]>
Commit | Line | Data |
---|---|---|
ef6f3a8b | 1 | /* IBM RS/6000 native-dependent code for GDB, the GNU debugger. |
7531f36e | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1994, 1995, 1996 |
df1e1074 | 3 | Free Software Foundation, Inc. |
ef6f3a8b RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
6c9638b4 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
ef6f3a8b RP |
20 | |
21 | #include "defs.h" | |
22 | #include "inferior.h" | |
23 | #include "target.h" | |
d87d7b10 SG |
24 | #include "gdbcore.h" |
25 | #include "xcoffsolib.h" | |
26 | #include "symfile.h" | |
27 | #include "objfiles.h" | |
886955e7 | 28 | #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */ |
d87d7b10 | 29 | #include "bfd.h" |
e2adc41a | 30 | #include "gdb-stabs.h" |
ef6f3a8b RP |
31 | |
32 | #include <sys/ptrace.h> | |
33 | #include <sys/reg.h> | |
34 | ||
35 | #include <sys/param.h> | |
36 | #include <sys/dir.h> | |
37 | #include <sys/user.h> | |
38 | #include <signal.h> | |
39 | #include <sys/ioctl.h> | |
40 | #include <fcntl.h> | |
41 | ||
42 | #include <a.out.h> | |
43 | #include <sys/file.h> | |
2b576293 | 44 | #include "gdb_stat.h" |
ef6f3a8b | 45 | #include <sys/core.h> |
d87d7b10 | 46 | #include <sys/ldr.h> |
ef6f3a8b RP |
47 | |
48 | extern int errno; | |
0c4b30ea | 49 | |
d87d7b10 SG |
50 | extern struct vmap * map_vmap PARAMS ((bfd *bf, bfd *arch)); |
51 | ||
52 | extern struct target_ops exec_ops; | |
ef6f3a8b RP |
53 | |
54 | static void | |
55 | exec_one_dummy_insn PARAMS ((void)); | |
56 | ||
d87d7b10 SG |
57 | extern void |
58 | add_text_to_loadinfo PARAMS ((CORE_ADDR textaddr, CORE_ADDR dataaddr)); | |
59 | ||
0c4b30ea SS |
60 | extern void |
61 | fixup_breakpoints PARAMS ((CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta)); | |
62 | ||
ef6f3a8b RP |
63 | /* Conversion from gdb-to-system special purpose register numbers.. */ |
64 | ||
65 | static int special_regs[] = { | |
66 | IAR, /* PC_REGNUM */ | |
67 | MSR, /* PS_REGNUM */ | |
68 | CR, /* CR_REGNUM */ | |
69 | LR, /* LR_REGNUM */ | |
70 | CTR, /* CTR_REGNUM */ | |
71 | XER, /* XER_REGNUM */ | |
72 | MQ /* MQ_REGNUM */ | |
73 | }; | |
74 | ||
75 | void | |
76 | fetch_inferior_registers (regno) | |
77 | int regno; | |
78 | { | |
79 | int ii; | |
80 | extern char registers[]; | |
81 | ||
82 | if (regno < 0) { /* for all registers */ | |
83 | ||
84 | /* read 32 general purpose registers. */ | |
85 | ||
86 | for (ii=0; ii < 32; ++ii) | |
87 | *(int*)®isters[REGISTER_BYTE (ii)] = | |
88 | ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii, 0, 0); | |
89 | ||
90 | /* read general purpose floating point registers. */ | |
91 | ||
92 | for (ii=0; ii < 32; ++ii) | |
93 | ptrace (PT_READ_FPR, inferior_pid, | |
0c4b30ea | 94 | (PTRACE_ARG3_TYPE) ®isters [REGISTER_BYTE (FP0_REGNUM+ii)], |
ef6f3a8b RP |
95 | FPR0+ii, 0); |
96 | ||
97 | /* read special registers. */ | |
98 | for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii) | |
99 | *(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)] = | |
100 | ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) special_regs[ii], | |
101 | 0, 0); | |
102 | ||
103 | registers_fetched (); | |
104 | return; | |
105 | } | |
106 | ||
107 | /* else an individual register is addressed. */ | |
108 | ||
109 | else if (regno < FP0_REGNUM) { /* a GPR */ | |
110 | *(int*)®isters[REGISTER_BYTE (regno)] = | |
111 | ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno, 0, 0); | |
112 | } | |
113 | else if (regno <= FPLAST_REGNUM) { /* a FPR */ | |
114 | ptrace (PT_READ_FPR, inferior_pid, | |
0c4b30ea | 115 | (PTRACE_ARG3_TYPE) ®isters [REGISTER_BYTE (regno)], |
ef6f3a8b RP |
116 | (regno-FP0_REGNUM+FPR0), 0); |
117 | } | |
118 | else if (regno <= LAST_SP_REGNUM) { /* a special register */ | |
119 | *(int*)®isters[REGISTER_BYTE (regno)] = | |
120 | ptrace (PT_READ_GPR, inferior_pid, | |
