]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Support routines for manipulating internal types for GDB. |
4f2aea11 | 2 | |
b811d2c2 | 3 | Copyright (C) 1992-2020 Free Software Foundation, Inc. |
4f2aea11 | 4 | |
c906108c SS |
5 | Contributed by Cygnus Support, using pieces from other GDB modules. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
c906108c SS |
23 | #include "bfd.h" |
24 | #include "symtab.h" | |
25 | #include "symfile.h" | |
26 | #include "objfiles.h" | |
27 | #include "gdbtypes.h" | |
28 | #include "expression.h" | |
29 | #include "language.h" | |
30 | #include "target.h" | |
31 | #include "value.h" | |
32 | #include "demangle.h" | |
33 | #include "complaints.h" | |
34 | #include "gdbcmd.h" | |
015a42b4 | 35 | #include "cp-abi.h" |
ae5a43e0 | 36 | #include "hashtab.h" |
8de20a37 | 37 | #include "cp-support.h" |
ca092b61 | 38 | #include "bcache.h" |
82ca8957 | 39 | #include "dwarf2/loc.h" |
80180f79 | 40 | #include "gdbcore.h" |
1841ee5d | 41 | #include "floatformat.h" |
a5c641b5 | 42 | #include "f-lang.h" |
ef83a141 | 43 | #include <algorithm> |
09584414 | 44 | #include "gmp-utils.h" |
ac3aafc7 | 45 | |
6403aeea SW |
46 | /* Initialize BADNESS constants. */ |
47 | ||
a9d5ef47 | 48 | const struct rank LENGTH_MISMATCH_BADNESS = {100,0}; |
6403aeea | 49 | |
a9d5ef47 SW |
50 | const struct rank TOO_FEW_PARAMS_BADNESS = {100,0}; |
51 | const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0}; | |
6403aeea | 52 | |
a9d5ef47 | 53 | const struct rank EXACT_MATCH_BADNESS = {0,0}; |
6403aeea | 54 | |
a9d5ef47 SW |
55 | const struct rank INTEGER_PROMOTION_BADNESS = {1,0}; |
56 | const struct rank FLOAT_PROMOTION_BADNESS = {1,0}; | |
57 | const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0}; | |
e15c3eb4 | 58 | const struct rank CV_CONVERSION_BADNESS = {1, 0}; |
a9d5ef47 SW |
59 | const struct rank INTEGER_CONVERSION_BADNESS = {2,0}; |
60 | const struct rank FLOAT_CONVERSION_BADNESS = {2,0}; | |
61 | const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0}; | |
62 | const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0}; | |
5b4f6e25 | 63 | const struct rank BOOL_CONVERSION_BADNESS = {3,0}; |
a9d5ef47 SW |
64 | const struct rank BASE_CONVERSION_BADNESS = {2,0}; |
65 | const struct rank REFERENCE_CONVERSION_BADNESS = {2,0}; | |
06acc08f | 66 | const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1}; |
da096638 | 67 | const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0}; |
a9d5ef47 | 68 | const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0}; |
a451cb65 | 69 | const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0}; |
6403aeea | 70 | |
8da61cc4 | 71 | /* Floatformat pairs. */ |
f9e9243a UW |
72 | const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = { |
73 | &floatformat_ieee_half_big, | |
74 | &floatformat_ieee_half_little | |
75 | }; | |
8da61cc4 DJ |
76 | const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = { |
77 | &floatformat_ieee_single_big, | |
78 | &floatformat_ieee_single_little | |
79 | }; | |
80 | const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = { | |
81 | &floatformat_ieee_double_big, | |
82 | &floatformat_ieee_double_little | |
83 | }; | |
84 | const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = { | |
85 | &floatformat_ieee_double_big, | |
86 | &floatformat_ieee_double_littlebyte_bigword | |
87 | }; | |
88 | const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = { | |
89 | &floatformat_i387_ext, | |
90 | &floatformat_i387_ext | |
91 | }; | |
92 | const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = { | |
93 | &floatformat_m68881_ext, | |
94 | &floatformat_m68881_ext | |
95 | }; | |
96 | const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = { | |
97 | &floatformat_arm_ext_big, | |
98 | &floatformat_arm_ext_littlebyte_bigword | |
99 | }; | |
100 | const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = { | |
101 | &floatformat_ia64_spill_big, | |
102 | &floatformat_ia64_spill_little | |
103 | }; | |
104 | const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = { | |
105 | &floatformat_ia64_quad_big, | |
106 | &floatformat_ia64_quad_little | |
107 | }; | |
108 | const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = { | |
109 | &floatformat_vax_f, | |
110 | &floatformat_vax_f | |
111 | }; | |
112 | const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = { | |
113 | &floatformat_vax_d, | |
114 | &floatformat_vax_d | |
115 | }; | |
b14d30e1 | 116 | const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = { |
f5aee5ee AM |
117 | &floatformat_ibm_long_double_big, |
118 | &floatformat_ibm_long_double_little | |
b14d30e1 | 119 | }; |
2a67f09d FW |
120 | const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = { |
121 | &floatformat_bfloat16_big, | |
122 | &floatformat_bfloat16_little | |
123 | }; | |
8da61cc4 | 124 | |
2873700e KS |
125 | /* Should opaque types be resolved? */ |
126 | ||
491144b5 | 127 | static bool opaque_type_resolution = true; |
2873700e | 128 | |
79bb1944 | 129 | /* See gdbtypes.h. */ |
2873700e KS |
130 | |
131 | unsigned int overload_debug = 0; | |
132 | ||
a451cb65 KS |
133 | /* A flag to enable strict type checking. */ |
134 | ||
491144b5 | 135 | static bool strict_type_checking = true; |
a451cb65 | 136 | |
2873700e | 137 | /* A function to show whether opaque types are resolved. */ |
5212577a | 138 | |
920d2a44 AC |
139 | static void |
140 | show_opaque_type_resolution (struct ui_file *file, int from_tty, | |
7ba81444 MS |
141 | struct cmd_list_element *c, |
142 | const char *value) | |
920d2a44 | 143 | { |
3e43a32a MS |
144 | fprintf_filtered (file, _("Resolution of opaque struct/class/union types " |
145 | "(if set before loading symbols) is %s.\n"), | |
920d2a44 AC |
146 | value); |
147 | } | |
148 | ||
2873700e | 149 | /* A function to show whether C++ overload debugging is enabled. */ |
5212577a | 150 | |
920d2a44 AC |
151 | static void |
152 | show_overload_debug (struct ui_file *file, int from_tty, | |
153 | struct cmd_list_element *c, const char *value) | |
154 | { | |
7ba81444 MS |
155 | fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"), |
156 | value); | |
920d2a44 | 157 | } |
c906108c | 158 | |
a451cb65 KS |
159 | /* A function to show the status of strict type checking. */ |
160 | ||
161 | static void | |
162 | show_strict_type_checking (struct ui_file *file, int from_tty, | |
163 | struct cmd_list_element *c, const char *value) | |
164 | { | |
165 | fprintf_filtered (file, _("Strict type checking is %s.\n"), value); | |
166 | } | |
167 | ||
5212577a | 168 | \f |
e9bb382b UW |
169 | /* Allocate a new OBJFILE-associated type structure and fill it |
170 | with some defaults. Space for the type structure is allocated | |
171 | on the objfile's objfile_obstack. */ | |
c906108c SS |
172 | |
173 | struct type * | |
fba45db2 | 174 | alloc_type (struct objfile *objfile) |
c906108c | 175 | { |
52f0bd74 | 176 | struct type *type; |
c906108c | 177 | |
e9bb382b UW |
178 | gdb_assert (objfile != NULL); |
179 | ||
7ba81444 | 180 | /* Alloc the structure and start off with all fields zeroed. */ |
e9bb382b UW |
181 | type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type); |
182 | TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack, | |
183 | struct main_type); | |
184 | OBJSTAT (objfile, n_types++); | |
c906108c | 185 | |
e9bb382b UW |
186 | TYPE_OBJFILE_OWNED (type) = 1; |
187 | TYPE_OWNER (type).objfile = objfile; | |
c906108c | 188 | |
7ba81444 | 189 | /* Initialize the fields that might not be zero. */ |
c906108c | 190 | |
67607e24 | 191 | type->set_code (TYPE_CODE_UNDEF); |
2fdde8f8 | 192 | TYPE_CHAIN (type) = type; /* Chain back to itself. */ |
c906108c | 193 | |
c16abbde | 194 | return type; |
c906108c SS |
195 | } |
196 | ||
e9bb382b UW |
197 | /* Allocate a new GDBARCH-associated type structure and fill it |
198 | with some defaults. Space for the type structure is allocated | |
8f57eec2 | 199 | on the obstack associated with GDBARCH. */ |
e9bb382b UW |
200 | |
201 | struct type * | |
202 | alloc_type_arch (struct gdbarch *gdbarch) | |
203 | { | |
204 | struct type *type; | |
205 | ||
206 | gdb_assert (gdbarch != NULL); | |
207 | ||
208 | /* Alloc the structure and start off with all fields zeroed. */ | |
209 | ||
8f57eec2 PP |
210 | type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type); |
211 | TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type); | |
e9bb382b UW |
212 | |
213 | TYPE_OBJFILE_OWNED (type) = 0; | |
214 | TYPE_OWNER (type).gdbarch = gdbarch; | |
215 | ||
216 | /* Initialize the fields that might not be zero. */ | |
217 | ||
67607e24 | 218 | type->set_code (TYPE_CODE_UNDEF); |
e9bb382b UW |
219 | TYPE_CHAIN (type) = type; /* Chain back to itself. */ |
220 | ||
221 | return type; | |
222 | } | |
223 | ||
224 | /* If TYPE is objfile-associated, allocate a new type structure | |
225 | associated with the same objfile. If TYPE is gdbarch-associated, | |
226 | allocate a new type structure associated with the same gdbarch. */ | |
227 | ||
228 | struct type * | |
229 | alloc_type_copy (const struct type *type) | |
230 | { | |
231 | if (TYPE_OBJFILE_OWNED (type)) | |
232 | return alloc_type (TYPE_OWNER (type).objfile); | |
233 | else | |
234 | return alloc_type_arch (TYPE_OWNER (type).gdbarch); | |
235 | } | |
236 | ||
237 | /* If TYPE is gdbarch-associated, return that architecture. | |
238 | If TYPE is objfile-associated, return that objfile's architecture. */ | |
239 | ||
240 | struct gdbarch * | |
241 | get_type_arch (const struct type *type) | |
242 | { | |
2fabdf33 AB |
243 | struct gdbarch *arch; |
244 | ||
e9bb382b | 245 | if (TYPE_OBJFILE_OWNED (type)) |
08feed99 | 246 | arch = TYPE_OWNER (type).objfile->arch (); |
e9bb382b | 247 | else |
2fabdf33 AB |
248 | arch = TYPE_OWNER (type).gdbarch; |
249 | ||
250 | /* The ARCH can be NULL if TYPE is associated with neither an objfile nor | |
251 | a gdbarch, however, this is very rare, and even then, in most cases | |
252 | that get_type_arch is called, we assume that a non-NULL value is | |
253 | returned. */ | |
254 | gdb_assert (arch != NULL); | |
255 | return arch; | |
e9bb382b UW |
256 | } |
257 | ||
99ad9427 YQ |
258 | /* See gdbtypes.h. */ |
259 | ||
260 | struct type * | |
261 | get_target_type (struct type *type) | |
262 | { | |
263 | if (type != NULL) | |
264 | { | |
265 | type = TYPE_TARGET_TYPE (type); | |
266 | if (type != NULL) | |
267 | type = check_typedef (type); | |
268 | } | |
269 | ||
270 | return type; | |
271 | } | |
272 | ||
2e056931 SM |
273 | /* See gdbtypes.h. */ |
274 | ||
275 | unsigned int | |
276 | type_length_units (struct type *type) | |
277 | { | |
278 | struct gdbarch *arch = get_type_arch (type); | |
279 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
280 | ||
281 | return TYPE_LENGTH (type) / unit_size; | |
282 | } | |
283 | ||
2fdde8f8 DJ |
284 | /* Alloc a new type instance structure, fill it with some defaults, |
285 | and point it at OLDTYPE. Allocate the new type instance from the | |
286 | same place as OLDTYPE. */ | |
287 | ||
288 | static struct type * | |
289 | alloc_type_instance (struct type *oldtype) | |
290 | { | |
291 | struct type *type; | |
292 | ||
293 | /* Allocate the structure. */ | |
294 | ||
e9bb382b | 295 | if (! TYPE_OBJFILE_OWNED (oldtype)) |
2fabdf33 | 296 | type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type); |
2fdde8f8 | 297 | else |
1deafd4e PA |
298 | type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack, |
299 | struct type); | |
300 | ||
2fdde8f8 DJ |
301 | TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype); |
302 | ||
303 | TYPE_CHAIN (type) = type; /* Chain back to itself for now. */ | |
304 | ||
c16abbde | 305 | return type; |
2fdde8f8 DJ |
306 | } |
307 | ||
308 | /* Clear all remnants of the previous type at TYPE, in preparation for | |
e9bb382b | 309 | replacing it with something else. Preserve owner information. */ |
5212577a | 310 | |
2fdde8f8 DJ |
311 | static void |
