]>
Commit | Line | Data |
---|---|---|
0ee75d02 | 1 | /* BFD backend for SunOS binaries. |
e85e8bfe | 2 | Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc. |
0ee75d02 | 3 | Written by Cygnus Support. |
4a81b561 | 4 | |
0ee75d02 | 5 | This file is part of BFD, the Binary File Descriptor library. |
4a81b561 | 6 | |
0ee75d02 | 7 | This program is free software; you can redistribute it and/or modify |
4a81b561 | 8 | it under the terms of the GNU General Public License as published by |
0ee75d02 ILT |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
4a81b561 | 11 | |
0ee75d02 | 12 | This program is distributed in the hope that it will be useful, |
4a81b561 DHW |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
0ee75d02 ILT |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
4a81b561 | 20 | |
0ee75d02 ILT |
21 | #define ARCH 32 |
22 | #define TARGETNAME "a.out-sunos-big" | |
23 | #define MY(OP) CAT(sunos_big_,OP) | |
4a81b561 | 24 | |
4a81b561 | 25 | #include "bfd.h" |
e85e8bfe ILT |
26 | #include "bfdlink.h" |
27 | #include "libaout.h" | |
78aa64b1 | 28 | |
0ee75d02 | 29 | /* Static routines defined in this file. */ |
4a81b561 | 30 | |
0ee75d02 | 31 | static boolean sunos_read_dynamic_info PARAMS ((bfd *)); |
e85e8bfe ILT |
32 | static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *)); |
33 | static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **)); | |
34 | static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *)); | |
35 | static long sunos_canonicalize_dynamic_reloc | |
36 | PARAMS ((bfd *, arelent **, asymbol **)); | |
37 | static struct bfd_hash_entry *sunos_link_hash_newfunc | |
38 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
39 | static struct bfd_link_hash_table *sunos_link_hash_table_create | |
40 | PARAMS ((bfd *)); | |
41 | static boolean sunos_add_dynamic_symbols | |
42 | PARAMS ((bfd *, struct bfd_link_info *)); | |
43 | static boolean sunos_add_one_symbol | |
44 | PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *, | |
45 | bfd_vma, const char *, boolean, boolean, | |
46 | struct bfd_link_hash_entry **)); | |
47 | static boolean sunos_scan_relocs | |
48 | PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type)); | |
49 | static boolean sunos_scan_std_relocs | |
50 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
51 | const struct reloc_std_external *, bfd_size_type)); | |
52 | static boolean sunos_scan_ext_relocs | |
53 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
54 | const struct reloc_ext_external *, bfd_size_type)); | |
55 | static boolean sunos_link_dynamic_object | |
56 | PARAMS ((struct bfd_link_info *, bfd *)); | |
57 | static boolean sunos_write_dynamic_symbol | |
58 | PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *)); | |
59 | static boolean sunos_check_dynamic_reloc | |
60 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
61 | struct aout_link_hash_entry *, PTR, boolean *)); | |
62 | static boolean sunos_finish_dynamic_link | |
63 | PARAMS ((bfd *, struct bfd_link_info *)); | |
4a81b561 | 64 | |
e85e8bfe ILT |
65 | #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound |
66 | #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab | |
67 | #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound | |
68 | #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc | |
69 | #define MY_bfd_link_hash_table_create sunos_link_hash_table_create | |
70 | #define MY_add_dynamic_symbols sunos_add_dynamic_symbols | |
71 | #define MY_add_one_symbol sunos_add_one_symbol | |
72 | #define MY_link_dynamic_object sunos_link_dynamic_object | |
73 | #define MY_write_dynamic_symbol sunos_write_dynamic_symbol | |
74 | #define MY_check_dynamic_reloc sunos_check_dynamic_reloc | |
75 | #define MY_finish_dynamic_link sunos_finish_dynamic_link | |
4a81b561 | 76 | |
0ee75d02 ILT |
77 | /* Include the usual a.out support. */ |
78 | #include "aoutf1.h" | |
4a81b561 | 79 | |
0ee75d02 ILT |
80 | /* SunOS shared library support. We store a pointer to this structure |
81 | in obj_aout_dynamic_info (abfd). */ | |
4a81b561 | 82 | |
0ee75d02 | 83 | struct sunos_dynamic_info |
78aa64b1 | 84 | { |
0ee75d02 ILT |
85 | /* Whether we found any dynamic information. */ |
86 | boolean valid; | |
87 | /* Dynamic information. */ | |
88 | struct internal_sun4_dynamic_link dyninfo; | |
89 | /* Number of dynamic symbols. */ | |
e85e8bfe | 90 | long dynsym_count; |
0ee75d02 ILT |
91 | /* Read in nlists for dynamic symbols. */ |
92 | struct external_nlist *dynsym; | |
e85e8bfe ILT |
93 | /* asymbol structures for dynamic symbols. */ |
94 | aout_symbol_type *canonical_dynsym; | |
0ee75d02 ILT |
95 | /* Read in dynamic string table. */ |
96 | char *dynstr; | |
97 | /* Number of dynamic relocs. */ | |
e85e8bfe | 98 | long dynrel_count; |
0ee75d02 ILT |
99 | /* Read in dynamic relocs. This may be reloc_std_external or |
100 | reloc_ext_external. */ | |
101 | PTR dynrel; | |
e85e8bfe ILT |
102 | /* arelent structures for dynamic relocs. */ |
103 | arelent *canonical_dynrel; | |
0ee75d02 | 104 | }; |
4a81b561 | 105 | |
e85e8bfe ILT |
106 | /* The hash table of dynamic symbols is composed of two word entries. |
107 | See include/aout/sun4.h for details. */ | |
108 | ||
109 | #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD) | |
110 | ||
0ee75d02 ILT |
111 | /* Read in the basic dynamic information. This locates the __DYNAMIC |
112 | structure and uses it to find the dynamic_link structure. It | |
113 | creates and saves a sunos_dynamic_info structure. If it can't find | |
114 | __DYNAMIC, it sets the valid field of the sunos_dynamic_info | |
115 | structure to false to avoid doing this work again. */ | |
4a81b561 | 116 | |
0ee75d02 ILT |
117 | static boolean |
118 | sunos_read_dynamic_info (abfd) | |
4a81b561 DHW |
119 | bfd *abfd; |
120 | { | |
0ee75d02 | 121 | struct sunos_dynamic_info *info; |
0ee75d02 ILT |
122 | asection *dynsec; |
123 | file_ptr dynoff; | |
124 | struct external_sun4_dynamic dyninfo; | |
125 | unsigned long dynver; | |
126 | struct external_sun4_dynamic_link linkinfo; | |
127 | ||
128 | if (obj_aout_dynamic_info (abfd) != (PTR) NULL) | |
129 | return true; | |
130 | ||
e85e8bfe ILT |
131 | if ((abfd->flags & DYNAMIC) == 0) |
132 | { | |
133 | bfd_set_error (bfd_error_invalid_operation); | |
134 | return false; | |
135 | } | |
136 | ||
0ee75d02 ILT |
137 | info = ((struct sunos_dynamic_info *) |
138 | bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info))); | |
9783e04a DM |
139 | if (!info) |
140 | { | |
d7fb4531 | 141 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
142 | return false; |
143 | } | |
0ee75d02 ILT |
144 | info->valid = false; |
145 | info->dynsym = NULL; | |
146 | info->dynstr = NULL; | |
e85e8bfe | 147 | info->canonical_dynsym = NULL; |
0ee75d02 | 148 | info->dynrel = NULL; |
e85e8bfe | 149 | info->canonical_dynrel = NULL; |
0ee75d02 ILT |
150 | obj_aout_dynamic_info (abfd) = (PTR) info; |
151 | ||
3e0b5554 PS |
152 | /* This code used to look for the __DYNAMIC symbol to locate the dynamic |
153 | linking information. | |
154 | However this inhibits recovering the dynamic symbols from a | |
155 | stripped object file, so blindly assume that the dynamic linking | |
156 | information is located at the start of the data section. | |
157 | We could verify this assumption later by looking through the dynamic | |
158 | symbols for the __DYNAMIC symbol. */ | |
159 | if ((abfd->flags & DYNAMIC) == 0) | |
0ee75d02 | 160 | return true; |
3e0b5554 PS |
161 | if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo, |
162 | (file_ptr) 0, sizeof dyninfo)) | |
0ee75d02 ILT |
163 | return true; |
164 | ||
165 | dynver = GET_WORD (abfd, dyninfo.ld_version); | |
166 | if (dynver != 2 && dynver != 3) | |
167 | return true; | |
168 | ||
169 | dynoff = GET_WORD (abfd, dyninfo.ld); | |
170 | ||
171 | /* dynoff is a virtual address. It is probably always in the .data | |
172 | section, but this code should work even if it moves. */ | |
173 | if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd))) | |
174 | dynsec = obj_textsec (abfd); | |
175 | else | |
176 | dynsec = obj_datasec (abfd); | |
177 | dynoff -= bfd_get_section_vma (abfd, dynsec); | |
178 | if (dynoff < 0 || dynoff > bfd_section_size (abfd, dynsec)) | |
179 | return true; | |
180 | ||
181 | /* This executable appears to be dynamically linked in a way that we | |
182 | can understand. */ | |
183 | if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff, | |
184 | (bfd_size_type) sizeof linkinfo)) | |
185 | return true; | |
186 | ||
187 | /* Swap in the dynamic link information. */ | |
188 | info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded); | |
189 | info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need); | |
190 | info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules); | |
191 | info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got); | |
192 | info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt); | |
193 | info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel); | |
194 | info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash); | |
195 | info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab); | |
196 | info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash); | |
197 | info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets); | |
198 | info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols); | |
199 | info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size); | |
200 | info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text); | |
201 | info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz); | |
202 | ||
203 | /* The only way to get the size of the symbol information appears to | |
204 | be to determine the distance between it and the string table. */ | |
205 | info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab) | |
206 | / EXTERNAL_NLIST_SIZE); | |
207 | BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE | |
208 | == info->dyninfo.ld_symbols - info->dyninfo.ld_stab); | |
209 | ||
210 | /* Similarly, the relocs end at the hash table. */ | |
211 | info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel) | |
212 | / obj_reloc_entry_size (abfd)); | |
213 | BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd) | |
214 | == info->dyninfo.ld_hash - info->dyninfo.ld_rel); | |
215 | ||
216 | info->valid = true; | |
4a81b561 DHW |
217 | |
218 | return true; | |
219 | } | |
220 | ||
e85e8bfe ILT |
221 | /* Return the amount of memory required for the dynamic symbols. */ |
222 | ||
223 | static long | |
224 | sunos_get_dynamic_symtab_upper_bound (abfd) | |
225 | bfd *abfd; | |
226 | { | |
227 | struct sunos_dynamic_info *info; | |
228 | ||
229 | if (! sunos_read_dynamic_info (abfd)) | |
230 | return -1; | |
231 | ||
232 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
233 | if (! info->valid) | |
234 | { | |
235 | bfd_set_error (bfd_error_no_symbols); | |
236 | return -1; | |
237 | } | |
238 | ||
239 | return (info->dynsym_count + 1) * sizeof (asymbol *); | |
240 | } | |
241 | ||
0ee75d02 | 242 | /* Read in the dynamic symbols. */ |
4a81b561 | 243 | |
e85e8bfe ILT |
244 | static long |
245 | sunos_canonicalize_dynamic_symtab (abfd, storage) | |
4a81b561 | 246 | bfd *abfd; |
e85e8bfe | 247 | asymbol **storage; |
4a81b561 | 248 | { |
0ee75d02 | 249 | struct sunos_dynamic_info *info; |
e85e8bfe | 250 | long i; |
4a81b561 | 251 | |
e85e8bfe ILT |
252 | /* Get the general dynamic information. */ |
253 | if (obj_aout_dynamic_info (abfd) == NULL) | |
0ee75d02 ILT |
254 | { |
255 | if (! sunos_read_dynamic_info (abfd)) | |
e85e8bfe | 256 | return -1; |
4a81b561 | 257 | } |
c93595dd | 258 | |
0ee75d02 | 259 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); |
e85e8bfe ILT |
260 | if (! info->valid) |
261 | { | |
262 | bfd_set_error (bfd_error_no_symbols); | |
263 | return -1; | |
264 | } | |
10be52bf | 265 | |
e85e8bfe | 266 | /* Get the dynamic nlist structures. */ |
0ee75d02 ILT |
267 | if (info->dynsym == (struct external_nlist *) NULL) |
268 | { | |
269 | info->dynsym = ((struct external_nlist *) | |
270 | bfd_alloc (abfd, | |
271 | (info->dynsym_count | |
272 | * EXTERNAL_NLIST_SIZE))); | |
e85e8bfe | 273 | if (info->dynsym == NULL && info->dynsym_count != 0) |
9783e04a | 274 | { |
d7fb4531 | 275 | bfd_set_error (bfd_error_no_memory); |
e85e8bfe | 276 | return -1; |
9783e04a | 277 | } |
0ee75d02 ILT |
278 | if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0 |
279 | || (bfd_read ((PTR) info->dynsym, info->dynsym_count, | |
280 | EXTERNAL_NLIST_SIZE, abfd) | |
e85e8bfe ILT |
281 | != info->dynsym_count * EXTERNAL_NLIST_SIZE)) |
282 | { | |
283 | if (info->dynsym != NULL) | |
284 | { | |
285 | bfd_release (abfd, info->dynsym); | |
286 | info->dynsym = NULL; | |
287 | } | |
288 | return -1; | |
289 | } | |
290 | } | |
291 | ||
292 | /* Get the dynamic strings. */ | |
293 | if (info->dynstr == (char *) NULL) | |
294 | { | |
295 | info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size); | |
296 | if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0) | |
297 | { | |
298 | bfd_set_error (bfd_error_no_memory); | |
299 | return -1; | |
300 | } | |
301 | if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0 | |
0ee75d02 ILT |
302 | || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size, |
303 | abfd) | |
304 | != info->dyninfo.ld_symb_size)) | |
e85e8bfe ILT |
305 | { |
306 | if (info->dynstr != NULL) | |
307 | { | |
308 | bfd_release (abfd, info->dynstr); | |
309 | info->dynstr = NULL; | |
310 | } | |
311 | return -1; | |
312 | } | |
0ee75d02 | 313 | } |
1a602d6e | 314 | |
0ee75d02 ILT |
315 | #ifdef CHECK_DYNAMIC_HASH |
316 | /* Check my understanding of the dynamic hash table by making sure | |
317 | that each symbol can be located in the hash table. */ | |
318 | { | |
319 | bfd_size_type table_size; | |
320 | bfd_byte *table; | |
321 | bfd_size_type i; | |
322 | ||
323 | if (info->dyninfo.ld_buckets > info->dynsym_count) | |
324 | abort (); | |
325 | table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash; | |
d7fb4531 | 326 | table = (bfd_byte *) malloc (table_size); |
e85e8bfe | 327 | if (table == NULL && table_size != 0) |
d7fb4531 | 328 | abort (); |
0ee75d02 ILT |
329 | if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0 |
330 | || bfd_read ((PTR) table, 1, table_size, abfd) != table_size) | |
331 | abort (); | |
332 | for (i = 0; i < info->dynsym_count; i++) | |
9846338e | 333 | { |
0ee75d02 ILT |
334 | unsigned char *name; |
335 | unsigned long hash; | |
336 | ||
337 | name = ((unsigned char *) info->dynstr | |
338 | + GET_WORD (abfd, info->dynsym[i].e_strx)); | |
339 | hash = 0; | |
340 | while (*name != '\0') | |
341 | hash = (hash << 1) + *name++; | |
342 | hash &= 0x7fffffff; | |
343 | hash %= info->dyninfo.ld_buckets; | |
e85e8bfe | 344 | while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i) |
0ee75d02 | 345 | { |
e85e8bfe ILT |
346 | hash = GET_WORD (abfd, |
347 | table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
348 | if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE) | |
0ee75d02 ILT |
349 | abort (); |
350 | } | |
9846338e | 351 | } |
d7fb4531 | 352 | free (table); |
4a81b561 | 353 | } |
0ee75d02 | 354 | #endif /* CHECK_DYNAMIC_HASH */ |
4a81b561 | 355 | |
e85e8bfe ILT |
356 | /* Get the asymbol structures corresponding to the dynamic nlist |
357 | structures. */ | |
358 | if (info->canonical_dynsym == (aout_symbol_type *) NULL) | |
359 | { | |
360 | info->canonical_dynsym = ((aout_symbol_type *) | |
361 | bfd_alloc (abfd, | |
362 | (info->dynsym_count | |
363 | * sizeof (aout_symbol_type)))); | |
364 | if (info->canonical_dynsym == NULL && info->dynsym_count != 0) | |
365 | { | |
366 | bfd_set_error (bfd_error_no_memory); | |
367 | return -1; | |
368 | } | |
369 | ||
370 | if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym, | |
371 | info->dynsym, info->dynsym_count, | |
372 | info->dynstr, | |
373 | info->dyninfo.ld_symb_size, | |
374 | true)) | |
375 | { | |
376 | if (info->canonical_dynsym != NULL) | |
377 | { | |
378 | bfd_release (abfd, info->canonical_dynsym); | |
379 | info->canonical_dynsym = NULL; | |
380 | } | |
381 | return -1; | |
382 | } | |
383 | } | |
384 | ||
385 | /* Return pointers to the dynamic asymbol structures. */ | |
386 | for (i = 0; i < info->dynsym_count; i++) | |
387 | *storage++ = (asymbol *) (info->canonical_dynsym + i); | |
388 | *storage = NULL; | |
389 | ||
0ee75d02 | 390 | return info->dynsym_count; |
4a81b561 | 391 | } |
4a81b561 | 392 | |
e85e8bfe ILT |
393 | /* Return the amount of memory required for the dynamic relocs. */ |
394 | ||
395 | static long | |
396 | sunos_get_dynamic_reloc_upper_bound (abfd) | |
397 | bfd *abfd; | |
398 | { | |
399 | struct sunos_dynamic_info *info; | |
400 | ||
401 | if (! sunos_read_dynamic_info (abfd)) | |
402 | return -1; | |
403 | ||
404 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
405 | if (! info->valid) | |
406 | { | |
407 | bfd_set_error (bfd_error_no_symbols); | |
408 | return -1; | |
409 | } | |
410 | ||
411 | return (info->dynrel_count + 1) * sizeof (arelent *); | |
412 | } | |
413 | ||
414 | /* Read in the dynamic relocs. */ | |
4a81b561 | 415 | |
e85e8bfe ILT |
416 | static long |
417 | sunos_canonicalize_dynamic_reloc (abfd, storage, syms) | |
4a81b561 | 418 | bfd *abfd; |
e85e8bfe ILT |
419 | arelent **storage; |
420 | asymbol **syms; | |
4a81b561 | 421 | { |
0ee75d02 | 422 | struct sunos_dynamic_info *info; |
e85e8bfe | 423 | long i; |
4a81b561 | 424 | |
e85e8bfe | 425 | /* Get the general dynamic information. */ |
0ee75d02 ILT |
426 | if (obj_aout_dynamic_info (abfd) == (PTR) NULL) |
427 | { | |
428 | if (! sunos_read_dynamic_info (abfd)) | |
e85e8bfe | 429 | return -1; |
0ee75d02 | 430 | } |
4a81b561 | 431 | |
0ee75d02 | 432 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); |
e85e8bfe ILT |
433 | if (! info->valid) |
434 | { | |
435 | bfd_set_error (bfd_error_no_symbols); | |
436 | return -1; | |
437 | } | |
4a81b561 | 438 | |
e85e8bfe | 439 | /* Get the dynamic reloc information. */ |
9783e04a | 440 | if (info->dynrel == NULL) |
0ee75d02 ILT |
441 | { |
442 | info->dynrel = (PTR) bfd_alloc (abfd, | |
443 | (info->dynrel_count | |
444 | * obj_reloc_entry_size (abfd))); | |
e85e8bfe | 445 | if (info->dynrel == NULL && info->dynrel_count != 0) |
9783e04a | 446 | { |
d7fb4531 | 447 | bfd_set_error (bfd_error_no_memory); |
e85e8bfe | 448 | return -1; |
9783e04a | 449 | } |
0ee75d02 ILT |
450 | if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0 |
451 | || (bfd_read ((PTR) info->dynrel, info->dynrel_count, | |
452 | obj_reloc_entry_size (abfd), abfd) | |
453 | != info->dynrel_count * obj_reloc_entry_size (abfd))) | |
e85e8bfe ILT |
454 | { |
455 | if (info->dynrel != NULL) | |
456 | { | |
457 | bfd_release (abfd, info->dynrel); | |
458 | info->dynrel = NULL; | |
459 | } | |
460 | return -1; | |
461 | } | |
462 | } | |
463 | ||
464 | /* Get the arelent structures corresponding to the dynamic reloc | |
465 | information. */ | |
466 | if (info->canonical_dynrel == (arelent *) NULL) | |
467 | { | |
468 | arelent *to; | |
469 | ||
470 | info->canonical_dynrel = ((arelent *) | |
471 | bfd_alloc (abfd, | |
472 | (info->dynrel_count | |
473 | * sizeof (arelent)))); | |
474 | if (info->canonical_dynrel == NULL && info->dynrel_count != 0) | |
475 | { | |
476 | bfd_set_error (bfd_error_no_memory); | |
477 | return -1; | |
478 | } | |
479 | ||
480 | to = info->canonical_dynrel; | |
481 | ||
482 | if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE) | |
483 | { | |
484 | register struct reloc_ext_external *p; | |
485 | struct reloc_ext_external *pend; | |
486 | ||
487 | p = (struct reloc_ext_external *) info->dynrel; | |
488 | pend = p + info->dynrel_count; | |
489 | for (; p < pend; p++, to++) | |
490 | NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms); | |