121 | (PTRACE_ARG3_TYPE) special_regs[regno-FIRST_SP_REGNUM], 0, 0); | |
122 | } | |
123 | else | |
199b2450 | 124 | fprintf_unfiltered (gdb_stderr, "gdb error: register no %d not implemented.\n", regno); |
ef6f3a8b RP |
125 | |
126 | register_valid [regno] = 1; | |
127 | } | |
128 | ||
129 | /* Store our register values back into the inferior. | |
130 | If REGNO is -1, do this for all registers. | |
131 | Otherwise, REGNO specifies which register (so we can save time). */ | |
132 | ||
133 | void | |
134 | store_inferior_registers (regno) | |
135 | int regno; | |
136 | { | |
137 | extern char registers[]; | |
138 | ||
139 | errno = 0; | |
140 | ||
0c4b30ea SS |
141 | if (regno == -1) |
142 | { /* for all registers.. */ | |
ef6f3a8b RP |
143 | int ii; |
144 | ||
145 | /* execute one dummy instruction (which is a breakpoint) in inferior | |
146 | process. So give kernel a chance to do internal house keeping. | |
147 | Otherwise the following ptrace(2) calls will mess up user stack | |
148 | since kernel will get confused about the bottom of the stack (%sp) */ | |
149 | ||
150 | exec_one_dummy_insn (); | |
151 | ||
152 | /* write general purpose registers first! */ | |
0c4b30ea SS |
153 | for ( ii=GPR0; ii<=GPR31; ++ii) |
154 | { | |
155 | ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii, | |
156 | *(int*)®isters[REGISTER_BYTE (ii)], 0); | |
157 | if (errno) | |
158 | { | |
159 | perror ("ptrace write_gpr"); | |
160 | errno = 0; | |
161 | } | |
ef6f3a8b | 162 | } |
ef6f3a8b RP |
163 | |
164 | /* write floating point registers now. */ | |
0c4b30ea SS |
165 | for ( ii=0; ii < 32; ++ii) |
166 | { | |
167 | ptrace (PT_WRITE_FPR, inferior_pid, | |
ef6f3a8b | 168 | (PTRACE_ARG3_TYPE) ®isters[REGISTER_BYTE (FP0_REGNUM+ii)], |
0c4b30ea SS |
169 | FPR0+ii, 0); |
170 | if (errno) | |
171 | { | |
172 | perror ("ptrace write_fpr"); | |
173 | errno = 0; | |
174 | } | |
175 | } | |
ef6f3a8b RP |
176 | |
177 | /* write special registers. */ | |
0c4b30ea SS |
178 | for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii) |
179 | { | |
180 | ptrace (PT_WRITE_GPR, inferior_pid, | |
181 | (PTRACE_ARG3_TYPE) special_regs[ii], | |
182 | *(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)], 0); | |
183 | if (errno) | |
184 | { | |
185 | perror ("ptrace write_gpr"); | |
186 | errno = 0; | |
187 | } | |
ef6f3a8b | 188 | } |
0c4b30ea | 189 | } |
ef6f3a8b RP |
190 | |
191 | /* else, a specific register number is given... */ | |
192 | ||
0c4b30ea SS |
193 | else if (regno < FP0_REGNUM) /* a GPR */ |
194 | { | |
195 | ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno, | |
196 | *(int*)®isters[REGISTER_BYTE (regno)], 0); | |
197 | } | |
ef6f3a8b | 198 | |
0c4b30ea SS |
199 | else if (regno <= FPLAST_REGNUM) /* a FPR */ |
200 | { | |
201 | ptrace (PT_WRITE_FPR, inferior_pid, | |
202 | (PTRACE_ARG3_TYPE) ®isters[REGISTER_BYTE (regno)], | |
203 | regno - FP0_REGNUM + FPR0, 0); | |
204 | } | |
ef6f3a8b | 205 | |
0c4b30ea SS |
206 | else if (regno <= LAST_SP_REGNUM) /* a special register */ |
207 | { | |
208 | ptrace (PT_WRITE_GPR, inferior_pid, | |
209 | (PTRACE_ARG3_TYPE) special_regs [regno-FIRST_SP_REGNUM], | |
210 | *(int*)®isters[REGISTER_BYTE (regno)], 0); | |
211 | } | |
ef6f3a8b RP |
212 | |
213 | else | |
199b2450 | 214 | fprintf_unfiltered (gdb_stderr, "Gdb error: register no %d not implemented.\n", regno); |
ef6f3a8b | 215 | |
0c4b30ea SS |
216 | if (errno) |
217 | { | |
218 | perror ("ptrace write"); | |
219 | errno = 0; | |
220 | } | |
ef6f3a8b RP |
221 | } |
222 | ||
223 | /* Execute one dummy breakpoint instruction. This way we give the kernel | |
224 | a chance to do some housekeeping and update inferior's internal data, | |
225 | including u_area. */ | |
0c4b30ea | 226 | |
ef6f3a8b RP |
227 | static void |
228 | exec_one_dummy_insn () | |
229 | { | |
