pid) \ |
0d06e24b | 885 | (*current_target.to_has_vforked) (pid,child_pid) |
c906108c SS |
886 | |
887 | /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do | |
888 | anything to a vforked child before it subsequently calls exec(). | |
889 | On such platforms, we say that the debugger cannot "follow" the | |
890 | child until it has vforked. | |
891 | ||
892 | This function should be defined to return 1 by those targets | |
893 | which can allow the debugger to immediately follow a vforked | |
0d06e24b JM |
894 | child, and 0 if they cannot. */ |
895 | ||
c906108c | 896 | #define target_can_follow_vfork_prior_to_exec() \ |
0d06e24b | 897 | (*current_target.to_can_follow_vfork_prior_to_exec) () |
c906108c SS |
898 | |
899 | /* An inferior process has been created via a vfork() system call. | |
900 | The debugger has followed the parent, the child, or both. The | |
901 | process of setting up for that follow may have required some | |
902 | target-specific trickery to track the sequence of reported events. | |
903 | If so, this function should be defined by those targets that | |
904 | require the debugger to perform cleanup or initialization after | |
0d06e24b JM |
905 | the vfork follow. */ |
906 | ||
c906108c | 907 | #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \ |
0d06e24b | 908 | (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child) |
c906108c SS |
909 | |
910 | /* On some targets, we can catch an inferior exec event when it | |
0d06e24b JM |
911 | occurs. These functions insert/remove an already-created |
912 | catchpoint for such events. */ | |
913 | ||
c906108c | 914 | #define target_insert_exec_catchpoint(pid) \ |
0d06e24b | 915 | (*current_target.to_insert_exec_catchpoint) (pid) |
c5aa993b | 916 | |
c906108c | 917 | #define target_remove_exec_catchpoint(pid) \ |
0d06e24b | 918 | (*current_target.to_remove_exec_catchpoint) (pid) |
c906108c SS |
919 | |
920 | /* Returns TRUE if PID has invoked a flavor of the exec() system call. | |
0d06e24b JM |
921 | And, also sets EXECD_PATHNAME to the pathname of the executable |
922 | file that was passed to exec(), and is now being executed. */ | |
923 | ||
c906108c | 924 | #define target_has_execd(pid,execd_pathname) \ |
0d06e24b | 925 | (*current_target.to_has_execd) (pid,execd_pathname) |
c906108c SS |
926 | |
927 | /* Returns the number of exec events that are reported when a process | |
928 | invokes a flavor of the exec() system call on this target, if exec | |
0d06e24b JM |
929 | events are being reported. */ |
930 | ||
c906108c | 931 | #define target_reported_exec_events_per_exec_call() \ |
0d06e24b | 932 | (*current_target.to_reported_exec_events_per_exec_call) () |
c906108c SS |
933 | |
934 | /* Returns TRUE if PID has reported a syscall event. And, also sets | |
935 | KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to | |
0d06e24b JM |
936 | the unique integer ID of the syscall. */ |
937 | ||
c906108c | 938 | #define target_has_syscall_event(pid,kind,syscall_id) \ |
0d06e24b | 939 | (*current_target.to_has_syscall_event) (pid,kind,syscall_id) |
c906108c SS |
940 | |
941 | /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the | |
0d06e24b JM |
942 | exit code of PID, if any. */ |
943 | ||
c906108c | 944 | #define target_has_exited(pid,wait_status,exit_status) \ |
0d06e24b | 945 | (*current_target.to_has_exited) (pid,wait_status,exit_status) |
c906108c SS |
946 | |
947 | /* The debugger has completed a blocking wait() call. There is now | |
0d06e24b | 948 | some process event that must be processed. This function should |
c906108c | 949 | be defined by those targets that require the debugger to perform |
0d06e24b | 950 | cleanup or internal state changes in response to the process event. */ |
c906108c SS |
951 | |
952 | /* The inferior process has died. Do what is right. */ | |
953 | ||
954 | #define target_mourn_inferior() \ | |