491 | } | |
492 | else | |
493 | { | |
494 | register struct reloc_std_external *p; | |
495 | struct reloc_std_external *pend; | |
496 | ||
497 | p = (struct reloc_std_external *) info->dynrel; | |
498 | pend = p + info->dynrel_count; | |
499 | for (; p < pend; p++, to++) | |
500 | NAME(aout,swap_std_reloc_in) (abfd, p, to, syms); | |
501 | } | |
0ee75d02 | 502 | } |
4a81b561 | 503 | |
e85e8bfe ILT |
504 | /* Return pointers to the dynamic arelent structures. */ |
505 | for (i = 0; i < info->dynrel_count; i++) | |
506 | *storage++ = info->canonical_dynrel + i; | |
507 | *storage = NULL; | |
4a81b561 | 508 | |
0ee75d02 | 509 | return info->dynrel_count; |
4a81b561 | 510 | } |
e85e8bfe ILT |
511 | \f |
512 | /* Code to handle linking of SunOS shared libraries. */ | |
513 | ||
514 | /* A SPARC procedure linkage table entry is 12 bytes. The first entry | |
515 | in the table is a jump which is filled in by the runtime linker. | |
516 | The remaining entries are branches back to the first entry, | |
517 | followed by an index into the relocation table encoded to look like | |
518 | a sethi of %g0. */ | |
519 | ||
520 | #define SPARC_PLT_ENTRY_SIZE (12) | |
521 | ||
522 | static bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] = | |
523 | { | |
524 | /* sethi %hi(0),%g1; address filled in by runtime linker. */ | |
525 | 0x3, 0, 0, 0, | |
526 | /* jmp %g1; offset filled in by runtime linker. */ | |
527 | 0x81, 0xc0, 0x60, 0, | |
528 | /* nop */ | |
529 | 0x1, 0, 0, 0 | |
530 | }; | |
531 | ||
532 | /* save %sp, -96, %sp */ | |
533 | #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0 | |
534 | /* call; address filled in later. */ | |
535 | #define SPARC_PLT_ENTRY_WORD1 0x40000000 | |
536 | /* sethi; reloc index filled in later. */ | |
537 | #define SPARC_PLT_ENTRY_WORD2 0x01000000 | |
538 | ||
539 | /* An m68k procedure linkage table entry is 8 bytes. The first entry | |
540 | in the table is a jump which is filled in the by the runtime | |
541 | linker. The remaining entries are branches back to the first | |
542 | entry, followed by a two byte index into the relocation table. */ | |
543 | ||
544 | #define M68K_PLT_ENTRY_SIZE (8) | |
545 | ||
546 | static bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] = | |
547 | { | |
548 | /* jmps @# */ | |
549 | 0x4e, 0xf9, | |
550 | /* Filled in by runtime linker with a magic address. */ | |
551 | 0, 0, 0, 0, | |
552 | /* Not used? */ | |
553 | 0, 0 | |
554 | }; | |
555 | ||
556 | /* bsrl */ | |
557 | #define M68K_PLT_ENTRY_WORD0 (0x61ff) | |
558 | /* Remaining words filled in later. */ | |
559 | ||
560 | /* An entry in the SunOS linker hash table. */ | |
561 | ||
562 | struct sunos_link_hash_entry | |
563 | { | |
564 | struct aout_link_hash_entry root; | |
565 | ||
566 | /* If this is a dynamic symbol, this is its index into the dynamic | |
567 | symbol table. This is initialized to -1. As the linker looks at | |
568 | the input files, it changes this to -2 if it will be added to the | |
569 | dynamic symbol table. After all the input files have been seen, | |
570 | the linker will know whether to build a dynamic symbol table; if | |
571 | it does build one, this becomes the index into the table. */ | |
572 | long dynindx; | |
573 | ||
574 | /* If this is a dynamic symbol, this is the index of the name in the | |
575 | dynamic symbol string table. */ | |
576 | long dynstr_index; | |
577 | ||
578 | /* Some linker flags. */ | |
579 | unsigned char flags; | |
580 | /* Symbol is referenced by a regular object. */ | |
581 | #define SUNOS_REF_REGULAR 01 | |
582 | /* Symbol is defined by a regular object. */ | |
583 | #define SUNOS_DEF_REGULAR 02 | |
584 | /* Symbol is referenced by a dynamic object. */ | |
585 | #define SUNOS_REF_DYNAMIC 010 | |
586 | /* Symbol is defined by a dynamic object. */ | |
587 | #define SUNOS_DEF_DYNAMIC 020 | |
588 | }; | |
589 | ||
590 | /* The SunOS linker hash table. */ | |
591 | ||
592 | struct sunos_link_hash_table | |
593 | { | |
594 | struct aout_link_hash_table root; | |
595 | ||
596 | /* The first dynamic object found during the link. */ | |
597 | bfd *dynobj; | |
598 | ||
599 | /* The number of dynamic symbols. */ | |
600 | size_t dynsymcount; | |
601 | ||
602 | /* The number of buckets in the hash table. */ | |
603 | size_t bucketcount; | |
604 | }; | |
605 | ||
606 | /* Routine to create an entry in an SunOS link hash table. */ | |
607 | ||
608 | static struct bfd_hash_entry * | |
609 | sunos_link_hash_newfunc (entry, table, string) | |
610 | struct bfd_hash_entry *entry; | |
611 | struct bfd_hash_table *table; | |
612 | const char *string; | |
613 | { | |
614 | struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry; | |
615 | ||
616 | /* Allocate the structure if it has not already been allocated by a | |
617 | subclass. */ | |
618 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
619 | ret = ((struct sunos_link_hash_entry *) | |
620 | bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry))); | |
621 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
622 | { | |
623 | bfd_set_error (bfd_error_no_memory); | |
624 | return (struct bfd_hash_entry *) ret; | |
625 | } | |
626 | ||
627 | /* Call the allocation method of the superclass. */ | |
628 | ret = ((struct sunos_link_hash_entry *) | |
629 | NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret, | |
630 | table, string)); | |
631 | if (ret != NULL) | |
632 | { | |
633 | /* Set local fields. */ | |
634 | ret->dynindx = -1; | |
635 | ret->dynstr_index = -1; | |
636 | ret->flags = 0; | |
637 | } | |
638 | ||
639 | return (struct bfd_hash_entry *) ret; | |
640 | } | |
641 | ||
642 | /* Create a SunOS link hash table. */ | |
643 | ||
644 | static struct bfd_link_hash_table * | |
645 | sunos_link_hash_table_create (abfd) | |
646 | bfd *abfd; | |
647 | { | |
648 | struct sunos_link_hash_table *ret; | |
649 | ||
650 | ret = ((struct sunos_link_hash_table *) | |
651 | malloc (sizeof (struct sunos_link_hash_table))); | |
652 | if (ret == (struct sunos_link_hash_table *) NULL) | |
653 | { | |
654 | bfd_set_error (bfd_error_no_memory); | |
655 | return (struct bfd_link_hash_table *) NULL; | |
656 | } | |
657 | if (! NAME(aout,link_hash_table_init) (&ret->root, abfd, | |
658 | sunos_link_hash_newfunc)) | |
659 | { | |
660 | free (ret); | |
661 | return (struct bfd_link_hash_table *) NULL; | |
662 | } | |
663 | ||
664 | ret->dynobj = NULL; | |
665 | ret->dynsymcount = 0; | |
666 | ret->bucketcount = 0; | |
667 | ||
668 | return &ret->root.root; | |
669 | } | |
670 | ||
671 | /* Look up an entry in an SunOS link hash table. */ | |
672 | ||
673 | #define sunos_link_hash_lookup(table, string, create, copy, follow) \ | |
674 | ((struct sunos_link_hash_entry *) \ | |
675 | aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\ | |
676 | (follow))) | |
677 | ||
678 | /* Traverse a SunOS link hash table. */ | |
679 | ||
680 | #define sunos_link_hash_traverse(table, func, info) \ | |
681 | (aout_link_hash_traverse \ | |
682 | (&(table)->root, \ | |
683 | (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \ | |
684 | (info))) | |
685 | ||
686 | /* Get the SunOS link hash table from the info structure. This is | |
687 | just a cast. */ | |
688 | ||
689 | #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash)) | |
690 | ||
691 | static boolean sunos_scan_dynamic_symbol | |
692 | PARAMS ((struct sunos_link_hash_entry *, PTR)); | |
693 | ||
694 | /* Add dynamic symbols during a link. This is called by the a.out | |
695 | backend linker when it encounters an object with the DYNAMIC flag | |
696 | set. */ | |
697 | ||
698 | static boolean | |
699 | sunos_add_dynamic_symbols (abfd, info) | |
700 | bfd *abfd; | |
701 | struct bfd_link_info *info; | |
702 | { | |
703 | asection *s; | |
704 | ||
705 | /* We do not want to include the sections in a dynamic object in the | |
706 | output file. We hack by simply clobbering the list of sections | |
707 | in the BFD. This could be handled more cleanly by, say, a new | |
708 | section flag; the existing SEC_NEVER_LOAD flag is not the one we | |
709 | want, because that one still implies that the section takes up | |
710 | space in the output file. */ | |
711 | abfd->sections = NULL; | |
712 | ||
713 | /* The native linker seems to just ignore dynamic objects when -r is | |
714 | used. */ | |
715 | if (info->relocateable) | |
716 | return true; | |
717 | ||
718 | /* There's no hope of using a dynamic object which does not exactly | |
719 | match the format of the output file. */ | |
720 | if (info->hash->creator != abfd->xvec) | |
721 | { | |
722 | bfd_set_error (bfd_error_invalid_operation); | |
723 | return false; | |
724 | } | |
725 | ||
726 | /* If this is the first dynamic object, create some new sections to | |
727 | hold dynamic linking information. We need to put these sections | |
728 | somewhere, and the first dynamic object is as good a place as | |
729 | any. The linker script will look for these special section names | |
730 | and put them in the right place in the output file. See | |
731 | include/aout/sun4.h for more details of the dynamic linking | |
732 | information. */ | |
733 | if (sunos_hash_table (info)->dynobj == NULL) | |
734 | { | |
735 | flagword flags; | |
736 | asection *sdyn; | |
737 | ||
738 | sunos_hash_table (info)->dynobj = abfd; | |
739 | ||
740 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; | |
741 | ||
742 | /* The .dynamic section holds the basic dynamic information: the | |
743 | sun4_dynamic structure, the dynamic debugger information, and | |
744 | the sun4_dynamic_link structure. */ | |
745 | s = bfd_make_section (abfd, ".dynamic"); | |
746 | if (s == NULL | |
747 | || ! bfd_set_section_flags (abfd, s, flags) | |
748 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
749 | return false; | |
750 | sdyn = s; | |
751 | ||
752 | /* The .need section holds the list of names of shared objets | |