230 | #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200 | |
231 | ||
0c4b30ea | 232 | char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */ |
ef6f3a8b | 233 | unsigned int status, pid; |
a466b86a | 234 | CORE_ADDR prev_pc; |
ef6f3a8b RP |
235 | |
236 | /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We assume that | |
237 | this address will never be executed again by the real code. */ | |
238 | ||
0c4b30ea | 239 | target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents); |
ef6f3a8b RP |
240 | |
241 | errno = 0; | |
a0d76829 JL |
242 | |
243 | /* You might think this could be done with a single ptrace call, and | |
244 | you'd be correct for just about every platform I've ever worked | |
245 | on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up -- | |
246 | the inferior never hits the breakpoint (it's also worth noting | |
247 | powerpc-ibm-aix4.1.3 works correctly). */ | |
a466b86a | 248 | prev_pc = read_pc (); |
a0d76829 JL |
249 | write_pc (DUMMY_INSN_ADDR); |
250 | ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE)1, 0, 0); | |
251 | ||
ef6f3a8b RP |
252 | if (errno) |
253 | perror ("pt_continue"); | |
254 | ||
255 | do { | |
256 | pid = wait (&status); | |
257 | } while (pid != inferior_pid); | |
258 | ||
a466b86a | 259 | write_pc (prev_pc); |
0c4b30ea | 260 | target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents); |
ef6f3a8b RP |
261 | } |
262 | ||
a1df8e78 | 263 | static void |
ef6f3a8b RP |
264 | fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr) |
265 | char *core_reg_sect; | |
266 | unsigned core_reg_size; | |
267 | int which; | |
268 | unsigned int reg_addr; /* Unused in this version */ | |
269 | { | |
270 | /* fetch GPRs and special registers from the first register section | |
271 | in core bfd. */ | |
0c4b30ea SS |
272 | if (which == 0) |
273 | { | |
274 | /* copy GPRs first. */ | |
275 | memcpy (registers, core_reg_sect, 32 * 4); | |
276 | ||
277 | /* gdb's internal register template and bfd's register section layout | |
278 | should share a common include file. FIXMEmgo */ | |
279 | /* then comes special registes. They are supposed to be in the same | |
280 | order in gdb template and bfd `.reg' section. */ | |
281 | core_reg_sect += (32 * 4); | |
282 | memcpy (®isters [REGISTER_BYTE (FIRST_SP_REGNUM)], core_reg_sect, | |
283 | (LAST_SP_REGNUM - FIRST_SP_REGNUM + 1) * 4); | |
284 | } | |
ef6f3a8b RP |
285 | |
286 | /* fetch floating point registers from register section 2 in core bfd. */ | |
287 | else if (which == 2) | |
ade40d31 | 288 | memcpy (®isters [REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 32 * 8); |
ef6f3a8b RP |
289 | |
290 | else | |
199b2450 | 291 | fprintf_unfiltered (gdb_stderr, "Gdb error: unknown parameter to fetch_core_registers().\n"); |
ef6f3a8b | 292 | } |
d87d7b10 | 293 | \f |
0c4b30ea | 294 | /* handle symbol translation on vmapping */ |
d87d7b10 SG |
295 | |
296 | static void | |
297 | vmap_symtab (vp) | |
298 | register struct vmap *vp; | |
299 | { | |
300 | register struct objfile *objfile; | |
d87d7b10 SG |
301 | CORE_ADDR text_delta; |
302 | CORE_ADDR data_delta; | |
303 | CORE_ADDR bss_delta; | |
304 | struct section_offsets *new_offsets; | |
305 | int i; | |
306 | ||
307 | objfile = vp->objfile; | |
308 | if (objfile == NULL) | |
309 | { | |
310 | /* OK, it's not an objfile we opened ourselves. | |
311 | Currently, that can only happen with the exec file, so | |
312 | relocate the symbols for the symfile. */ | |
313 | if (symfile_objfile == NULL) | |
314 | return; | |
315 | objfile = symfile_objfile; | |
316 | } | |
317 | ||
318 | new_offsets = alloca | |
319 | (sizeof (struct section_offsets) | |
320 | + sizeof (new_offsets->offsets) * objfile->num_sections); | |
321 | ||
322 | for (i = 0; i < objfile->num_sections; ++i) | |
323 | ANOFFSET (new_offsets, i) = ANOFFSET (objfile->section_offsets, i); | |