312 | smash_type (struct type *type) | |
313 | { | |
e9bb382b UW |
314 | int objfile_owned = TYPE_OBJFILE_OWNED (type); |
315 | union type_owner owner = TYPE_OWNER (type); | |
316 | ||
2fdde8f8 DJ |
317 | memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type)); |
318 | ||
e9bb382b UW |
319 | /* Restore owner information. */ |
320 | TYPE_OBJFILE_OWNED (type) = objfile_owned; | |
321 | TYPE_OWNER (type) = owner; | |
322 | ||
2fdde8f8 DJ |
323 | /* For now, delete the rings. */ |
324 | TYPE_CHAIN (type) = type; | |
325 | ||
326 | /* For now, leave the pointer/reference types alone. */ | |
327 | } | |
328 | ||
c906108c SS |
329 | /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points |
330 | to a pointer to memory where the pointer type should be stored. | |
331 | If *TYPEPTR is zero, update it to point to the pointer type we return. | |
332 | We allocate new memory if needed. */ | |
333 | ||
334 | struct type * | |
fba45db2 | 335 | make_pointer_type (struct type *type, struct type **typeptr) |
c906108c | 336 | { |
52f0bd74 | 337 | struct type *ntype; /* New type */ |
053cb41b | 338 | struct type *chain; |
c906108c SS |
339 | |
340 | ntype = TYPE_POINTER_TYPE (type); | |
341 | ||
c5aa993b | 342 | if (ntype) |
c906108c | 343 | { |
c5aa993b | 344 | if (typeptr == 0) |
7ba81444 MS |
345 | return ntype; /* Don't care about alloc, |
346 | and have new type. */ | |
c906108c | 347 | else if (*typeptr == 0) |
c5aa993b | 348 | { |
7ba81444 | 349 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
c906108c | 350 | return ntype; |
c5aa993b | 351 | } |
c906108c SS |
352 | } |
353 | ||
354 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
355 | { | |
e9bb382b | 356 | ntype = alloc_type_copy (type); |
c906108c SS |
357 | if (typeptr) |
358 | *typeptr = ntype; | |
359 | } | |
7ba81444 | 360 | else /* We have storage, but need to reset it. */ |
c906108c SS |
361 | { |
362 | ntype = *typeptr; | |
053cb41b | 363 | chain = TYPE_CHAIN (ntype); |
2fdde8f8 | 364 | smash_type (ntype); |
053cb41b | 365 | TYPE_CHAIN (ntype) = chain; |
c906108c SS |
366 | } |
367 | ||
368 | TYPE_TARGET_TYPE (ntype) = type; | |
369 | TYPE_POINTER_TYPE (type) = ntype; | |
370 | ||
5212577a | 371 | /* FIXME! Assumes the machine has only one representation for pointers! */ |
c906108c | 372 | |
50810684 UW |
373 | TYPE_LENGTH (ntype) |
374 | = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT; | |
67607e24 | 375 | ntype->set_code (TYPE_CODE_PTR); |
c906108c | 376 | |
67b2adb2 | 377 | /* Mark pointers as unsigned. The target converts between pointers |
76e71323 | 378 | and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and |
7ba81444 | 379 | gdbarch_address_to_pointer. */ |
653223d3 | 380 | ntype->set_is_unsigned (true); |
c5aa993b | 381 | |
053cb41b JB |
382 | /* Update the length of all the other variants of this type. */ |
383 | chain = TYPE_CHAIN (ntype); | |
384 | while (chain != ntype) | |
385 | { | |
386 | TYPE_LENGTH (chain) = TYPE_LENGTH (ntype); | |
387 | chain = TYPE_CHAIN (chain); | |
388 | } | |
389 | ||
c906108c SS |
390 | return ntype; |
391 | } | |
392 | ||
393 | /* Given a type TYPE, return a type of pointers to that type. | |
394 | May need to construct such a type if this is the first use. */ | |
395 | ||
396 | struct type * | |
fba45db2 | 397 | lookup_pointer_type (struct type *type) |
c906108c | 398 | { |
c5aa993b | 399 | return make_pointer_type (type, (struct type **) 0); |
c906108c SS |
400 | } |
401 | ||
7ba81444 MS |
402 | /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, |
403 | points to a pointer to memory where the reference type should be | |
404 | stored. If *TYPEPTR is zero, update it to point to the reference | |
3b224330 AV |
405 | type we return. We allocate new memory if needed. REFCODE denotes |
406 | the kind of reference type to lookup (lvalue or rvalue reference). */ | |
c906108c SS |
407 | |
408 | struct type * | |
3b224330 | 409 | make_reference_type (struct type *type, struct type **typeptr, |
dda83cd7 | 410 | enum type_code refcode) |
c906108c | 411 | { |
52f0bd74 | 412 | struct type *ntype; /* New type */ |
3b224330 | 413 | struct type **reftype; |
1e98b326 | 414 | struct type *chain; |
c906108c | 415 | |
3b224330 AV |
416 | gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); |
417 | ||
418 | ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type) | |
dda83cd7 | 419 | : TYPE_RVALUE_REFERENCE_TYPE (type)); |
c906108c | 420 | |
c5aa993b | 421 | if (ntype) |
c906108c | 422 | { |
c5aa993b | 423 | if (typeptr == 0) |
7ba81444 MS |
424 | return ntype; /* Don't care about alloc, |
425 | and have new type. */ | |
c906108c | 426 | else if (*typeptr == 0) |
c5aa993b | 427 | { |
7ba81444 | 428 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
c906108c | 429 | return ntype; |
c5aa993b | 430 | } |
c906108c SS |
431 | } |
432 | ||
433 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
434 | { | |
e9bb382b | 435 | ntype = alloc_type_copy (type); |
c906108c SS |
436 | if (typeptr) |
437 | *typeptr = ntype; | |
438 | } | |
7ba81444 | 439 | else /* We have storage, but need to reset it. */ |
c906108c SS |
440 | { |
441 | ntype = *typeptr; | |
1e98b326 | 442 | chain = TYPE_CHAIN (ntype); |
2fdde8f8 | 443 | smash_type (ntype); |
1e98b326 | 444 | TYPE_CHAIN (ntype) = chain; |
c906108c SS |
445 | } |
446 | ||
447 | TYPE_TARGET_TYPE (ntype) = type; | |
3b224330 | 448 | reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type) |
dda83cd7 | 449 | : &TYPE_RVALUE_REFERENCE_TYPE (type)); |
3b224330 AV |
450 | |
451 | *reftype = ntype; | |
c906108c | 452 | |
7ba81444 MS |
453 | /* FIXME! Assume the machine has only one representation for |
454 | references, and that it matches the (only) representation for | |
455 | pointers! */ | |
c906108c | 456 | |
50810684 UW |
457 | TYPE_LENGTH (ntype) = |
458 | gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT; | |
67607e24 | 459 | ntype->set_code (refcode); |
c5aa993b | 460 | |
3b224330 | 461 | *reftype = ntype; |
c906108c | 462 | |
1e98b326 JB |
463 | /* Update the length of all the other variants of this type. */ |
464 | chain = TYPE_CHAIN (ntype); | |
465 | while (chain != ntype) | |
466 | { | |
467 | TYPE_LENGTH (chain) = TYPE_LENGTH (ntype); | |
468 | chain = TYPE_CHAIN (chain); | |
469 | } | |
470 | ||
c906108c SS |
471 | return ntype; |
472 | } | |
473 | ||
7ba81444 MS |
474 | /* Same as above, but caller doesn't care about memory allocation |
475 | details. */ | |
c906108c SS |
476 | |
477 | struct type * | |
3b224330 AV |
478 | lookup_reference_type (struct type *type, enum type_code refcode) |
479 | { | |
480 | return make_reference_type (type, (struct type **) 0, refcode); | |
481 | } | |
482 | ||
483 | /* Lookup the lvalue reference type for the type TYPE. */ | |
484 | ||
485 | struct type * | |
486 | lookup_lvalue_reference_type (struct type *type) | |
487 | { | |
488 | return lookup_reference_type (type, TYPE_CODE_REF); | |
489 | } | |
490 | ||
491 | /* Lookup the rvalue reference type for the type TYPE. */ | |
492 | ||
493 | struct type * | |
494 | lookup_rvalue_reference_type (struct type *type) | |
c906108c | 495 | { |
3b224330 | 496 | return lookup_reference_type (type, TYPE_CODE_RVALUE_REF); |
c906108c SS |
497 | } |
498 | ||
7ba81444 MS |
499 | /* Lookup a function type that returns type TYPE. TYPEPTR, if |
500 | nonzero, points to a pointer to memory where the function type | |
501 | should be stored. If *TYPEPTR is zero, update it to point to the | |
0c8b41f1 | 502 | function type we return. We allocate new memory if needed. */ |
c906108c SS |
503 | |
504 | struct type * | |
0c8b41f1 | 505 | make_function_type (struct type *type, struct type **typeptr) |
c906108c | 506 | { |
52f0bd74 | 507 | struct type *ntype; /* New type */ |
c906108c SS |
508 | |
509 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
510 | { | |
e9bb382b | 511 | ntype = alloc_type_copy (type); |
c906108c SS |
512 | if (typeptr) |
513 | *typeptr = ntype; | |
514 | } | |
7ba81444 | 515 | else /* We have storage, but need to reset it. */ |
c906108c SS |
516 | { |
517 | ntype = *typeptr; | |
2fdde8f8 | 518 | smash_type (ntype); |
c906108c SS |
519 | } |
520 | ||
521 | TYPE_TARGET_TYPE (ntype) = type; | |
522 | ||
523 | TYPE_LENGTH (ntype) = 1; | |
67607e24 | 524 | ntype->set_code (TYPE_CODE_FUNC); |
c5aa993b | 525 | |
b6cdc2c1 JK |
526 | INIT_FUNC_SPECIFIC (ntype); |
527 | ||
c906108c SS |
528 | return ntype; |
529 | } | |
530 | ||
c906108c SS |
531 | /* Given a type TYPE, return a type of functions that return that type. |
532 | May need to construct such a type if this is the first use. */ | |
533 | ||
534 | struct type * | |
fba45db2 | 535 | lookup_function_type (struct type *type) |
c906108c | 536 | { |
0c8b41f1 | 537 | return make_function_type (type, (struct type **) 0); |
c906108c SS |
538 | } |
539 | ||
71918a86 | 540 | /* Given a type TYPE and argument types, return the appropriate |
a6fb9c08 TT |
541 | function type. If the final type in PARAM_TYPES is NULL, make a |
542 | varargs function. */ | |
71918a86 TT |
543 | |
544 | struct type * | |
545 | lookup_function_type_with_arguments (struct type *type, | |
546 | int nparams, | |
547 | struct type **param_types) | |
548 | { | |
549 | struct type *fn = make_function_type (type, (struct type **) 0); | |
550 | int i; | |
551 | ||
e314d629 | 552 | if (nparams > 0) |
a6fb9c08 | 553 | { |
e314d629 TT |
554 | if (param_types[nparams - 1] == NULL) |
555 | { | |
556 | --nparams; | |
1d6286ed | 557 | fn->set_has_varargs (true); |
e314d629 | 558 | } |
78134374 | 559 | else if (check_typedef (param_types[nparams - 1])->code () |
e314d629 TT |
560 | == TYPE_CODE_VOID) |
561 | { | |
562 | --nparams; | |
563 | /* Caller should have ensured this. */ | |
564 | gdb_assert (nparams == 0); | |
27e69b7a | 565 | fn->set_is_prototyped (true); |
e314d629 | 566 | } |
54990598 | 567 | else |
27e69b7a | 568 | fn->set_is_prototyped (true); |
a6fb9c08 TT |
569 | } |
570 | ||
5e33d5f4 | 571 | fn->set_num_fields (nparams); |
3cabb6b0 SM |
572 | fn->set_fields |
573 | ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field))); | |
71918a86 | 574 | for (i = 0; i < nparams; ++i) |
5d14b6e5 | 575 | fn->field (i).set_type (param_types[i]); |
71918a86 TT |
576 | |
577 | return fn; | |
578 | } | |
579 | ||
69896a2c PA |
580 | /* Identify address space identifier by name -- return a |
581 | type_instance_flags. */ | |
5212577a | 582 | |
314ad88d | 583 | type_instance_flags |
69896a2c PA |
584 | address_space_name_to_type_instance_flags (struct gdbarch *gdbarch, |
585 | const char *space_identifier) | |
47663de5 | 586 | { |
314ad88d | 587 | type_instance_flags type_flags; |
d8734c88 | 588 | |
7ba81444 | 589 | /* Check for known address space delimiters. */ |
47663de5 | 590 | if (!strcmp (space_identifier, "code")) |
876cecd0 | 591 | return TYPE_INSTANCE_FLAG_CODE_SPACE; |
47663de5 | 592 | else if (!strcmp (space_identifier, "data")) |
876cecd0 | 593 | return TYPE_INSTANCE_FLAG_DATA_SPACE; |
5f11f355 | 594 | else if (gdbarch_address_class_name_to_type_flags_p (gdbarch) |
dda83cd7 | 595 | && gdbarch_address_class_name_to_type_flags (gdbarch, |
5f11f355 AC |
596 | space_identifier, |
597 | &type_flags)) | |
8b2dbe47 | 598 | return type_flags; |
47663de5 | 599 | else |
8a3fe4f8 | 600 | error (_("Unknown address space specifier: \"%s\""), space_identifier); |
47663de5 MS |
601 | } |
602 | ||
69896a2c PA |
603 | /* Identify address space identifier by type_instance_flags and return |
604 | the string version of the adress space name. */ | |
47663de5 | 605 | |
321432c0 | 606 | const char * |
69896a2c PA |
607 | address_space_type_instance_flags_to_name (struct gdbarch *gdbarch, |
608 | type_instance_flags space_flag) | |
47663de5 | 609 | { |
876cecd0 | 610 | if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE) |
47663de5 | 611 | return "code"; |
876cecd0 | 612 | else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE) |
47663de5 | 613 | return "data"; |