0d06e24b | 955 | (*current_target.to_mourn_inferior) () |
c906108c SS |
956 | |
957 | /* Does target have enough data to do a run or attach command? */ | |
958 | ||
959 | #define target_can_run(t) \ | |
0d06e24b | 960 | ((t)->to_can_run) () |
c906108c SS |
961 | |
962 | /* post process changes to signal handling in the inferior. */ | |
963 | ||
964 | #define target_notice_signals(pid) \ | |
0d06e24b | 965 | (*current_target.to_notice_signals) (pid) |
c906108c SS |
966 | |
967 | /* Check to see if a thread is still alive. */ | |
968 | ||
969 | #define target_thread_alive(pid) \ | |
0d06e24b | 970 | (*current_target.to_thread_alive) (pid) |
c906108c | 971 | |
b83266a0 SS |
972 | /* Query for new threads and add them to the thread list. */ |
973 | ||
974 | #define target_find_new_threads() \ | |
0d06e24b | 975 | (*current_target.to_find_new_threads) (); \ |
b83266a0 | 976 | |
0d06e24b JM |
977 | /* Make target stop in a continuable fashion. (For instance, under |
978 | Unix, this should act like SIGSTOP). This function is normally | |
979 | used by GUIs to implement a stop button. */ | |
c906108c SS |
980 | |
981 | #define target_stop current_target.to_stop | |
982 | ||
983 | /* Queries the target side for some information. The first argument is a | |
984 | letter specifying the type of the query, which is used to determine who | |
985 | should process it. The second argument is a string that specifies which | |
986 | information is desired and the third is a buffer that carries back the | |
987 | response from the target side. The fourth parameter is the size of the | |
0d06e24b | 988 | output buffer supplied. */ |
c5aa993b | 989 | |
c906108c | 990 | #define target_query(query_type, query, resp_buffer, bufffer_size) \ |
0d06e24b | 991 | (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size) |
c906108c | 992 | |
96baa820 JM |
993 | /* Send the specified COMMAND to the target's monitor |
994 | (shell,interpreter) for execution. The result of the query is | |
0d06e24b | 995 | placed in OUTBUF. */ |
96baa820 JM |
996 | |
997 | #define target_rcmd(command, outbuf) \ | |
998 | (*current_target.to_rcmd) (command, outbuf) | |
999 | ||
1000 | ||
c906108c SS |
1001 | /* Get the symbol information for a breakpointable routine called when |
1002 | an exception event occurs. | |
1003 | Intended mainly for C++, and for those | |
1004 | platforms/implementations where such a callback mechanism is available, | |
1005 | e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support | |
0d06e24b | 1006 | different mechanisms for debugging exceptions. */ |
c906108c SS |
1007 | |
1008 | #define target_enable_exception_callback(kind, enable) \ | |
0d06e24b | 1009 | (*current_target.to_enable_exception_callback) (kind, enable) |
c906108c | 1010 | |
0d06e24b | 1011 | /* Get the current exception event kind -- throw or catch, etc. */ |
c5aa993b | 1012 | |
c906108c | 1013 | #define target_get_current_exception_event() \ |
0d06e24b | 1014 | (*current_target.to_get_current_exception_event) () |
c906108c SS |
1015 | |
1016 | /* Pointer to next target in the chain, e.g. a core file and an exec file. */ | |
1017 | ||
1018 | #define target_next \ | |
0d06e24b | 1019 | (current_target.to_next) |
c906108c SS |
1020 | |
1021 | /* Does the target include all of memory, or only part of it? This | |
1022 | determines whether we look up the target chain for other parts of | |
1023 | memory if this target can't satisfy a request. */ | |
1024 | ||
1025 | #define target_has_all_memory \ | |
0d06e24b | 1026 | (current_target.to_has_all_memory) |
c906108c SS |
1027 | |
1028 | /* Does the target include memory? (Dummy targets don't.) */ | |
1029 | ||
1030 | #define target_has_memory \ | |
0d06e24b | 1031 | (current_target.to_has_memory) |
c906108c SS |
1032 | |
1033 | /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until | |
