Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* tc-tahoe.c |
a4d24084 | 2 | Not part of GAS yet. */ |
252b5132 RH |
3 | |
4 | #include "as.h" | |
5 | #include "obstack.h" | |
6 | ||
7 | /* this bit glommed from tahoe-inst.h */ | |
8 | ||
9 | typedef unsigned char byte; | |
10 | typedef byte tahoe_opcodeT; | |
11 | ||
12 | /* | |
13 | * This is part of tahoe-ins-parse.c & friends. | |
14 | * We want to parse a tahoe instruction text into a tree defined here. | |
15 | */ | |
16 | ||
17 | #define TIT_MAX_OPERANDS (4) /* maximum number of operands in one | |
18 | single tahoe instruction */ | |
19 | ||
20 | struct top /* tahoe instruction operand */ | |
21 | { | |
22 | int top_ndx; /* -1, or index register. eg 7=[R7] */ | |
23 | int top_reg; /* -1, or register number. eg 7 = R7 or (R7) */ | |
24 | byte top_mode; /* Addressing mode byte. This byte, defines | |
a4d24084 | 25 | which of the 11 modes opcode is. */ |
252b5132 RH |
26 | |
27 | char top_access; /* Access type wanted for this opperand | |
28 | 'b'branch ' 'no-instruction 'amrvw' */ | |
29 | char top_width; /* Operand width expected, one of "bwlq?-:!" */ | |
30 | ||
31 | char *top_error; /* Say if operand is inappropriate */ | |
32 | ||
33 | segT seg_of_operand; /* segment as returned by expression()*/ | |
34 | ||
35 | expressionS exp_of_operand; /* The expression as parsed by expression()*/ | |
36 | ||
37 | byte top_dispsize; /* Number of bytes in the displacement if we | |
38 | can figure it out */ | |
39 | }; | |
40 | ||
41 | /* The addressing modes for an operand. These numbers are the acutal values | |
a4d24084 | 42 | for certain modes, so be carefull if you screw with them. */ |
252b5132 RH |
43 | #define TAHOE_DIRECT_REG (0x50) |
44 | #define TAHOE_REG_DEFERRED (0x60) | |
45 | ||
46 | #define TAHOE_REG_DISP (0xE0) | |
47 | #define TAHOE_REG_DISP_DEFERRED (0xF0) | |
48 | ||
49 | #define TAHOE_IMMEDIATE (0x8F) | |
50 | #define TAHOE_IMMEDIATE_BYTE (0x88) | |
51 | #define TAHOE_IMMEDIATE_WORD (0x89) | |
52 | #define TAHOE_IMMEDIATE_LONGWORD (0x8F) | |
53 | #define TAHOE_ABSOLUTE_ADDR (0x9F) | |
54 | ||
55 | #define TAHOE_DISPLACED_RELATIVE (0xEF) | |
56 | #define TAHOE_DISP_REL_DEFERRED (0xFF) | |
57 | ||
58 | #define TAHOE_AUTO_DEC (0x7E) | |
59 | #define TAHOE_AUTO_INC (0x8E) | |
60 | #define TAHOE_AUTO_INC_DEFERRED (0x9E) | |
61 | /* INDEXED_REG is decided by the existance or lack of a [reg] */ | |
62 | ||
63 | /* These are encoded into top_width when top_access=='b' | |
64 | and it's a psuedo op.*/ | |
65 | #define TAHOE_WIDTH_ALWAYS_JUMP '-' | |
66 | #define TAHOE_WIDTH_CONDITIONAL_JUMP '?' | |
67 | #define TAHOE_WIDTH_BIG_REV_JUMP '!' | |
68 | #define TAHOE_WIDTH_BIG_NON_REV_JUMP ':' | |
69 | ||
70 | /* The hex code for certain tahoe commands and modes. | |
a4d24084 | 71 | This is just for readability. */ |
252b5132 RH |
72 | #define TAHOE_JMP (0x71) |
73 | #define TAHOE_PC_REL_LONG (0xEF) | |
74 | #define TAHOE_BRB (0x11) | |
75 | #define TAHOE_BRW (0x13) | |
76 | /* These, when 'ored' with, or added to, a register number, | |
a4d24084 | 77 | set up the number for the displacement mode. */ |
252b5132 RH |
78 | #define TAHOE_PC_OR_BYTE (0xA0) |
79 | #define TAHOE_PC_OR_WORD (0xC0) | |
80 | #define TAHOE_PC_OR_LONG (0xE0) | |
81 | ||
82 | struct tit /* get it out of the sewer, it stands for | |
83 | tahoe instruction tree (Geeze!) */ | |
84 | { | |
a4d24084 KH |
85 | tahoe_opcodeT tit_opcode; /* The opcode. */ |
86 | byte tit_operands; /* How many operands are here. */ | |
252b5132 RH |
87 | struct top tit_operand[TIT_MAX_OPERANDS]; /* Operands */ |
88 | char *tit_error; /* "" or fatal error text */ | |
89 | }; | |
90 | ||
91 | /* end: tahoe-inst.h */ | |
92 | ||
93 | /* tahoe.c - tahoe-specific - | |
94 | Not part of gas yet. | |
95 | */ | |
96 | ||
97 | #include "opcode/tahoe.h" | |
98 | ||
99 | /* This is the number to put at the beginning of the a.out file */ | |
100 | long omagic = OMAGIC; | |
101 | ||
102 | /* These chars start a comment anywhere in a source file (except inside | |
a4d24084 | 103 | another comment or a quoted string. */ |
252b5132 RH |
104 | const char comment_chars[] = "#;"; |
105 | ||
a4d24084 | 106 | /* These chars only start a comment at the beginning of a line. */ |
252b5132 RH |
107 | const char line_comment_chars[] = "#"; |
108 | ||
109 | /* Chars that can be used to separate mant from exp in floating point nums */ | |
110 | const char EXP_CHARS[] = "eE"; | |
111 | ||
112 | /* Chars that mean this number is a floating point constant | |
113 | as in 0f123.456 | |
114 | or 0d1.234E-12 (see exp chars above) | |
115 | Note: The Tahoe port doesn't support floating point constants. This is | |
a4d24084 | 116 | consistant with 'as' If it's needed, I can always add it later. */ |
252b5132 RH |
117 | const char FLT_CHARS[] = "df"; |
118 | ||
119 | /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be | |
120 | changed in read.c . Ideally it shouldn't have to know about it at all, | |
121 | but nothing is ideal around here. | |
122 | (The tahoe has plenty of room, so the change currently isn't needed.) | |
123 | */ | |
124 | ||
a4d24084 | 125 | static struct tit t; /* A tahoe instruction after decoding. */ |
252b5132 RH |
126 | |
127 | void float_cons (); | |
128 | /* A table of pseudo ops (sans .), the function called, and an integer op | |
a4d24084 | 129 | that the function is called with. */ |
252b5132 RH |
130 | |
131 | const pseudo_typeS md_pseudo_table[] = | |
132 | { | |
133 | {"dfloat", float_cons, 'd'}, | |
134 | {"ffloat", float_cons, 'f'}, | |
135 | {0} | |
136 | }; | |
137 | \f | |
138 | /* | |
139 | * For Tahoe, relative addresses of "just the right length" are pretty easy. | |
140 | * The branch displacement is always the last operand, even in | |
141 | * synthetic instructions. | |
142 | * For Tahoe, we encode the relax_substateTs (in e.g. fr_substate) as: | |
143 | * | |
144 | * 4 3 2 1 0 bit number | |
145 | * ---/ /--+-------+-------+-------+-------+-------+ | |
146 | * | what state ? | how long ? | | |
147 | * ---/ /--+-------+-------+-------+-------+-------+ | |
148 | * | |
149 | * The "how long" bits are 00=byte, 01=word, 10=long. | |
150 | * This is a Un*x convention. | |
151 | * Not all lengths are legit for a given value of (what state). | |
152 | * The four states are listed below. | |
153 | * The "how long" refers merely to the displacement length. | |
154 | * The address usually has some constant bytes in it as well. | |
155 | * | |
156 | ||
157 | States for Tahoe address relaxing. | |
158 | 1. TAHOE_WIDTH_ALWAYS_JUMP (-) | |
159 | Format: "b-" | |
160 | Tahoe opcodes are: (Hex) | |
161 | jr 11 | |
162 | jbr 11 | |
163 | Simple branch. | |
164 | Always, 1 byte opcode, then displacement/absolute. | |
165 | If word or longword, change opcode to brw or jmp. | |
166 | ||
252b5132 RH |
167 | 2. TAHOE_WIDTH_CONDITIONAL_JUMP (?) |
168 | J<cond> where <cond> is a simple flag test. | |
169 | Format: "b?" | |
170 | Tahoe opcodes are: (Hex) | |
171 | jneq/jnequ 21 | |
172 | jeql/jeqlu 31 | |
173 | jgtr 41 | |
174 | jleq 51 | |
175 | jgeq 81 | |
176 | jlss 91 | |
177 | jgtru a1 | |
178 | jlequ b1 | |
179 | jvc c1 | |
180 | jvs d1 | |
181 | jlssu/jcs e1 | |
182 | jgequ/jcc f1 | |
183 | Always, you complement 4th bit to reverse the condition. | |
184 | Always, 1-byte opcode, then 1-byte displacement. | |
185 | ||
186 | 3. TAHOE_WIDTH_BIG_REV_JUMP (!) | |
187 | Jbc/Jbs where cond tests a memory bit. | |
188 | Format: "rlvlb!" | |
189 | Tahoe opcodes are: (Hex) | |
190 | jbs 0e | |
191 | jbc 1e | |
192 | Always, you complement 4th bit to reverse the condition. | |
193 | Always, 1-byte opcde, longword, longword-address, 1-word-displacement | |
194 | ||
195 | 4. TAHOE_WIDTH_BIG_NON_REV_JUMP (:) | |
196 | JaoblXX/Jbssi | |
197 | Format: "rlmlb:" | |
198 | Tahoe opcodes are: (Hex) | |
199 | aojlss 2f | |
200 | jaoblss 2f | |
201 | aojleq 3f | |
202 | jaobleq 3f | |
203 | jbssi 5f | |
204 | Always, we cannot reverse the sense of the branch; we have a word | |
205 | displacement. | |
206 | ||
207 | We need to modify the opcode is for class 1, 2 and 3 instructions. | |
208 | After relax() we may complement the 4th bit of 2 or 3 to reverse sense of | |
209 | branch. | |
210 | ||
211 | We sometimes store context in the operand literal. This way we can figure out | |
212 | after relax() what the original addressing mode was. (Was is pc_rel, or | |
213 | pc_rel_disp? That sort of thing.) */ | |
214 | \f | |
215 | /* These displacements are relative to the START address of the | |
216 | displacement which is at the start of the displacement, not the end of | |
217 | the instruction. The hardware pc_rel is at the end of the instructions. | |
218 | That's why all the displacements have the length of the displacement added | |
219 | to them. (WF + length(word)) | |
220 | ||
221 | The first letter is Byte, Word. | |
a4d24084 | 222 | 2nd letter is Forward, Backward. */ |
252b5132 RH |
223 | #define BF (1+ 127) |
224 | #define BB (1+-128) | |
225 | #define WF (2+ 32767) | |
226 | #define WB (2+-32768) | |
227 | /* Dont need LF, LB because they always reach. [They are coded as 0.] */ | |
228 | ||
229 | #define C(a,b) ENCODE_RELAX(a,b) | |
a4d24084 | 230 | /* This macro has no side-effects. */ |
252b5132 RH |
231 | #define ENCODE_RELAX(what,length) (((what) << 2) + (length)) |
232 | #define RELAX_STATE(what) ((what) >> 2) | |
233 | #define RELAX_LENGTH(length) ((length) && 3) | |
234 | ||
235 | #define STATE_ALWAYS_BRANCH (1) | |
236 | #define STATE_CONDITIONAL_BRANCH (2) | |