324 | ||
d87d7b10 | 325 | text_delta = |
e2adc41a JK |
326 | vp->tstart - ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT); |
327 | ANOFFSET (new_offsets, SECT_OFF_TEXT) = vp->tstart; | |
d87d7b10 | 328 | |
d87d7b10 | 329 | data_delta = |
e2adc41a JK |
330 | vp->dstart - ANOFFSET (objfile->section_offsets, SECT_OFF_DATA); |
331 | ANOFFSET (new_offsets, SECT_OFF_DATA) = vp->dstart; | |
d87d7b10 | 332 | |
d87d7b10 | 333 | bss_delta = |
e2adc41a JK |
334 | vp->dstart - ANOFFSET (objfile->section_offsets, SECT_OFF_BSS); |
335 | ANOFFSET (new_offsets, SECT_OFF_BSS) = vp->dstart; | |
d87d7b10 SG |
336 | |
337 | objfile_relocate (objfile, new_offsets); | |
d87d7b10 SG |
338 | } |
339 | \f | |
340 | /* Add symbols for an objfile. */ | |
0c4b30ea | 341 | |
d87d7b10 SG |
342 | static int |
343 | objfile_symbol_add (arg) | |
344 | char *arg; | |
345 | { | |
346 | struct objfile *obj = (struct objfile *) arg; | |
0c4b30ea | 347 | |
d87d7b10 SG |
348 | syms_from_objfile (obj, 0, 0, 0); |
349 | new_symfile_objfile (obj, 0, 0); | |
350 | return 1; | |
351 | } | |
352 | ||
353 | /* Add a new vmap entry based on ldinfo() information. | |
354 | ||
355 | If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a | |
356 | core file), the caller should set it to -1, and we will open the file. | |
357 | ||
358 | Return the vmap new entry. */ | |
0c4b30ea | 359 | |
d87d7b10 | 360 | static struct vmap * |
0c4b30ea | 361 | add_vmap (ldi) |
d87d7b10 SG |
362 | register struct ld_info *ldi; |
363 | { | |
0c4b30ea SS |
364 | bfd *abfd, *last; |
365 | register char *mem, *objname; | |
366 | struct objfile *obj; | |
367 | struct vmap *vp; | |
368 | ||
369 | /* This ldi structure was allocated using alloca() in | |
370 | xcoff_relocate_symtab(). Now we need to have persistent object | |
371 | and member names, so we should save them. */ | |
372 | ||
373 | mem = ldi->ldinfo_filename + strlen (ldi->ldinfo_filename) + 1; | |
374 | mem = savestring (mem, strlen (mem)); | |
375 | objname = savestring (ldi->ldinfo_filename, strlen (ldi->ldinfo_filename)); | |
376 | ||
377 | if (ldi->ldinfo_fd < 0) | |
378 | /* Note that this opens it once for every member; a possible | |
379 | enhancement would be to only open it once for every object. */ | |
380 | abfd = bfd_openr (objname, gnutarget); | |
381 | else | |
382 | abfd = bfd_fdopenr (objname, gnutarget, ldi->ldinfo_fd); | |
383 | if (!abfd) | |
384 | error ("Could not open `%s' as an executable file: %s", | |
385 | objname, bfd_errmsg (bfd_get_error ())); | |
386 | ||
387 | /* make sure we have an object file */ | |
388 | ||
389 | if (bfd_check_format (abfd, bfd_object)) | |
390 | vp = map_vmap (abfd, 0); | |
391 | ||
392 | else if (bfd_check_format (abfd, bfd_archive)) | |
393 | { | |
394 | last = 0; | |
395 | /* FIXME??? am I tossing BFDs? bfd? */ | |
396 | while ((last = bfd_openr_next_archived_file (abfd, last))) | |
397 | if (STREQ (mem, last->filename)) | |
398 | break; | |
399 | ||
400 | if (!last) | |
401 | { | |
402 | bfd_close (abfd); | |
403 | /* FIXME -- should be error */ | |
404 | warning ("\"%s\": member \"%s\" missing.", abfd->filename, mem); | |
405 | return; | |
d87d7b10 | 406 | } |
0c4b30ea SS |
407 | |
408 | if (!bfd_check_format(last, bfd_object)) | |
409 | { | |
410 | bfd_close (last); /* XXX??? */ | |
411 | goto obj_err; | |
d87d7b10 | 412 | } |
0c4b30ea SS |
413 | |
414 | vp = map_vmap (last, abfd); | |
415 | } | |
416 | else | |
417 | { | |
418 | obj_err: | |
419 | bfd_close (abfd); | |
420 | error ("\"%s\": not in executable format: %s.", | |
421 | objname, bfd_errmsg (bfd_get_error ())); | |
422 | /*NOTREACHED*/ | |
423 | } | |
424 | obj = allocate_objfile (vp->bfd, 0); | |
425 | vp->objfile = obj; | |
d87d7b10 SG |
426 | |
427 | #ifndef SOLIB_SYMBOLS_MANUAL | |
0c4b30ea SS |
428 | if (catch_errors (objfile_symbol_add, (char *)obj, |