1034 | we start a process.) */ | |
c5aa993b | 1035 | |
c906108c | 1036 | #define target_has_stack \ |
0d06e24b | 1037 | (current_target.to_has_stack) |
c906108c SS |
1038 | |
1039 | /* Does the target have registers? (Exec files don't.) */ | |
1040 | ||
1041 | #define target_has_registers \ | |
0d06e24b | 1042 | (current_target.to_has_registers) |
c906108c SS |
1043 | |
1044 | /* Does the target have execution? Can we make it jump (through | |
1045 | hoops), or pop its stack a few times? FIXME: If this is to work that | |
1046 | way, it needs to check whether an inferior actually exists. | |
1047 | remote-udi.c and probably other targets can be the current target | |
1048 | when the inferior doesn't actually exist at the moment. Right now | |
1049 | this just tells us whether this target is *capable* of execution. */ | |
1050 | ||
1051 | #define target_has_execution \ | |
0d06e24b | 1052 | (current_target.to_has_execution) |
c906108c SS |
1053 | |
1054 | /* Can the target support the debugger control of thread execution? | |
1055 | a) Can it lock the thread scheduler? | |
1056 | b) Can it switch the currently running thread? */ | |
1057 | ||
1058 | #define target_can_lock_scheduler \ | |
0d06e24b | 1059 | (current_target.to_has_thread_control & tc_schedlock) |
c906108c SS |
1060 | |
1061 | #define target_can_switch_threads \ | |
0d06e24b | 1062 | (current_target.to_has_thread_control & tc_switch) |
c906108c | 1063 | |
6426a772 JM |
1064 | /* Can the target support asynchronous execution? */ |
1065 | #define target_can_async_p() (current_target.to_can_async_p ()) | |
1066 | ||
1067 | /* Is the target in asynchronous execution mode? */ | |
1068 | #define target_is_async_p() (current_target.to_is_async_p()) | |
1069 | ||
1070 | /* Put the target in async mode with the specified callback function. */ | |
0d06e24b JM |
1071 | #define target_async(CALLBACK,CONTEXT) \ |
1072 | (current_target.to_async((CALLBACK), (CONTEXT))) | |
43ff13b4 | 1073 | |
ed9a39eb JM |
1074 | /* This is to be used ONLY within run_stack_dummy(). It |
1075 | provides a workaround, to have inferior function calls done in | |
1076 | sychronous mode, even though the target is asynchronous. After | |
1077 | target_async_mask(0) is called, calls to target_can_async_p() will | |
1078 | return FALSE , so that target_resume() will not try to start the | |
1079 | target asynchronously. After the inferior stops, we IMMEDIATELY | |
1080 | restore the previous nature of the target, by calling | |
1081 | target_async_mask(1). After that, target_can_async_p() will return | |
1082 | TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED. | |
1083 | ||
1084 | FIXME ezannoni 1999-12-13: we won't need this once we move | |
1085 | the turning async on and off to the single execution commands, | |
0d06e24b | 1086 | from where it is done currently, in remote_resume(). */ |
ed9a39eb JM |
1087 | |
1088 | #define target_async_mask_value \ | |
0d06e24b | 1089 | (current_target.to_async_mask_value) |
ed9a39eb JM |
1090 | |
1091 | extern int target_async_mask (int mask); | |
1092 | ||
c906108c SS |
1093 | extern void target_link PARAMS ((char *, CORE_ADDR *)); |
1094 | ||
1095 | /* Converts a process id to a string. Usually, the string just contains | |
1096 | `process xyz', but on some systems it may contain | |
1097 | `process xyz thread abc'. */ | |
1098 | ||
ed9a39eb JM |
1099 | #undef target_pid_to_str |
1100 | #define target_pid_to_str(PID) current_target.to_pid_to_str (PID) | |
c906108c SS |
1101 | |
1102 | #ifndef target_tid_to_str | |
1103 | #define target_tid_to_str(PID) \ | |
0d06e24b | 1104 | target_pid_to_str (PID) |
c906108c SS |
1105 | extern char *normal_pid_to_str PARAMS ((int pid)); |
1106 | #endif | |
c5aa993b | 1107 | |
0d06e24b JM |
1108 | /* Return a short string describing extra information about PID, |