876cecd0 | 614 | else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) |
dda83cd7 | 615 | && gdbarch_address_class_type_flags_to_name_p (gdbarch)) |
5f11f355 | 616 | return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag); |
47663de5 MS |
617 | else |
618 | return NULL; | |
619 | } | |
620 | ||
2fdde8f8 | 621 | /* Create a new type with instance flags NEW_FLAGS, based on TYPE. |
ad766c0a JB |
622 | |
623 | If STORAGE is non-NULL, create the new type instance there. | |
624 | STORAGE must be in the same obstack as TYPE. */ | |
47663de5 | 625 | |
b9362cc7 | 626 | static struct type * |
314ad88d | 627 | make_qualified_type (struct type *type, type_instance_flags new_flags, |
2fdde8f8 | 628 | struct type *storage) |
47663de5 MS |
629 | { |
630 | struct type *ntype; | |
631 | ||
632 | ntype = type; | |
5f61c20e JK |
633 | do |
634 | { | |
10242f36 | 635 | if (ntype->instance_flags () == new_flags) |
5f61c20e JK |
636 | return ntype; |
637 | ntype = TYPE_CHAIN (ntype); | |
638 | } | |
639 | while (ntype != type); | |
47663de5 | 640 | |
2fdde8f8 DJ |
641 | /* Create a new type instance. */ |
642 | if (storage == NULL) | |
643 | ntype = alloc_type_instance (type); | |
644 | else | |
645 | { | |
7ba81444 MS |
646 | /* If STORAGE was provided, it had better be in the same objfile |
647 | as TYPE. Otherwise, we can't link it into TYPE's cv chain: | |
648 | if one objfile is freed and the other kept, we'd have | |
649 | dangling pointers. */ | |
ad766c0a JB |
650 | gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage)); |
651 | ||
2fdde8f8 DJ |
652 | ntype = storage; |
653 | TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type); | |
654 | TYPE_CHAIN (ntype) = ntype; | |
655 | } | |
47663de5 MS |
656 | |
657 | /* Pointers or references to the original type are not relevant to | |
2fdde8f8 | 658 | the new type. */ |
47663de5 MS |
659 | TYPE_POINTER_TYPE (ntype) = (struct type *) 0; |
660 | TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; | |
47663de5 | 661 | |
2fdde8f8 DJ |
662 | /* Chain the new qualified type to the old type. */ |
663 | TYPE_CHAIN (ntype) = TYPE_CHAIN (type); | |
664 | TYPE_CHAIN (type) = ntype; | |
665 | ||
666 | /* Now set the instance flags and return the new type. */ | |
314ad88d | 667 | ntype->set_instance_flags (new_flags); |
47663de5 | 668 | |
ab5d3da6 KB |
669 | /* Set length of new type to that of the original type. */ |
670 | TYPE_LENGTH (ntype) = TYPE_LENGTH (type); | |
671 | ||
47663de5 MS |
672 | return ntype; |
673 | } | |
674 | ||
2fdde8f8 DJ |
675 | /* Make an address-space-delimited variant of a type -- a type that |
676 | is identical to the one supplied except that it has an address | |
677 | space attribute attached to it (such as "code" or "data"). | |
678 | ||
7ba81444 MS |
679 | The space attributes "code" and "data" are for Harvard |
680 | architectures. The address space attributes are for architectures | |
681 | which have alternately sized pointers or pointers with alternate | |
682 | representations. */ | |
2fdde8f8 DJ |
683 | |
684 | struct type * | |
314ad88d PA |
685 | make_type_with_address_space (struct type *type, |
686 | type_instance_flags space_flag) | |
2fdde8f8 | 687 | { |
314ad88d PA |
688 | type_instance_flags new_flags = ((type->instance_flags () |
689 | & ~(TYPE_INSTANCE_FLAG_CODE_SPACE | |
690 | | TYPE_INSTANCE_FLAG_DATA_SPACE | |
691 | | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)) | |
692 | | space_flag); | |
2fdde8f8 DJ |
693 | |
694 | return make_qualified_type (type, new_flags, NULL); | |
695 | } | |
c906108c SS |
696 | |
697 | /* Make a "c-v" variant of a type -- a type that is identical to the | |
698 | one supplied except that it may have const or volatile attributes | |
699 | CNST is a flag for setting the const attribute | |
700 | VOLTL is a flag for setting the volatile attribute | |
701 | TYPE is the base type whose variant we are creating. | |
c906108c | 702 | |
ad766c0a JB |
703 | If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to |
704 | storage to hold the new qualified type; *TYPEPTR and TYPE must be | |
705 | in the same objfile. Otherwise, allocate fresh memory for the new | |
706 | type whereever TYPE lives. If TYPEPTR is non-zero, set it to the | |
707 | new type we construct. */ | |
5212577a | 708 | |
c906108c | 709 | struct type * |
7ba81444 MS |
710 | make_cv_type (int cnst, int voltl, |
711 | struct type *type, | |
712 | struct type **typeptr) | |
c906108c | 713 | { |
52f0bd74 | 714 | struct type *ntype; /* New type */ |
c906108c | 715 | |
314ad88d PA |
716 | type_instance_flags new_flags = (type->instance_flags () |
717 | & ~(TYPE_INSTANCE_FLAG_CONST | |
718 | | TYPE_INSTANCE_FLAG_VOLATILE)); | |
c906108c | 719 | |
c906108c | 720 | if (cnst) |
876cecd0 | 721 | new_flags |= TYPE_INSTANCE_FLAG_CONST; |
c906108c SS |
722 | |
723 | if (voltl) | |
876cecd0 | 724 | new_flags |= TYPE_INSTANCE_FLAG_VOLATILE; |
a02fd225 | 725 | |
2fdde8f8 | 726 | if (typeptr && *typeptr != NULL) |
a02fd225 | 727 | { |
ad766c0a JB |
728 | /* TYPE and *TYPEPTR must be in the same objfile. We can't have |
729 | a C-V variant chain that threads across objfiles: if one | |
730 | objfile gets freed, then the other has a broken C-V chain. | |
731 | ||
732 | This code used to try to copy over the main type from TYPE to | |
733 | *TYPEPTR if they were in different objfiles, but that's | |
734 | wrong, too: TYPE may have a field list or member function | |
735 | lists, which refer to types of their own, etc. etc. The | |
736 | whole shebang would need to be copied over recursively; you | |
737 | can't have inter-objfile pointers. The only thing to do is | |
738 | to leave stub types as stub types, and look them up afresh by | |
739 | name each time you encounter them. */ | |
740 | gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type)); | |
2fdde8f8 DJ |
741 | } |
742 | ||
7ba81444 MS |
743 | ntype = make_qualified_type (type, new_flags, |
744 | typeptr ? *typeptr : NULL); | |
c906108c | 745 | |
2fdde8f8 DJ |
746 | if (typeptr != NULL) |
747 | *typeptr = ntype; | |
a02fd225 | 748 | |
2fdde8f8 | 749 | return ntype; |
a02fd225 | 750 | } |
c906108c | 751 | |
06d66ee9 TT |
752 | /* Make a 'restrict'-qualified version of TYPE. */ |
753 | ||
754 | struct type * | |
755 | make_restrict_type (struct type *type) | |
756 | { | |
757 | return make_qualified_type (type, | |
10242f36 | 758 | (type->instance_flags () |
06d66ee9 TT |
759 | | TYPE_INSTANCE_FLAG_RESTRICT), |
760 | NULL); | |
761 | } | |
762 | ||
f1660027 TT |
763 | /* Make a type without const, volatile, or restrict. */ |
764 | ||
765 | struct type * | |
766 | make_unqualified_type (struct type *type) | |
767 | { | |
768 | return make_qualified_type (type, | |
10242f36 | 769 | (type->instance_flags () |
f1660027 TT |
770 | & ~(TYPE_INSTANCE_FLAG_CONST |
771 | | TYPE_INSTANCE_FLAG_VOLATILE | |
772 | | TYPE_INSTANCE_FLAG_RESTRICT)), | |
773 | NULL); | |
774 | } | |
775 | ||
a2c2acaf MW |
776 | /* Make a '_Atomic'-qualified version of TYPE. */ |
777 | ||
778 | struct type * | |
779 | make_atomic_type (struct type *type) | |
780 | { | |
781 | return make_qualified_type (type, | |
10242f36 | 782 | (type->instance_flags () |
a2c2acaf MW |
783 | | TYPE_INSTANCE_FLAG_ATOMIC), |
784 | NULL); | |
785 | } | |
786 | ||
2fdde8f8 DJ |
787 | /* Replace the contents of ntype with the type *type. This changes the |
788 | contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus | |
789 | the changes are propogated to all types in the TYPE_CHAIN. | |
dd6bda65 | 790 | |
cda6c68a JB |
791 | In order to build recursive types, it's inevitable that we'll need |
792 | to update types in place --- but this sort of indiscriminate | |
793 | smashing is ugly, and needs to be replaced with something more | |
2fdde8f8 DJ |
794 | controlled. TYPE_MAIN_TYPE is a step in this direction; it's not |
795 | clear if more steps are needed. */ | |
5212577a | 796 | |
dd6bda65 DJ |
797 | void |
798 | replace_type (struct type *ntype, struct type *type) | |
799 | { | |
ab5d3da6 | 800 | struct type *chain; |
dd6bda65 | 801 | |
ad766c0a JB |
802 | /* These two types had better be in the same objfile. Otherwise, |
803 | the assignment of one type's main type structure to the other | |
804 | will produce a type with references to objects (names; field | |
805 | lists; etc.) allocated on an objfile other than its own. */ | |
e46dd0f4 | 806 | gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type)); |
ad766c0a | 807 | |
2fdde8f8 | 808 | *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type); |
dd6bda65 | 809 | |
7ba81444 MS |
810 | /* The type length is not a part of the main type. Update it for |
811 | each type on the variant chain. */ | |
ab5d3da6 | 812 | chain = ntype; |
5f61c20e JK |
813 | do |
814 | { | |
815 | /* Assert that this element of the chain has no address-class bits | |
816 | set in its flags. Such type variants might have type lengths | |
817 | which are supposed to be different from the non-address-class | |
818 | variants. This assertion shouldn't ever be triggered because | |
819 | symbol readers which do construct address-class variants don't | |
820 | call replace_type(). */ | |
821 | gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0); | |
822 | ||
823 | TYPE_LENGTH (chain) = TYPE_LENGTH (type); | |
824 | chain = TYPE_CHAIN (chain); | |
825 | } | |
826 | while (ntype != chain); | |
ab5d3da6 | 827 | |
2fdde8f8 DJ |
828 | /* Assert that the two types have equivalent instance qualifiers. |
829 | This should be true for at least all of our debug readers. */ | |
10242f36 | 830 | gdb_assert (ntype->instance_flags () == type->instance_flags ()); |
dd6bda65 DJ |
831 | } |
832 | ||
c906108c SS |
833 | /* Implement direct support for MEMBER_TYPE in GNU C++. |
834 | May need to construct such a type if this is the first use. | |
835 | The TYPE is the type of the member. The DOMAIN is the type | |
836 | of the aggregate that the member belongs to. */ | |
837 | ||
838 | struct type * | |
0d5de010 | 839 | lookup_memberptr_type (struct type *type, struct type *domain) |
c906108c | 840 | { |
52f0bd74 | 841 | struct type *mtype; |
c906108c | 842 | |
e9bb382b | 843 | mtype = alloc_type_copy (type); |
0d5de010 | 844 | smash_to_memberptr_type (mtype, domain, type); |
c16abbde | 845 | return mtype; |
c906108c SS |
846 | } |
847 | ||
0d5de010 DJ |
848 | /* Return a pointer-to-method type, for a method of type TO_TYPE. */ |
849 | ||
850 | struct type * | |
851 | lookup_methodptr_type (struct type *to_type) | |
852 | { | |
853 | struct type *mtype; | |
854 | ||
e9bb382b | 855 | mtype = alloc_type_copy (to_type); |
0b92b5bb | 856 | smash_to_methodptr_type (mtype, to_type); |
0d5de010 DJ |
857 | return mtype; |
858 | } | |
859 | ||
7ba81444 MS |
860 | /* Allocate a stub method whose return type is TYPE. This apparently |
861 | happens for speed of symbol reading, since parsing out the | |
862 | arguments to the method is cpu-intensive, the way we are doing it. | |
863 | So, we will fill in arguments later. This always returns a fresh | |
864 | type. */ | |
c906108c SS |
865 | |
866 | struct type * | |
fba45db2 | 867 | allocate_stub_method (struct type *type) |
c906108c SS |
868 | { |
869 | struct type *mtype; | |
870 | ||
e9bb382b | 871 | mtype = alloc_type_copy (type); |
67607e24 | 872 | mtype->set_code (TYPE_CODE_METHOD); |
e9bb382b | 873 | TYPE_LENGTH (mtype) = 1; |
b4b73759 | 874 | mtype->set_is_stub (true); |
c906108c | 875 | TYPE_TARGET_TYPE (mtype) = type; |
4bfb94b8 | 876 | /* TYPE_SELF_TYPE (mtype) = unknown yet */ |
c16abbde | 877 | return mtype; |
c906108c SS |
878 | } |
879 | ||
0f59d5fc PA |
880 | /* See gdbtypes.h. */ |
881 | ||
882 | bool | |
883 | operator== (const dynamic_prop &l, const dynamic_prop &r) | |
884 | { | |
8c2e4e06 | 885 | if (l.kind () != r.kind ()) |
0f59d5fc PA |
886 | return false; |
887 | ||
8c2e4e06 | 888 | switch (l.kind ()) |
0f59d5fc PA |
889 | { |
890 | case PROP_UNDEFINED: | |
891 | return true; | |