429 | "Error while reading shared library symbols:\n", | |
430 | RETURN_MASK_ALL)) | |
431 | { | |
432 | /* Note this is only done if symbol reading was successful. */ | |
433 | vmap_symtab (vp); | |
434 | vp->loaded = 1; | |
435 | } | |
d87d7b10 | 436 | #endif |
0c4b30ea | 437 | return vp; |
d87d7b10 SG |
438 | } |
439 | \f | |
0c4b30ea SS |
440 | /* update VMAP info with ldinfo() information |
441 | Input is ptr to ldinfo() results. */ | |
d87d7b10 SG |
442 | |
443 | static void | |
0c4b30ea | 444 | vmap_ldinfo (ldi) |
d87d7b10 SG |
445 | register struct ld_info *ldi; |
446 | { | |
447 | struct stat ii, vi; | |
448 | register struct vmap *vp; | |
88a5c3fc | 449 | int got_one, retried; |
88a5c3fc | 450 | int got_exec_file; |
d87d7b10 | 451 | |
0c4b30ea SS |
452 | /* For each *ldi, see if we have a corresponding *vp. |
453 | If so, update the mapping, and symbol table. | |
454 | If not, add an entry and symbol table. */ | |
d87d7b10 | 455 | |
0c4b30ea SS |
456 | do { |
457 | char *name = ldi->ldinfo_filename; | |
458 | char *memb = name + strlen(name) + 1; | |
d87d7b10 | 459 | |
0c4b30ea | 460 | retried = 0; |
d87d7b10 | 461 | |
0c4b30ea SS |
462 | if (fstat (ldi->ldinfo_fd, &ii) < 0) |
463 | fatal ("cannot fstat(fd=%d) on %s", ldi->ldinfo_fd, name); | |
464 | retry: | |
465 | for (got_one = 0, vp = vmap; vp; vp = vp->nxt) | |
466 | { | |
0c4b30ea SS |
467 | /* First try to find a `vp', which is the same as in ldinfo. |
468 | If not the same, just continue and grep the next `vp'. If same, | |
469 | relocate its tstart, tend, dstart, dend values. If no such `vp' | |
470 | found, get out of this for loop, add this ldi entry as a new vmap | |
471 | (add_vmap) and come back, fins its `vp' and so on... */ | |
d87d7b10 | 472 | |
0c4b30ea | 473 | /* The filenames are not always sufficient to match on. */ |
d87d7b10 | 474 | |
0c4b30ea SS |
475 | if ((name[0] == '/' && !STREQ(name, vp->name)) |
476 | || (memb[0] && !STREQ(memb, vp->member))) | |
477 | continue; | |
d87d7b10 | 478 | |
0c4b30ea | 479 | /* See if we are referring to the same file. */ |
fb494327 JK |
480 | if (bfd_stat (vp->bfd, &vi) < 0) |
481 | /* An error here is innocuous, most likely meaning that | |
482 | the file descriptor has become worthless. | |
483 | FIXME: What does it mean for a file descriptor to become | |
484 | "worthless"? What makes it happen? What error does it | |
485 | produce (ENOENT? others?)? Should we at least provide | |
486 | a warning? */ | |
523ca9d0 | 487 | continue; |
d87d7b10 | 488 | |
0c4b30ea SS |
489 | if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino) |
490 | continue; | |
d87d7b10 | 491 | |
0c4b30ea SS |
492 | if (!retried) |
493 | close (ldi->ldinfo_fd); | |
d87d7b10 | 494 | |
0c4b30ea | 495 | ++got_one; |
d87d7b10 | 496 | |
fb494327 | 497 | /* Found a corresponding VMAP. Remap! */ |
d87d7b10 | 498 | |
0c4b30ea SS |
499 | /* We can assume pointer == CORE_ADDR, this code is native only. */ |
500 | vp->tstart = (CORE_ADDR) ldi->ldinfo_textorg; | |
501 | vp->tend = vp->tstart + ldi->ldinfo_textsize; | |
502 | vp->dstart = (CORE_ADDR) ldi->ldinfo_dataorg; | |
503 | vp->dend = vp->dstart + ldi->ldinfo_datasize; | |
d87d7b10 | 504 | |
0c4b30ea SS |
505 | if (vp->tadj) |
506 | { | |
d87d7b10 SG |
507 | vp->tstart += vp->tadj; |
508 | vp->tend += vp->tadj; | |
509 | } | |
510 | ||
88a5c3fc JK |
511 | /* The objfile is only NULL for the exec file. */ |
512 | if (vp->objfile == NULL) | |
513 | got_exec_file = 1; | |
514 | ||
fbc3f191 JL |
515 | #ifdef DONT_RELOCATE_SYMFILE_OBJFILE |
516 | if (vp->objfile == symfile_objfile | |
517 | || vp->objfile == NULL) | |
518 | { | |
519 | ldi->ldinfo_dataorg = 0; | |
520 | vp->dstart = (CORE_ADDR) 0; | |
521 | vp->dend = ldi->ldinfo_datasize; | |
522 | } | |
523 | #endif | |
524 | ||
0c4b30ea SS |
525 | /* relocate symbol table(s). */ |
526 | vmap_symtab (vp); | |