1109 | e.g. "sleeping", "runnable", "running on LWP 3". Null return value | |
1110 | is okay. */ | |
1111 | ||
1112 | #define target_extra_thread_info(TP) \ | |
1113 | (current_target.to_extra_thread_info (TP)) | |
ed9a39eb | 1114 | |
11cf8741 JM |
1115 | /* |
1116 | * New Objfile Event Hook: | |
1117 | * | |
1118 | * Sometimes a GDB component wants to get notified whenever a new | |
1119 | * objfile is loaded. Mainly this is used by thread-debugging | |
1120 | * implementations that need to know when symbols for the target | |
1121 | * thread implemenation are available. | |
1122 | * | |
1123 | * The old way of doing this is to define a macro 'target_new_objfile' | |
1124 | * that points to the function that you want to be called on every | |
1125 | * objfile/shlib load. | |
1126 | * | |
1127 | * The new way is to grab the function pointer, 'target_new_objfile_hook', | |
1128 | * and point it to the function that you want to be called on every | |
1129 | * objfile/shlib load. | |
1130 | * | |
1131 | * If multiple clients are willing to be cooperative, they can each | |
1132 | * save a pointer to the previous value of target_new_objfile_hook | |
1133 | * before modifying it, and arrange for their function to call the | |
1134 | * previous function in the chain. In that way, multiple clients | |
1135 | * can receive this notification (something like with signal handlers). | |
1136 | */ | |
c906108c | 1137 | |
11cf8741 | 1138 | extern void (*target_new_objfile_hook) PARAMS ((struct objfile *)); |
c906108c SS |
1139 | |
1140 | #ifndef target_pid_or_tid_to_str | |
1141 | #define target_pid_or_tid_to_str(ID) \ | |
0d06e24b | 1142 | target_pid_to_str (ID) |
c906108c SS |
1143 | #endif |
1144 | ||
1145 | /* Attempts to find the pathname of the executable file | |
1146 | that was run to create a specified process. | |
1147 | ||
1148 | The process PID must be stopped when this operation is used. | |
c5aa993b | 1149 | |
c906108c SS |
1150 | If the executable file cannot be determined, NULL is returned. |
1151 | ||
1152 | Else, a pointer to a character string containing the pathname | |
1153 | is returned. This string should be copied into a buffer by | |
1154 | the client if the string will not be immediately used, or if | |
0d06e24b | 1155 | it must persist. */ |
c906108c SS |
1156 | |
1157 | #define target_pid_to_exec_file(pid) \ | |
0d06e24b | 1158 | (current_target.to_pid_to_exec_file) (pid) |
c906108c | 1159 | |
0d06e24b | 1160 | /* Hook to call target-dependant code after reading in a new symbol table. */ |
c906108c SS |
1161 | |
1162 | #ifndef TARGET_SYMFILE_POSTREAD | |
1163 | #define TARGET_SYMFILE_POSTREAD(OBJFILE) | |
1164 | #endif | |
1165 | ||
1166 | /* Hook to call target dependant code just after inferior target process has | |
1167 | started. */ | |
1168 | ||
1169 | #ifndef TARGET_CREATE_INFERIOR_HOOK | |
1170 | #define TARGET_CREATE_INFERIOR_HOOK(PID) | |
1171 | #endif | |
1172 | ||
1173 | /* Hardware watchpoint interfaces. */ | |
1174 | ||
1175 | /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or | |
1176 | write). */ | |
1177 | ||
1178 | #ifndef STOPPED_BY_WATCHPOINT | |
1179 | #define STOPPED_BY_WATCHPOINT(w) 0 | |
1180 | #endif | |
1181 | ||
1182 | /* HP-UX supplies these operations, which respectively disable and enable | |
1183 | the memory page-protections that are used to implement hardware watchpoints | |
0d06e24b JM |
1184 | on that platform. See wait_for_inferior's use of these. */ |
1185 | ||
c906108c SS |
1186 | #if !defined(TARGET_DISABLE_HW_WATCHPOINTS) |
1187 | #define TARGET_DISABLE_HW_WATCHPOINTS(pid) | |
1188 | #endif | |
1189 | ||
1190 | #if !defined(TARGET_ENABLE_HW_WATCHPOINTS) | |
1191 | #define TARGET_ENABLE_HW_WATCHPOINTS(pid) | |
1192 | #endif | |
1193 | ||
0d06e24b | 1194 | /* Provide defaults for systems that don't support hardware watchpoints. */ |
c906108c SS |