753 | which must be included at runtime. The address of this | |
754 | section is put in the ld_need field. */ | |
755 | s = bfd_make_section (abfd, ".need"); | |
756 | if (s == NULL | |
757 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
758 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
759 | return false; | |
760 | ||
761 | /* The .rules section holds the path to search for shared | |
762 | objects. The address of this section is put in the ld_rules | |
763 | field. */ | |
764 | s = bfd_make_section (abfd, ".rules"); | |
765 | if (s == NULL | |
766 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
767 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
768 | return false; | |
769 | ||
770 | /* The .got section holds the global offset table. I don't | |
771 | really know how this works, actually. It seems to only be | |
772 | used for PIC code. The address minus four is put in the | |
773 | ld_got field. */ | |
774 | s = bfd_make_section (abfd, ".got"); | |
775 | if (s == NULL | |
776 | || ! bfd_set_section_flags (abfd, s, flags) | |
777 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
778 | return false; | |
779 | s->_raw_size = BYTES_IN_WORD; | |
780 | ||
781 | /* The .plt section holds the procedure linkage table. The | |
782 | address is put in the ld_plt field. */ | |
783 | s = bfd_make_section (abfd, ".plt"); | |
784 | if (s == NULL | |
785 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
786 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
787 | return false; | |
788 | ||
789 | /* The .dynrel section holds the dynamic relocs. The address is | |
790 | put in the ld_rel field. */ | |
791 | s = bfd_make_section (abfd, ".dynrel"); | |
792 | if (s == NULL | |
793 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
794 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
795 | return false; | |
796 | ||
797 | /* The .hash section holds the dynamic hash table. The address | |
798 | is put in the ld_hash field. */ | |
799 | s = bfd_make_section (abfd, ".hash"); | |
800 | if (s == NULL | |
801 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
802 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
803 | return false; | |
804 | ||
805 | /* The .dynsym section holds the dynamic symbols. The address | |
806 | is put in the ld_stab field. */ | |
807 | s = bfd_make_section (abfd, ".dynsym"); | |
808 | if (s == NULL | |
809 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
810 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
811 | return false; | |
812 | ||
813 | /* The .dynstr section holds the dynamic symbol string table. | |
814 | The address is put in the ld_symbols field. */ | |
815 | s = bfd_make_section (abfd, ".dynstr"); | |
816 | if (s == NULL | |
817 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
818 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
819 | return false; | |
820 | } | |
821 | ||
822 | return true; | |
823 | } | |
824 | ||
825 | /* Function to add a single symbol to the linker hash table. This is | |
826 | a wrapper around _bfd_generic_link_add_one_symbol which handles the | |
827 | tweaking needed for dynamic linking support. */ | |
828 | ||
829 | static boolean | |
830 | sunos_add_one_symbol (info, abfd, name, flags, section, value, string, | |
831 | copy, collect, hashp) | |
832 | struct bfd_link_info *info; | |
833 | bfd *abfd; | |
834 | const char *name; | |
835 | flagword flags; | |
836 | asection *section; | |
837 | bfd_vma value; | |
838 | const char *string; | |
839 | boolean copy; | |
840 | boolean collect; | |
841 | struct bfd_link_hash_entry **hashp; | |
842 | { | |
843 | struct sunos_link_hash_entry *h; | |
844 | int new_flag; | |
845 | ||
846 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy, | |
847 | false); | |
848 | if (h == NULL) | |
849 | return false; | |
850 | ||
851 | if (hashp != NULL) | |
852 | *hashp = (struct bfd_link_hash_entry *) h; | |
853 | ||
854 | /* Treat a common symbol in a dynamic object as an undefined symbol. | |
855 | We don't want to allocate space in .bss for it. */ | |
856 | if ((abfd->flags & DYNAMIC) != 0 | |
857 | && section == &bfd_com_section) | |
858 | section = &bfd_und_section; | |
859 | ||
860 | if (section != &bfd_und_section | |
861 | && h->root.root.type != bfd_link_hash_new | |
862 | && h->root.root.type != bfd_link_hash_undefined) | |
863 | { | |
864 | /* We are defining the symbol, and it is already defined. This | |
865 | is a potential multiple definition error. */ | |
866 | if ((abfd->flags & DYNAMIC) != 0) | |
867 | { | |
868 | /* The definition we are adding is from a dynamic object. | |
869 | We do not want this new definition to override the | |
870 | existing definition, so we pretend it is just a | |
871 | reference. */ | |
872 | section = &bfd_und_section; | |
873 | } | |
874 | else if ((h->root.root.type == bfd_link_hash_defined | |
875 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
876 | || (h->root.root.type == bfd_link_hash_common | |
877 | && ((h->root.root.u.c.section->owner->flags & DYNAMIC) | |
878 | != 0))) | |
879 | { | |
880 | /* The existing definition is from a dynamic object. We | |
881 | want to override it with the definition we just found. | |
882 | Clobber the existing definition. */ | |
883 | h->root.root.type = bfd_link_hash_new; | |
884 | } | |
885 | } | |
886 | ||
887 | /* Do the usual procedure for adding a symbol. */ | |
888 | if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, | |
889 | value, string, copy, collect, | |
890 | hashp)) | |
891 | return false; | |
892 | ||
893 | /* Set a flag in the hash table entry indicating the type of | |
894 | reference or definition we just found. Keep a count of the | |
895 | number of dynamic symbols we find. A dynamic symbol is one which | |
896 | is referenced or defined by both a regular object and a shared | |
897 | object. */ | |
898 | if ((abfd->flags & DYNAMIC) == 0) | |
899 | { | |
900 | if (section == &bfd_und_section) | |
901 | new_flag = SUNOS_REF_REGULAR; | |
902 | else | |
903 | new_flag = SUNOS_DEF_REGULAR; | |
904 | } | |
905 | else | |
906 | { | |
907 | if (section == &bfd_und_section) | |
908 | new_flag = SUNOS_REF_DYNAMIC; | |
909 | else | |
910 | new_flag = SUNOS_DEF_DYNAMIC; | |
911 | } | |
912 | h->flags |= new_flag; | |
913 | ||
914 | if (h->dynindx == -1 | |
915 | && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
916 | { | |
917 | ++sunos_hash_table (info)->dynsymcount; | |
918 | h->dynindx = -2; | |
919 | } | |
920 | ||
921 | return true; | |
922 | } | |
923 | ||
924 | /* Record an assignment made to a symbol by a linker script. We need | |
925 | this in case some dynamic object refers to this symbol. */ | |
926 | ||
927 | boolean | |
928 | bfd_sunos_record_link_assignment (output_bfd, info, name) | |
929 | bfd *output_bfd; | |
930 | struct bfd_link_info *info; | |
931 | const char *name; | |
932 | { | |
933 | struct sunos_link_hash_entry *h; | |
934 | ||
935 | /* This is called after we have examined all the input objects. If | |
936 | the symbol does not exist, it merely means that no object refers | |
937 | to it, and we can just ignore it at this point. */ | |
938 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, | |
939 | false, false, false); | |
940 | if (h == NULL) | |
941 | return true; | |
942 | ||
943 | h->flags |= SUNOS_DEF_REGULAR; | |
944 | ||
945 | if (h->dynindx == -1) | |
946 | { | |
947 | ++sunos_hash_table (info)->dynsymcount; | |
948 | h->dynindx = -2; | |
949 | } | |
950 | ||
951 | return true; | |
952 | } | |
953 | ||
954 | /* Set up the sizes and contents of the dynamic sections created in | |
955 | sunos_add_dynamic_symbols. This is called by the SunOS linker | |
956 | emulation before_allocation routine. We must set the sizes of the | |
957 | sections before the linker sets the addresses of the various | |
958 | sections. This unfortunately requires reading all the relocs so | |
959 | that we can work out which ones need to become dynamic relocs. If | |
960 | info->keep_memory is true, we keep the relocs in memory; otherwise, | |
961 | we discard them, and will read them again later. */ | |
962 | ||
963 | boolean | |
964 | bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr, | |
965 | srulesptr) | |
966 | bfd *output_bfd; | |
967 | struct bfd_link_info *info; | |
968 | asection **sdynptr; | |
969 | asection **sneedptr; | |
970 | asection **srulesptr; | |
971 | { | |
972 | bfd *dynobj; | |
973 | size_t dynsymcount; | |
974 | asection *s; | |
975 | size_t bucketcount; | |
976 | size_t hashalloc; | |
977 | size_t i; | |
978 | bfd *sub; | |
979 | ||
980 | *sdynptr = NULL; | |
981 | *sneedptr = NULL; | |
982 | *srulesptr = NULL; | |
983 | ||
984 | dynobj = sunos_hash_table (info)->dynobj; | |
985 | dynsymcount = sunos_hash_table (info)->dynsymcount; | |
986 | ||
987 | /* If there were no dynamic objects in the link, there is nothing to | |
988 | do here. */ | |
989 | if (dynobj == NULL) | |
990 | return true; | |
991 | ||
992 | /* The .dynamic section is always the same size. */ | |
993 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
994 | BFD_ASSERT (s != NULL); | |
995 | s->_raw_size = (sizeof (struct external_sun4_dynamic) | |
996 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE | |
997 | + sizeof (struct external_sun4_dynamic_link)); | |
998 | ||
999 | /* Set the size of the .dynsym and .hash sections. We counted the | |
1000 | number of dynamic symbols as we read the input files. We will | |
1001 | build the dynamic symbol table (.dynsym) and the hash table | |
1002 | (.hash) when we build the final symbol table, because until then | |
1003 | we do not know the correct value to give the symbols. We build | |
1004 | the dynamic symbol string table (.dynstr) in a traversal of the | |
1005 | symbol table using sunos_scan_dynamic_symbol. */ | |
1006 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1007 | BFD_ASSERT (s != NULL); | |
1008 | s->_raw_size = dynsymcount * sizeof (struct external_nlist); | |