d87d7b10 | 527 | |
fb494327 | 528 | /* There may be more, so we don't break out of the loop. */ |
0c4b30ea | 529 | } |
d87d7b10 | 530 | |
0c4b30ea SS |
531 | /* if there was no matching *vp, we must perforce create the sucker(s) */ |
532 | if (!got_one && !retried) | |
533 | { | |
534 | add_vmap (ldi); | |
535 | ++retried; | |
536 | goto retry; | |
537 | } | |
d87d7b10 SG |
538 | } while (ldi->ldinfo_next |
539 | && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi))); | |
540 | ||
8989d4fc JK |
541 | /* If we don't find the symfile_objfile anywhere in the ldinfo, it |
542 | is unlikely that the symbol file is relocated to the proper | |
543 | address. And we might have attached to a process which is | |
544 | running a different copy of the same executable. */ | |
88a5c3fc | 545 | if (symfile_objfile != NULL && !got_exec_file) |
8989d4fc JK |
546 | { |
547 | warning_begin (); | |
548 | fputs_unfiltered ("Symbol file ", gdb_stderr); | |
549 | fputs_unfiltered (symfile_objfile->name, gdb_stderr); | |
550 | fputs_unfiltered ("\nis not mapped; discarding it.\n\ | |
551 | If in fact that file has symbols which the mapped files listed by\n\ | |
552 | \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\ | |
553 | \"add-symbol-file\" commands (note that you must take care of relocating\n\ | |
554 | symbols to the proper address).\n", gdb_stderr); | |
555 | free_objfile (symfile_objfile); | |
556 | symfile_objfile = NULL; | |
557 | } | |
e2adc41a | 558 | breakpoint_re_set (); |
d87d7b10 SG |
559 | } |
560 | \f | |
561 | /* As well as symbol tables, exec_sections need relocation. After | |
562 | the inferior process' termination, there will be a relocated symbol | |
563 | table exist with no corresponding inferior process. At that time, we | |
564 | need to use `exec' bfd, rather than the inferior process's memory space | |
565 | to look up symbols. | |
566 | ||
567 | `exec_sections' need to be relocated only once, as long as the exec | |
568 | file remains unchanged. | |
569 | */ | |
570 | ||
571 | static void | |
572 | vmap_exec () | |
573 | { | |
574 | static bfd *execbfd; | |
575 | int i; | |
576 | ||
577 | if (execbfd == exec_bfd) | |
578 | return; | |
579 | ||
580 | execbfd = exec_bfd; | |
581 | ||
582 | if (!vmap || !exec_ops.to_sections) | |
583 | error ("vmap_exec: vmap or exec_ops.to_sections == 0\n"); | |
584 | ||
585 | for (i=0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++) | |
586 | { | |
94d4b713 | 587 | if (STREQ(".text", exec_ops.to_sections[i].the_bfd_section->name)) |
d87d7b10 SG |
588 | { |
589 | exec_ops.to_sections[i].addr += vmap->tstart; | |
590 | exec_ops.to_sections[i].endaddr += vmap->tstart; | |
591 | } | |
94d4b713 | 592 | else if (STREQ(".data", exec_ops.to_sections[i].the_bfd_section->name)) |
d87d7b10 SG |
593 | { |
594 | exec_ops.to_sections[i].addr += vmap->dstart; | |
595 | exec_ops.to_sections[i].endaddr += vmap->dstart; | |
596 | } | |
597 | } | |
598 | } | |
599 | \f | |
600 | /* xcoff_relocate_symtab - hook for symbol table relocation. | |
601 | also reads shared libraries.. */ | |
602 | ||
0c4b30ea | 603 | void |
d87d7b10 | 604 | xcoff_relocate_symtab (pid) |
0c4b30ea | 605 | unsigned int pid; |
d87d7b10 SG |
606 | { |
607 | #define MAX_LOAD_SEGS 64 /* maximum number of load segments */ | |
608 | ||
0c4b30ea | 609 | struct ld_info *ldi; |
d87d7b10 | 610 | |
0c4b30ea | 611 | ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi)); |
d87d7b10 | 612 | |
0c4b30ea SS |
613 | /* According to my humble theory, AIX has some timing problems and |
614 | when the user stack grows, kernel doesn't update stack info in time | |
615 | and ptrace calls step on user stack. That is why we sleep here a little, | |
616 | and give kernel to update its internals. */ | |
d87d7b10 | 617 | |
0c4b30ea | 618 | usleep (36000); |
d87d7b10 | 619 | |
0c4b30ea SS |
620 | errno = 0; |