1195 | |
1196 | #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS | |
1197 | ||
1198 | /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is | |
1199 | one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or | |
1200 | bp_hardware_breakpoint. CNT is the number of such watchpoints used so far | |
1201 | (including this one?). OTHERTYPE is who knows what... */ | |
1202 | ||
1203 | #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0 | |
1204 | ||
1205 | #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT) | |
1206 | #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \ | |
0d06e24b | 1207 | (LONGEST)(byte_count) <= REGISTER_SIZE |
c906108c SS |
1208 | #endif |
1209 | ||
1210 | /* However, some addresses may not be profitable to use hardware to watch, | |
1211 | or may be difficult to understand when the addressed object is out of | |
1212 | scope, and hence should be unwatched. On some targets, this may have | |
1213 | severe performance penalties, such that we might as well use regular | |
1214 | watchpoints, and save (possibly precious) hardware watchpoints for other | |
0d06e24b JM |
1215 | locations. */ |
1216 | ||
c906108c SS |
1217 | #if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT) |
1218 | #define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0 | |
1219 | #endif | |
1220 | ||
1221 | ||
1222 | /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0 | |
1223 | for write, 1 for read, and 2 for read/write accesses. Returns 0 for | |
1224 | success, non-zero for failure. */ | |
1225 | ||
1226 | #define target_remove_watchpoint(ADDR,LEN,TYPE) -1 | |
1227 | #define target_insert_watchpoint(ADDR,LEN,TYPE) -1 | |
1228 | ||
1229 | #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */ | |
1230 | ||
1231 | #ifndef target_insert_hw_breakpoint | |
1232 | #define target_remove_hw_breakpoint(ADDR,SHADOW) -1 | |
1233 | #define target_insert_hw_breakpoint(ADDR,SHADOW) -1 | |
1234 | #endif | |
1235 | ||
1236 | #ifndef target_stopped_data_address | |
1237 | #define target_stopped_data_address() 0 | |
1238 | #endif | |
1239 | ||
1240 | /* If defined, then we need to decr pc by this much after a hardware break- | |
1241 | point. Presumably this overrides DECR_PC_AFTER_BREAK... */ | |
1242 | ||
1243 | #ifndef DECR_PC_AFTER_HW_BREAK | |
1244 | #define DECR_PC_AFTER_HW_BREAK 0 | |
1245 | #endif | |
1246 | ||
1247 | /* Sometimes gdb may pick up what appears to be a valid target address | |
1248 | from a minimal symbol, but the value really means, essentially, | |
1249 | "This is an index into a table which is populated when the inferior | |
0d06e24b JM |
1250 | is run. Therefore, do not attempt to use this as a PC." */ |
1251 | ||
c906108c SS |
1252 | #if !defined(PC_REQUIRES_RUN_BEFORE_USE) |
1253 | #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0) | |
1254 | #endif | |
1255 | ||
1256 | /* This will only be defined by a target that supports catching vfork events, | |
1257 | such as HP-UX. | |
1258 | ||
1259 | On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked | |
1260 | child process after it has exec'd, causes the parent process to resume as | |
1261 | well. To prevent the parent from running spontaneously, such targets should | |
0d06e24b | 1262 | define this to a function that prevents that from happening. */ |
c906108c SS |
1263 | #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED) |
1264 | #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0) | |
1265 | #endif | |
1266 | ||
1267 | /* This will only be defined by a target that supports catching vfork events, | |
1268 | such as HP-UX. | |
1269 | ||
1270 | On some targets (such as HP-UX 10.20 and earlier), a newly vforked child | |
1271 | process must be resumed when it delivers its exec event, before the parent | |
0d06e24b JM |
1272 | vfork event will be delivered to us. */ |
1273 | ||