237 | #define STATE_BIG_REV_BRANCH (3) | |
238 | #define STATE_BIG_NON_REV_BRANCH (4) | |
239 | #define STATE_PC_RELATIVE (5) | |
240 | ||
241 | #define STATE_BYTE (0) | |
242 | #define STATE_WORD (1) | |
243 | #define STATE_LONG (2) | |
244 | #define STATE_UNDF (3) /* Symbol undefined in pass1 */ | |
245 | ||
246 | /* This is the table used by gas to figure out relaxing modes. The fields are | |
247 | forward_branch reach, backward_branch reach, number of bytes it would take, | |
a4d24084 | 248 | where the next biggest branch is. */ |
252b5132 RH |
249 | const relax_typeS md_relax_table[] = |
250 | { | |
251 | { | |
252 | 1, 1, 0, 0 | |
253 | }, /* error sentinel 0,0 */ | |
254 | { | |
255 | 1, 1, 0, 0 | |
256 | }, /* unused 0,1 */ | |
257 | { | |
258 | 1, 1, 0, 0 | |
259 | }, /* unused 0,2 */ | |
260 | { | |
261 | 1, 1, 0, 0 | |
262 | }, /* unused 0,3 */ | |
263 | /* Unconditional branch cases "jrb" | |
264 | The relax part is the actual displacement */ | |
265 | { | |
266 | BF, BB, 1, C (1, 1) | |
267 | }, /* brb B`foo 1,0 */ | |
268 | { | |
269 | WF, WB, 2, C (1, 2) | |
270 | }, /* brw W`foo 1,1 */ | |
271 | { | |
272 | 0, 0, 5, 0 | |
273 | }, /* Jmp L`foo 1,2 */ | |
274 | { | |
275 | 1, 1, 0, 0 | |
276 | }, /* unused 1,3 */ | |
277 | /* Reversible Conditional Branch. If the branch won't reach, reverse | |
278 | it, and jump over a brw or a jmp that will reach. The relax part is the | |
a4d24084 | 279 | actual address. */ |
252b5132 RH |
280 | { |
281 | BF, BB, 1, C (2, 1) | |
282 | }, /* b<cond> B`foo 2,0 */ | |
283 | { | |
284 | WF + 2, WB + 2, 4, C (2, 2) | |
285 | }, /* brev over, brw W`foo, over: 2,1 */ | |
286 | { | |
287 | 0, 0, 7, 0 | |
288 | }, /* brev over, jmp L`foo, over: 2,2 */ | |
289 | { | |
290 | 1, 1, 0, 0 | |
291 | }, /* unused 2,3 */ | |
292 | /* Another type of reversable branch. But this only has a word | |
a4d24084 | 293 | displacement. */ |
252b5132 RH |
294 | { |
295 | 1, 1, 0, 0 | |
296 | }, /* unused 3,0 */ | |
297 | { | |
298 | WF, WB, 2, C (3, 2) | |
299 | }, /* jbX W`foo 3,1 */ | |
300 | { | |
301 | 0, 0, 8, 0 | |
302 | }, /* jrevX over, jmp L`foo, over: 3,2 */ | |
303 | { | |
304 | 1, 1, 0, 0 | |
305 | }, /* unused 3,3 */ | |
306 | /* These are the non reversable branches, all of which have a word | |
307 | displacement. If I can't reach, branch over a byte branch, to a | |
308 | jump that will reach. The jumped branch jumps over the reaching | |
309 | branch, to continue with the flow of the program. It's like playing | |
a4d24084 | 310 | leap frog. */ |
252b5132 RH |
311 | { |
312 | 1, 1, 0, 0 | |
313 | }, /* unused 4,0 */ | |
314 | { | |
315 | WF, WB, 2, C (4, 2) | |
316 | }, /* aobl_ W`foo 4,1 */ | |
317 | { | |
318 | 0, 0, 10, 0 | |
319 | }, /*aobl_ W`hop,br over,hop: jmp L^foo,over 4,2*/ | |
320 | { | |
321 | 1, 1, 0, 0 | |
322 | }, /* unused 4,3 */ | |
323 | /* Normal displacement mode, no jumping or anything like that. | |
324 | The relax points to one byte before the address, thats why all | |
a4d24084 | 325 | the numbers are up by one. */ |
252b5132 RH |
326 | { |
327 | BF + 1, BB + 1, 2, C (5, 1) | |
328 | }, /* B^"foo" 5,0 */ | |
329 | { | |
330 | WF + 1, WB + 1, 3, C (5, 2) | |
331 | }, /* W^"foo" 5,1 */ | |
332 | { | |
333 | 0, 0, 5, 0 | |
334 | }, /* L^"foo" 5,2 */ | |
335 | { | |
336 | 1, 1, 0, 0 | |
337 | }, /* unused 5,3 */ | |
338 | }; | |
339 | ||
340 | #undef C | |
341 | #undef BF | |
342 | #undef BB | |
343 | #undef WF | |
344 | #undef WB | |
345 | /* End relax stuff */ | |
346 | \f | |
347 | /* Handle of the OPCODE hash table. NULL means any use before | |
348 | md_begin() will crash. */ | |
349 | static struct hash_control *op_hash; | |
350 | ||
a4d24084 | 351 | /* Init function. Build the hash table. */ |
252b5132 RH |
352 | void |
353 | md_begin () | |
354 | { | |
355 | struct tot *tP; | |
356 | char *errorval = 0; | |
a4d24084 | 357 | int synthetic_too = 1; /* If 0, just use real opcodes. */ |
252b5132 RH |
358 | |
359 | op_hash = hash_new (); | |
360 | ||
361 | for (tP = totstrs; *tP->name && !errorval; tP++) | |
362 | errorval = hash_insert (op_hash, tP->name, &tP->detail); | |
363 | ||
364 | if (synthetic_too) | |
365 | for (tP = synthetic_totstrs; *tP->name && !errorval; tP++) | |
366 | errorval = hash_insert (op_hash, tP->name, &tP->detail); | |
367 | ||
368 | if (errorval) | |
369 | as_fatal (errorval); | |
370 | } | |
371 | \f | |
372 | CONST char *md_shortopts = "ad:STt:V"; | |
373 | struct option md_longopts[] = { | |
374 | {NULL, no_argument, NULL, 0} | |
375 | }; | |
bc805888 | 376 | size_t md_longopts_size = sizeof (md_longopts); |
252b5132 RH |
377 | |
378 | int | |
379 | md_parse_option (c, arg) | |
380 | int c; | |
381 | char *arg; | |
382 | { | |
383 | switch (c) | |
384 | { | |
385 | case 'a': | |
386 | as_warn (_("The -a option doesn't exist. (Despite what the man page says!")); | |
387 | break; | |
388 | ||
389 | case 'd': | |
390 | as_warn (_("Displacement length %s ignored!"), arg); | |
391 | break; | |
392 | ||
393 | case 'S': | |
394 | as_warn (_("SYMBOL TABLE not implemented")); | |
395 | break; | |
396 | ||
397 | case 'T': | |
398 | as_warn (_("TOKEN TRACE not implemented")); | |
399 | break; | |
400 | ||
401 | case 't': | |
402 | as_warn (_("I don't need or use temp. file \"%s\"."), arg); | |
403 | break; | |
404 | ||
405 | case 'V': | |
406 | as_warn (_("I don't use an interpass file! -V ignored")); | |
407 | break; | |
408 | ||
409 | default: | |
410 | return 0; | |
411 | } | |
412 | ||
413 | return 1; | |
414 | } | |
415 | ||
416 | void | |
417 | md_show_usage (stream) | |
418 | FILE *stream; | |
419 | { | |
bc805888 | 420 | fprintf (stream, _("\ |
252b5132 RH |
421 | Tahoe options:\n\ |
422 | -a ignored\n\ | |
423 | -d LENGTH ignored\n\ | |
424 | -J ignored\n\ | |
425 | -S ignored\n\ | |
426 | -t FILE ignored\n\ | |
427 | -T ignored\n\ | |
428 | -V ignored\n")); | |
429 | } | |
430 | \f | |
431 | /* The functions in this section take numbers in the machine format, and | |
432 | munges them into Tahoe byte order. | |
a4d24084 KH |
433 | They exist primarily for cross assembly purpose. */ |
434 | void /* Knows about order of bytes in address. */ | |
252b5132 | 435 | md_number_to_chars (con, value, nbytes) |
a4d24084 KH |
436 | char con[]; /* Return 'nbytes' of chars here. */ |
437 | valueT value; /* The value of the bits. */ | |
438 | int nbytes; /* Number of bytes in the output. */ | |
252b5132 RH |
439 | { |
440 | number_to_chars_bigendian (con, value, nbytes); | |
441 | } | |
442 | ||
443 | #ifdef comment | |
a4d24084 | 444 | void /* Knows about order of bytes in address. */ |
252b5132 | 445 | md_number_to_imm (con, value, nbytes) |
a4d24084 KH |
446 | char con[]; /* Return 'nbytes' of chars here. */ |
447 | long int value; /* The value of the bits. */ | |
448 | int nbytes; /* Number of bytes in the output. */ | |
252b5132 RH |
449 | { |
450 | md_number_to_chars (con, value, nbytes); | |
451 | } | |
452 | ||
453 | #endif /* comment */ | |
454 | ||
455 | void | |
456 | tc_apply_fix (fixP, val) | |
457 | fixS *fixP; | |
458 | long val; | |
459 | { | |
460 | /* should never be called */ | |
461 | know (0); | |
462 | } | |
463 | ||
a4d24084 | 464 | void /* Knows about order of bytes in address. */ |
252b5132 | 465 | md_number_to_disp (con, value, nbytes) |
a4d24084 KH |
466 | char con[]; /* Return 'nbytes' of chars here. */ |
467 | long int value; /* The value of the bits. */ | |
468 | int nbytes; /* Number of bytes in the output. */ | |
252b5132 RH |
469 | { |
470 | md_number_to_chars (con, value, nbytes); | |
471 | } | |
472 | ||
a4d24084 | 473 | void /* Knows about order of bytes in address. */ |
252b5132 | 474 | md_number_to_field (con, value, nbytes) |
a4d24084 KH |
475 | char con[]; /* Return 'nbytes' of chars here. */ |
476 | long int value; /* The value of the bits. */ | |
477 | int nbytes; /* Number of bytes in the output. */ | |
252b5132 RH |
478 | { |
479 | md_number_to_chars (con, value, nbytes); | |
480 | } | |
481 | ||
482 | /* Put the bits in an order that a tahoe will understand, despite the ordering | |
483 | of the native machine. | |
484 | On Tahoe: first 4 bytes are normal unsigned big endian long, | |
485 | next three bytes are symbolnum, in kind of 3 byte big endian (least sig. byte last). | |
486 | The last byte is broken up with bit 7 as pcrel, | |
487 | bits 6 & 5 as length, | |
a4d24084 | 488 | bit 4 as extern and the last nibble as 'undefined'. */ |
252b5132 RH |
489 | |
490 | #if comment | |
491 | void | |
492 | md_ri_to_chars (ri_p, ri) | |
493 | struct relocation_info *ri_p, ri; | |
494 | { | |
495 | byte the_bytes[sizeof (struct relocation_info)]; | |
496 | /* The reason I can't just encode these directly into ri_p is that | |
a4d24084 | 497 | ri_p may point to ri. */ |
252b5132 RH |
498 | |
499 | /* This is easy */ | |
500 | md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address)); | |
501 | ||
502 | /* now the fun stuff */ | |
503 | the_bytes[4] = (ri.r_symbolnum >> 16) & 0x0ff; | |
504 | the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff; | |
505 | the_bytes[6] = ri.r_symbolnum & 0x0ff; | |
506 | the_bytes[7] = (((ri.r_extern << 4) & 0x10) | ((ri.r_length << 5) & 0x60) | | |
507 | ((ri.r_pcrel << 7) & 0x80)) & 0xf0; | |
508 | ||
509 | bcopy (the_bytes, (char *) ri_p, sizeof (struct relocation_info)); | |
510 | } | |
511 | ||
512 | #endif /* comment */ | |
513 | ||
514 | /* Put the bits in an order that a tahoe will understand, despite the ordering | |
515 | of the native machine. | |
516 | On Tahoe: first 4 bytes are normal unsigned big endian long, | |