892 | case PROP_CONST: | |
8c2e4e06 | 893 | return l.const_val () == r.const_val (); |
0f59d5fc PA |
894 | case PROP_ADDR_OFFSET: |
895 | case PROP_LOCEXPR: | |
896 | case PROP_LOCLIST: | |
8c2e4e06 | 897 | return l.baton () == r.baton (); |
ef83a141 | 898 | case PROP_VARIANT_PARTS: |
8c2e4e06 | 899 | return l.variant_parts () == r.variant_parts (); |
ef83a141 | 900 | case PROP_TYPE: |
8c2e4e06 | 901 | return l.original_type () == r.original_type (); |
0f59d5fc PA |
902 | } |
903 | ||
904 | gdb_assert_not_reached ("unhandled dynamic_prop kind"); | |
905 | } | |
906 | ||
907 | /* See gdbtypes.h. */ | |
908 | ||
909 | bool | |
910 | operator== (const range_bounds &l, const range_bounds &r) | |
911 | { | |
912 | #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD) | |
913 | ||
914 | return (FIELD_EQ (low) | |
915 | && FIELD_EQ (high) | |
916 | && FIELD_EQ (flag_upper_bound_is_count) | |
4e962e74 TT |
917 | && FIELD_EQ (flag_bound_evaluated) |
918 | && FIELD_EQ (bias)); | |
0f59d5fc PA |
919 | |
920 | #undef FIELD_EQ | |
921 | } | |
922 | ||
729efb13 SA |
923 | /* Create a range type with a dynamic range from LOW_BOUND to |
924 | HIGH_BOUND, inclusive. See create_range_type for further details. */ | |
c906108c SS |
925 | |
926 | struct type * | |
729efb13 SA |
927 | create_range_type (struct type *result_type, struct type *index_type, |
928 | const struct dynamic_prop *low_bound, | |
4e962e74 TT |
929 | const struct dynamic_prop *high_bound, |
930 | LONGEST bias) | |
c906108c | 931 | { |
b86352cf AB |
932 | /* The INDEX_TYPE should be a type capable of holding the upper and lower |
933 | bounds, as such a zero sized, or void type makes no sense. */ | |
78134374 | 934 | gdb_assert (index_type->code () != TYPE_CODE_VOID); |
b86352cf AB |
935 | gdb_assert (TYPE_LENGTH (index_type) > 0); |
936 | ||
c906108c | 937 | if (result_type == NULL) |
e9bb382b | 938 | result_type = alloc_type_copy (index_type); |
67607e24 | 939 | result_type->set_code (TYPE_CODE_RANGE); |
c906108c | 940 | TYPE_TARGET_TYPE (result_type) = index_type; |
e46d3488 | 941 | if (index_type->is_stub ()) |
8f53807e | 942 | result_type->set_target_is_stub (true); |
c906108c SS |
943 | else |
944 | TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type)); | |
729efb13 | 945 | |
c4dfcb36 SM |
946 | range_bounds *bounds |
947 | = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds)); | |
948 | bounds->low = *low_bound; | |
949 | bounds->high = *high_bound; | |
950 | bounds->bias = bias; | |
8c2e4e06 | 951 | bounds->stride.set_const_val (0); |
c4dfcb36 SM |
952 | |
953 | result_type->set_bounds (bounds); | |
5bbd8269 | 954 | |
09584414 JB |
955 | if (index_type->code () == TYPE_CODE_FIXED_POINT) |
956 | result_type->set_is_unsigned (index_type->is_unsigned ()); | |
6390859c TT |
957 | /* Note that the signed-ness of a range type can't simply be copied |
958 | from the underlying type. Consider a case where the underlying | |
959 | type is 'int', but the range type can hold 0..65535, and where | |
960 | the range is further specified to fit into 16 bits. In this | |
961 | case, if we copy the underlying type's sign, then reading some | |
962 | range values will cause an unwanted sign extension. So, we have | |
963 | some heuristics here instead. */ | |
09584414 | 964 | else if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0) |
6390859c TT |
965 | result_type->set_is_unsigned (true); |
966 | /* Ada allows the declaration of range types whose upper bound is | |
967 | less than the lower bound, so checking the lower bound is not | |
968 | enough. Make sure we do not mark a range type whose upper bound | |
969 | is negative as unsigned. */ | |
970 | if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0) | |
971 | result_type->set_is_unsigned (false); | |
972 | ||
db558e34 SM |
973 | result_type->set_endianity_is_not_default |
974 | (index_type->endianity_is_not_default ()); | |
a05cf17a | 975 | |
262452ec | 976 | return result_type; |
c906108c SS |
977 | } |
978 | ||
5bbd8269 AB |
979 | /* See gdbtypes.h. */ |
980 | ||
981 | struct type * | |
982 | create_range_type_with_stride (struct type *result_type, | |
983 | struct type *index_type, | |
984 | const struct dynamic_prop *low_bound, | |
985 | const struct dynamic_prop *high_bound, | |
986 | LONGEST bias, | |
987 | const struct dynamic_prop *stride, | |
988 | bool byte_stride_p) | |
989 | { | |
990 | result_type = create_range_type (result_type, index_type, low_bound, | |
991 | high_bound, bias); | |
992 | ||
993 | gdb_assert (stride != nullptr); | |
599088e3 SM |
994 | result_type->bounds ()->stride = *stride; |
995 | result_type->bounds ()->flag_is_byte_stride = byte_stride_p; | |
5bbd8269 AB |
996 | |
997 | return result_type; | |
998 | } | |
999 | ||
1000 | ||
1001 | ||
729efb13 SA |
1002 | /* Create a range type using either a blank type supplied in |
1003 | RESULT_TYPE, or creating a new type, inheriting the objfile from | |
1004 | INDEX_TYPE. | |
1005 | ||
1006 | Indices will be of type INDEX_TYPE, and will range from LOW_BOUND | |
1007 | to HIGH_BOUND, inclusive. | |
1008 | ||
1009 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make | |
1010 | sure it is TYPE_CODE_UNDEF before we bash it into a range type? */ | |
1011 | ||
1012 | struct type * | |
1013 | create_static_range_type (struct type *result_type, struct type *index_type, | |
1014 | LONGEST low_bound, LONGEST high_bound) | |
1015 | { | |
1016 | struct dynamic_prop low, high; | |
1017 | ||
8c2e4e06 SM |
1018 | low.set_const_val (low_bound); |
1019 | high.set_const_val (high_bound); | |
729efb13 | 1020 | |
4e962e74 | 1021 | result_type = create_range_type (result_type, index_type, &low, &high, 0); |
729efb13 SA |
1022 | |
1023 | return result_type; | |
1024 | } | |
1025 | ||
80180f79 SA |
1026 | /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values |
1027 | are static, otherwise returns 0. */ | |
1028 | ||
5bbd8269 | 1029 | static bool |
80180f79 SA |
1030 | has_static_range (const struct range_bounds *bounds) |
1031 | { | |
5bbd8269 AB |
1032 | /* If the range doesn't have a defined stride then its stride field will |
1033 | be initialized to the constant 0. */ | |
8c2e4e06 SM |
1034 | return (bounds->low.kind () == PROP_CONST |
1035 | && bounds->high.kind () == PROP_CONST | |
1036 | && bounds->stride.kind () == PROP_CONST); | |
80180f79 SA |
1037 | } |
1038 | ||
5b56203a | 1039 | /* See gdbtypes.h. */ |
80180f79 | 1040 | |
5b56203a | 1041 | gdb::optional<LONGEST> |
14c09924 | 1042 | get_discrete_low_bound (struct type *type) |
c906108c | 1043 | { |
f168693b | 1044 | type = check_typedef (type); |
78134374 | 1045 | switch (type->code ()) |
c906108c SS |
1046 | { |
1047 | case TYPE_CODE_RANGE: | |
14c09924 SM |
1048 | { |
1049 | /* This function only works for ranges with a constant low bound. */ | |
1050 | if (type->bounds ()->low.kind () != PROP_CONST) | |
1051 | return {}; | |
1052 | ||
1053 | LONGEST low = type->bounds ()->low.const_val (); | |
1054 | ||
1055 | if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM) | |
1056 | { | |
1057 | gdb::optional<LONGEST> low_pos | |
1058 | = discrete_position (TYPE_TARGET_TYPE (type), low); | |
1059 | ||
1060 | if (low_pos.has_value ()) | |
1061 | low = *low_pos; | |
1062 | } | |
1063 | ||
1064 | return low; | |
1065 | } | |
1066 | ||
1067 | case TYPE_CODE_ENUM: | |
1068 | { | |
1069 | if (type->num_fields () > 0) | |
1070 | { | |
1071 | /* The enums may not be sorted by value, so search all | |
1072 | entries. */ | |
1073 | LONGEST low = TYPE_FIELD_ENUMVAL (type, 0); | |
1074 | ||
1075 | for (int i = 0; i < type->num_fields (); i++) | |
1076 | { | |
1077 | if (TYPE_FIELD_ENUMVAL (type, i) < low) | |
1078 | low = TYPE_FIELD_ENUMVAL (type, i); | |
1079 | } | |
1080 | ||
1081 | /* Set unsigned indicator if warranted. */ | |
1082 | if (low >= 0) | |
1083 | type->set_is_unsigned (true); | |
1084 | ||
1085 | return low; | |
1086 | } | |
1087 | else | |
1088 | return 0; | |
1089 | } | |
1090 | ||
1091 | case TYPE_CODE_BOOL: | |
1092 | return 0; | |
1093 | ||
1094 | case TYPE_CODE_INT: | |
1095 | if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */ | |
6ad368b8 | 1096 | return {}; |
7c6f2712 | 1097 | |
14c09924 SM |
1098 | if (!type->is_unsigned ()) |
1099 | return -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1)); | |
7c6f2712 | 1100 | |
14c09924 SM |
1101 | /* fall through */ |
1102 | case TYPE_CODE_CHAR: | |
1103 | return 0; | |
6244c119 | 1104 | |
14c09924 | 1105 | default: |
6ad368b8 | 1106 | return {}; |
14c09924 SM |
1107 | } |
1108 | } | |
6244c119 | 1109 | |
5b56203a | 1110 | /* See gdbtypes.h. */ |
6244c119 | 1111 | |
5b56203a | 1112 | gdb::optional<LONGEST> |
14c09924 SM |
1113 | get_discrete_high_bound (struct type *type) |
1114 | { | |
1115 | type = check_typedef (type); | |
1116 | switch (type->code ()) | |
1117 | { | |
1118 | case TYPE_CODE_RANGE: | |
1119 | { | |
1120 | /* This function only works for ranges with a constant high bound. */ | |
1121 | if (type->bounds ()->high.kind () != PROP_CONST) | |
1122 | return {}; | |
1123 | ||
1124 | LONGEST high = type->bounds ()->high.const_val (); | |
1125 | ||
1126 | if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM) | |
1127 | { | |
1128 | gdb::optional<LONGEST> high_pos | |
1129 | = discrete_position (TYPE_TARGET_TYPE (type), high); | |
1130 | ||
1131 | if (high_pos.has_value ()) | |
1132 | high = *high_pos; | |
1133 | } | |
1134 | ||
1135 | return high; | |
1136 | } | |
1f8d2881 | 1137 | |
c906108c | 1138 | case TYPE_CODE_ENUM: |
14c09924 SM |
1139 | { |
1140 | if (type->num_fields () > 0) | |
1141 | { | |
1142 | /* The enums may not be sorted by value, so search all | |
1143 | entries. */ | |
1144 | LONGEST high = TYPE_FIELD_ENUMVAL (type, 0); | |
1145 | ||
1146 | for (int i = 0; i < type->num_fields (); i++) | |
1147 | { | |
1148 | if (TYPE_FIELD_ENUMVAL (type, i) > high) | |
1149 | high = TYPE_FIELD_ENUMVAL (type, i); | |
1150 | } | |
1151 | ||
1152 | return high; | |
1153 | } | |
1154 | else | |
1155 | return -1; | |
1156 | } | |
1f8d2881 | 1157 | |
c906108c | 1158 | case TYPE_CODE_BOOL: |
14c09924 | 1159 | return 1; |
1f8d2881 | 1160 | |
c906108c | 1161 | case TYPE_CODE_INT: |
c5aa993b | 1162 | if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */ |
6ad368b8 | 1163 | return {}; |
1f8d2881 | 1164 | |
c6d940a9 | 1165 | if (!type->is_unsigned ()) |
c906108c | 1166 | { |
14c09924 SM |
1167 | LONGEST low = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1)); |
1168 | return -low - 1; | |
c906108c | 1169 | } |
14c09924 | 1170 | |
86a73007 | 1171 | /* fall through */ |
c906108c | 1172 | case TYPE_CODE_CHAR: |
14c09924 SM |
1173 | { |
1174 | /* This round-about calculation is to avoid shifting by | |
1175 | TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work | |
1176 | if TYPE_LENGTH (type) == sizeof (LONGEST). */ | |
1177 | LONGEST high = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1); | |
1178 | return (high - 1) | high; | |
1179 | } | |
1f8d2881 | 1180 | |
c906108c | 1181 | default: |
6ad368b8 | 1182 | return {}; |
c906108c SS |
1183 | } |
1184 | } | |
1185 | ||
14c09924 SM |
1186 | /* See gdbtypes.h. */ |
1187 | ||
1188 | bool | |
1189 | get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp) | |
1190 | { | |
1191 | gdb::optional<LONGEST> low = get_discrete_low_bound (type); | |
6ad368b8 SM |
1192 | if (!low.has_value ()) |
1193 | return false; | |
14c09924 | 1194 | |
6ad368b8 SM |
1195 | gdb::optional<LONGEST> high = get_discrete_high_bound (type); |
1196 | if (!high.has_value ()) | |
14c09924 SM |
1197 | return false; |
1198 | ||
1199 | *lowp = *low; | |
1200 | *highp = *high; | |
1201 | ||
1202 | return true; | |
1203 | } | |
1204 | ||
584903d3 | 1205 | /* See gdbtypes.h */ |
dbc98a8b | 1206 | |
584903d3 | 1207 | bool |
dbc98a8b KW |
1208 | get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound) |
1209 | { | |
3d967001 | 1210 | struct type *index = type->index_type (); |
dbc98a8b KW |