c906108c SS |
1274 | #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK) |
1275 | #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0) | |
1276 | #endif | |
1277 | ||
1278 | /* Routines for maintenance of the target structures... | |
1279 | ||
1280 | add_target: Add a target to the list of all possible targets. | |
1281 | ||
1282 | push_target: Make this target the top of the stack of currently used | |
c5aa993b JM |
1283 | targets, within its particular stratum of the stack. Result |
1284 | is 0 if now atop the stack, nonzero if not on top (maybe | |
1285 | should warn user). | |
c906108c SS |
1286 | |
1287 | unpush_target: Remove this from the stack of currently used targets, | |
c5aa993b JM |
1288 | no matter where it is on the list. Returns 0 if no |
1289 | change, 1 if removed from stack. | |
c906108c | 1290 | |
c5aa993b | 1291 | pop_target: Remove the top thing on the stack of current targets. */ |
c906108c SS |
1292 | |
1293 | extern void | |
1294 | add_target PARAMS ((struct target_ops *)); | |
1295 | ||
1296 | extern int | |
1297 | push_target PARAMS ((struct target_ops *)); | |
1298 | ||
1299 | extern int | |
1300 | unpush_target PARAMS ((struct target_ops *)); | |
1301 | ||
1302 | extern void | |
1303 | target_preopen PARAMS ((int)); | |
1304 | ||
1305 | extern void | |
1306 | pop_target PARAMS ((void)); | |
1307 | ||
1308 | /* Struct section_table maps address ranges to file sections. It is | |
1309 | mostly used with BFD files, but can be used without (e.g. for handling | |
1310 | raw disks, or files not in formats handled by BFD). */ | |
1311 | ||
c5aa993b JM |
1312 | struct section_table |
1313 | { | |
1314 | CORE_ADDR addr; /* Lowest address in section */ | |
1315 | CORE_ADDR endaddr; /* 1+highest address in section */ | |
c906108c | 1316 | |
c5aa993b | 1317 | sec_ptr the_bfd_section; |
c906108c | 1318 | |
c5aa993b JM |
1319 | bfd *bfd; /* BFD file pointer */ |
1320 | }; | |
c906108c SS |
1321 | |
1322 | /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR. | |
1323 | Returns 0 if OK, 1 on error. */ | |
1324 | ||
1325 | extern int | |
1326 | build_section_table PARAMS ((bfd *, struct section_table **, | |
1327 | struct section_table **)); | |
1328 | ||
1329 | /* From mem-break.c */ | |
1330 | ||
1331 | extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *)); | |
1332 | ||
1333 | extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *)); | |
1334 | ||
917317f4 JM |
1335 | extern int default_memory_remove_breakpoint PARAMS ((CORE_ADDR, char *)); |
1336 | ||
1337 | extern int default_memory_insert_breakpoint PARAMS ((CORE_ADDR, char *)); | |
1338 | ||
c906108c | 1339 | extern breakpoint_from_pc_fn memory_breakpoint_from_pc; |
c906108c SS |
1340 | |
1341 | ||
1342 | /* From target.c */ | |
1343 | ||
1344 | extern void | |
1345 | initialize_targets PARAMS ((void)); | |
1346 | ||
1347 | extern void | |
1348 | noprocess PARAMS ((void)); | |
1349 | ||
1350 | extern void | |
1351 | find_default_attach PARAMS ((char *, int)); | |
1352 | ||
ed9a39eb | 1353 | extern void |
c906108c SS |
1354 | find_default_require_attach PARAMS ((char *, int)); |
1355 | ||
ed9a39eb | 1356 | extern void |
c906108c SS |
1357 | find_default_require_detach PARAMS ((int, char *, int)); |
1358 | ||
1359 | extern void | |
1360 | find_default_create_inferior PARAMS ((char *, char *, char **)); | |
1361 | ||
ed9a39eb | 1362 | extern void |
c906108c SS |
1363 | find_default_clone_and_follow_inferior PARAMS ((int, int *)); |
1364 | ||
ed9a39eb JM |
1365 | extern struct target_ops * |
1366 | find_run_target PARAMS ((void)); | |
7a292a7a | 1367 | |
c906108c | 1368 | extern struct target_ops * |
ed9a39eb | 1369 | find_core_target PARAMS ((void)); |
6426a772 | 1370 | |
ed9a39eb JM |
1371 | extern struct target_ops * |
1372 | find_target_beneath PARAMS ((struct target_ops *)); | |
1373 | ||
1374 | extern int | |