517 | next three bytes are symbolnum, in kind of 3 byte big endian (least sig. byte last). | |
518 | The last byte is broken up with bit 7 as pcrel, | |
519 | bits 6 & 5 as length, | |
a4d24084 | 520 | bit 4 as extern and the last nibble as 'undefined'. */ |
252b5132 | 521 | |
a4d24084 | 522 | void |
252b5132 RH |
523 | tc_aout_fix_to_chars (where, fixP, segment_address_in_file) |
524 | char *where; | |
525 | fixS *fixP; | |
526 | relax_addressT segment_address_in_file; | |
527 | { | |
528 | long r_symbolnum; | |
529 | ||
530 | know (fixP->fx_addsy != NULL); | |
531 | ||
532 | md_number_to_chars (where, | |
533 | fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file, | |
534 | 4); | |
535 | ||
536 | r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy) | |
537 | ? S_GET_TYPE (fixP->fx_addsy) | |
538 | : fixP->fx_addsy->sy_number); | |
539 | ||
540 | where[4] = (r_symbolnum >> 16) & 0x0ff; | |
541 | where[5] = (r_symbolnum >> 8) & 0x0ff; | |
542 | where[6] = r_symbolnum & 0x0ff; | |
543 | where[7] = (((is_pcrel (fixP) << 7) & 0x80) | |
544 | | ((((fixP->fx_type == FX_8 || fixP->fx_type == FX_PCREL8 | |
545 | ? 0 | |
546 | : (fixP->fx_type == FX_16 || fixP->fx_type == FX_PCREL16 | |
547 | ? 1 | |
548 | : (fixP->fx_type == FX_32 || fixP->fx_type == FX_PCREL32 | |
549 | ? 2 | |
550 | : 42)))) << 5) & 0x60) | |
551 | | ((!S_IS_DEFINED (fixP->fx_addsy) << 4) & 0x10)); | |
552 | } | |
553 | ||
554 | /* Relocate byte stuff */ | |
555 | \f | |
a4d24084 | 556 | /* This is for broken word. */ |
252b5132 RH |
557 | const int md_short_jump_size = 3; |
558 | ||
559 | void | |
560 | md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol) | |
561 | char *ptr; | |
562 | addressT from_addr, to_addr; | |
563 | fragS *frag; | |
564 | symbolS *to_symbol; | |
565 | { | |
566 | valueT offset; | |
567 | ||
568 | offset = to_addr - (from_addr + 1); | |
569 | *ptr++ = TAHOE_BRW; | |
570 | md_number_to_chars (ptr, offset, 2); | |
571 | } | |
572 | ||
573 | const int md_long_jump_size = 6; | |
574 | const int md_reloc_size = 8; /* Size of relocation record */ | |
575 | ||
576 | void | |
577 | md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol) | |
578 | char *ptr; | |
579 | addressT from_addr, to_addr; | |
580 | fragS *frag; | |
581 | symbolS *to_symbol; | |
582 | { | |
583 | valueT offset; | |
584 | ||
585 | offset = to_addr - (from_addr + 4); | |
586 | *ptr++ = TAHOE_JMP; | |
587 | *ptr++ = TAHOE_PC_REL_LONG; | |
588 | md_number_to_chars (ptr, offset, 4); | |
589 | } | |
590 | \f | |
591 | /* | |
592 | * md_estimate_size_before_relax() | |
593 | * | |
594 | * Called just before relax(). | |
595 | * Any symbol that is now undefined will not become defined, so we assumed | |
596 | * that it will be resolved by the linker. | |
597 | * Return the correct fr_subtype in the frag, for relax() | |
598 | * Return the initial "guess for fr_var" to caller. (How big I think this | |
599 | * will be.) | |
600 | * The guess for fr_var is ACTUALLY the growth beyond fr_fix. | |
601 | * Whatever we do to grow fr_fix or fr_var contributes to our returned value. | |
602 | * Although it may not be explicit in the frag, pretend fr_var starts with a | |
603 | * 0 value. | |
604 | */ | |
605 | int | |
606 | md_estimate_size_before_relax (fragP, segment_type) | |
607 | register fragS *fragP; | |
a4d24084 | 608 | segT segment_type; /* N_DATA or N_TEXT. */ |
252b5132 RH |
609 | { |
610 | register char *p; | |
611 | register int old_fr_fix; | |
612 | /* int pc_rel; FIXME: remove this */ | |
613 | ||
614 | old_fr_fix = fragP->fr_fix; | |
615 | switch (fragP->fr_subtype) | |
616 | { | |
617 | case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF): | |
618 | if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) | |
619 | { | |
620 | /* The symbol was in the same segment as the opcode, and it's | |
a4d24084 | 621 | a real pc_rel case so it's a relaxable case. */ |
252b5132 RH |
622 | fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE); |
623 | } | |
624 | else | |
625 | { | |
626 | /* This case is still undefined, so asume it's a long word for the | |
a4d24084 | 627 | linker to fix. */ |
252b5132 RH |
628 | p = fragP->fr_literal + old_fr_fix; |
629 | *p |= TAHOE_PC_OR_LONG; | |
a4d24084 | 630 | /* We now know how big it will be, one long word. */ |
252b5132 RH |
631 | fragP->fr_fix += 1 + 4; |
632 | fix_new (fragP, old_fr_fix + 1, fragP->fr_symbol, | |
633 | fragP->fr_offset, FX_PCREL32, NULL); | |
634 | frag_wane (fragP); | |
635 | } | |
636 | break; | |
637 | ||
638 | case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF): | |
639 | if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) | |
640 | { | |
641 | fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE); | |
642 | } | |
643 | else | |
644 | { | |
645 | p = fragP->fr_literal + old_fr_fix; | |
a4d24084 | 646 | *fragP->fr_opcode ^= 0x10; /* Reverse sense of branch. */ |
252b5132 RH |
647 | *p++ = 6; |
648 | *p++ = TAHOE_JMP; | |
649 | *p++ = TAHOE_PC_REL_LONG; | |
650 | fragP->fr_fix += 1 + 1 + 1 + 4; | |
651 | fix_new (fragP, old_fr_fix + 3, fragP->fr_symbol, | |
652 | fragP->fr_offset, FX_PCREL32, NULL); | |
653 | frag_wane (fragP); | |
654 | } | |
655 | break; | |
656 | ||
657 | case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_UNDF): | |
658 | if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) | |
659 | { | |
660 | fragP->fr_subtype = | |
661 | ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_WORD); | |
662 | } | |
663 | else | |
664 | { | |
665 | p = fragP->fr_literal + old_fr_fix; | |
a4d24084 | 666 | *fragP->fr_opcode ^= 0x10; /* Reverse sense of branch. */ |
252b5132 RH |
667 | *p++ = 0; |
668 | *p++ = 6; | |
669 | *p++ = TAHOE_JMP; | |
670 | *p++ = TAHOE_PC_REL_LONG; | |
671 | fragP->fr_fix += 2 + 2 + 4; | |
672 | fix_new (fragP, old_fr_fix + 4, fragP->fr_symbol, | |
673 | fragP->fr_offset, FX_PCREL32, NULL); | |
674 | frag_wane (fragP); | |
675 | } | |
676 | break; | |
677 | ||
678 | case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_UNDF): | |
679 | if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) | |
680 | { | |
681 | fragP->fr_subtype = ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_WORD); | |
682 | } | |
683 | else | |
684 | { | |
685 | p = fragP->fr_literal + old_fr_fix; | |
686 | *p++ = 2; | |
687 | *p++ = 0; | |
688 | *p++ = TAHOE_BRB; | |
689 | *p++ = 6; | |
690 | *p++ = TAHOE_JMP; | |
691 | *p++ = TAHOE_PC_REL_LONG; | |
692 | fragP->fr_fix += 2 + 2 + 2 + 4; | |
693 | fix_new (fragP, old_fr_fix + 6, fragP->fr_symbol, | |
694 | fragP->fr_offset, FX_PCREL32, NULL); | |
695 | frag_wane (fragP); | |
696 | } | |
697 | break; | |
698 | ||
699 | case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF): | |
700 | if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type) | |
701 | { | |
702 | fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE); | |
703 | } | |
704 | else | |
705 | { | |
706 | p = fragP->fr_literal + old_fr_fix; | |
707 | *fragP->fr_opcode = TAHOE_JMP; | |
708 | *p++ = TAHOE_PC_REL_LONG; | |
709 | fragP->fr_fix += 1 + 4; | |
710 | fix_new (fragP, old_fr_fix + 1, fragP->fr_symbol, | |
711 | fragP->fr_offset, FX_PCREL32, NULL); | |
712 | frag_wane (fragP); | |
713 | } | |
714 | break; | |
715 | ||
716 | default: | |
717 | break; | |
718 | } | |
719 | return (fragP->fr_var + fragP->fr_fix - old_fr_fix); | |
720 | } /* md_estimate_size_before_relax() */ | |
721 | \f | |
722 | /* | |
723 | * md_convert_frag(); | |
724 | * | |
725 | * Called after relax() is finished. | |
726 | * In: Address of frag. | |
727 | * fr_type == rs_machine_dependent. | |
728 | * fr_subtype is what the address relaxed to. | |
729 | * | |
730 | * Out: Any fixSs and constants are set up. | |
731 | * Caller will turn frag into a ".space 0". | |
732 | */ | |
733 | void | |
734 | md_convert_frag (headers, seg, fragP) | |
735 | object_headers *headers; | |
736 | segT seg; | |
737 | register fragS *fragP; | |
738 | { | |
a4d24084 KH |
739 | register char *addressP; /* -> _var to change. */ |
740 | register char *opcodeP; /* -> opcode char(s) to change. */ | |
252b5132 RH |
741 | register short int length_code; /* 2=long 1=word 0=byte */ |
742 | register short int extension = 0; /* Size of relaxed address. | |
a4d24084 | 743 | Added to fr_fix: incl. ALL var chars. */ |
252b5132 RH |
744 | register symbolS *symbolP; |
745 | register long int where; | |
746 | register long int address_of_var; | |
747 | /* Where, in file space, is _var of *fragP? */ | |
748 | register long int target_address; | |
749 | /* Where, in file space, does addr point? */ | |
750 | ||
751 | know (fragP->fr_type == rs_machine_dependent); | |
752 | length_code = RELAX_LENGTH (fragP->fr_subtype); | |
753 | know (length_code >= 0 && length_code < 3); | |
754 | where = fragP->fr_fix; | |
755 | addressP = fragP->fr_literal + where; | |
756 | opcodeP = fragP->fr_opcode; | |
757 | symbolP = fragP->fr_symbol; | |
758 | know (symbolP); | |
759 | target_address = S_GET_VALUE (symbolP) + fragP->fr_offset; | |
760 | address_of_var = fragP->fr_address + where; | |
761 | switch (fragP->fr_subtype) | |
762 | { | |
763 | case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE): | |
764 | /* *addressP holds the registers number, plus 0x10, if it's deferred | |
765 | mode. To set up the right mode, just OR the size of this displacement */ | |
a4d24084 | 766 | /* Byte displacement. */ |
252b5132 RH |
767 | *addressP++ |= TAHOE_PC_OR_BYTE; |
768 | *addressP = target_address - (address_of_var + 2); | |