1009 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1010 | if (s->contents == NULL && s->_raw_size != 0) | |
1011 | { | |
1012 | bfd_set_error (bfd_error_no_memory); | |
1013 | return false; | |
1014 | } | |
1015 | ||
1016 | /* The number of buckets is just the number of symbols divided by | |
1017 | four. The compute the final size of the hash table, we must | |
1018 | actually compute the hash table. Normally we need exactly as | |
1019 | many entries in the hash table as there are dynamic symbols, but | |
1020 | if some of the buckets are not used we will need additional | |
1021 | entries. In the worse case, every symbol will hash to the same | |
1022 | bucket, and we will need BUCKETCOUNT - 1 extra entries. */ | |
1023 | if (dynsymcount >= 4) | |
1024 | bucketcount = dynsymcount / 4; | |
1025 | else if (dynsymcount > 0) | |
1026 | bucketcount = dynsymcount; | |
1027 | else | |
1028 | bucketcount = 1; | |
1029 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1030 | BFD_ASSERT (s != NULL); | |
1031 | hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE; | |
a1ade84e | 1032 | s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc); |
e85e8bfe ILT |
1033 | if (s->contents == NULL && dynsymcount > 0) |
1034 | { | |
1035 | bfd_set_error (bfd_error_no_memory); | |
1036 | return false; | |
1037 | } | |
1038 | memset (s->contents, 0, hashalloc); | |
1039 | for (i = 0; i < bucketcount; i++) | |
1040 | PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE); | |
1041 | s->_raw_size = bucketcount * HASH_ENTRY_SIZE; | |
1042 | ||
1043 | sunos_hash_table (info)->bucketcount = bucketcount; | |
1044 | ||
1045 | /* Look through all the input BFD's and read their relocs. It would | |
1046 | be better if we didn't have to do this, but there is no other way | |
1047 | to determine the number of dynamic relocs we need, and, more | |
1048 | importantly, there is no other way to know which symbols should | |
1049 | get an entry in the procedure linkage table. */ | |
1050 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
1051 | { | |
1052 | if ((sub->flags & DYNAMIC) == 0) | |
1053 | { | |
1054 | if (! sunos_scan_relocs (info, sub, obj_textsec (sub), | |
1055 | exec_hdr (sub)->a_trsize) | |
1056 | || ! sunos_scan_relocs (info, sub, obj_datasec (sub), | |
1057 | exec_hdr (sub)->a_drsize)) | |
1058 | return false; | |
1059 | } | |
1060 | } | |
1061 | ||
1062 | /* Scan all the symbols, place them in the dynamic symbol table, and | |
1063 | build the dynamic hash table. We reuse dynsymcount as a counter | |
1064 | for the number of symbols we have added so far. */ | |
1065 | sunos_hash_table (info)->dynsymcount = 0; | |
1066 | sunos_link_hash_traverse (sunos_hash_table (info), | |
1067 | sunos_scan_dynamic_symbol, | |
1068 | (PTR) info); | |
1069 | BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount); | |
1070 | ||
1071 | /* The SunOS native linker seems to align the total size of the | |
1072 | symbol strings to a multiple of 8. I don't know if this is | |
1073 | important, but it can't hurt much. */ | |
1074 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1075 | BFD_ASSERT (s != NULL); | |
1076 | if ((s->_raw_size & 7) != 0) | |
1077 | { | |
1078 | bfd_size_type add; | |
1079 | bfd_byte *contents; | |
1080 | ||
1081 | add = 8 - (s->_raw_size & 7); | |
a1ade84e | 1082 | contents = (bfd_byte *) realloc (s->contents, s->_raw_size + add); |
e85e8bfe ILT |
1083 | if (contents == NULL) |
1084 | { | |
1085 | bfd_set_error (bfd_error_no_memory); | |
1086 | return false; | |
1087 | } | |
1088 | memset (contents + s->_raw_size, 0, add); | |
1089 | s->contents = contents; | |
1090 | s->_raw_size += add; | |
1091 | } | |
1092 | ||
1093 | /* Now that we have worked out the sizes of the procedure linkage | |
1094 | table and the dynamic relocs, allocate storage for them. */ | |
1095 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
1096 | BFD_ASSERT (s != NULL); | |
1097 | if (s->_raw_size != 0) | |
1098 | { | |
a1ade84e | 1099 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1100 | if (s->contents == NULL) |
1101 | { | |
1102 | bfd_set_error (bfd_error_no_memory); | |
1103 | return false; | |
1104 | } | |
1105 | ||
1106 | /* Fill in the first entry in the table. */ | |
1107 | switch (bfd_get_arch (dynobj)) | |
1108 | { | |
1109 | case bfd_arch_sparc: | |
1110 | memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE); | |
1111 | break; | |
1112 | ||
1113 | case bfd_arch_m68k: | |
1114 | memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE); | |
1115 | break; | |
1116 | ||
1117 | default: | |
1118 | abort (); | |
1119 | } | |
1120 | } | |
1121 | ||
1122 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1123 | if (s->_raw_size != 0) | |
1124 | { | |
a1ade84e | 1125 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1126 | if (s->contents == NULL) |
1127 | { | |
1128 | bfd_set_error (bfd_error_no_memory); | |
1129 | return false; | |
1130 | } | |
1131 | } | |
1132 | /* We use the reloc_count field to keep track of how many of the | |
1133 | relocs we have output so far. */ | |
1134 | s->reloc_count = 0; | |
1135 | ||
1136 | /* Make space for the global offset table. */ | |
1137 | s = bfd_get_section_by_name (dynobj, ".got"); | |
a1ade84e | 1138 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); |
e85e8bfe ILT |
1139 | if (s->contents == NULL) |
1140 | { | |
1141 | bfd_set_error (bfd_error_no_memory); | |
1142 | return false; | |
1143 | } | |
1144 | ||
1145 | *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1146 | *sneedptr = bfd_get_section_by_name (dynobj, ".need"); | |
1147 | *srulesptr = bfd_get_section_by_name (dynobj, ".rules"); | |
1148 | ||
1149 | return true; | |
1150 | } | |
1151 | ||
1152 | /* Scan the relocs for an input section. */ | |
1153 | ||
1154 | static boolean | |
1155 | sunos_scan_relocs (info, abfd, sec, rel_size) | |
1156 | struct bfd_link_info *info; | |
1157 | bfd *abfd; | |
1158 | asection *sec; | |
1159 | bfd_size_type rel_size; | |
1160 | { | |
1161 | PTR relocs; | |
1162 | PTR free_relocs = NULL; | |
1163 | ||
1164 | if (rel_size == 0) | |
1165 | return true; | |
1166 | ||
1167 | if (! info->keep_memory) | |
1168 | relocs = free_relocs = malloc (rel_size); | |
1169 | else | |
1170 | { | |
1171 | aout_section_data (sec) = | |
1172 | ((struct aout_section_data_struct *) | |
1173 | bfd_alloc (abfd, sizeof (struct aout_section_data_struct))); | |
1174 | if (aout_section_data (sec) == NULL) | |
1175 | relocs = NULL; | |
1176 | else | |
1177 | relocs = aout_section_data (sec)->relocs = malloc (rel_size); | |
1178 | } | |
1179 | if (relocs == NULL) | |
1180 | { | |
1181 | bfd_set_error (bfd_error_no_memory); | |
1182 | return false; | |
1183 | } | |
1184 | ||
1185 | if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0 | |
1186 | || bfd_read (relocs, 1, rel_size, abfd) != rel_size) | |
1187 | goto error_return; | |
1188 | ||
1189 | if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE) | |
1190 | { | |
1191 | if (! sunos_scan_std_relocs (info, abfd, sec, | |
1192 | (struct reloc_std_external *) relocs, | |
1193 | rel_size)) | |
1194 | goto error_return; | |
1195 | } | |
1196 | else | |
1197 | { | |
1198 | if (! sunos_scan_ext_relocs (info, abfd, sec, | |
1199 | (struct reloc_ext_external *) relocs, | |
1200 | rel_size)) | |
1201 | goto error_return; | |
1202 | } | |
1203 | ||
1204 | if (free_relocs != NULL) | |
1205 | free (free_relocs); | |
1206 | ||
1207 | return true; | |
1208 | ||
1209 | error_return: | |
1210 | if (free_relocs != NULL) | |
1211 | free (free_relocs); | |
1212 | return false; | |
1213 | } | |
1214 | ||
1215 | /* Scan the relocs for an input section using standard relocs. We | |
1216 | need to figure out what to do for each reloc against a dynamic | |
1217 | symbol. If the symbol is in the .text section, an entry is made in | |
1218 | the procedure linkage table. Note that this will do the wrong | |
1219 | thing if the symbol is actually data; I don't think the Sun 3 | |
1220 | native linker handles this case correctly either. If the symbol is | |
1221 | not in the .text section, we must preserve the reloc as a dynamic | |
1222 | reloc. FIXME: We should also handle the PIC relocs here by | |
1223 | building global offset table entries. */ | |
1224 | ||
1225 | static boolean | |
1226 | sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size) | |
1227 | struct bfd_link_info *info; | |
1228 | bfd *abfd; | |
1229 | asection *sec; | |
1230 | const struct reloc_std_external *relocs; | |
1231 | bfd_size_type rel_size; | |
1232 | { | |
1233 | bfd *dynobj; | |
1234 | asection *splt; | |
1235 | asection *srel; | |
1236 | struct sunos_link_hash_entry **sym_hashes; | |
1237 | const struct reloc_std_external *rel, *relend; | |
1238 | ||
1239 | /* We only know how to handle m68k plt entries. */ | |
1240 | if (bfd_get_arch (abfd) != bfd_arch_m68k) | |
1241 | { | |
1242 | bfd_set_error (bfd_error_invalid_target); | |
1243 | return false; | |
1244 | } | |
1245 | ||
1246 | dynobj = sunos_hash_table (info)->dynobj; | |
1247 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1248 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1249 | BFD_ASSERT (splt != NULL && srel != NULL); | |
1250 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); | |
1251 | ||
1252 | relend = relocs + rel_size / RELOC_STD_SIZE; | |
1253 | for (rel = relocs; rel < relend; rel++) | |
1254 | { | |
1255 | int r_index; | |
1256 | struct sunos_link_hash_entry *h; | |
1257 | ||
1258 | /* We only want relocs against external symbols. */ | |
1259 | if (abfd->xvec->header_byteorder_big_p) | |
1260 | { | |
1261 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0) | |
1262 | continue; | |
1263 | } | |
1264 | else | |
1265 | { | |
1266 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0) | |
1267 | continue; | |
1268 | } | |
1269 | ||
1270 | /* Get the symbol index. */ | |