1211 | LONGEST low = 0; |
1212 | LONGEST high = 0; | |
dbc98a8b KW |
1213 | |
1214 | if (index == NULL) | |
584903d3 | 1215 | return false; |
dbc98a8b | 1216 | |
1f8d2881 | 1217 | if (!get_discrete_bounds (index, &low, &high)) |
584903d3 | 1218 | return false; |
dbc98a8b | 1219 | |
dbc98a8b KW |
1220 | if (low_bound) |
1221 | *low_bound = low; | |
1222 | ||
1223 | if (high_bound) | |
1224 | *high_bound = high; | |
1225 | ||
584903d3 | 1226 | return true; |
dbc98a8b KW |
1227 | } |
1228 | ||
aa715135 JG |
1229 | /* Assuming that TYPE is a discrete type and VAL is a valid integer |
1230 | representation of a value of this type, save the corresponding | |
1231 | position number in POS. | |
1232 | ||
1233 | Its differs from VAL only in the case of enumeration types. In | |
1234 | this case, the position number of the value of the first listed | |
1235 | enumeration literal is zero; the position number of the value of | |
1236 | each subsequent enumeration literal is one more than that of its | |
1237 | predecessor in the list. | |
1238 | ||
1239 | Return 1 if the operation was successful. Return zero otherwise, | |
1240 | in which case the value of POS is unmodified. | |
1241 | */ | |
1242 | ||
6244c119 SM |
1243 | gdb::optional<LONGEST> |
1244 | discrete_position (struct type *type, LONGEST val) | |
aa715135 | 1245 | { |
0bc2354b TT |
1246 | if (type->code () == TYPE_CODE_RANGE) |
1247 | type = TYPE_TARGET_TYPE (type); | |
1248 | ||
78134374 | 1249 | if (type->code () == TYPE_CODE_ENUM) |
aa715135 JG |
1250 | { |
1251 | int i; | |
1252 | ||
1f704f76 | 1253 | for (i = 0; i < type->num_fields (); i += 1) |
dda83cd7 SM |
1254 | { |
1255 | if (val == TYPE_FIELD_ENUMVAL (type, i)) | |
6244c119 | 1256 | return i; |
dda83cd7 | 1257 | } |
6244c119 | 1258 | |
aa715135 | 1259 | /* Invalid enumeration value. */ |
6244c119 | 1260 | return {}; |
aa715135 JG |
1261 | } |
1262 | else | |
6244c119 | 1263 | return val; |
aa715135 JG |
1264 | } |
1265 | ||
8dbb1375 HD |
1266 | /* If the array TYPE has static bounds calculate and update its |
1267 | size, then return true. Otherwise return false and leave TYPE | |
1268 | unchanged. */ | |
1269 | ||
1270 | static bool | |
1271 | update_static_array_size (struct type *type) | |
1272 | { | |
78134374 | 1273 | gdb_assert (type->code () == TYPE_CODE_ARRAY); |
8dbb1375 | 1274 | |
3d967001 | 1275 | struct type *range_type = type->index_type (); |
8dbb1375 | 1276 | |
24e99c6c | 1277 | if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr |
599088e3 | 1278 | && has_static_range (range_type->bounds ()) |
8dbb1375 HD |
1279 | && (!type_not_associated (type) |
1280 | && !type_not_allocated (type))) | |
1281 | { | |
1282 | LONGEST low_bound, high_bound; | |
1283 | int stride; | |
1284 | struct type *element_type; | |
1285 | ||
1286 | /* If the array itself doesn't provide a stride value then take | |
1287 | whatever stride the range provides. Don't update BIT_STRIDE as | |
1288 | we don't want to place the stride value from the range into this | |
1289 | arrays bit size field. */ | |
1290 | stride = TYPE_FIELD_BITSIZE (type, 0); | |
1291 | if (stride == 0) | |
107406b7 | 1292 | stride = range_type->bit_stride (); |
8dbb1375 | 1293 | |
1f8d2881 | 1294 | if (!get_discrete_bounds (range_type, &low_bound, &high_bound)) |
8dbb1375 | 1295 | low_bound = high_bound = 0; |
1f8d2881 | 1296 | |
8dbb1375 HD |
1297 | element_type = check_typedef (TYPE_TARGET_TYPE (type)); |
1298 | /* Be careful when setting the array length. Ada arrays can be | |
1299 | empty arrays with the high_bound being smaller than the low_bound. | |
1300 | In such cases, the array length should be zero. */ | |
1301 | if (high_bound < low_bound) | |
1302 | TYPE_LENGTH (type) = 0; | |
1303 | else if (stride != 0) | |
1304 | { | |
1305 | /* Ensure that the type length is always positive, even in the | |
1306 | case where (for example in Fortran) we have a negative | |
1307 | stride. It is possible to have a single element array with a | |
1308 | negative stride in Fortran (this doesn't mean anything | |
1309 | special, it's still just a single element array) so do | |
1310 | consider that case when touching this code. */ | |
1311 | LONGEST element_count = std::abs (high_bound - low_bound + 1); | |
1312 | TYPE_LENGTH (type) | |
1313 | = ((std::abs (stride) * element_count) + 7) / 8; | |
1314 | } | |
1315 | else | |
1316 | TYPE_LENGTH (type) = | |
1317 | TYPE_LENGTH (element_type) * (high_bound - low_bound + 1); | |
1318 | ||
b72795a8 TT |
1319 | /* If this array's element is itself an array with a bit stride, |
1320 | then we want to update this array's bit stride to reflect the | |
1321 | size of the sub-array. Otherwise, we'll end up using the | |
1322 | wrong size when trying to find elements of the outer | |
1323 | array. */ | |
1324 | if (element_type->code () == TYPE_CODE_ARRAY | |
1325 | && TYPE_LENGTH (element_type) != 0 | |
1326 | && TYPE_FIELD_BITSIZE (element_type, 0) != 0 | |
5d8254e1 | 1327 | && get_array_bounds (element_type, &low_bound, &high_bound) |
b72795a8 TT |
1328 | && high_bound >= low_bound) |
1329 | TYPE_FIELD_BITSIZE (type, 0) | |
1330 | = ((high_bound - low_bound + 1) | |
1331 | * TYPE_FIELD_BITSIZE (element_type, 0)); | |
1332 | ||
8dbb1375 HD |
1333 | return true; |
1334 | } | |
1335 | ||
1336 | return false; | |
1337 | } | |
1338 | ||
7ba81444 MS |
1339 | /* Create an array type using either a blank type supplied in |
1340 | RESULT_TYPE, or creating a new type, inheriting the objfile from | |
1341 | RANGE_TYPE. | |
c906108c SS |
1342 | |
1343 | Elements will be of type ELEMENT_TYPE, the indices will be of type | |
1344 | RANGE_TYPE. | |
1345 | ||
a405673c JB |
1346 | BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride. |
1347 | This byte stride property is added to the resulting array type | |
1348 | as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP | |
1349 | argument can only be used to create types that are objfile-owned | |
1350 | (see add_dyn_prop), meaning that either this function must be called | |
1351 | with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE. | |
1352 | ||
1353 | BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL. | |
dc53a7ad JB |
1354 | If BIT_STRIDE is not zero, build a packed array type whose element |
1355 | size is BIT_STRIDE. Otherwise, ignore this parameter. | |
1356 | ||
7ba81444 MS |
1357 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make |
1358 | sure it is TYPE_CODE_UNDEF before we bash it into an array | |
1359 | type? */ | |
c906108c SS |
1360 | |
1361 | struct type * | |
dc53a7ad JB |
1362 | create_array_type_with_stride (struct type *result_type, |
1363 | struct type *element_type, | |
1364 | struct type *range_type, | |
a405673c | 1365 | struct dynamic_prop *byte_stride_prop, |
dc53a7ad | 1366 | unsigned int bit_stride) |
c906108c | 1367 | { |
a405673c | 1368 | if (byte_stride_prop != NULL |
8c2e4e06 | 1369 | && byte_stride_prop->kind () == PROP_CONST) |
a405673c JB |
1370 | { |
1371 | /* The byte stride is actually not dynamic. Pretend we were | |
1372 | called with bit_stride set instead of byte_stride_prop. | |
1373 | This will give us the same result type, while avoiding | |
1374 | the need to handle this as a special case. */ | |
8c2e4e06 | 1375 | bit_stride = byte_stride_prop->const_val () * 8; |
a405673c JB |
1376 | byte_stride_prop = NULL; |
1377 | } | |
1378 | ||
c906108c | 1379 | if (result_type == NULL) |
e9bb382b UW |
1380 | result_type = alloc_type_copy (range_type); |
1381 | ||
67607e24 | 1382 | result_type->set_code (TYPE_CODE_ARRAY); |
c906108c | 1383 | TYPE_TARGET_TYPE (result_type) = element_type; |
5bbd8269 | 1384 | |
5e33d5f4 | 1385 | result_type->set_num_fields (1); |
3cabb6b0 SM |
1386 | result_type->set_fields |
1387 | ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field))); | |
262abc0d | 1388 | result_type->set_index_type (range_type); |
8dbb1375 | 1389 | if (byte_stride_prop != NULL) |
5c54719c | 1390 | result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop); |
8dbb1375 HD |
1391 | else if (bit_stride > 0) |
1392 | TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride; | |
80180f79 | 1393 | |
8dbb1375 | 1394 | if (!update_static_array_size (result_type)) |
80180f79 SA |
1395 | { |
1396 | /* This type is dynamic and its length needs to be computed | |
dda83cd7 SM |
1397 | on demand. In the meantime, avoid leaving the TYPE_LENGTH |
1398 | undefined by setting it to zero. Although we are not expected | |
1399 | to trust TYPE_LENGTH in this case, setting the size to zero | |
1400 | allows us to avoid allocating objects of random sizes in case | |
1401 | we accidently do. */ | |
80180f79 SA |
1402 | TYPE_LENGTH (result_type) = 0; |
1403 | } | |
1404 | ||
a9ff5f12 | 1405 | /* TYPE_TARGET_STUB will take care of zero length arrays. */ |
c906108c | 1406 | if (TYPE_LENGTH (result_type) == 0) |
8f53807e | 1407 | result_type->set_target_is_stub (true); |
c906108c | 1408 | |
c16abbde | 1409 | return result_type; |
c906108c SS |
1410 | } |
1411 | ||
dc53a7ad JB |
1412 | /* Same as create_array_type_with_stride but with no bit_stride |
1413 | (BIT_STRIDE = 0), thus building an unpacked array. */ | |
1414 | ||
1415 | struct type * | |
1416 | create_array_type (struct type *result_type, | |
1417 | struct type *element_type, | |
1418 | struct type *range_type) | |
1419 | { | |
1420 | return create_array_type_with_stride (result_type, element_type, | |
a405673c | 1421 | range_type, NULL, 0); |
dc53a7ad JB |
1422 | } |
1423 | ||
e3506a9f UW |
1424 | struct type * |
1425 | lookup_array_range_type (struct type *element_type, | |
63375b74 | 1426 | LONGEST low_bound, LONGEST high_bound) |
e3506a9f | 1427 | { |
929b5ad4 JB |
1428 | struct type *index_type; |
1429 | struct type *range_type; | |
1430 | ||
1431 | if (TYPE_OBJFILE_OWNED (element_type)) | |
1432 | index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int; | |
1433 | else | |
1434 | index_type = builtin_type (get_type_arch (element_type))->builtin_int; | |
1435 | range_type = create_static_range_type (NULL, index_type, | |
1436 | low_bound, high_bound); | |
d8734c88 | 1437 | |
e3506a9f UW |
1438 | return create_array_type (NULL, element_type, range_type); |
1439 | } | |
1440 | ||
7ba81444 MS |
1441 | /* Create a string type using either a blank type supplied in |
1442 | RESULT_TYPE, or creating a new type. String types are similar | |
1443 | enough to array of char types that we can use create_array_type to | |
1444 | build the basic type and then bash it into a string type. | |
c906108c SS |
1445 | |
1446 | For fixed length strings, the range type contains 0 as the lower | |
1447 | bound and the length of the string minus one as the upper bound. | |
1448 | ||
7ba81444 MS |
1449 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make |
1450 | sure it is TYPE_CODE_UNDEF before we bash it into a string | |
1451 | type? */ | |
c906108c SS |
1452 | |
1453 | struct type * | |
3b7538c0 UW |
1454 | create_string_type (struct type *result_type, |
1455 | struct type *string_char_type, | |
7ba81444 | 1456 | struct type *range_type) |
c906108c SS |
1457 | { |
1458 | result_type = create_array_type (result_type, | |
f290d38e | 1459 | string_char_type, |
c906108c | 1460 | range_type); |
67607e24 | 1461 | result_type->set_code (TYPE_CODE_STRING); |
c16abbde | 1462 | return result_type; |
c906108c SS |
1463 | } |
1464 | ||
e3506a9f UW |
1465 | struct type * |
1466 | lookup_string_range_type (struct type *string_char_type, | |
63375b74 | 1467 | LONGEST low_bound, LONGEST high_bound) |
e3506a9f UW |
1468 | { |
1469 | struct type *result_type; | |
d8734c88 | 1470 | |
e3506a9f UW |
1471 | result_type = lookup_array_range_type (string_char_type, |
1472 | low_bound, high_bound); | |
67607e24 | 1473 | result_type->set_code (TYPE_CODE_STRING); |
e3506a9f UW |
1474 | return result_type; |
1475 | } | |
1476 | ||
c906108c | 1477 | struct type * |
fba45db2 | 1478 | create_set_type (struct type *result_type, struct type *domain_type) |