769 | extension = 2; | |
770 | break; | |
771 | ||
772 | case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD): | |
a4d24084 | 773 | /* Word displacement. */ |
252b5132 RH |
774 | *addressP++ |= TAHOE_PC_OR_WORD; |
775 | md_number_to_chars (addressP, target_address - (address_of_var + 3), 2); | |
776 | extension = 3; | |
777 | break; | |
778 | ||
779 | case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG): | |
a4d24084 | 780 | /* Long word displacement. */ |
252b5132 RH |
781 | *addressP++ |= TAHOE_PC_OR_LONG; |
782 | md_number_to_chars (addressP, target_address - (address_of_var + 5), 4); | |
783 | extension = 5; | |
784 | break; | |
785 | ||
786 | case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE): | |
787 | *addressP = target_address - (address_of_var + 1); | |
788 | extension = 1; | |
789 | break; | |
790 | ||
791 | case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD): | |
a4d24084 | 792 | *opcodeP ^= 0x10; /* Reverse sense of test. */ |
252b5132 RH |
793 | *addressP++ = 3; /* Jump over word branch */ |
794 | *addressP++ = TAHOE_BRW; | |
795 | md_number_to_chars (addressP, target_address - (address_of_var + 4), 2); | |
796 | extension = 4; | |
797 | break; | |
798 | ||
799 | case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG): | |
a4d24084 | 800 | *opcodeP ^= 0x10; /* Reverse sense of test. */ |
252b5132 RH |
801 | *addressP++ = 6; |
802 | *addressP++ = TAHOE_JMP; | |
803 | *addressP++ = TAHOE_PC_REL_LONG; | |
804 | md_number_to_chars (addressP, target_address, 4); | |
805 | extension = 7; | |
806 | break; | |
807 | ||
808 | case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE): | |
809 | *addressP = target_address - (address_of_var + 1); | |
810 | extension = 1; | |
811 | break; | |
812 | ||
813 | case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD): | |
814 | *opcodeP = TAHOE_BRW; | |
815 | md_number_to_chars (addressP, target_address - (address_of_var + 2), 2); | |
816 | extension = 2; | |
817 | break; | |
818 | ||
819 | case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG): | |
820 | *opcodeP = TAHOE_JMP; | |
821 | *addressP++ = TAHOE_PC_REL_LONG; | |
822 | md_number_to_chars (addressP, target_address - (address_of_var + 5), 4); | |
823 | extension = 5; | |
824 | break; | |
825 | ||
826 | case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_WORD): | |
827 | md_number_to_chars (addressP, target_address - (address_of_var + 2), 2); | |
828 | extension = 2; | |
829 | break; | |
830 | ||
831 | case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_LONG): | |
832 | *opcodeP ^= 0x10; | |
833 | *addressP++ = 0; | |
834 | *addressP++ = 6; | |
835 | *addressP++ = TAHOE_JMP; | |
836 | *addressP++ = TAHOE_PC_REL_LONG; | |
837 | md_number_to_chars (addressP, target_address, 4); | |
838 | extension = 8; | |
839 | break; | |
840 | ||
841 | case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_WORD): | |
842 | md_number_to_chars (addressP, target_address - (address_of_var + 2), 2); | |
843 | extension = 2; | |
844 | break; | |
845 | ||
846 | case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_LONG): | |
847 | *addressP++ = 0; | |
848 | *addressP++ = 2; | |
849 | *addressP++ = TAHOE_BRB; | |
850 | *addressP++ = 6; | |
851 | *addressP++ = TAHOE_JMP; | |
852 | *addressP++ = TAHOE_PC_REL_LONG; | |
853 | md_number_to_chars (addressP, target_address, 4); | |
854 | extension = 10; | |
855 | break; | |
856 | ||
857 | default: | |
858 | BAD_CASE (fragP->fr_subtype); | |
859 | break; | |
860 | } | |
861 | fragP->fr_fix += extension; | |
862 | } /* md_convert_frag */ | |
863 | \f | |
864 | ||
a4d24084 | 865 | /* This is the stuff for md_assemble. */ |
252b5132 RH |
866 | #define FP_REG 13 |
867 | #define SP_REG 14 | |
868 | #define PC_REG 15 | |
869 | #define BIGGESTREG PC_REG | |
870 | ||
871 | /* | |
872 | * Parse the string pointed to by START | |
873 | * If it represents a valid register, point START to the character after | |
874 | * the last valid register char, and return the register number (0-15). | |
875 | * If invalid, leave START alone, return -1. | |
876 | * The format has to be exact. I don't do things like eat leading zeros | |
877 | * or the like. | |
878 | * Note: This doesn't check for the next character in the string making | |
879 | * this invalid. Ex: R123 would return 12, it's the callers job to check | |
880 | * what start is point to apon return. | |
881 | * | |
882 | * Valid registers are R1-R15, %1-%15, FP (13), SP (14), PC (15) | |
883 | * Case doesn't matter. | |
884 | */ | |
885 | int | |
886 | tahoe_reg_parse (start) | |
a4d24084 | 887 | char **start; /* A pointer to the string to parse. */ |
252b5132 RH |
888 | { |
889 | register char *regpoint = *start; | |
890 | register int regnum = -1; | |
891 | ||
892 | switch (*regpoint++) | |
893 | { | |
894 | case '%': /* Registers can start with a %, | |
a4d24084 | 895 | R or r, and then a number. */ |
252b5132 RH |
896 | case 'R': |
897 | case 'r': | |
898 | if (isdigit (*regpoint)) | |
899 | { | |
a4d24084 | 900 | /* Got the first digit. */ |
252b5132 RH |
901 | regnum = *regpoint++ - '0'; |
902 | if ((regnum == 1) && isdigit (*regpoint)) | |
903 | { | |
a4d24084 | 904 | /* Its a two digit number. */ |
252b5132 RH |
905 | regnum = 10 + (*regpoint++ - '0'); |
906 | if (regnum > BIGGESTREG) | |
907 | { /* Number too big? */ | |
908 | regnum = -1; | |
909 | } | |
910 | } | |
911 | } | |
912 | break; | |
913 | case 'F': /* Is it the FP */ | |
914 | case 'f': | |
915 | switch (*regpoint++) | |
916 | { | |
917 | case 'p': | |
918 | case 'P': | |
919 | regnum = FP_REG; | |
920 | } | |
921 | break; | |
922 | case 's': /* How about the SP */ | |
923 | case 'S': | |
924 | switch (*regpoint++) | |
925 | { | |
926 | case 'p': | |
927 | case 'P': | |
928 | regnum = SP_REG; | |
929 | } | |
930 | break; | |
931 | case 'p': /* OR the PC even */ | |
932 | case 'P': | |
933 | switch (*regpoint++) | |
934 | { | |
935 | case 'c': | |
936 | case 'C': | |
937 | regnum = PC_REG; | |
938 | } | |
939 | break; | |
940 | } | |
941 | ||
942 | if (regnum != -1) | |
943 | { /* No error, so move string pointer */ | |
944 | *start = regpoint; | |
945 | } | |
946 | return regnum; /* Return results */ | |
947 | } /* tahoe_reg_parse */ | |
948 | \f | |
949 | /* | |
950 | * This chops up an operand and figures out its modes and stuff. | |
951 | * It's a little touchy about extra characters. | |
952 | * Optex to start with one extra character so it can be overwritten for | |
953 | * the backward part of the parsing. | |
954 | * You can't put a bunch of extra characters in side to | |
955 | * make the command look cute. ie: * foo ( r1 ) [ r0 ] | |
956 | * If you like doing a lot of typing, try COBOL! | |
957 | * Actually, this parser is a little weak all around. It's designed to be | |
958 | * used with compliers, so I emphisise correct decoding of valid code quickly | |
959 | * rather that catching every possable error. | |
960 | * Note: This uses the expression function, so save input_line_pointer before | |
961 | * calling. | |
962 | * | |
963 | * Sperry defines the semantics of address modes (and values) | |
964 | * by a two-letter code, explained here. | |
965 | * | |
966 | * letter 1: access type | |
967 | * | |
968 | * a address calculation - no data access, registers forbidden | |
969 | * b branch displacement | |
970 | * m read - let go of bus - write back "modify" | |
971 | * r read | |
972 | * w write | |
973 | * v bit field address: like 'a' but registers are OK | |
974 | * | |
975 | * letter 2: data type (i.e. width, alignment) | |
976 | * | |
977 | * b byte | |
978 | * w word | |
979 | * l longword | |
980 | * q quadword (Even regs < 14 allowed) (if 12, you get a warning) | |
981 | * - unconditional synthetic jbr operand | |
982 | * ? simple synthetic reversable branch operand | |
983 | * ! complex synthetic reversable branch operand | |
984 | * : complex synthetic non-reversable branch operand | |
985 | * | |
986 | * The '-?!:' letter 2's are not for external consumption. They are used | |
987 | * by GAS for psuedo ops relaxing code. | |
988 | * | |
989 | * After parsing topP has: | |
990 | * | |
991 | * top_ndx: -1, or the index register. eg 7=[R7] | |
992 | * top_reg: -1, or register number. eg 7 = R7 or (R7) | |
993 | * top_mode: The addressing mode byte. This byte, defines which of | |
994 | * the 11 modes opcode is. | |
995 | * top_access: Access type wanted for this opperand 'b'branch ' ' | |
996 | * no-instruction 'amrvw' | |
997 | * top_width: Operand width expected, one of "bwlq?-:!" | |
998 | * exp_of_operand: The expression as parsed by expression() | |
999 | * top_dispsize: Number of bytes in the displacement if we can figure it | |
1000 | * out and it's relavent. | |
1001 | * | |
1002 | * Need syntax checks built. | |
1003 | */ | |
1004 | ||
1005 | void | |
1006 | tip_op (optex, topP) | |
1007 | char *optex; /* The users text input, with one leading character */ | |
1008 | struct top *topP; /* The tahoe instruction with some fields already set: | |
1009 | in: access, width | |
1010 | out: ndx, reg, mode, error, dispsize */ | |
1011 | ||
1012 | { | |
a4d24084 KH |
1013 | int mode = 0; /* This operand's mode. */ |
1014 | char segfault = *optex; /* To keep the back parsing from freaking. */ | |
1015 | char *point = optex + 1; /* Parsing from front to back. */ | |
1016 | char *end; /* Parsing from back to front. */ | |
252b5132 RH |
1017 | int reg = -1; /* major register, -1 means absent */ |
1018 | int imreg = -1; /* Major register in immediate mode */ | |