6426a772 | 1375 | target_resize_to_sections PARAMS ((struct target_ops *target, int num_added)); |
07cd4b97 JB |
1376 | |
1377 | extern void remove_target_sections (bfd *abfd); | |
1378 | ||
c906108c SS |
1379 | \f |
1380 | /* Stuff that should be shared among the various remote targets. */ | |
1381 | ||
1382 | /* Debugging level. 0 is off, and non-zero values mean to print some debug | |
1383 | information (higher values, more information). */ | |
1384 | extern int remote_debug; | |
1385 | ||
1386 | /* Speed in bits per second, or -1 which means don't mess with the speed. */ | |
1387 | extern int baud_rate; | |
1388 | /* Timeout limit for response from target. */ | |
1389 | extern int remote_timeout; | |
1390 | ||
1391 | extern asection *target_memory_bfd_section; | |
1392 | \f | |
1393 | /* Functions for helping to write a native target. */ | |
1394 | ||
1395 | /* This is for native targets which use a unix/POSIX-style waitstatus. */ | |
1396 | extern void store_waitstatus PARAMS ((struct target_waitstatus *, int)); | |
1397 | ||
c2d11a7d | 1398 | /* Predicate to target_signal_to_host(). Return non-zero if the enum |
0d06e24b | 1399 | targ_signal SIGNO has an equivalent ``host'' representation. */ |
c2d11a7d JM |
1400 | /* FIXME: cagney/1999-11-22: The name below was chosen in preference |
1401 | to the shorter target_signal_p() because it is far less ambigious. | |
1402 | In this context ``target_signal'' refers to GDB's internal | |
1403 | representation of the target's set of signals while ``host signal'' | |
0d06e24b JM |
1404 | refers to the target operating system's signal. Confused? */ |
1405 | ||
c2d11a7d JM |
1406 | extern int target_signal_to_host_p (enum target_signal signo); |
1407 | ||
1408 | /* Convert between host signal numbers and enum target_signal's. | |
1409 | target_signal_to_host() returns 0 and prints a warning() on GDB's | |
0d06e24b | 1410 | console if SIGNO has no equivalent host representation. */ |
c2d11a7d JM |
1411 | /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is |
1412 | refering to the target operating system's signal numbering. | |
1413 | Similarly, ``enum target_signal'' is named incorrectly, ``enum | |
1414 | gdb_signal'' would probably be better as it is refering to GDB's | |
0d06e24b JM |
1415 | internal representation of a target operating system's signal. */ |
1416 | ||
c906108c SS |
1417 | extern enum target_signal target_signal_from_host PARAMS ((int)); |
1418 | extern int target_signal_to_host PARAMS ((enum target_signal)); | |
1419 | ||
1420 | /* Convert from a number used in a GDB command to an enum target_signal. */ | |
1421 | extern enum target_signal target_signal_from_command PARAMS ((int)); | |
1422 | ||
1423 | /* Any target can call this to switch to remote protocol (in remote.c). */ | |
1424 | extern void push_remote_target PARAMS ((char *name, int from_tty)); | |
1425 | \f | |
1426 | /* Imported from machine dependent code */ | |
1427 | ||
1428 | #ifndef SOFTWARE_SINGLE_STEP_P | |
1429 | #define SOFTWARE_SINGLE_STEP_P 0 | |
0d06e24b JM |
1430 | #define SOFTWARE_SINGLE_STEP(sig,bp_p) \ |
1431 | (internal_error ("SOFTWARE_SINGLE_STEP"), 0) | |
c906108c SS |
1432 | #endif /* SOFTWARE_SINGLE_STEP_P */ |
1433 | ||
1434 | /* Blank target vector entries are initialized to target_ignore. */ | |
1435 | void target_ignore PARAMS ((void)); | |
1436 | ||
1437 | /* Macro for getting target's idea of a frame pointer. | |
1438 | FIXME: GDB's whole scheme for dealing with "frames" and | |
1439 | "frame pointers" needs a serious shakedown. */ | |
1440 | #ifndef TARGET_VIRTUAL_FRAME_POINTER | |
1441 | #define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \ | |
1442 | do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0) | |
1443 | #endif /* TARGET_VIRTUAL_FRAME_POINTER */ | |
1444 | ||
c5aa993b | 1445 | #endif /* !defined (TARGET_H) */ |