c906108c | 1479 | { |
c906108c | 1480 | if (result_type == NULL) |
e9bb382b UW |
1481 | result_type = alloc_type_copy (domain_type); |
1482 | ||
67607e24 | 1483 | result_type->set_code (TYPE_CODE_SET); |
5e33d5f4 | 1484 | result_type->set_num_fields (1); |
3cabb6b0 SM |
1485 | result_type->set_fields |
1486 | ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field))); | |
c906108c | 1487 | |
e46d3488 | 1488 | if (!domain_type->is_stub ()) |
c906108c | 1489 | { |
f9780d5b | 1490 | LONGEST low_bound, high_bound, bit_length; |
d8734c88 | 1491 | |
1f8d2881 | 1492 | if (!get_discrete_bounds (domain_type, &low_bound, &high_bound)) |
c906108c | 1493 | low_bound = high_bound = 0; |
1f8d2881 | 1494 | |
c906108c SS |
1495 | bit_length = high_bound - low_bound + 1; |
1496 | TYPE_LENGTH (result_type) | |
1497 | = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT; | |
f9780d5b | 1498 | if (low_bound >= 0) |
653223d3 | 1499 | result_type->set_is_unsigned (true); |
c906108c | 1500 | } |
5d14b6e5 | 1501 | result_type->field (0).set_type (domain_type); |
c906108c | 1502 | |
c16abbde | 1503 | return result_type; |
c906108c SS |
1504 | } |
1505 | ||
ea37ba09 DJ |
1506 | /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE |
1507 | and any array types nested inside it. */ | |
1508 | ||
1509 | void | |
1510 | make_vector_type (struct type *array_type) | |
1511 | { | |
1512 | struct type *inner_array, *elt_type; | |
ea37ba09 DJ |
1513 | |
1514 | /* Find the innermost array type, in case the array is | |
1515 | multi-dimensional. */ | |
1516 | inner_array = array_type; | |
78134374 | 1517 | while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY) |
ea37ba09 DJ |
1518 | inner_array = TYPE_TARGET_TYPE (inner_array); |
1519 | ||
1520 | elt_type = TYPE_TARGET_TYPE (inner_array); | |
78134374 | 1521 | if (elt_type->code () == TYPE_CODE_INT) |
ea37ba09 | 1522 | { |
314ad88d PA |
1523 | type_instance_flags flags |
1524 | = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT; | |
ea37ba09 DJ |
1525 | elt_type = make_qualified_type (elt_type, flags, NULL); |
1526 | TYPE_TARGET_TYPE (inner_array) = elt_type; | |
1527 | } | |
1528 | ||
2062087b | 1529 | array_type->set_is_vector (true); |
ea37ba09 DJ |
1530 | } |
1531 | ||
794ac428 | 1532 | struct type * |
ac3aafc7 EZ |
1533 | init_vector_type (struct type *elt_type, int n) |
1534 | { | |
1535 | struct type *array_type; | |
d8734c88 | 1536 | |
e3506a9f | 1537 | array_type = lookup_array_range_type (elt_type, 0, n - 1); |
ea37ba09 | 1538 | make_vector_type (array_type); |
ac3aafc7 EZ |
1539 | return array_type; |
1540 | } | |
1541 | ||
09e2d7c7 DE |
1542 | /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE |
1543 | belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too | |
1544 | confusing. "self" is a common enough replacement for "this". | |
1545 | TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or | |
1546 | TYPE_CODE_METHOD. */ | |
1547 | ||
1548 | struct type * | |
1549 | internal_type_self_type (struct type *type) | |
1550 | { | |
78134374 | 1551 | switch (type->code ()) |
09e2d7c7 DE |
1552 | { |
1553 | case TYPE_CODE_METHODPTR: | |
1554 | case TYPE_CODE_MEMBERPTR: | |
eaaf76ab DE |
1555 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) |
1556 | return NULL; | |
09e2d7c7 DE |
1557 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE); |
1558 | return TYPE_MAIN_TYPE (type)->type_specific.self_type; | |
1559 | case TYPE_CODE_METHOD: | |
eaaf76ab DE |
1560 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) |
1561 | return NULL; | |
09e2d7c7 DE |
1562 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); |
1563 | return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type; | |
1564 | default: | |
1565 | gdb_assert_not_reached ("bad type"); | |
1566 | } | |
1567 | } | |
1568 | ||
1569 | /* Set the type of the class that TYPE belongs to. | |
1570 | In c++ this is the class of "this". | |
1571 | TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or | |
1572 | TYPE_CODE_METHOD. */ | |
1573 | ||
1574 | void | |
1575 | set_type_self_type (struct type *type, struct type *self_type) | |
1576 | { | |
78134374 | 1577 | switch (type->code ()) |
09e2d7c7 DE |
1578 | { |
1579 | case TYPE_CODE_METHODPTR: | |
1580 | case TYPE_CODE_MEMBERPTR: | |
1581 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) | |
1582 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE; | |
1583 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE); | |
1584 | TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type; | |
1585 | break; | |
1586 | case TYPE_CODE_METHOD: | |
1587 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) | |
1588 | INIT_FUNC_SPECIFIC (type); | |
1589 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); | |
1590 | TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type; | |
1591 | break; | |
1592 | default: | |
1593 | gdb_assert_not_reached ("bad type"); | |
1594 | } | |
1595 | } | |
1596 | ||
1597 | /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type | |
0d5de010 DJ |
1598 | TO_TYPE. A member pointer is a wierd thing -- it amounts to a |
1599 | typed offset into a struct, e.g. "an int at offset 8". A MEMBER | |
1600 | TYPE doesn't include the offset (that's the value of the MEMBER | |
1601 | itself), but does include the structure type into which it points | |
1602 | (for some reason). | |
c906108c | 1603 | |
7ba81444 MS |
1604 | When "smashing" the type, we preserve the objfile that the old type |
1605 | pointed to, since we aren't changing where the type is actually | |
c906108c SS |
1606 | allocated. */ |
1607 | ||
1608 | void | |
09e2d7c7 | 1609 | smash_to_memberptr_type (struct type *type, struct type *self_type, |
0d5de010 | 1610 | struct type *to_type) |
c906108c | 1611 | { |
2fdde8f8 | 1612 | smash_type (type); |
67607e24 | 1613 | type->set_code (TYPE_CODE_MEMBERPTR); |
c906108c | 1614 | TYPE_TARGET_TYPE (type) = to_type; |
09e2d7c7 | 1615 | set_type_self_type (type, self_type); |
0d5de010 DJ |
1616 | /* Assume that a data member pointer is the same size as a normal |
1617 | pointer. */ | |
50810684 UW |
1618 | TYPE_LENGTH (type) |
1619 | = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT; | |
c906108c SS |
1620 | } |
1621 | ||
0b92b5bb TT |
1622 | /* Smash TYPE to be a type of pointer to methods type TO_TYPE. |
1623 | ||
1624 | When "smashing" the type, we preserve the objfile that the old type | |
1625 | pointed to, since we aren't changing where the type is actually | |
1626 | allocated. */ | |
1627 | ||
1628 | void | |
1629 | smash_to_methodptr_type (struct type *type, struct type *to_type) | |
1630 | { | |
1631 | smash_type (type); | |
67607e24 | 1632 | type->set_code (TYPE_CODE_METHODPTR); |
0b92b5bb | 1633 | TYPE_TARGET_TYPE (type) = to_type; |
09e2d7c7 | 1634 | set_type_self_type (type, TYPE_SELF_TYPE (to_type)); |
0b92b5bb | 1635 | TYPE_LENGTH (type) = cplus_method_ptr_size (to_type); |
0b92b5bb TT |
1636 | } |
1637 | ||
09e2d7c7 | 1638 | /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE. |
c906108c SS |
1639 | METHOD just means `function that gets an extra "this" argument'. |
1640 | ||
7ba81444 MS |
1641 | When "smashing" the type, we preserve the objfile that the old type |
1642 | pointed to, since we aren't changing where the type is actually | |
c906108c SS |
1643 | allocated. */ |
1644 | ||
1645 | void | |
09e2d7c7 | 1646 | smash_to_method_type (struct type *type, struct type *self_type, |
ad2f7632 DJ |
1647 | struct type *to_type, struct field *args, |
1648 | int nargs, int varargs) | |
c906108c | 1649 | { |
2fdde8f8 | 1650 | smash_type (type); |
67607e24 | 1651 | type->set_code (TYPE_CODE_METHOD); |
c906108c | 1652 | TYPE_TARGET_TYPE (type) = to_type; |
09e2d7c7 | 1653 | set_type_self_type (type, self_type); |
3cabb6b0 | 1654 | type->set_fields (args); |
5e33d5f4 | 1655 | type->set_num_fields (nargs); |
ad2f7632 | 1656 | if (varargs) |
1d6286ed | 1657 | type->set_has_varargs (true); |
c906108c | 1658 | TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ |
c906108c SS |
1659 | } |
1660 | ||
a737d952 | 1661 | /* A wrapper of TYPE_NAME which calls error if the type is anonymous. |
d8228535 JK |
1662 | Since GCC PR debug/47510 DWARF provides associated information to detect the |
1663 | anonymous class linkage name from its typedef. | |
1664 | ||
1665 | Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will | |
1666 | apply it itself. */ | |
1667 | ||
1668 | const char * | |
a737d952 | 1669 | type_name_or_error (struct type *type) |
d8228535 JK |
1670 | { |
1671 | struct type *saved_type = type; | |
1672 | const char *name; | |
1673 | struct objfile *objfile; | |
1674 | ||
f168693b | 1675 | type = check_typedef (type); |
d8228535 | 1676 | |
7d93a1e0 | 1677 | name = type->name (); |
d8228535 JK |
1678 | if (name != NULL) |
1679 | return name; | |
1680 | ||
7d93a1e0 | 1681 | name = saved_type->name (); |
d8228535 JK |
1682 | objfile = TYPE_OBJFILE (saved_type); |
1683 | error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"), | |
4262abfb JK |
1684 | name ? name : "<anonymous>", |
1685 | objfile ? objfile_name (objfile) : "<arch>"); | |
d8228535 JK |
1686 | } |
1687 | ||
7ba81444 MS |
1688 | /* Lookup a typedef or primitive type named NAME, visible in lexical |
1689 | block BLOCK. If NOERR is nonzero, return zero if NAME is not | |
1690 | suitably defined. */ | |
c906108c SS |
1691 | |
1692 | struct type * | |
e6c014f2 | 1693 | lookup_typename (const struct language_defn *language, |
b858499d | 1694 | const char *name, |
34eaf542 | 1695 | const struct block *block, int noerr) |
c906108c | 1696 | { |
52f0bd74 | 1697 | struct symbol *sym; |
c906108c | 1698 | |
1994afbf | 1699 | sym = lookup_symbol_in_language (name, block, VAR_DOMAIN, |
d12307c1 | 1700 | language->la_language, NULL).symbol; |
c51fe631 DE |
1701 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
1702 | return SYMBOL_TYPE (sym); | |
1703 | ||
c51fe631 DE |
1704 | if (noerr) |
1705 | return NULL; | |
1706 | error (_("No type named %s."), name); | |
c906108c SS |
1707 | } |
1708 | ||
1709 | struct type * | |
e6c014f2 | 1710 | lookup_unsigned_typename (const struct language_defn *language, |
b858499d | 1711 | const char *name) |
c906108c | 1712 | { |
224c3ddb | 1713 | char *uns = (char *) alloca (strlen (name) + 10); |
c906108c SS |
1714 | |
1715 | strcpy (uns, "unsigned "); | |
1716 | strcpy (uns + 9, name); | |
b858499d | 1717 | return lookup_typename (language, uns, NULL, 0); |
c906108c SS |
1718 | } |
1719 | ||
1720 | struct type * | |
b858499d | 1721 | lookup_signed_typename (const struct language_defn *language, const char *name) |
c906108c SS |
1722 | { |
1723 | struct type *t; | |
224c3ddb | 1724 | char *uns = (char *) alloca (strlen (name) + 8); |
c906108c SS |
1725 | |
1726 | strcpy (uns, "signed "); | |
1727 | strcpy (uns + 7, name); | |
b858499d | 1728 | t = lookup_typename (language, uns, NULL, 1); |
7ba81444 | 1729 | /* If we don't find "signed FOO" just try again with plain "FOO". */ |
c906108c SS |
1730 | if (t != NULL) |
1731 | return t; | |
b858499d | 1732 | return lookup_typename (language, name, NULL, 0); |
c906108c SS |
1733 | } |
1734 | ||
1735 | /* Lookup a structure type named "struct NAME", | |
1736 | visible in lexical block BLOCK. */ | |
1737 | ||
1738 | struct type * | |
270140bd | 1739 | lookup_struct (const char *name, const struct block *block) |
c906108c | 1740 | { |
52f0bd74 | 1741 | struct symbol *sym; |
c906108c | 1742 | |
d12307c1 | 1743 | sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1744 | |
1745 | if (sym == NULL) | |
1746 | { | |
8a3fe4f8 | 1747 | error (_("No struct type named %s."), name); |
c906108c | 1748 | } |
78134374 | 1749 | if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT) |
c906108c | 1750 | { |
7ba81444 MS |
1751 | error (_("This context has class, union or enum %s, not a struct."), |
1752 | name); | |
c906108c SS |
1753 | } |
1754 | return (SYMBOL_TYPE (sym)); | |