621 | ptrace (PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi, | |
622 | MAX_LOAD_SEGS * sizeof(*ldi), ldi); | |
623 | if (errno) | |
624 | perror_with_name ("ptrace ldinfo"); | |
d87d7b10 | 625 | |
0c4b30ea | 626 | vmap_ldinfo (ldi); |
d87d7b10 | 627 | |
0c4b30ea SS |
628 | do { |
629 | /* We are allowed to assume CORE_ADDR == pointer. This code is | |
630 | native only. */ | |
631 | add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg, | |
632 | (CORE_ADDR) ldi->ldinfo_dataorg); | |
633 | } while (ldi->ldinfo_next | |
634 | && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi))); | |
d87d7b10 SG |
635 | |
636 | #if 0 | |
637 | /* Now that we've jumbled things around, re-sort them. */ | |
638 | sort_minimal_symbols (); | |
639 | #endif | |
640 | ||
641 | /* relocate the exec and core sections as well. */ | |
642 | vmap_exec (); | |
643 | } | |
644 | \f | |
645 | /* Core file stuff. */ | |
646 | ||
647 | /* Relocate symtabs and read in shared library info, based on symbols | |
648 | from the core file. */ | |
0c4b30ea | 649 | |
d87d7b10 | 650 | void |
9137a6f4 PS |
651 | xcoff_relocate_core (target) |
652 | struct target_ops *target; | |
d87d7b10 SG |
653 | { |
654 | /* Offset of member MEMBER in a struct of type TYPE. */ | |
655 | #ifndef offsetof | |
656 | #define offsetof(TYPE, MEMBER) ((int) &((TYPE *)0)->MEMBER) | |
657 | #endif | |
658 | ||
659 | /* Size of a struct ld_info except for the variable-length filename. */ | |
660 | #define LDINFO_SIZE (offsetof (struct ld_info, ldinfo_filename)) | |
661 | ||
662 | sec_ptr ldinfo_sec; | |
663 | int offset = 0; | |
664 | struct ld_info *ldip; | |
665 | struct vmap *vp; | |
666 | ||
667 | /* Allocated size of buffer. */ | |
668 | int buffer_size = LDINFO_SIZE; | |
669 | char *buffer = xmalloc (buffer_size); | |
670 | struct cleanup *old = make_cleanup (free_current_contents, &buffer); | |
671 | ||
672 | /* FIXME, this restriction should not exist. For now, though I'll | |
673 | avoid coredumps with error() pending a real fix. */ | |
674 | if (vmap == NULL) | |
675 | error | |
676 | ("Can't debug a core file without an executable file (on the RS/6000)"); | |
677 | ||
678 | ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo"); | |
679 | if (ldinfo_sec == NULL) | |
680 | { | |
0c4b30ea | 681 | bfd_err: |
d87d7b10 | 682 | fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n", |
c4a081e1 | 683 | bfd_errmsg (bfd_get_error ())); |
d87d7b10 SG |
684 | do_cleanups (old); |
685 | return; | |
686 | } | |
687 | do | |
688 | { | |
689 | int i; | |
690 | int names_found = 0; | |
691 | ||
692 | /* Read in everything but the name. */ | |
693 | if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer, | |
694 | offset, LDINFO_SIZE) == 0) | |
695 | goto bfd_err; | |
696 | ||
697 | /* Now the name. */ | |
698 | i = LDINFO_SIZE; | |
699 | do | |
700 | { | |
701 | if (i == buffer_size) | |
702 | { | |
703 | buffer_size *= 2; | |
704 | buffer = xrealloc (buffer, buffer_size); | |
705 | } | |
706 | if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i], | |
707 | offset + i, 1) == 0) | |
708 | goto bfd_err; | |
709 | if (buffer[i++] == '\0') | |
710 | ++names_found; | |
711 | } while (names_found < 2); | |
712 | ||
0c4b30ea | 713 | ldip = (struct ld_info *) buffer; |
d87d7b10 SG |
714 | |
715 | /* Can't use a file descriptor from the core file; need to open it. */ | |
716 | ldip->ldinfo_fd = -1; | |
717 | ||
718 | /* The first ldinfo is for the exec file, allocated elsewhere. */ | |
719 | if (offset == 0) | |
720 | vp = vmap; | |
721 | else | |
722 | vp = add_vmap (ldip); | |
723 | ||
724 | offset += ldip->ldinfo_next; | |
725 | ||
726 | /* We can assume pointer == CORE_ADDR, this code is native only. */ | |
727 | vp->tstart = (CORE_ADDR) ldip->ldinfo_textorg; | |
728 | vp->tend = vp->tstart + ldip->ldinfo_textsize; | |