1019 | int ndx = -1; /* index register number, -1 means absent */ | |
1020 | char dec_inc = ' '; /* Is the SP auto-incremented '+' or | |
a4d24084 | 1021 | auto-decremented '-' or neither ' '. */ |
252b5132 RH |
1022 | int immediate = 0; /* 1 if '$' immediate mode */ |
1023 | int call_width = 0; /* If the caller casts the displacement */ | |
1024 | int abs_width = 0; /* The width of the absolute displacment */ | |
1025 | int com_width = 0; /* Displacement width required by branch */ | |
1026 | int deferred = 0; /* 1 if '*' deferral is used */ | |
1027 | byte disp_size = 0; /* How big is this operand. 0 == don't know */ | |
1028 | char *op_bad = ""; /* Bad operand error */ | |
1029 | ||
1030 | char *tp, *temp, c; /* Temporary holders */ | |
1031 | ||
a4d24084 | 1032 | char access = topP->top_access; /* Save on a deref. */ |
252b5132 RH |
1033 | char width = topP->top_width; |
1034 | ||
1035 | int really_none = 0; /* Empty expressions evaluate to 0 | |
1036 | but I need to know if it's there or not */ | |
1037 | expressionS *expP; /* -> expression values for this operand */ | |
1038 | ||
a4d24084 | 1039 | /* Does this command restrict the displacement size. */ |
252b5132 RH |
1040 | if (access == 'b') |
1041 | com_width = (width == 'b' ? 1 : | |
1042 | (width == 'w' ? 2 : | |
1043 | (width == 'l' ? 4 : 0))); | |
1044 | ||
1045 | *optex = '\0'; /* This is kind of a back stop for all | |
1046 | the searches to fail on if needed.*/ | |
1047 | if (*point == '*') | |
1048 | { /* A dereference? */ | |
1049 | deferred = 1; | |
1050 | point++; | |
1051 | } | |
1052 | ||
1053 | /* Force words into a certain mode */ | |
1054 | /* Bitch, Bitch, Bitch! */ | |
1055 | /* | |
1056 | * Using the ^ operator is ambigous. If I have an absolute label | |
1057 | * called 'w' set to, say 2, and I have the expression 'w^1', do I get | |
1058 | * 1, forced to be in word displacement mode, or do I get the value of | |
1059 | * 'w' or'ed with 1 (3 in this case). | |
1060 | * The default is 'w' as an offset, so that's what I use. | |
1061 | * Stick with `, it does the same, and isn't ambig. | |
1062 | */ | |
1063 | ||
1064 | if (*point != '\0' && ((point[1] == '^') || (point[1] == '`'))) | |
1065 | switch (*point) | |
1066 | { | |
1067 | case 'b': | |
1068 | case 'B': | |
1069 | case 'w': | |
1070 | case 'W': | |
1071 | case 'l': | |
1072 | case 'L': | |
1073 | if (com_width) | |
1074 | as_warn (_("Casting a branch displacement is bad form, and is ignored.")); | |
1075 | else | |
1076 | { | |
1077 | c = (isupper (*point) ? tolower (*point) : *point); | |
1078 | call_width = ((c == 'b') ? 1 : | |
1079 | ((c == 'w') ? 2 : 4)); | |
1080 | } | |
1081 | point += 2; | |
1082 | break; | |
1083 | } | |
1084 | ||
1085 | /* Setting immediate mode */ | |
1086 | if (*point == '$') | |
1087 | { | |
1088 | immediate = 1; | |
1089 | point++; | |
1090 | } | |
1091 | ||
1092 | /* | |
1093 | * I've pulled off all the easy stuff off the front, move to the end and | |
1094 | * yank. | |
1095 | */ | |
1096 | ||
a4d24084 | 1097 | for (end = point; *end != '\0'; end++) /* Move to the end. */ |
252b5132 RH |
1098 | ; |
1099 | ||
1100 | if (end != point) /* Null string? */ | |
1101 | end--; | |
1102 | ||
1103 | if (end > point && *end == ' ' && end[-1] != '\'') | |
1104 | end--; /* Hop white space */ | |
1105 | ||
a4d24084 | 1106 | /* Is this an index reg. */ |
252b5132 RH |
1107 | if ((*end == ']') && (end[-1] != '\'')) |
1108 | { | |
1109 | temp = end; | |
1110 | ||
a4d24084 | 1111 | /* Find opening brace. */ |
252b5132 RH |
1112 | for (--end; (*end != '[' && end != point); end--) |
1113 | ; | |
1114 | ||
a4d24084 | 1115 | /* If I found the opening brace, get the index register number. */ |
252b5132 RH |
1116 | if (*end == '[') |
1117 | { | |
a4d24084 | 1118 | tp = end + 1; /* tp should point to the start of a reg. */ |
252b5132 RH |
1119 | ndx = tahoe_reg_parse (&tp); |
1120 | if (tp != temp) | |
a4d24084 | 1121 | { /* Reg. parse error. */ |
252b5132 RH |
1122 | ndx = -1; |
1123 | } | |
1124 | else | |
1125 | { | |
a4d24084 | 1126 | end--; /* Found it, move past brace. */ |
252b5132 RH |
1127 | } |
1128 | if (ndx == -1) | |
1129 | { | |
1130 | op_bad = _("Couldn't parse the [index] in this operand."); | |
a4d24084 | 1131 | end = point; /* Force all the rest of the tests to fail. */ |
252b5132 RH |
1132 | } |
1133 | } | |
1134 | else | |
1135 | { | |
1136 | op_bad = _("Couldn't find the opening '[' for the index of this operand."); | |
a4d24084 | 1137 | end = point; /* Force all the rest of the tests to fail. */ |
252b5132 RH |
1138 | } |
1139 | } | |
1140 | ||
1141 | /* Post increment? */ | |
1142 | if (*end == '+') | |
1143 | { | |
1144 | dec_inc = '+'; | |
1145 | /* was: *end--; */ | |
1146 | end--; | |
1147 | } | |
1148 | ||
1149 | /* register in parens? */ | |
1150 | if ((*end == ')') && (end[-1] != '\'')) | |
1151 | { | |
1152 | temp = end; | |
1153 | ||
a4d24084 | 1154 | /* Find opening paren. */ |
252b5132 RH |
1155 | for (--end; (*end != '(' && end != point); end--) |
1156 | ; | |
1157 | ||
a4d24084 | 1158 | /* If I found the opening paren, get the register number. */ |
252b5132 RH |
1159 | if (*end == '(') |
1160 | { | |
1161 | tp = end + 1; | |
1162 | reg = tahoe_reg_parse (&tp); | |
1163 | if (tp != temp) | |
1164 | { | |
a4d24084 | 1165 | /* Not a register, but could be part of the expression. */ |
252b5132 RH |
1166 | reg = -1; |
1167 | end = temp; /* Rest the pointer back */ | |
1168 | } | |
1169 | else | |
1170 | { | |
a4d24084 | 1171 | end--; /* Found the reg. move before opening paren. */ |
252b5132 RH |
1172 | } |
1173 | } | |
1174 | else | |
1175 | { | |
1176 | op_bad = _("Couldn't find the opening '(' for the deref of this operand."); | |
a4d24084 | 1177 | end = point; /* Force all the rest of the tests to fail. */ |
252b5132 RH |
1178 | } |
1179 | } | |
1180 | ||
1181 | /* Pre decrement? */ | |
1182 | if (*end == '-') | |
1183 | { | |
1184 | if (dec_inc != ' ') | |
1185 | { | |
1186 | op_bad = _("Operand can't be both pre-inc and post-dec."); | |
1187 | end = point; | |
1188 | } | |
1189 | else | |
1190 | { | |
1191 | dec_inc = '-'; | |
1192 | /* was: *end--; */ | |
1193 | end--; | |
1194 | } | |
1195 | } | |
1196 | ||
1197 | /* | |
1198 | * Everything between point and end is the 'expression', unless it's | |
1199 | * a register name. | |
1200 | */ | |
1201 | ||
1202 | c = end[1]; | |
1203 | end[1] = '\0'; | |
1204 | ||
1205 | tp = point; | |
1206 | imreg = tahoe_reg_parse (&point); /* Get the immediate register | |
1207 | if it is there.*/ | |
1208 | if (*point != '\0') | |
1209 | { | |
a4d24084 | 1210 | /* If there is junk after point, then the it's not immediate reg. */ |
252b5132 RH |
1211 | point = tp; |
1212 | imreg = -1; | |
1213 | } | |
1214 | ||
1215 | if (imreg != -1 && reg != -1) | |
1216 | op_bad = _("I parsed 2 registers in this operand."); | |
1217 | ||
1218 | /* | |
1219 | * Evaluate whats left of the expression to see if it's valid. | |
1220 | * Note again: This assumes that the calling expression has saved | |
1221 | * input_line_pointer. (Nag, nag, nag!) | |
1222 | */ | |
1223 | ||
1224 | if (*op_bad == '\0') | |
1225 | { | |
1994a7c7 | 1226 | /* Statement has no syntax goofs yet: let's sniff the expression. */ |
252b5132 RH |
1227 | input_line_pointer = point; |
1228 | expP = &(topP->exp_of_operand); | |
1229 | topP->seg_of_operand = expression (expP); | |
1230 | switch (expP->X_op) | |
1231 | { | |
1232 | case O_absent: | |
1233 | /* No expression. For BSD4.2 compatibility, missing expression is | |
1234 | absolute 0 */ | |
1235 | expP->X_op = O_constant; | |
1236 | expP->X_add_number = 0; | |
1237 | really_none = 1; | |
1238 | case O_constant: | |
1239 | /* for SEG_ABSOLUTE, we shouldnt need to set X_op_symbol, | |
a4d24084 | 1240 | X_add_symbol to any particular value. */ |
252b5132 | 1241 | /* But, we will program defensively. Since this situation occurs |
a4d24084 | 1242 | rarely so it costs us little to do so. */ |
252b5132 RH |
1243 | expP->X_add_symbol = NULL; |
1244 | expP->X_op_symbol = NULL; | |
1245 | /* How many bytes are needed to express this abs value? */ | |
1246 | abs_width = | |
1247 | ((((expP->X_add_number & 0xFFFFFF80) == 0) || | |
1248 | ((expP->X_add_number & 0xFFFFFF80) == 0xFFFFFF80)) ? 1 : | |
1249 | (((expP->X_add_number & 0xFFFF8000) == 0) || | |
1250 | ((expP->X_add_number & 0xFFFF8000) == 0xFFFF8000)) ? 2 : 4); | |
1251 | ||
1252 | case O_symbol: | |
1253 | break; | |
1254 | ||
1255 | default: | |
1256 | /* | |
1257 | * Major bug. We can't handle the case of a operator | |
1258 | * expression in a synthetic opcode variable-length | |
1259 | * instruction. We don't have a frag type that is smart | |
1260 | * enough to relax a operator, and so we just force all | |
1261 | * operators to behave like SEG_PASS1s. Clearly, if there is | |
1262 | * a demand we can invent a new or modified frag type and | |
1263 | * then coding up a frag for this case will be easy. | |
1264 | */ | |
1265 | need_pass_2 = 1; | |
1266 | op_bad = _("Can't relocate expression error."); | |
1267 | break; | |
1268 | ||
1269 | case O_big: | |
1270 | /* This is an error. Tahoe doesn't allow any expressions | |
1271 | bigger that a 32 bit long word. Any bigger has to be referenced | |
a4d24084 | 1272 | by address. */ |
252b5132 RH |
1273 | op_bad = _("Expression is too large for a 32 bits."); |
1274 | break; | |
1275 | } | |
1276 | if (*input_line_pointer != '\0') | |
1277 | { | |
1278 | op_bad = _("Junk at end of expression."); | |
1279 | } | |
1280 | } | |
1281 | ||
1282 | end[1] = c; | |