1271 | if (abfd->xvec->header_byteorder_big_p) | |
1272 | { | |
1273 | r_index = ((rel->r_index[0] << 16) | |
1274 | | (rel->r_index[1] << 8) | |
1275 | | rel->r_index[2]); | |
1276 | } | |
1277 | else | |
1278 | { | |
1279 | r_index = ((rel->r_index[2] << 16) | |
1280 | | (rel->r_index[1] << 8) | |
1281 | | rel->r_index[0]); | |
1282 | } | |
1283 | ||
1284 | /* Get the hash table entry. */ | |
1285 | h = sym_hashes[r_index]; | |
1286 | if (h == NULL) | |
1287 | { | |
1288 | /* This should not normally happen, but it will in any case | |
1289 | be caught in the relocation phase. */ | |
1290 | continue; | |
1291 | } | |
1292 | ||
1293 | /* At this point common symbols have already been allocated, so | |
1294 | we don't have to worry about them. We need to consider that | |
1295 | we may have already seen this symbol and marked it undefined; | |
1296 | if the symbols is really undefined, then SUNOS_DEF_DYNAMIC | |
1297 | will be zero. */ | |
1298 | if (h->root.root.type != bfd_link_hash_defined | |
1299 | && h->root.root.type != bfd_link_hash_undefined) | |
1300 | continue; | |
1301 | ||
1302 | if ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1303 | || (h->flags & SUNOS_DEF_REGULAR) != 0) | |
1304 | continue; | |
1305 | ||
1306 | BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0); | |
1307 | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined | |
1308 | ? (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0 | |
1309 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0); | |
1310 | ||
1311 | /* This reloc is against a symbol defined only by a dynamic | |
1312 | object. */ | |
1313 | ||
1314 | if (h->root.root.type == bfd_link_hash_undefined) | |
1315 | { | |
1316 | /* Presumably this symbol was marked as being undefined by | |
1317 | an earlier reloc. */ | |
1318 | srel->_raw_size += RELOC_STD_SIZE; | |
1319 | } | |
1320 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1321 | { | |
1322 | bfd *sub; | |
1323 | ||
1324 | /* This reloc is not in the .text section. It must be | |
1325 | copied into the dynamic relocs. We mark the symbol as | |
1326 | being undefined. */ | |
1327 | srel->_raw_size += RELOC_STD_SIZE; | |
1328 | sub = h->root.root.u.def.section->owner; | |
1329 | h->root.root.type = bfd_link_hash_undefined; | |
1330 | h->root.root.u.undef.abfd = sub; | |
1331 | } | |
1332 | else | |
1333 | { | |
1334 | /* This symbol is in the .text section. We must give it an | |
1335 | entry in the procedure linkage table, if we have not | |
1336 | already done so. We change the definition of the symbol | |
1337 | to the .plt section; this will cause relocs against it to | |
1338 | be handled correctly. */ | |
1339 | if (h->root.root.u.def.section != splt) | |
1340 | { | |
1341 | if (splt->_raw_size == 0) | |
1342 | splt->_raw_size = M68K_PLT_ENTRY_SIZE; | |
1343 | h->root.root.u.def.section = splt; | |
1344 | h->root.root.u.def.value = splt->_raw_size; | |
1345 | splt->_raw_size += M68K_PLT_ENTRY_SIZE; | |
1346 | ||
1347 | /* We will also need a dynamic reloc entry. */ | |
1348 | srel->_raw_size += RELOC_STD_SIZE; | |
1349 | } | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | return true; | |
1354 | } | |
1355 | ||
1356 | /* Scan the relocs for an input section using extended relocs. We | |
1357 | need to figure out what to do for each reloc against a dynamic | |
1358 | symbol. If the reloc is a WDISP30, and the symbol is in the .text | |
1359 | section, an entry is made in the procedure linkage table. | |
1360 | Otherwise, we must preserve the reloc as a dynamic reloc. FIXME: | |
1361 | We should also handle the PIC relocs here by building global offset | |
1362 | table entries. */ | |
1363 | ||
1364 | static boolean | |
1365 | sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size) | |
1366 | struct bfd_link_info *info; | |
1367 | bfd *abfd; | |
1368 | asection *sec; | |
1369 | const struct reloc_ext_external *relocs; | |
1370 | bfd_size_type rel_size; | |
1371 | { | |
1372 | bfd *dynobj; | |
1373 | asection *splt; | |
1374 | asection *srel; | |
1375 | struct sunos_link_hash_entry **sym_hashes; | |
1376 | const struct reloc_ext_external *rel, *relend; | |
1377 | ||
1378 | /* We only know how to handle SPARC plt entries. */ | |
1379 | if (bfd_get_arch (abfd) != bfd_arch_sparc) | |
1380 | { | |
1381 | bfd_set_error (bfd_error_invalid_target); | |
1382 | return false; | |
1383 | } | |
1384 | ||
1385 | dynobj = sunos_hash_table (info)->dynobj; | |
1386 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1387 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1388 | BFD_ASSERT (splt != NULL && srel != NULL); | |
1389 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); | |
1390 | ||
1391 | relend = relocs + rel_size / RELOC_EXT_SIZE; | |
1392 | for (rel = relocs; rel < relend; rel++) | |
1393 | { | |
1394 | int r_index; | |
1395 | int r_type; | |
1396 | struct sunos_link_hash_entry *h; | |
1397 | ||
1398 | /* We only want relocs against external symbols. */ | |
1399 | if (abfd->xvec->header_byteorder_big_p) | |
1400 | { | |
1401 | if ((rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG) == 0) | |
1402 | continue; | |
1403 | } | |
1404 | else | |
1405 | { | |
1406 | if ((rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE) == 0) | |
1407 | continue; | |
1408 | } | |
1409 | ||
1410 | /* Get the symbol index and reloc type. */ | |
1411 | if (abfd->xvec->header_byteorder_big_p) | |
1412 | { | |
1413 | r_index = ((rel->r_index[0] << 16) | |
1414 | | (rel->r_index[1] << 8) | |
1415 | | rel->r_index[2]); | |
1416 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
1417 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
1418 | } | |
1419 | else | |
1420 | { | |
1421 | r_index = ((rel->r_index[2] << 16) | |
1422 | | (rel->r_index[1] << 8) | |
1423 | | rel->r_index[0]); | |
1424 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
1425 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
1426 | } | |
1427 | ||
1428 | /* Get the hash table entry. */ | |
1429 | h = sym_hashes[r_index]; | |
1430 | if (h == NULL) | |
1431 | { | |
1432 | /* This should not normally happen, but it will in any case | |
1433 | be caught in the relocation phase. */ | |
1434 | continue; | |
1435 | } | |
1436 | ||
1437 | /* At this point common symbols have already been allocated, so | |
1438 | we don't have to worry about them. We need to consider that | |
1439 | we may have already seen this symbol and marked it undefined; | |
1440 | if the symbols is really undefined, then SUNOS_DEF_DYNAMIC | |
1441 | will be zero. */ | |
1442 | if (h->root.root.type != bfd_link_hash_defined | |
1443 | && h->root.root.type != bfd_link_hash_undefined) | |
1444 | continue; | |
1445 | ||
1446 | if ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1447 | || (h->flags & SUNOS_DEF_REGULAR) != 0) | |
1448 | continue; | |
1449 | ||
1450 | BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0); | |
1451 | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined | |
1452 | ? (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0 | |
1453 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0); | |
1454 | ||
1455 | /* This reloc is against a symbol defined only by a dynamic | |
1456 | object. */ | |
1457 | ||
1458 | if (h->root.root.type == bfd_link_hash_undefined) | |
1459 | { | |
1460 | /* Presumably this symbol was marked as being undefined by | |
1461 | an earlier reloc. */ | |
1462 | srel->_raw_size += RELOC_EXT_SIZE; | |
1463 | } | |
1464 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1465 | { | |
1466 | bfd *sub; | |
1467 | ||
1468 | /* This reloc is not in the .text section. It must be | |
1469 | copied into the dynamic relocs. We mark the symbol as | |
1470 | being undefined. */ | |
1471 | srel->_raw_size += RELOC_EXT_SIZE; | |
1472 | sub = h->root.root.u.def.section->owner; | |
1473 | h->root.root.type = bfd_link_hash_undefined; | |
1474 | h->root.root.u.undef.abfd = sub; | |
1475 | } | |
1476 | else | |
1477 | { | |
1478 | /* This symbol is in the .text section. We must give it an | |
1479 | entry in the procedure linkage table, if we have not | |
1480 | already done so. We change the definition of the symbol | |
1481 | to the .plt section; this will cause relocs against it to | |
1482 | be handled correctly. */ | |
1483 | if (h->root.root.u.def.section != splt) | |
1484 | { | |
1485 | if (splt->_raw_size == 0) | |
1486 | splt->_raw_size = SPARC_PLT_ENTRY_SIZE; | |
1487 | h->root.root.u.def.section = splt; | |
1488 | h->root.root.u.def.value = splt->_raw_size; | |
1489 | splt->_raw_size += SPARC_PLT_ENTRY_SIZE; | |
1490 | ||
1491 | /* We will also need a dynamic reloc entry. */ | |
1492 | srel->_raw_size += RELOC_EXT_SIZE; | |
1493 | } | |
1494 | } | |
1495 | } | |
1496 | ||
1497 | return true; | |
1498 | } | |
1499 | ||
1500 | /* Build the hash table of dynamic symbols, and to mark as written all | |
1501 | symbols from dynamic objects which we do not plan to write out. */ | |
1502 | ||
1503 | static boolean | |
1504 | sunos_scan_dynamic_symbol (h, data) | |
1505 | struct sunos_link_hash_entry *h; | |
1506 | PTR data; | |
1507 | { | |
1508 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
1509 | ||
1510 | /* Set the written flag for symbols we do not want to write out as | |
1511 | part of the regular symbol table. This is all symbols which are | |
1512 | not defined in a regular object file. For some reason symbols | |
1513 | which are referenced by a regular object and defined by a dynamic | |
1514 | object do not seem to show up in the regular symbol table. */ | |
1515 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1516 | h->root.root.written = true; | |
1517 | ||
1518 | /* If this symbol is defined by a dynamic object and referenced by a | |
1519 | regular object, see whether we gave it a reasonable value while | |
1520 | scanning the relocs. */ | |
1521 | ||
1522 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 | |