729 | vp->dstart = (CORE_ADDR) ldip->ldinfo_dataorg; | |
730 | vp->dend = vp->dstart + ldip->ldinfo_datasize; | |
731 | ||
df1e1074 PS |
732 | #ifdef DONT_RELOCATE_SYMFILE_OBJFILE |
733 | if (vp == vmap) | |
734 | { | |
735 | vp->dstart = (CORE_ADDR) 0; | |
736 | vp->dend = ldip->ldinfo_datasize; | |
737 | } | |
738 | #endif | |
739 | ||
523ca9d0 SS |
740 | if (vp->tadj != 0) |
741 | { | |
742 | vp->tstart += vp->tadj; | |
743 | vp->tend += vp->tadj; | |
744 | } | |
d87d7b10 SG |
745 | |
746 | /* Unless this is the exec file, | |
747 | add our sections to the section table for the core target. */ | |
748 | if (vp != vmap) | |
749 | { | |
750 | int count; | |
751 | struct section_table *stp; | |
148070cc JL |
752 | int update_coreops; |
753 | ||
754 | /* We must update the to_sections field in the core_ops structure | |
755 | now to avoid dangling pointer dereferences. */ | |
09af5868 | 756 | update_coreops = core_ops.to_sections == target->to_sections; |
d87d7b10 | 757 | |
9137a6f4 | 758 | count = target->to_sections_end - target->to_sections; |
d87d7b10 | 759 | count += 2; |
9137a6f4 PS |
760 | target->to_sections = (struct section_table *) |
761 | xrealloc (target->to_sections, | |
d87d7b10 | 762 | sizeof (struct section_table) * count); |
9137a6f4 | 763 | target->to_sections_end = target->to_sections + count; |
148070cc JL |
764 | |
765 | /* Update the to_sections field in the core_ops structure | |
766 | if needed. */ | |
767 | if (update_coreops) | |
768 | { | |
769 | core_ops.to_sections = target->to_sections; | |
770 | core_ops.to_sections_end = target->to_sections_end; | |
771 | } | |
9137a6f4 | 772 | stp = target->to_sections_end - 2; |
d87d7b10 SG |
773 | |
774 | /* "Why do we add bfd_section_vma?", I hear you cry. | |
775 | Well, the start of the section in the file is actually | |
776 | that far into the section as the struct vmap understands it. | |
777 | So for text sections, bfd_section_vma tends to be 0x200, | |
778 | and if vp->tstart is 0xd0002000, then the first byte of | |
779 | the text section on disk corresponds to address 0xd0002200. */ | |
780 | stp->bfd = vp->bfd; | |
94d4b713 JK |
781 | stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text"); |
782 | stp->addr = bfd_section_vma (stp->bfd, stp->the_bfd_section) + vp->tstart; | |
783 | stp->endaddr = bfd_section_vma (stp->bfd, stp->the_bfd_section) + vp->tend; | |
d87d7b10 SG |
784 | stp++; |
785 | ||
786 | stp->bfd = vp->bfd; | |
94d4b713 JK |
787 | stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data"); |
788 | stp->addr = bfd_section_vma (stp->bfd, stp->the_bfd_section) + vp->dstart; | |
789 | stp->endaddr = bfd_section_vma (stp->bfd, stp->the_bfd_section) + vp->dend; | |
d87d7b10 SG |
790 | } |
791 | ||
792 | vmap_symtab (vp); | |
793 | ||
794 | add_text_to_loadinfo ((CORE_ADDR)ldip->ldinfo_textorg, | |
795 | (CORE_ADDR)ldip->ldinfo_dataorg); | |
796 | } while (ldip->ldinfo_next != 0); | |
797 | vmap_exec (); | |
e2adc41a | 798 | breakpoint_re_set (); |
d87d7b10 SG |
799 | do_cleanups (old); |
800 | } | |
7531f36e FF |
801 | |
802 | int | |
803 | kernel_u_size () | |
804 | { | |
805 | return (sizeof (struct user)); | |
806 | } | |
807 | ||
a1df8e78 FF |
808 | \f |
809 | /* Register that we are able to handle rs6000 core file formats. */ | |
810 | ||
811 | static struct core_fns rs6000_core_fns = | |
812 | { | |
813 | bfd_target_coff_flavour, | |
814 | fetch_core_registers, | |
815 | NULL | |
816 | }; | |
817 | ||
818 | void | |
819 | _initialize_core_rs6000 () | |
820 | { | |
062cb0d3 FF |
821 | /* For native configurations, where this module is included, inform |
822 | the xcoffsolib module where it can find the function for symbol table | |
823 | relocation at runtime. */ | |
824 | xcoff_relocate_symtab_hook = &xcoff_relocate_symtab; | |
a1df8e78 FF |
825 | add_core_fns (&rs6000_core_fns); |
826 | } |