1283 | ||
1284 | /* I'm done, so restore optex */ | |
1285 | *optex = segfault; | |
1286 | ||
252b5132 RH |
1287 | /* |
1288 | * At this point in the game, we (in theory) have all the components of | |
1289 | * the operand at least parsed. Now it's time to check for syntax/semantic | |
1290 | * errors, and build the mode. | |
1291 | * This is what I have: | |
1292 | * deferred = 1 if '*' | |
1293 | * call_width = 0,1,2,4 | |
1294 | * abs_width = 0,1,2,4 | |
1295 | * com_width = 0,1,2,4 | |
1296 | * immediate = 1 if '$' | |
1297 | * ndx = -1 or reg num | |
1298 | * dec_inc = '-' or '+' or ' ' | |
1299 | * reg = -1 or reg num | |
1300 | * imreg = -1 or reg num | |
1301 | * topP->exp_of_operand | |
1302 | * really_none | |
1303 | */ | |
1304 | /* Is there a displacement size? */ | |
1305 | disp_size = (call_width ? call_width : | |
1306 | (com_width ? com_width : | |
1307 | abs_width ? abs_width : 0)); | |
1308 | ||
1309 | if (*op_bad == '\0') | |
1310 | { | |
1311 | if (imreg != -1) | |
1312 | { | |
1313 | /* Rn */ | |
1314 | mode = TAHOE_DIRECT_REG; | |
1315 | if (deferred || immediate || (dec_inc != ' ') || | |
1316 | (reg != -1) || !really_none) | |
1317 | op_bad = _("Syntax error in direct register mode."); | |
1318 | else if (ndx != -1) | |
1319 | op_bad = _("You can't index a register in direct register mode."); | |
1320 | else if (imreg == SP_REG && access == 'r') | |
1321 | op_bad = | |
1322 | _("SP can't be the source operand with direct register addressing."); | |
1323 | else if (access == 'a') | |
1324 | op_bad = _("Can't take the address of a register."); | |
1325 | else if (access == 'b') | |
1326 | op_bad = _("Direct Register can't be used in a branch."); | |
1327 | else if (width == 'q' && ((imreg % 2) || (imreg > 13))) | |
1328 | op_bad = _("For quad access, the register must be even and < 14."); | |
1329 | else if (call_width) | |
1330 | op_bad = _("You can't cast a direct register."); | |
1331 | ||
1332 | if (*op_bad == '\0') | |
1333 | { | |
1334 | /* No errors, check for warnings */ | |
1335 | if (width == 'q' && imreg == 12) | |
1336 | as_warn (_("Using reg 14 for quadwords can tromp the FP register.")); | |
1337 | ||
1338 | reg = imreg; | |
1339 | } | |
1340 | ||
1341 | /* We know: imm = -1 */ | |
1342 | } | |
1343 | else if (dec_inc == '-') | |
1344 | { | |
1345 | /* -(SP) */ | |
1346 | mode = TAHOE_AUTO_DEC; | |
1347 | if (deferred || immediate || !really_none) | |
1348 | op_bad = _("Syntax error in auto-dec mode."); | |
1349 | else if (ndx != -1) | |
1350 | op_bad = _("You can't have an index auto dec mode."); | |
1351 | else if (access == 'r') | |
1352 | op_bad = _("Auto dec mode cant be used for reading."); | |
1353 | else if (reg != SP_REG) | |
1354 | op_bad = _("Auto dec only works of the SP register."); | |
1355 | else if (access == 'b') | |
1356 | op_bad = _("Auto dec can't be used in a branch."); | |
1357 | else if (width == 'q') | |
1358 | op_bad = _("Auto dec won't work with quadwords."); | |
1359 | ||
1360 | /* We know: imm = -1, dec_inc != '-' */ | |
1361 | } | |
1362 | else if (dec_inc == '+') | |
1363 | { | |
1364 | if (immediate || !really_none) | |
1365 | op_bad = _("Syntax error in one of the auto-inc modes."); | |
1366 | else if (deferred) | |
1367 | { | |
1368 | /* *(SP)+ */ | |
1369 | mode = TAHOE_AUTO_INC_DEFERRED; | |
1370 | if (reg != SP_REG) | |
1371 | op_bad = _("Auto inc deferred only works of the SP register."); | |
1372 | else if (ndx != -1) | |
1373 | op_bad = _("You can't have an index auto inc deferred mode."); | |
1374 | else if (access == 'b') | |
1375 | op_bad = _("Auto inc can't be used in a branch."); | |
1376 | } | |
1377 | else | |
1378 | { | |
1379 | /* (SP)+ */ | |
1380 | mode = TAHOE_AUTO_INC; | |
1381 | if (access == 'm' || access == 'w') | |
1382 | op_bad = _("You can't write to an auto inc register."); | |
1383 | else if (reg != SP_REG) | |
1384 | op_bad = _("Auto inc only works of the SP register."); | |
1385 | else if (access == 'b') | |
1386 | op_bad = _("Auto inc can't be used in a branch."); | |
1387 | else if (width == 'q') | |
1388 | op_bad = _("Auto inc won't work with quadwords."); | |
1389 | else if (ndx != -1) | |
1390 | op_bad = _("You can't have an index in auto inc mode."); | |
1391 | } | |
1392 | ||
1393 | /* We know: imm = -1, dec_inc == ' ' */ | |
1394 | } | |
1395 | else if (reg != -1) | |
1396 | { | |
1397 | if ((ndx != -1) && (reg == SP_REG)) | |
1398 | op_bad = _("You can't index the sp register."); | |
1399 | if (deferred) | |
1400 | { | |
1401 | /* *<disp>(Rn) */ | |
1402 | mode = TAHOE_REG_DISP_DEFERRED; | |
1403 | if (immediate) | |
1404 | op_bad = _("Syntax error in register displaced mode."); | |
1405 | } | |
1406 | else if (really_none) | |
1407 | { | |
1408 | /* (Rn) */ | |
1409 | mode = TAHOE_REG_DEFERRED; | |
1410 | /* if reg = SP then cant be indexed */ | |
1411 | } | |
1412 | else | |
1413 | { | |
1414 | /* <disp>(Rn) */ | |
1415 | mode = TAHOE_REG_DISP; | |
1416 | } | |
1417 | ||
1418 | /* We know: imm = -1, dec_inc == ' ', Reg = -1 */ | |
1419 | } | |
1420 | else | |
1421 | { | |
1422 | if (really_none) | |
1423 | op_bad = _("An offest is needed for this operand."); | |
1424 | if (deferred && immediate) | |
1425 | { | |
1426 | /* *$<ADDR> */ | |
1427 | mode = TAHOE_ABSOLUTE_ADDR; | |
1428 | disp_size = 4; | |
1429 | } | |
1430 | else if (immediate) | |
1431 | { | |
1432 | /* $<disp> */ | |
1433 | mode = TAHOE_IMMEDIATE; | |
1434 | if (ndx != -1) | |
1435 | op_bad = _("You can't index a register in immediate mode."); | |
1436 | if (access == 'a') | |
1437 | op_bad = _("Immediate access can't be used as an address."); | |
a4d24084 | 1438 | /* ponder the wisdom of a cast because it doesn't do any good. */ |
252b5132 RH |
1439 | } |
1440 | else if (deferred) | |
1441 | { | |
1442 | /* *<disp> */ | |
1443 | mode = TAHOE_DISP_REL_DEFERRED; | |
1444 | } | |
1445 | else | |
1446 | { | |
1447 | /* <disp> */ | |
1448 | mode = TAHOE_DISPLACED_RELATIVE; | |
1449 | } | |
1450 | } | |
1451 | } | |
1452 | ||
1453 | /* | |
1454 | * At this point, all the errors we can do have be checked for. | |
a4d24084 | 1455 | * We can build the 'top'. */ |
252b5132 RH |
1456 | |
1457 | topP->top_ndx = ndx; | |
1458 | topP->top_reg = reg; | |
1459 | topP->top_mode = mode; | |
1460 | topP->top_error = op_bad; | |
1461 | topP->top_dispsize = disp_size; | |
1462 | } /* tip_op */ | |
1463 | \f | |
1464 | /* | |
1465 | * t i p ( ) | |
1466 | * | |
1467 | * This converts a string into a tahoe instruction. | |
1468 | * The string must be a bare single instruction in tahoe (with BSD4 frobs) | |
1469 | * format. | |
1470 | * It provides at most one fatal error message (which stops the scan) | |
1471 | * some warning messages as it finds them. | |
1472 | * The tahoe instruction is returned in exploded form. | |
1473 | * | |
1474 | * The exploded instruction is returned to a struct tit of your choice. | |
1475 | * #include "tahoe-inst.h" to know what a struct tit is. | |
1476 | * | |
1477 | */ | |
1478 | ||
1479 | static void | |
1480 | tip (titP, instring) | |
a4d24084 KH |
1481 | struct tit *titP; /* We build an exploded instruction here. */ |
1482 | char *instring; /* Text of a vax instruction: we modify. */ | |
252b5132 | 1483 | { |
a4d24084 | 1484 | register struct tot_wot *twP = NULL; /* How to bit-encode this opcode. */ |
252b5132 RH |
1485 | register char *p; /* 1/skip whitespace.2/scan vot_how */ |
1486 | register char *q; /* */ | |
1487 | register unsigned char count; /* counts number of operands seen */ | |
1488 | register struct top *operandp;/* scan operands in struct tit */ | |
1489 | register char *alloperr = ""; /* error over all operands */ | |
1490 | register char c; /* Remember char, (we clobber it | |
a4d24084 | 1491 | with '\0' temporarily). */ |
252b5132 RH |
1492 | char *save_input_line_pointer; |
1493 | ||
1494 | if (*instring == ' ') | |
a4d24084 | 1495 | ++instring; /* Skip leading whitespace. */ |
252b5132 RH |
1496 | for (p = instring; *p && *p != ' '; p++) |
1497 | ; /* MUST end in end-of-string or | |
a4d24084 KH |
1498 | exactly 1 space. */ |
1499 | /* Scanned up to end of operation-code. */ | |
1500 | /* Operation-code is ended with whitespace. */ | |
252b5132 RH |
1501 | if (p == instring) |
1502 | { | |
1503 | titP->tit_error = _("No operator"); | |
1504 | count = 0; | |
1505 | titP->tit_opcode = 0; | |
1506 | } | |
1507 | else | |
1508 | { | |
1509 | c = *p; | |
1510 | *p = '\0'; | |
1511 | /* | |
1512 | * Here with instring pointing to what better be an op-name, and p | |
1513 | * pointing to character just past that. | |
1514 | * We trust instring points to an op-name, with no whitespace. | |
1515 | */ | |
1516 | twP = (struct tot_wot *) hash_find (op_hash, instring); | |
a4d24084 | 1517 | *p = c; /* Restore char after op-code. */ |
252b5132 RH |
1518 | if (twP == 0) |
1519 | { | |
1520 | titP->tit_error = _("Unknown operator"); | |
1521 | count = 0; | |
1522 | titP->tit_opcode = 0; | |
1523 | } | |
1524 | else | |
1525 | { | |
1526 | /* | |
1994a7c7 | 1527 | * We found a match! So let's pick up as many operands as the |
252b5132 RH |
1528 | * instruction wants, and even gripe if there are too many. |
1529 | * We expect comma to seperate each operand. | |
1530 | * We let instring track the text, while p tracks a part of the | |
1531 | * struct tot. | |
1532 | */ | |
1533 | ||
1534 | count = 0; /* no operands seen yet */ | |
1535 | instring = p + (*p != '\0'); /* point past the operation code */ | |
1536 | /* tip_op() screws with the input_line_pointer, so save it before | |