1755 | } | |
1756 | ||
1757 | /* Lookup a union type named "union NAME", | |
1758 | visible in lexical block BLOCK. */ | |
1759 | ||
1760 | struct type * | |
270140bd | 1761 | lookup_union (const char *name, const struct block *block) |
c906108c | 1762 | { |
52f0bd74 | 1763 | struct symbol *sym; |
c5aa993b | 1764 | struct type *t; |
c906108c | 1765 | |
d12307c1 | 1766 | sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1767 | |
1768 | if (sym == NULL) | |
8a3fe4f8 | 1769 | error (_("No union type named %s."), name); |
c906108c | 1770 | |
c5aa993b | 1771 | t = SYMBOL_TYPE (sym); |
c906108c | 1772 | |
78134374 | 1773 | if (t->code () == TYPE_CODE_UNION) |
c16abbde | 1774 | return t; |
c906108c | 1775 | |
7ba81444 MS |
1776 | /* If we get here, it's not a union. */ |
1777 | error (_("This context has class, struct or enum %s, not a union."), | |
1778 | name); | |
c906108c SS |
1779 | } |
1780 | ||
c906108c SS |
1781 | /* Lookup an enum type named "enum NAME", |
1782 | visible in lexical block BLOCK. */ | |
1783 | ||
1784 | struct type * | |
270140bd | 1785 | lookup_enum (const char *name, const struct block *block) |
c906108c | 1786 | { |
52f0bd74 | 1787 | struct symbol *sym; |
c906108c | 1788 | |
d12307c1 | 1789 | sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1790 | if (sym == NULL) |
1791 | { | |
8a3fe4f8 | 1792 | error (_("No enum type named %s."), name); |
c906108c | 1793 | } |
78134374 | 1794 | if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM) |
c906108c | 1795 | { |
7ba81444 MS |
1796 | error (_("This context has class, struct or union %s, not an enum."), |
1797 | name); | |
c906108c SS |
1798 | } |
1799 | return (SYMBOL_TYPE (sym)); | |
1800 | } | |
1801 | ||
1802 | /* Lookup a template type named "template NAME<TYPE>", | |
1803 | visible in lexical block BLOCK. */ | |
1804 | ||
1805 | struct type * | |
61f4b350 | 1806 | lookup_template_type (const char *name, struct type *type, |
270140bd | 1807 | const struct block *block) |
c906108c SS |
1808 | { |
1809 | struct symbol *sym; | |
7ba81444 | 1810 | char *nam = (char *) |
7d93a1e0 | 1811 | alloca (strlen (name) + strlen (type->name ()) + 4); |
d8734c88 | 1812 | |
c906108c SS |
1813 | strcpy (nam, name); |
1814 | strcat (nam, "<"); | |
7d93a1e0 | 1815 | strcat (nam, type->name ()); |
0963b4bd | 1816 | strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */ |
c906108c | 1817 | |
d12307c1 | 1818 | sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol; |
c906108c SS |
1819 | |
1820 | if (sym == NULL) | |
1821 | { | |
8a3fe4f8 | 1822 | error (_("No template type named %s."), name); |
c906108c | 1823 | } |
78134374 | 1824 | if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT) |
c906108c | 1825 | { |
7ba81444 MS |
1826 | error (_("This context has class, union or enum %s, not a struct."), |
1827 | name); | |
c906108c SS |
1828 | } |
1829 | return (SYMBOL_TYPE (sym)); | |
1830 | } | |
1831 | ||
ef0bd204 | 1832 | /* See gdbtypes.h. */ |
c906108c | 1833 | |
ef0bd204 JB |
1834 | struct_elt |
1835 | lookup_struct_elt (struct type *type, const char *name, int noerr) | |
c906108c SS |
1836 | { |
1837 | int i; | |
1838 | ||
1839 | for (;;) | |
1840 | { | |
f168693b | 1841 | type = check_typedef (type); |
78134374 SM |
1842 | if (type->code () != TYPE_CODE_PTR |
1843 | && type->code () != TYPE_CODE_REF) | |
c906108c SS |
1844 | break; |
1845 | type = TYPE_TARGET_TYPE (type); | |
1846 | } | |
1847 | ||
78134374 SM |
1848 | if (type->code () != TYPE_CODE_STRUCT |
1849 | && type->code () != TYPE_CODE_UNION) | |
c906108c | 1850 | { |
2f408ecb PA |
1851 | std::string type_name = type_to_string (type); |
1852 | error (_("Type %s is not a structure or union type."), | |
1853 | type_name.c_str ()); | |
c906108c SS |
1854 | } |
1855 | ||
1f704f76 | 1856 | for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--) |
c906108c | 1857 | { |
0d5cff50 | 1858 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
c906108c | 1859 | |
db577aea | 1860 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1861 | { |
ceacbf6e | 1862 | return {&type->field (i), TYPE_FIELD_BITPOS (type, i)}; |
c906108c | 1863 | } |
f5a010c0 PM |
1864 | else if (!t_field_name || *t_field_name == '\0') |
1865 | { | |
ef0bd204 | 1866 | struct_elt elt |
940da03e | 1867 | = lookup_struct_elt (type->field (i).type (), name, 1); |
ef0bd204 JB |
1868 | if (elt.field != NULL) |
1869 | { | |
1870 | elt.offset += TYPE_FIELD_BITPOS (type, i); | |
1871 | return elt; | |
1872 | } | |
f5a010c0 | 1873 | } |
c906108c SS |
1874 | } |
1875 | ||
1876 | /* OK, it's not in this class. Recursively check the baseclasses. */ | |
1877 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1878 | { | |
ef0bd204 JB |
1879 | struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1); |
1880 | if (elt.field != NULL) | |
1881 | return elt; | |
c906108c SS |
1882 | } |
1883 | ||
1884 | if (noerr) | |
ef0bd204 | 1885 | return {nullptr, 0}; |
c5aa993b | 1886 | |
2f408ecb PA |
1887 | std::string type_name = type_to_string (type); |
1888 | error (_("Type %s has no component named %s."), type_name.c_str (), name); | |
c906108c SS |
1889 | } |
1890 | ||
ef0bd204 JB |
1891 | /* See gdbtypes.h. */ |
1892 | ||
1893 | struct type * | |
1894 | lookup_struct_elt_type (struct type *type, const char *name, int noerr) | |
1895 | { | |
1896 | struct_elt elt = lookup_struct_elt (type, name, noerr); | |
1897 | if (elt.field != NULL) | |
b6cdac4b | 1898 | return elt.field->type (); |
ef0bd204 JB |
1899 | else |
1900 | return NULL; | |
1901 | } | |
1902 | ||
ed3ef339 DE |
1903 | /* Store in *MAX the largest number representable by unsigned integer type |
1904 | TYPE. */ | |
1905 | ||
1906 | void | |
1907 | get_unsigned_type_max (struct type *type, ULONGEST *max) | |
1908 | { | |
1909 | unsigned int n; | |
1910 | ||
f168693b | 1911 | type = check_typedef (type); |
c6d940a9 | 1912 | gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ()); |
ed3ef339 DE |
1913 | gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST)); |
1914 | ||
1915 | /* Written this way to avoid overflow. */ | |
1916 | n = TYPE_LENGTH (type) * TARGET_CHAR_BIT; | |
1917 | *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1; | |
1918 | } | |
1919 | ||
1920 | /* Store in *MIN, *MAX the smallest and largest numbers representable by | |
1921 | signed integer type TYPE. */ | |
1922 | ||
1923 | void | |
1924 | get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max) | |
1925 | { | |
1926 | unsigned int n; | |
1927 | ||
f168693b | 1928 | type = check_typedef (type); |
c6d940a9 | 1929 | gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ()); |
ed3ef339 DE |
1930 | gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST)); |
1931 | ||
1932 | n = TYPE_LENGTH (type) * TARGET_CHAR_BIT; | |
1933 | *min = -((ULONGEST) 1 << (n - 1)); | |
1934 | *max = ((ULONGEST) 1 << (n - 1)) - 1; | |
1935 | } | |
1936 | ||
ae6ae975 DE |
1937 | /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of |
1938 | cplus_stuff.vptr_fieldno. | |
1939 | ||
1940 | cplus_stuff is initialized to cplus_struct_default which does not | |
1941 | set vptr_fieldno to -1 for portability reasons (IWBN to use C99 | |
1942 | designated initializers). We cope with that here. */ | |
1943 | ||
1944 | int | |
1945 | internal_type_vptr_fieldno (struct type *type) | |
1946 | { | |
f168693b | 1947 | type = check_typedef (type); |
78134374 SM |
1948 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1949 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1950 | if (!HAVE_CPLUS_STRUCT (type)) |
1951 | return -1; | |
1952 | return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno; | |
1953 | } | |
1954 | ||
1955 | /* Set the value of cplus_stuff.vptr_fieldno. */ | |
1956 | ||
1957 | void | |
1958 | set_type_vptr_fieldno (struct type *type, int fieldno) | |
1959 | { | |
f168693b | 1960 | type = check_typedef (type); |
78134374 SM |
1961 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1962 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1963 | if (!HAVE_CPLUS_STRUCT (type)) |
1964 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
1965 | TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno; | |
1966 | } | |
1967 | ||
1968 | /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of | |
1969 | cplus_stuff.vptr_basetype. */ | |
1970 | ||
1971 | struct type * | |
1972 | internal_type_vptr_basetype (struct type *type) | |
1973 | { | |
f168693b | 1974 | type = check_typedef (type); |
78134374 SM |
1975 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1976 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1977 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF); |
1978 | return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype; | |
1979 | } | |
1980 | ||
1981 | /* Set the value of cplus_stuff.vptr_basetype. */ | |
1982 | ||
1983 | void | |
1984 | set_type_vptr_basetype (struct type *type, struct type *basetype) | |
1985 | { | |
f168693b | 1986 | type = check_typedef (type); |
78134374 SM |
1987 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1988 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1989 | if (!HAVE_CPLUS_STRUCT (type)) |
1990 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
1991 | TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype; | |
1992 | } | |
1993 | ||
81fe8080 DE |
1994 | /* Lookup the vptr basetype/fieldno values for TYPE. |
1995 | If found store vptr_basetype in *BASETYPEP if non-NULL, and return | |
1996 | vptr_fieldno. Also, if found and basetype is from the same objfile, | |
1997 | cache the results. | |
1998 | If not found, return -1 and ignore BASETYPEP. | |
1999 | Callers should be aware that in some cases (for example, | |
c906108c | 2000 | the type or one of its baseclasses is a stub type and we are |
d48cc9dd DJ |
2001 | debugging a .o file, or the compiler uses DWARF-2 and is not GCC), |
2002 | this function will not be able to find the | |
7ba81444 | 2003 | virtual function table pointer, and vptr_fieldno will remain -1 and |
81fe8080 | 2004 | vptr_basetype will remain NULL or incomplete. */ |
c906108c | 2005 | |
81fe8080 DE |
2006 | int |
2007 | get_vptr_fieldno (struct type *type, struct type **basetypep) | |
c906108c | 2008 | { |
f168693b | 2009 | type = check_typedef (type); |
c906108c SS |
2010 | |
2011 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
2012 | { | |
2013 | int i; | |
2014 | ||
7ba81444 | 2015 | /* We must start at zero in case the first (and only) baseclass |
dda83cd7 | 2016 | is virtual (and hence we cannot share the table pointer). */ |
c906108c SS |
2017 | for (i = 0; i < TYPE_N_BASECLASSES (type); i++) |
2018 | { | |
81fe8080 DE |
2019 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
2020 | int fieldno; | |
2021 | struct type *basetype; | |
2022 | ||
2023 | fieldno = get_vptr_fieldno (baseclass, &basetype); | |
2024 | if (fieldno >= 0) | |
c906108c | 2025 | { |
81fe8080 | 2026 | /* If the type comes from a different objfile we can't cache |
0963b4bd | 2027 | it, it may have a different lifetime. PR 2384 */ |
5ef73790 | 2028 | if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype)) |
81fe8080 | 2029 | { |
ae6ae975 DE |
2030 | set_type_vptr_fieldno (type, fieldno); |
2031 | set_type_vptr_basetype (type, basetype); | |
81fe8080 DE |
2032 | } |
2033 | if (basetypep) | |
2034 | *basetypep = basetype; | |
2035 | return fieldno; | |
c906108c SS |
2036 | } |
2037 | } | |
81fe8080 DE |
2038 | |
2039 | /* Not found. */ | |
2040 | return -1; | |
2041 | } | |
2042 | else | |
2043 | { | |
2044 | if (basetypep) | |
2045 | *basetypep = TYPE_VPTR_BASETYPE (type); | |
2046 | return TYPE_VPTR_FIELDNO (type); | |
c906108c SS |
2047 | } |
2048 | } | |
2049 | ||
44e1a9eb DJ |
2050 | static void |
2051 | stub_noname_complaint (void) | |
2052 | { | |
b98664d3 | 2053 | complaint (_("stub type has NULL name")); |
44e1a9eb DJ |
2054 | } |
2055 | ||
a405673c JB |
2056 | /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property |