1523 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1524 | && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1525 | { | |
1526 | if (h->root.root.type == bfd_link_hash_defined | |
1527 | && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
1528 | && h->root.root.u.def.section->output_section == NULL) | |
1529 | { | |
1530 | bfd *sub; | |
1531 | ||
1532 | /* This symbol is currently defined in a dynamic section | |
1533 | which is not being put into the output file. This | |
1534 | implies that there is no reloc against the symbol. I'm | |
1535 | not sure why this case would ever occur. In any case, we | |
1536 | change the symbol to be undefined. */ | |
1537 | sub = h->root.root.u.def.section->owner; | |
1538 | h->root.root.type = bfd_link_hash_undefined; | |
1539 | h->root.root.u.undef.abfd = sub; | |
1540 | } | |
1541 | } | |
1542 | ||
1543 | /* If this symbol is defined or referenced by a regular file, add it | |
1544 | to the dynamic symbols. */ | |
1545 | if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1546 | { | |
1547 | asection *s; | |
1548 | size_t len; | |
1549 | bfd_byte *contents; | |
1550 | unsigned char *name; | |
1551 | unsigned long hash; | |
1552 | bfd *dynobj; | |
1553 | ||
1554 | BFD_ASSERT (h->dynindx == -2); | |
1555 | ||
1556 | h->dynindx = sunos_hash_table (info)->dynsymcount; | |
1557 | ++sunos_hash_table (info)->dynsymcount; | |
1558 | ||
1559 | len = strlen (h->root.root.root.string); | |
1560 | ||
1561 | /* We don't bother to construct a BFD hash table for the strings | |
1562 | which are the names of the dynamic symbols. Using a hash | |
1563 | table for the regular symbols is beneficial, because the | |
1564 | regular symbols includes the debugging symbols, which have | |
1565 | long names and are often duplicated in several object files. | |
1566 | There are no debugging symbols in the dynamic symbols. */ | |
1567 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, | |
1568 | ".dynstr"); | |
1569 | BFD_ASSERT (s != NULL); | |
1570 | if (s->contents == NULL) | |
a1ade84e | 1571 | contents = (bfd_byte *) malloc (len + 1); |
e85e8bfe | 1572 | else |
a1ade84e | 1573 | contents = (bfd_byte *) realloc (s->contents, s->_raw_size + len + 1); |
e85e8bfe ILT |
1574 | if (contents == NULL) |
1575 | { | |
1576 | bfd_set_error (bfd_error_no_memory); | |
1577 | return false; | |
1578 | } | |
1579 | s->contents = contents; | |
1580 | ||
1581 | h->dynstr_index = s->_raw_size; | |
1582 | strcpy (contents + s->_raw_size, h->root.root.root.string); | |
1583 | s->_raw_size += len + 1; | |
1584 | ||
1585 | /* Add it to the dynamic hash table. */ | |
1586 | name = (unsigned char *) h->root.root.root.string; | |
1587 | hash = 0; | |
1588 | while (*name != '\0') | |
1589 | hash = (hash << 1) + *name++; | |
1590 | hash &= 0x7fffffff; | |
1591 | hash %= sunos_hash_table (info)->bucketcount; | |
1592 | ||
1593 | dynobj = sunos_hash_table (info)->dynobj; | |
1594 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1595 | BFD_ASSERT (s != NULL); | |
1596 | ||
1597 | if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1) | |
1598 | PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE); | |
1599 | else | |
1600 | { | |
1601 | bfd_vma next; | |
1602 | ||
1603 | next = GET_WORD (dynobj, | |
1604 | (s->contents | |
1605 | + hash * HASH_ENTRY_SIZE | |
1606 | + BYTES_IN_WORD)); | |
1607 | PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE, | |
1608 | s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
1609 | PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size); | |
1610 | PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD); | |
1611 | s->_raw_size += HASH_ENTRY_SIZE; | |
1612 | } | |
1613 | } | |
1614 | ||
1615 | return true; | |
1616 | } | |
1617 | ||
1618 | /* Link a dynamic object. We actually don't have anything to do at | |
1619 | this point. This entry point exists to prevent the regular linker | |
1620 | code from doing anything with the object. */ | |
1621 | ||
1622 | /*ARGSUSED*/ | |
1623 | static boolean | |
1624 | sunos_link_dynamic_object (info, abfd) | |
1625 | struct bfd_link_info *info; | |
1626 | bfd *abfd; | |
1627 | { | |
1628 | return true; | |
1629 | } | |
1630 | ||
1631 | ||
1632 | /* Write out a dynamic symbol. This is called by the final traversal | |
1633 | over the symbol table. */ | |
1634 | ||
1635 | static boolean | |
1636 | sunos_write_dynamic_symbol (output_bfd, info, harg) | |
1637 | bfd *output_bfd; | |
1638 | struct bfd_link_info *info; | |
1639 | struct aout_link_hash_entry *harg; | |
1640 | { | |
1641 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
1642 | boolean plt; | |
1643 | int type; | |
1644 | bfd_vma val; | |
1645 | asection *s; | |
1646 | struct external_nlist *outsym; | |
1647 | ||
1648 | if (h->dynindx < 0) | |
1649 | return true; | |
1650 | ||
1651 | plt = false; | |
1652 | switch (h->root.root.type) | |
1653 | { | |
1654 | default: | |
1655 | case bfd_link_hash_new: | |
1656 | abort (); | |
1657 | /* Avoid variable not initialized warnings. */ | |
1658 | return true; | |
1659 | case bfd_link_hash_undefined: | |
1660 | type = N_UNDF | N_EXT; | |
1661 | val = 0; | |
1662 | break; | |
1663 | case bfd_link_hash_defined: | |
1664 | { | |
1665 | asection *sec; | |
1666 | asection *output_section; | |
1667 | ||
1668 | sec = h->root.root.u.def.section; | |
1669 | output_section = sec->output_section; | |
1670 | BFD_ASSERT (output_section == &bfd_abs_section | |
1671 | || output_section->owner == output_bfd); | |
1672 | if (strcmp (sec->name, ".plt") == 0) | |
1673 | { | |
1674 | plt = true; | |
1675 | type = N_UNDF | N_EXT; | |
1676 | val = 0; | |
1677 | } | |
1678 | else | |
1679 | { | |
1680 | if (output_section == obj_textsec (output_bfd)) | |
1681 | type = N_TEXT | N_EXT; | |
1682 | else if (output_section == obj_datasec (output_bfd)) | |
1683 | type = N_DATA | N_EXT; | |
1684 | else if (output_section == obj_bsssec (output_bfd)) | |
1685 | type = N_BSS | N_EXT; | |
1686 | else | |
1687 | type = N_ABS | N_EXT; | |
1688 | val = (h->root.root.u.def.value | |
1689 | + output_section->vma | |
1690 | + sec->output_offset); | |
1691 | } | |
1692 | } | |
1693 | break; | |
1694 | case bfd_link_hash_common: | |
1695 | type = N_UNDF | N_EXT; | |
1696 | val = h->root.root.u.c.size; | |
1697 | break; | |
1698 | case bfd_link_hash_indirect: | |
1699 | case bfd_link_hash_warning: | |
1700 | /* FIXME: Ignore these for now. The circumstances under which | |
1701 | they should be written out are not clear to me. */ | |
1702 | return true; | |
1703 | } | |
1704 | ||
1705 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym"); | |
1706 | BFD_ASSERT (s != NULL); | |
1707 | outsym = ((struct external_nlist *) | |
1708 | (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE)); | |
1709 | ||
1710 | bfd_h_put_8 (output_bfd, type, outsym->e_type); | |
1711 | bfd_h_put_8 (output_bfd, 0, outsym->e_other); | |
1712 | ||
1713 | /* FIXME: The native linker doesn't use 0 for desc. It seems to use | |
1714 | one less than the desc value in the shared library, although that | |
1715 | seems unlikely. */ | |
1716 | bfd_h_put_16 (output_bfd, 0, outsym->e_desc); | |
1717 | ||
1718 | PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx); | |
1719 | PUT_WORD (output_bfd, val, outsym->e_value); | |
1720 | ||
1721 | /* If this symbol is in the procedure linkage table, fill in the | |
1722 | table entry. */ | |
1723 | if (plt) | |
1724 | { | |
1725 | bfd_byte *p; | |
1726 | asection *s; | |
1727 | bfd_vma r_address; | |
1728 | ||
1729 | p = h->root.root.u.def.section->contents + h->root.root.u.def.value; | |
1730 | ||
1731 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynrel"); | |
1732 | BFD_ASSERT (s != NULL); | |
1733 | ||
cd779d01 ILT |
1734 | r_address = (h->root.root.u.def.section->output_section->vma |
1735 | + h->root.root.u.def.section->output_offset | |
1736 | + h->root.root.u.def.value); | |
1737 | ||
e85e8bfe ILT |
1738 | switch (bfd_get_arch (output_bfd)) |
1739 | { | |
1740 | case bfd_arch_sparc: | |
1741 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p); | |
1742 | bfd_put_32 (output_bfd, | |
1743 | (SPARC_PLT_ENTRY_WORD1 | |
1744 | + (((- (h->root.root.u.def.value + 4) >> 2) | |
1745 | & 0x3fffffff))), | |
1746 | p + 4); | |
1747 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count, | |
1748 | p + 8); | |
1749 | break; | |
1750 | ||
1751 | case bfd_arch_m68k: | |
1752 | bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p); | |
1753 | bfd_put_32 (output_bfd, (- (h->root.root.u.def.value + 2)), p + 2); | |
1754 | bfd_put_16 (output_bfd, s->reloc_count, p + 6); | |
cd779d01 | 1755 | r_address += 2; |
e85e8bfe ILT |
1756 | break; |
1757 | ||
1758 | default: | |
1759 | abort (); | |
1760 | } | |
1761 | ||
1762 | /* We also need to add a jump table reloc. */ | |
1763 | p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd); | |
e85e8bfe ILT |
1764 | if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE) |
1765 | { | |
1766 | struct reloc_std_external *srel; | |
1767 | ||
1768 | srel = (struct reloc_std_external *) p; | |
1769 | PUT_WORD (output_bfd, r_address, srel->r_address); | |
1770 | if (output_bfd->xvec->header_byteorder_big_p) | |
1771 | { | |
1772 | srel->r_index[0] = h->dynindx >> 16; | |
1773 | srel->r_index[1] = h->dynindx >> 8; | |
1774 | srel->r_index[2] = h->dynindx; | |
1775 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG | |
1776 | | RELOC_STD_BITS_JMPTABLE_BIG); | |
1777 | } | |
1778 | else | |
1779 | { | |
1780 | srel->r_index[2] = h->dynindx >> 16; | |
1781 | srel->r_index[1] = h->dynindx >> 8; | |
1782 | srel->r_index[0] = h->dynindx; | |
1783 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE | |
1784 | | RELOC_STD_BITS_JMPTABLE_LITTLE); | |
1785 | } | |
1786 | } | |
1787 | else | |
1788 | { | |
1789 | struct reloc_ext_external *erel; | |
1790 | ||
1791 | erel = (struct reloc_ext_external *) p; | |