1537 | I jump in */ | |
1538 | save_input_line_pointer = input_line_pointer; | |
1539 | for (p = twP->args, operandp = titP->tit_operand; | |
1540 | !*alloperr && *p; | |
1541 | operandp++, p += 2) | |
1542 | { | |
1543 | /* | |
1544 | * Here to parse one operand. Leave instring pointing just | |
1545 | * past any one ',' that marks the end of this operand. | |
1546 | */ | |
1547 | if (!p[1]) | |
1548 | as_fatal (_("Compiler bug: ODD number of bytes in arg structure %s."), | |
1549 | twP->args); | |
1550 | else if (*instring) | |
1551 | { | |
1552 | for (q = instring; (*q != ',' && *q != '\0'); q++) | |
1553 | { | |
1554 | if (*q == '\'' && q[1] != '\0') /* Jump quoted characters */ | |
1555 | q++; | |
1556 | } | |
1557 | c = *q; | |
1558 | /* | |
1559 | * Q points to ',' or '\0' that ends argument. C is that | |
1560 | * character. | |
1561 | */ | |
1562 | *q = '\0'; | |
1563 | operandp->top_access = p[0]; | |
1564 | operandp->top_width = p[1]; | |
1565 | tip_op (instring - 1, operandp); | |
a4d24084 | 1566 | *q = c; /* Restore input text. */ |
252b5132 RH |
1567 | if (*(operandp->top_error)) |
1568 | { | |
1569 | alloperr = operandp->top_error; | |
1570 | } | |
1571 | instring = q + (c ? 1 : 0); /* next operand (if any) */ | |
1572 | count++; /* won another argument, may have an operr */ | |
1573 | } | |
1574 | else | |
1575 | alloperr = _("Not enough operands"); | |
1576 | } | |
a4d24084 | 1577 | /* Restore the pointer. */ |
252b5132 RH |
1578 | input_line_pointer = save_input_line_pointer; |
1579 | ||
1580 | if (!*alloperr) | |
1581 | { | |
1582 | if (*instring == ' ') | |
a4d24084 | 1583 | instring++; /* Skip whitespace. */ |
252b5132 RH |
1584 | if (*instring) |
1585 | alloperr = _("Too many operands"); | |
1586 | } | |
1587 | titP->tit_error = alloperr; | |
1588 | } | |
1589 | } | |
1590 | ||
a4d24084 | 1591 | titP->tit_opcode = twP->code; /* The op-code. */ |
252b5132 RH |
1592 | titP->tit_operands = count; |
1593 | } /* tip */ | |
1594 | \f | |
1595 | /* md_assemble() emit frags for 1 instruction */ | |
1596 | void | |
1597 | md_assemble (instruction_string) | |
a4d24084 | 1598 | char *instruction_string; /* A string: assemble 1 instruction. */ |
252b5132 RH |
1599 | { |
1600 | char *p; | |
a4d24084 KH |
1601 | register struct top *operandP;/* An operand. Scans all operands. */ |
1602 | /* char c_save; fixme: remove this line *//* What used to live after an expression. */ | |
1603 | /* struct frag *fragP; fixme: remove this line *//* Fragment of code we just made. */ | |
252b5132 | 1604 | /* register struct top *end_operandP; fixme: remove this line *//* -> slot just after last operand |
a4d24084 | 1605 | Limit of the for (each operand). */ |
252b5132 RH |
1606 | register expressionS *expP; /* -> expression values for this operand */ |
1607 | ||
a4d24084 | 1608 | /* These refer to an instruction operand expression. */ |
252b5132 RH |
1609 | segT to_seg; /* Target segment of the address. */ |
1610 | ||
1611 | register valueT this_add_number; | |
a4d24084 | 1612 | register symbolS *this_add_symbol; /* +ve (minuend) symbol. */ |
252b5132 | 1613 | |
a4d24084 KH |
1614 | /* tahoe_opcodeT opcode_as_number; fixme: remove this line *//* The opcode as a number. */ |
1615 | char *opcodeP; /* Where it is in a frag. */ | |
1616 | /* char *opmodeP; fixme: remove this line *//* Where opcode type is, in a frag. */ | |
252b5132 RH |
1617 | |
1618 | int dispsize; /* From top_dispsize: tahoe_operand_width | |
1619 | (in bytes) */ | |
1620 | int is_undefined; /* 1 if operand expression's | |
a4d24084 | 1621 | segment not known yet. */ |
252b5132 RH |
1622 | int pc_rel; /* Is this operand pc relative? */ |
1623 | ||
a4d24084 | 1624 | /* Decode the operand. */ |
252b5132 RH |
1625 | tip (&t, instruction_string); |
1626 | ||
1627 | /* | |
1628 | * Check to see if this operand decode properly. | |
1629 | * Notice that we haven't made any frags yet. | |
1630 | * If it goofed, then this instruction will wedge in any pass, | |
1631 | * and we can safely flush it, without causing interpass symbol phase | |
1632 | * errors. That is, without changing label values in different passes. | |
1633 | */ | |
1634 | if (*t.tit_error) | |
1635 | { | |
1636 | as_warn (_("Ignoring statement due to \"%s\""), t.tit_error); | |
1637 | } | |
1638 | else | |
1639 | { | |
1640 | /* We saw no errors in any operands - try to make frag(s) */ | |
a4d24084 KH |
1641 | /* Emit op-code. */ |
1642 | /* Remember where it is, in case we want to modify the op-code later. */ | |
252b5132 RH |
1643 | opcodeP = frag_more (1); |
1644 | *opcodeP = t.tit_opcode; | |
a4d24084 | 1645 | /* Now do each operand. */ |
252b5132 RH |
1646 | for (operandP = t.tit_operand; |
1647 | operandP < t.tit_operand + t.tit_operands; | |
1648 | operandP++) | |
1649 | { /* for each operand */ | |
1650 | expP = &(operandP->exp_of_operand); | |
1651 | if (operandP->top_ndx >= 0) | |
1652 | { | |
1653 | /* Indexed addressing byte | |
1654 | Legality of indexed mode already checked: it is OK */ | |
1655 | FRAG_APPEND_1_CHAR (0x40 + operandP->top_ndx); | |
1656 | } /* if(top_ndx>=0) */ | |
1657 | ||
a4d24084 | 1658 | /* Here to make main operand frag(s). */ |
252b5132 RH |
1659 | this_add_number = expP->X_add_number; |
1660 | this_add_symbol = expP->X_add_symbol; | |
1661 | to_seg = operandP->seg_of_operand; | |
1662 | know (to_seg == SEG_UNKNOWN || \ | |
1663 | to_seg == SEG_ABSOLUTE || \ | |
1664 | to_seg == SEG_DATA || \ | |
1665 | to_seg == SEG_TEXT || \ | |
1666 | to_seg == SEG_BSS); | |
1667 | is_undefined = (to_seg == SEG_UNKNOWN); | |
1668 | /* Do we know how big this opperand is? */ | |
1669 | dispsize = operandP->top_dispsize; | |
1670 | pc_rel = 0; | |
1671 | /* Deal with the branch possabilities. (Note, this doesn't include | |
1672 | jumps.)*/ | |
1673 | if (operandP->top_access == 'b') | |
1674 | { | |
1675 | /* Branches must be expressions. A psuedo branch can also jump to | |
a4d24084 | 1676 | an absolute address. */ |
252b5132 RH |
1677 | if (to_seg == now_seg || is_undefined) |
1678 | { | |
a4d24084 | 1679 | /* If is_undefined, then it might BECOME now_seg by relax time. */ |
252b5132 RH |
1680 | if (dispsize) |
1681 | { | |
1682 | /* I know how big the branch is supposed to be (it's a normal | |
a4d24084 | 1683 | branch), so I set up the frag, and let GAS do the rest. */ |
252b5132 RH |
1684 | p = frag_more (dispsize); |
1685 | fix_new (frag_now, p - frag_now->fr_literal, | |
1686 | this_add_symbol, this_add_number, | |
1687 | size_to_fx (dispsize, 1), | |
1688 | NULL); | |
1689 | } | |
1690 | else | |
1691 | { | |
1692 | /* (to_seg==now_seg || to_seg == SEG_UNKNOWN) && dispsize==0 */ | |
1693 | /* If we don't know how big it is, then its a synthetic branch, | |
a4d24084 | 1694 | so we set up a simple relax state. */ |
252b5132 RH |
1695 | switch (operandP->top_width) |
1696 | { | |
1697 | case TAHOE_WIDTH_CONDITIONAL_JUMP: | |
1698 | /* Simple (conditional) jump. I may have to reverse the | |
1699 | condition of opcodeP, and then jump to my destination. | |
1700 | I set 1 byte aside for the branch off set, and could need 6 | |
1701 | more bytes for the pc_rel jump */ | |
1702 | frag_var (rs_machine_dependent, 7, 1, | |
1703 | ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, | |
1704 | is_undefined ? STATE_UNDF : STATE_BYTE), | |
1705 | this_add_symbol, this_add_number, opcodeP); | |
1706 | break; | |
1707 | case TAHOE_WIDTH_ALWAYS_JUMP: | |
1708 | /* Simple (unconditional) jump. I may have to convert this to | |
a4d24084 | 1709 | a word branch, or an absolute jump. */ |
252b5132 RH |
1710 | frag_var (rs_machine_dependent, 5, 1, |
1711 | ENCODE_RELAX (STATE_ALWAYS_BRANCH, | |
1712 | is_undefined ? STATE_UNDF : STATE_BYTE), | |
1713 | this_add_symbol, this_add_number, opcodeP); | |
1714 | break; | |
a4d24084 | 1715 | /* The smallest size for the next 2 cases is word. */ |
252b5132 RH |
1716 | case TAHOE_WIDTH_BIG_REV_JUMP: |
1717 | frag_var (rs_machine_dependent, 8, 2, | |
1718 | ENCODE_RELAX (STATE_BIG_REV_BRANCH, | |
1719 | is_undefined ? STATE_UNDF : STATE_WORD), | |
1720 | this_add_symbol, this_add_number, | |
1721 | opcodeP); | |
1722 | break; | |
1723 | case TAHOE_WIDTH_BIG_NON_REV_JUMP: | |
1724 | frag_var (rs_machine_dependent, 10, 2, | |
1725 | ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, | |
1726 | is_undefined ? STATE_UNDF : STATE_WORD), | |
1727 | this_add_symbol, this_add_number, | |
1728 | opcodeP); | |
1729 | break; | |
1730 | default: | |
1731 | as_fatal (_("Compliler bug: Got a case (%d) I wasn't expecting."), | |
1732 | operandP->top_width); | |
1733 | } | |
1734 | } | |
1735 | } | |
1736 | else | |
1737 | { | |
1738 | /* to_seg != now_seg && to_seg != seg_unknown (still in branch) | |
1739 | In other words, I'm jumping out of my segment so extend the | |
a4d24084 | 1740 | branches to jumps, and let GAS fix them. */ |
252b5132 RH |
1741 | |
1742 | /* These are "branches" what will always be branches around a jump | |
1743 | to the correct addresss in real life. | |
1744 | If to_seg is SEG_ABSOLUTE, just encode the branch in, | |
a4d24084 | 1745 | else let GAS fix the address. */ |
252b5132 RH |
1746 | |
1747 | switch (operandP->top_width) | |
1748 | { | |
1749 | /* The theory: | |
1750 | For SEG_ABSOLUTE, then mode is ABSOLUTE_ADDR, jump | |
1751 | to that addresss (not pc_rel). | |
a4d24084 | 1752 | For other segs, address is a long word PC rel jump. */ |
252b5132 RH |
1753 | case TAHOE_WIDTH_CONDITIONAL_JUMP: |
1754 | /* b<cond> */ | |
1755 | /* To reverse the condition in a TAHOE branch, | |
1756 | complement bit 4 */ | |
1757 | *opcodeP ^= 0x10; | |
1758 | p = frag_more (7); | |
1759 | *p++ = 6; | |
1760 | *p++ = TAHOE_JMP; | |
1761 | *p++ = (operandP->top_mode == | |
1762 | TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR : | |
1763 | TAHOE_PC_REL_LONG); | |
1764 | fix_new (frag_now, p - frag_now->fr_literal, | |
1765 | this_add_symbol, this_add_number, | |
1766 | (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL); | |
1767 | /* | |
1768 | * Now (eg) BLEQ 1f | |
1769 | * JMP foo | |
1770 | * 1: | |
1771 | */ | |
1772 | break; | |
1773 | case TAHOE_WIDTH_ALWAYS_JUMP: | |
1774 | /* br, just turn it into a jump */ | |
1775 | *opcodeP = TAHOE_JMP; | |
1776 | p = frag_more (5); | |
1777 | *p++ = (operandP->top_mode == | |
1778 | TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR : | |
1779 | TAHOE_PC_REL_LONG); | |
1780 | fix_new (frag_now, p - frag_now->fr_literal, | |
1781 | this_add_symbol, this_add_number, | |
1782 | (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL); | |
1783 | /* Now (eg) JMP foo */ | |
1784 | break; | |
1785 | case TAHOE_WIDTH_BIG_REV_JUMP: | |
1786 | p = frag_more (8); | |
1787 | *opcodeP ^= 0x10; | |
1788 | *p++ = 0; | |
1789 | *p++ = 6; | |
1790 | *p++ = TAHOE_JMP; | |
1791 | *p++ = (operandP->top_mode == | |
1792 | TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR : | |
1793 | TAHOE_PC_REL_LONG); | |
1794 | fix_new (frag_now, p - frag_now->fr_literal, | |
1795 | this_add_symbol, this_add_number, | |
1796 | (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL); | |
1797 | /* | |
1798 | * Now (eg) ACBx 1f | |
1799 | * JMP foo | |
1800 | * 1: | |
1801 | */ | |
1802 | break; | |
1803 | case TAHOE_WIDTH_BIG_NON_REV_JUMP: | |
1804 | p = frag_more (10); | |
1805 | *p++ = 0; | |
1806 | *p++ = 2; | |
1807 | *p++ = TAHOE_BRB; | |
1808 | *p++ = 6; | |
1809 | *p++ = TAHOE_JMP; | |
1810 | *p++ = (operandP->top_mode == | |
1811 | TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR : | |
1812 | TAHOE_PC_REL_LONG); | |
1813 | fix_new (frag_now, p - frag_now->fr_literal, | |
1814 | this_add_symbol, this_add_number, | |
1815 | (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL); | |
1816 | /* | |
1817 | * Now (eg) xOBxxx 1f | |
1818 | * BRB 2f | |
1819 | * 1: JMP @#foo | |
1820 | * 2: | |
1821 | */ | |
1822 | break; | |
1823 | case 'b': | |
1824 | case 'w': | |
1825 | as_warn (_("Real branch displacements must be expressions.")); | |
1826 | break; | |
1827 | default: | |
1828 | as_fatal (_("Complier error: I got an unknown synthetic branch :%c"), | |
1829 | operandP->top_width); | |
1830 | break; | |
1831 | } | |
1832 | } | |
1833 | } | |
1834 | else | |
1835 | { | |
a4d24084 | 1836 | /* It ain't a branch operand. */ |
252b5132 RH |
1837 | switch (operandP->top_mode) |
1838 | { | |
1839 | /* Auto-foo access, only works for one reg (SP) | |
a4d24084 | 1840 | so the only thing needed is the mode. */ |
252b5132 RH |
1841 | case TAHOE_AUTO_DEC: |
1842 | case TAHOE_AUTO_INC: | |
1843 | case TAHOE_AUTO_INC_DEFERRED: | |
1844 | FRAG_APPEND_1_CHAR (operandP->top_mode); | |
1845 | break; | |
1846 | ||
1847 | /* Numbered Register only access. Only thing needed is the | |
1848 | mode + Register number */ | |
1849 | case TAHOE_DIRECT_REG: | |
1850 | case TAHOE_REG_DEFERRED: | |
1851 | FRAG_APPEND_1_CHAR (operandP->top_mode + operandP->top_reg); | |
1852 | break; | |
1853 | ||
1854 | /* An absolute address. It's size is always 5 bytes. | |
a4d24084 | 1855 | (mode_type + 4 byte address). */ |
252b5132 RH |
1856 | case TAHOE_ABSOLUTE_ADDR: |
1857 | know ((this_add_symbol == NULL)); | |
1858 | p = frag_more (5); | |
1859 | *p = TAHOE_ABSOLUTE_ADDR; | |
1860 | md_number_to_chars (p + 1, this_add_number, 4); | |
1861 | break; | |
1862 | ||
1863 | /* Immediate data. If the size isn't known, then it's an address | |
a4d24084 | 1864 | + and offset, which is 4 bytes big. */ |
252b5132 RH |
1865 | case TAHOE_IMMEDIATE: |
1866 | if (this_add_symbol != NULL) | |
1867 | { | |
1868 | p = frag_more (5); | |
1869 | *p++ = TAHOE_IMMEDIATE_LONGWORD; | |
1870 | fix_new (frag_now, p - frag_now->fr_literal, | |
1871 | this_add_symbol, this_add_number, | |
1872 | FX_32, NULL); | |
1873 | } | |
1874 | else | |
1875 | { | |
a4d24084 | 1876 | /* It's a integer, and I know it's size. */ |
252b5132 RH |
1877 | if ((unsigned) this_add_number < 0x40) |
1878 | { | |
1879 | /* Will it fit in a literal? */ | |
1880 | FRAG_APPEND_1_CHAR ((byte) this_add_number); | |
1881 | } | |
1882 | else | |
1883 | { | |
1884 | p = frag_more (dispsize + 1); | |
1885 | switch (dispsize) | |
1886 | { | |
1887 | case 1: | |
1888 | *p++ = TAHOE_IMMEDIATE_BYTE; | |
1889 | *p = (byte) this_add_number; | |
1890 | break; | |
1891 | case 2: | |
1892 | *p++ = TAHOE_IMMEDIATE_WORD; | |
1893 | md_number_to_chars (p, this_add_number, 2); | |
1894 | break; | |
1895 | case 4: | |
1896 | *p++ = TAHOE_IMMEDIATE_LONGWORD; | |
1897 | md_number_to_chars (p, this_add_number, 4); | |
1898 | break; | |
1899 | } | |
1900 | } | |
1901 | } | |
1902 | break; | |
1903 | ||
1904 | /* Distance from the PC. If the size isn't known, we have to relax | |
1905 | into it. The difference between this and disp(sp) is that | |
1906 | this offset is pc_rel, and disp(sp) isn't. | |
a4d24084 | 1907 | Note the drop through code. */ |
252b5132 RH |
1908 | |
1909 | case TAHOE_DISPLACED_RELATIVE: | |
1910 | case TAHOE_DISP_REL_DEFERRED: | |
1911 | operandP->top_reg = PC_REG; | |
1912 | pc_rel = 1; | |
1913 | ||
1914 | /* Register, plus a displacement mode. Save the register number, | |
1915 | and weather its deffered or not, and relax the size if it isn't | |
a4d24084 | 1916 | known. */ |
252b5132 RH |
1917 | case TAHOE_REG_DISP: |
1918 | case TAHOE_REG_DISP_DEFERRED: | |
1919 | if (operandP->top_mode == TAHOE_DISP_REL_DEFERRED || | |
1920 | operandP->top_mode == TAHOE_REG_DISP_DEFERRED) | |
1921 | operandP->top_reg += 0x10; /* deffered mode is always 0x10 higher | |
a4d24084 | 1922 | than it's non-deffered sibling. */ |
252b5132 RH |
1923 | |
1924 | /* Is this a value out of this segment? | |
1925 | The first part of this conditional is a cludge to make gas | |
1926 | produce the same output as 'as' when there is a lable, in | |
1927 | the current segment, displaceing a register. It's strange, | |
1928 | and no one in their right mind would do it, but it's easy | |
a4d24084 | 1929 | to cludge. */ |
252b5132 RH |
1930 | if ((dispsize == 0 && !pc_rel) || |
1931 | (to_seg != now_seg && !is_undefined && to_seg != SEG_ABSOLUTE)) | |
1932 | dispsize = 4; | |
1933 | ||
1934 | if (dispsize == 0) | |
1935 | { | |
1936 | /* | |
1937 | * We have a SEG_UNKNOWN symbol, or the size isn't cast. | |
1938 | * It might turn out to be in the same segment as | |
1939 | * the instruction, permitting relaxation. | |
1940 | */ | |
1941 | p = frag_var (rs_machine_dependent, 5, 2, | |
1942 | ENCODE_RELAX (STATE_PC_RELATIVE, | |
1943 | is_undefined ? STATE_UNDF : STATE_BYTE), | |
1944 | this_add_symbol, this_add_number, 0); | |
1945 | *p = operandP->top_reg; | |
1946 | } | |
1947 | else | |
1948 | { | |
a4d24084 | 1949 | /* Either this is an abs, or a cast. */ |
252b5132 RH |
1950 | p = frag_more (dispsize + 1); |
1951 | switch (dispsize) | |
1952 | { | |
1953 | case 1: | |
1954 | *p = TAHOE_PC_OR_BYTE + operandP->top_reg; | |
1955 | break; | |
1956 | case 2: | |
1957 | *p = TAHOE_PC_OR_WORD + operandP->top_reg; | |
1958 | break; | |
1959 | case 4: | |
1960 | *p = TAHOE_PC_OR_LONG + operandP->top_reg; | |
1961 | break; | |
1962 | }; | |
1963 | fix_new (frag_now, p + 1 - frag_now->fr_literal, | |
1964 | this_add_symbol, this_add_number, | |
1965 | size_to_fx (dispsize, pc_rel), NULL); | |
1966 | } | |
1967 | break; | |
1968 | default: | |
1969 | as_fatal (_("Barf, bad mode %x\n"), operandP->top_mode); | |
1970 | } | |
1971 | } | |
1972 | } /* for(operandP) */ | |
1973 | } /* if(!need_pass_2 && !goofed) */ | |
1974 | } /* tahoe_assemble() */ | |
1975 | ||
a4d24084 | 1976 | /* We have no need to default values of symbols. */ |
252b5132 | 1977 | |
252b5132 RH |
1978 | symbolS * |
1979 | md_undefined_symbol (name) | |
1980 | char *name; | |
1981 | { | |
1982 | return 0; | |
1983 | } /* md_undefined_symbol() */ | |
1984 | ||
a4d24084 | 1985 | /* Round up a section size to the appropriate boundary. */ |
252b5132 RH |
1986 | valueT |
1987 | md_section_align (segment, size) | |
1988 | segT segment; | |
1989 | valueT size; | |
1990 | { | |
1991 | return ((size + 7) & ~7); /* Round all sects to multiple of 8 */ | |
1992 | } /* md_section_align() */ | |
1993 | ||
1994 | /* Exactly what point is a PC-relative offset relative TO? | |
1995 | On the sparc, they're relative to the address of the offset, plus | |
1996 | its size. This gets us to the following instruction. | |
1997 | (??? Is this right? FIXME-SOON) */ | |
a4d24084 | 1998 | long |
252b5132 RH |
1999 | md_pcrel_from (fixP) |
2000 | fixS *fixP; | |
2001 | { | |
2002 | return (((fixP->fx_type == FX_8 | |
2003 | || fixP->fx_type == FX_PCREL8) | |
2004 | ? 1 | |
2005 | : ((fixP->fx_type == FX_16 | |
2006 | || fixP->fx_type == FX_PCREL16) | |
2007 | ? 2 | |
2008 | : ((fixP->fx_type == FX_32 | |
2009 | || fixP->fx_type == FX_PCREL32) | |
2010 | ? 4 | |
2011 | : 0))) + fixP->fx_where + fixP->fx_frag->fr_address); | |
2012 | } /* md_pcrel_from() */ | |
2013 | ||
a4d24084 | 2014 | int |
252b5132 RH |
2015 | tc_is_pcrel (fixP) |
2016 | fixS *fixP; | |
2017 | { | |
2018 | /* should never be called */ | |
2019 | know (0); | |
2020 | return (0); | |
2021 | } /* tc_is_pcrel() */ |