1792 | PUT_WORD (output_bfd, r_address, erel->r_address); | |
1793 | if (output_bfd->xvec->header_byteorder_big_p) | |
1794 | { | |
1795 | erel->r_index[0] = h->dynindx >> 16; | |
1796 | erel->r_index[1] = h->dynindx >> 8; | |
1797 | erel->r_index[2] = h->dynindx; | |
1798 | erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_BIG | |
1799 | | (22 << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
1800 | } | |
1801 | else | |
1802 | { | |
1803 | erel->r_index[2] = h->dynindx >> 16; | |
1804 | erel->r_index[1] = h->dynindx >> 8; | |
1805 | erel->r_index[0] = h->dynindx; | |
1806 | erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_LITTLE | |
1807 | | (22 << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
1808 | } | |
1809 | PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend); | |
1810 | } | |
1811 | ||
1812 | ++s->reloc_count; | |
1813 | } | |
1814 | ||
1815 | return true; | |
1816 | } | |
1817 | ||
1818 | /* This is called for each reloc against an external symbol. If this | |
1819 | is a reloc which are are going to copy as a dynamic reloc, then | |
1820 | copy it over, and tell the caller to not bother processing this | |
1821 | reloc. */ | |
1822 | ||
1823 | /*ARGSUSED*/ | |
1824 | static boolean | |
1825 | sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc, skip) | |
1826 | struct bfd_link_info *info; | |
1827 | bfd *input_bfd; | |
1828 | asection *input_section; | |
1829 | struct aout_link_hash_entry *harg; | |
1830 | PTR reloc; | |
1831 | boolean *skip; | |
1832 | { | |
1833 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
1834 | bfd *dynobj; | |
1835 | asection *srel; | |
1836 | bfd_byte *p; | |
1837 | ||
1838 | *skip = false; | |
1839 | ||
1840 | dynobj = sunos_hash_table (info)->dynobj; | |
1841 | ||
1842 | if (dynobj == NULL | |
1843 | || h->dynindx == -1 | |
1844 | || h->root.root.type != bfd_link_hash_undefined | |
1845 | || (h->flags & SUNOS_DEF_REGULAR) != 0 | |
1846 | || (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1847 | || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0) | |
1848 | return true; | |
1849 | ||
1850 | /* It looks this is a reloc we are supposed to copy. */ | |
1851 | ||
1852 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1853 | BFD_ASSERT (srel != NULL); | |
1854 | ||
1855 | p = srel->contents + srel->reloc_count * obj_reloc_entry_size (dynobj); | |
1856 | ||
1857 | /* Copy the reloc over. */ | |
1858 | memcpy (p, reloc, obj_reloc_entry_size (dynobj)); | |
1859 | ||
1860 | /* Adjust the address and symbol index. */ | |
1861 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
1862 | { | |
1863 | struct reloc_std_external *srel; | |
1864 | ||
1865 | srel = (struct reloc_std_external *) p; | |
1866 | PUT_WORD (dynobj, | |
1867 | (GET_WORD (dynobj, srel->r_address) | |
1868 | + input_section->output_section->vma | |
1869 | + input_section->output_offset), | |
1870 | srel->r_address); | |
1871 | if (dynobj->xvec->header_byteorder_big_p) | |
1872 | { | |
1873 | srel->r_index[0] = h->dynindx >> 16; | |
1874 | srel->r_index[1] = h->dynindx >> 8; | |
1875 | srel->r_index[2] = h->dynindx; | |
1876 | } | |
1877 | else | |
1878 | { | |
1879 | srel->r_index[2] = h->dynindx >> 16; | |
1880 | srel->r_index[1] = h->dynindx >> 8; | |
1881 | srel->r_index[0] = h->dynindx; | |
1882 | } | |
1883 | } | |
1884 | else | |
1885 | { | |
1886 | struct reloc_ext_external *erel; | |
1887 | ||
1888 | erel = (struct reloc_ext_external *) p; | |
1889 | PUT_WORD (dynobj, | |
1890 | (GET_WORD (dynobj, erel->r_address) | |
1891 | + input_section->output_section->vma | |
1892 | + input_section->output_offset), | |
1893 | erel->r_address); | |
1894 | if (dynobj->xvec->header_byteorder_big_p) | |
1895 | { | |
1896 | erel->r_index[0] = h->dynindx >> 16; | |
1897 | erel->r_index[1] = h->dynindx >> 8; | |
1898 | erel->r_index[2] = h->dynindx; | |
1899 | } | |
1900 | else | |
1901 | { | |
1902 | erel->r_index[2] = h->dynindx >> 16; | |
1903 | erel->r_index[1] = h->dynindx >> 8; | |
1904 | erel->r_index[0] = h->dynindx; | |
1905 | } | |
1906 | } | |
1907 | ||
1908 | ++srel->reloc_count; | |
1909 | ||
1910 | *skip = true; | |
1911 | ||
1912 | return true; | |
1913 | } | |
1914 | ||
1915 | /* Finish up the dynamic linking information. */ | |
1916 | ||
1917 | static boolean | |
1918 | sunos_finish_dynamic_link (abfd, info) | |
1919 | bfd *abfd; | |
1920 | struct bfd_link_info *info; | |
1921 | { | |
1922 | bfd *dynobj; | |
1923 | asection *o; | |
1924 | asection *s; | |
1925 | asection *sdyn; | |
1926 | struct external_sun4_dynamic esd; | |
1927 | struct external_sun4_dynamic_link esdl; | |
1928 | ||
1929 | dynobj = sunos_hash_table (info)->dynobj; | |
1930 | if (dynobj == NULL) | |
1931 | return true; | |
1932 | ||
1933 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1934 | BFD_ASSERT (sdyn != NULL); | |
1935 | ||
1936 | /* Finish up the .need section. The linker emulation code filled it | |
1937 | in, but with offsets from the start of the section instead of | |
1938 | real addresses. Now that we know the section location, we can | |
1939 | fill in the final values. */ | |
1940 | s = bfd_get_section_by_name (dynobj, ".need"); | |
1941 | BFD_ASSERT (s != NULL); | |
1942 | if (s->_raw_size != 0) | |
1943 | { | |
1944 | file_ptr filepos; | |
1945 | bfd_byte *p; | |
1946 | ||
1947 | filepos = s->output_section->filepos + s->output_offset; | |
1948 | p = s->contents; | |
1949 | while (1) | |
1950 | { | |
1951 | bfd_vma val; | |
1952 | ||
1953 | PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p); | |
1954 | val = GET_WORD (dynobj, p + 12); | |
1955 | if (val == 0) | |
1956 | break; | |
1957 | PUT_WORD (dynobj, val + filepos, p + 12); | |
1958 | p += 16; | |
1959 | } | |
1960 | } | |
1961 | ||
1962 | /* The first entry in the .got section is the address of the dynamic | |
1963 | information. */ | |
1964 | s = bfd_get_section_by_name (dynobj, ".got"); | |
1965 | BFD_ASSERT (s != NULL); | |
1966 | PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset, | |
1967 | s->contents); | |
1968 | ||
1969 | for (o = dynobj->sections; o != NULL; o = o->next) | |
1970 | { | |
1971 | if ((o->flags & SEC_HAS_CONTENTS) != 0 | |
1972 | && o->contents != NULL) | |
1973 | { | |
1974 | BFD_ASSERT (o->output_section != NULL | |
1975 | && o->output_section->owner == abfd); | |
1976 | if (! bfd_set_section_contents (abfd, o->output_section, | |
1977 | o->contents, o->output_offset, | |
1978 | o->_raw_size)) | |
1979 | return false; | |
1980 | } | |
1981 | } | |
1982 | ||
1983 | /* Finish up the dynamic link information. */ | |
1984 | PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version); | |
1985 | PUT_WORD (dynobj, | |
1986 | sdyn->output_section->vma + sdyn->output_offset + sizeof esd, | |
1987 | esd.ldd); | |
1988 | PUT_WORD (dynobj, | |
1989 | (sdyn->output_section->vma | |
1990 | + sdyn->output_offset | |
1991 | + sizeof esd | |
1992 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
1993 | esd.ld); | |
1994 | ||
1995 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd, | |
1996 | sdyn->output_offset, sizeof esd)) | |
1997 | return false; | |
1998 | ||
1999 | ||
2000 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded); | |
2001 | ||
2002 | s = bfd_get_section_by_name (dynobj, ".need"); | |
2003 | BFD_ASSERT (s != NULL); | |
2004 | if (s->_raw_size == 0) | |
2005 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need); | |
2006 | else | |
2007 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2008 | esdl.ld_need); | |
2009 | ||
2010 | s = bfd_get_section_by_name (dynobj, ".rules"); | |
2011 | BFD_ASSERT (s != NULL); | |
2012 | if (s->_raw_size == 0) | |
2013 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules); | |
2014 | else | |
2015 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2016 | esdl.ld_rules); | |
2017 | ||
2018 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2019 | BFD_ASSERT (s != NULL); | |
2020 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got); | |
2021 | ||
2022 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
2023 | BFD_ASSERT (s != NULL); | |
2024 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt); | |
2025 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz); | |
2026 | ||
2027 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2028 | BFD_ASSERT (s != NULL); | |
2029 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size); | |
2030 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2031 | esdl.ld_rel); | |
2032 | ||
2033 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
2034 | BFD_ASSERT (s != NULL); | |
2035 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2036 | esdl.ld_hash); | |
2037 | ||
2038 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
2039 | BFD_ASSERT (s != NULL); | |
2040 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2041 | esdl.ld_stab); | |
2042 | ||
2043 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash); | |
2044 | ||
2045 | PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount, | |
2046 | esdl.ld_buckets); | |
2047 | ||
2048 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
2049 | BFD_ASSERT (s != NULL); | |
2050 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2051 | esdl.ld_symbols); | |
2052 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size); | |
2053 | ||
2054 | /* The size of the text area is the size of the .text section | |
2055 | rounded up to a page boundary. FIXME: Should the page size be | |
2056 | conditional on something? */ | |
2057 | PUT_WORD (dynobj, | |
2058 | BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000), | |
2059 | esdl.ld_text); | |
2060 | ||
2061 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl, | |
2062 | (sdyn->output_offset | |
2063 | + sizeof esd | |
2064 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2065 | sizeof esdl)) | |
2066 | return false; | |
2067 | ||
2068 | abfd->flags |= DYNAMIC; | |
2069 | ||
2070 | return true; | |
2071 | } |