2057 | attached to it, and that property has a non-constant value. */ | |
2058 | ||
2059 | static int | |
2060 | array_type_has_dynamic_stride (struct type *type) | |
2061 | { | |
24e99c6c | 2062 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE); |
a405673c | 2063 | |
8c2e4e06 | 2064 | return (prop != NULL && prop->kind () != PROP_CONST); |
a405673c JB |
2065 | } |
2066 | ||
d98b7a16 | 2067 | /* Worker for is_dynamic_type. */ |
80180f79 | 2068 | |
d98b7a16 | 2069 | static int |
ee715b5a | 2070 | is_dynamic_type_internal (struct type *type, int top_level) |
80180f79 SA |
2071 | { |
2072 | type = check_typedef (type); | |
2073 | ||
e771e4be | 2074 | /* We only want to recognize references at the outermost level. */ |
78134374 | 2075 | if (top_level && type->code () == TYPE_CODE_REF) |
e771e4be PMR |
2076 | type = check_typedef (TYPE_TARGET_TYPE (type)); |
2077 | ||
3cdcd0ce JB |
2078 | /* Types that have a dynamic TYPE_DATA_LOCATION are considered |
2079 | dynamic, even if the type itself is statically defined. | |
2080 | From a user's point of view, this may appear counter-intuitive; | |
2081 | but it makes sense in this context, because the point is to determine | |
2082 | whether any part of the type needs to be resolved before it can | |
2083 | be exploited. */ | |
2084 | if (TYPE_DATA_LOCATION (type) != NULL | |
2085 | && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR | |
2086 | || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST)) | |
2087 | return 1; | |
2088 | ||
3f2f83dd KB |
2089 | if (TYPE_ASSOCIATED_PROP (type)) |
2090 | return 1; | |
2091 | ||
2092 | if (TYPE_ALLOCATED_PROP (type)) | |
2093 | return 1; | |
2094 | ||
24e99c6c | 2095 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS); |
8c2e4e06 | 2096 | if (prop != nullptr && prop->kind () != PROP_TYPE) |
ef83a141 TT |
2097 | return 1; |
2098 | ||
f8e89861 TT |
2099 | if (TYPE_HAS_DYNAMIC_LENGTH (type)) |
2100 | return 1; | |
2101 | ||
78134374 | 2102 | switch (type->code ()) |
80180f79 | 2103 | { |
6f8a3220 | 2104 | case TYPE_CODE_RANGE: |
ddb87a81 JB |
2105 | { |
2106 | /* A range type is obviously dynamic if it has at least one | |
2107 | dynamic bound. But also consider the range type to be | |
2108 | dynamic when its subtype is dynamic, even if the bounds | |
2109 | of the range type are static. It allows us to assume that | |
2110 | the subtype of a static range type is also static. */ | |
599088e3 | 2111 | return (!has_static_range (type->bounds ()) |
ee715b5a | 2112 | || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0)); |
ddb87a81 | 2113 | } |
6f8a3220 | 2114 | |
216a7e6b AB |
2115 | case TYPE_CODE_STRING: |
2116 | /* Strings are very much like an array of characters, and can be | |
2117 | treated as one here. */ | |
80180f79 SA |
2118 | case TYPE_CODE_ARRAY: |
2119 | { | |
1f704f76 | 2120 | gdb_assert (type->num_fields () == 1); |
6f8a3220 | 2121 | |
a405673c | 2122 | /* The array is dynamic if either the bounds are dynamic... */ |
3d967001 | 2123 | if (is_dynamic_type_internal (type->index_type (), 0)) |
80180f79 | 2124 | return 1; |
a405673c JB |
2125 | /* ... or the elements it contains have a dynamic contents... */ |
2126 | if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0)) | |
2127 | return 1; | |
2128 | /* ... or if it has a dynamic stride... */ | |
2129 | if (array_type_has_dynamic_stride (type)) | |
2130 | return 1; | |
2131 | return 0; | |
80180f79 | 2132 | } |
012370f6 TT |
2133 | |
2134 | case TYPE_CODE_STRUCT: | |
2135 | case TYPE_CODE_UNION: | |
2136 | { | |
2137 | int i; | |
2138 | ||
7d79de9a TT |
2139 | bool is_cplus = HAVE_CPLUS_STRUCT (type); |
2140 | ||
1f704f76 | 2141 | for (i = 0; i < type->num_fields (); ++i) |
7d79de9a TT |
2142 | { |
2143 | /* Static fields can be ignored here. */ | |
ceacbf6e | 2144 | if (field_is_static (&type->field (i))) |
7d79de9a TT |
2145 | continue; |
2146 | /* If the field has dynamic type, then so does TYPE. */ | |
940da03e | 2147 | if (is_dynamic_type_internal (type->field (i).type (), 0)) |
7d79de9a TT |
2148 | return 1; |
2149 | /* If the field is at a fixed offset, then it is not | |
2150 | dynamic. */ | |
2151 | if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK) | |
2152 | continue; | |
2153 | /* Do not consider C++ virtual base types to be dynamic | |
2154 | due to the field's offset being dynamic; these are | |
2155 | handled via other means. */ | |
2156 | if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i)) | |
2157 | continue; | |
012370f6 | 2158 | return 1; |
7d79de9a | 2159 | } |
012370f6 TT |
2160 | } |
2161 | break; | |
80180f79 | 2162 | } |
92e2a17f TT |
2163 | |
2164 | return 0; | |
80180f79 SA |
2165 | } |
2166 | ||
d98b7a16 TT |
2167 | /* See gdbtypes.h. */ |
2168 | ||
2169 | int | |
2170 | is_dynamic_type (struct type *type) | |
2171 | { | |
ee715b5a | 2172 | return is_dynamic_type_internal (type, 1); |
d98b7a16 TT |
2173 | } |
2174 | ||
df25ebbd | 2175 | static struct type *resolve_dynamic_type_internal |
ee715b5a | 2176 | (struct type *type, struct property_addr_info *addr_stack, int top_level); |
d98b7a16 | 2177 | |
df25ebbd JB |
2178 | /* Given a dynamic range type (dyn_range_type) and a stack of |
2179 | struct property_addr_info elements, return a static version | |
2180 | of that type. */ | |
d190df30 | 2181 | |
80180f79 | 2182 | static struct type * |
df25ebbd JB |
2183 | resolve_dynamic_range (struct type *dyn_range_type, |
2184 | struct property_addr_info *addr_stack) | |
80180f79 SA |
2185 | { |
2186 | CORE_ADDR value; | |
ddb87a81 | 2187 | struct type *static_range_type, *static_target_type; |
5bbd8269 | 2188 | struct dynamic_prop low_bound, high_bound, stride; |
80180f79 | 2189 | |
78134374 | 2190 | gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE); |
80180f79 | 2191 | |
599088e3 | 2192 | const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low; |
63e43d3a | 2193 | if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value)) |
8c2e4e06 | 2194 | low_bound.set_const_val (value); |
80180f79 | 2195 | else |
8c2e4e06 | 2196 | low_bound.set_undefined (); |
80180f79 | 2197 | |
599088e3 | 2198 | prop = &dyn_range_type->bounds ()->high; |
63e43d3a | 2199 | if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value)) |
80180f79 | 2200 | { |
8c2e4e06 | 2201 | high_bound.set_const_val (value); |
c451ebe5 | 2202 | |
599088e3 | 2203 | if (dyn_range_type->bounds ()->flag_upper_bound_is_count) |
8c2e4e06 SM |
2204 | high_bound.set_const_val |
2205 | (low_bound.const_val () + high_bound.const_val () - 1); | |
80180f79 SA |
2206 | } |
2207 | else | |
8c2e4e06 | 2208 | high_bound.set_undefined (); |
80180f79 | 2209 | |
599088e3 SM |
2210 | bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride; |
2211 | prop = &dyn_range_type->bounds ()->stride; | |
5bbd8269 AB |
2212 | if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value)) |
2213 | { | |
8c2e4e06 | 2214 | stride.set_const_val (value); |
5bbd8269 AB |
2215 | |
2216 | /* If we have a bit stride that is not an exact number of bytes then | |
2217 | I really don't think this is going to work with current GDB, the | |
2218 | array indexing code in GDB seems to be pretty heavily tied to byte | |
2219 | offsets right now. Assuming 8 bits in a byte. */ | |
2220 | struct gdbarch *gdbarch = get_type_arch (dyn_range_type); | |
2221 | int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); | |
2222 | if (!byte_stride_p && (value % (unit_size * 8)) != 0) | |
2223 | error (_("bit strides that are not a multiple of the byte size " | |
2224 | "are currently not supported")); | |
2225 | } | |
2226 | else | |
2227 | { | |
8c2e4e06 | 2228 | stride.set_undefined (); |
5bbd8269 AB |
2229 | byte_stride_p = true; |
2230 | } | |
2231 | ||
ddb87a81 JB |
2232 | static_target_type |
2233 | = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type), | |
ee715b5a | 2234 | addr_stack, 0); |
599088e3 | 2235 | LONGEST bias = dyn_range_type->bounds ()->bias; |
5bbd8269 AB |
2236 | static_range_type = create_range_type_with_stride |
2237 | (copy_type (dyn_range_type), static_target_type, | |
2238 | &low_bound, &high_bound, bias, &stride, byte_stride_p); | |
599088e3 | 2239 | static_range_type->bounds ()->flag_bound_evaluated = 1; |
6f8a3220 JB |
2240 | return static_range_type; |
2241 | } | |
2242 | ||
216a7e6b AB |
2243 | /* Resolves dynamic bound values of an array or string type TYPE to static |
2244 | ones. ADDR_STACK is a stack of struct property_addr_info to be used if | |
2245 | needed during the dynamic resolution. */ | |
6f8a3220 JB |
2246 | |
2247 | static struct type * | |
216a7e6b AB |
2248 | resolve_dynamic_array_or_string (struct type *type, |
2249 | struct property_addr_info *addr_stack) | |
6f8a3220 JB |
2250 | { |
2251 | CORE_ADDR value; | |
2252 | struct type *elt_type; | |
2253 | struct type *range_type; | |
2254 | struct type *ary_dim; | |
3f2f83dd | 2255 | struct dynamic_prop *prop; |
a405673c | 2256 | unsigned int bit_stride = 0; |
6f8a3220 | 2257 | |
216a7e6b AB |
2258 | /* For dynamic type resolution strings can be treated like arrays of |
2259 | characters. */ | |
78134374 SM |
2260 | gdb_assert (type->code () == TYPE_CODE_ARRAY |
2261 | || type->code () == TYPE_CODE_STRING); | |
6f8a3220 | 2262 | |
3f2f83dd KB |
2263 | type = copy_type (type); |
2264 | ||
6f8a3220 | 2265 | elt_type = type; |
3d967001 | 2266 | range_type = check_typedef (elt_type->index_type ()); |
df25ebbd | 2267 | range_type = resolve_dynamic_range (range_type, addr_stack); |
6f8a3220 | 2268 | |
3f2f83dd KB |
2269 | /* Resolve allocated/associated here before creating a new array type, which |
2270 | will update the length of the array accordingly. */ | |
2271 | prop = TYPE_ALLOCATED_PROP (type); | |
2272 | if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value)) | |
8c2e4e06 SM |
2273 | prop->set_const_val (value); |
2274 | ||
3f2f83dd KB |
2275 | prop = TYPE_ASSOCIATED_PROP (type); |
2276 | if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value)) | |
8c2e4e06 | 2277 | prop->set_const_val (value); |
3f2f83dd | 2278 | |
80180f79 SA |
2279 | ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type)); |
2280 | ||
78134374 | 2281 | if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY) |
216a7e6b | 2282 | elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack); |
80180f79 SA |
2283 | else |
2284 | elt_type = TYPE_TARGET_TYPE (type); | |
2285 | ||
24e99c6c | 2286 | prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE); |
a405673c JB |
2287 | if (prop != NULL) |
2288 | { | |
603490bf | 2289 | if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value)) |
a405673c | 2290 | { |
7aa91313 | 2291 | type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE); |
a405673c JB |
2292 | bit_stride = (unsigned int) (value * 8); |
2293 | } | |
2294 | else | |
2295 | { | |
2296 | /* Could be a bug in our code, but it could also happen | |
2297 | if the DWARF info is not correct. Issue a warning, | |
2298 | and assume no byte/bit stride (leave bit_stride = 0). */ | |
2299 | warning (_("cannot determine array stride for type %s"), | |
7d93a1e0 | 2300 | type->name () ? type->name () : "<no name>"); |
a405673c JB |
2301 | } |
2302 | } | |
2303 | else | |
2304 | bit_stride = TYPE_FIELD_BITSIZE (type, 0); | |
2305 | ||
2306 | return create_array_type_with_stride (type, elt_type, range_type, NULL, | |
dda83cd7 | 2307 | bit_stride); |
80180f79 SA |
2308 | } |
2309 | ||
012370f6 | 2310 | /* Resolve dynamic bounds of members of the union TYPE to static |
df25ebbd JB |
2311 | bounds. ADDR_STACK is a stack of struct property_addr_info |
2312 | to be used if needed during the dynamic resolution. */ | |
012370f6 TT |
2313 | |
2314 | static struct type * | |
df25ebbd JB |
2315 | resolve_dynamic_union (struct type *type, |
2316 | struct property_addr_info *addr_stack) | |
012370f6 TT |
2317 | { |
2318 | struct type *resolved_type; | |
2319 | int i; | |
2320 | unsigned int max_len = 0; | |
2321 | ||
78134374 | 2322 | gdb_assert (type->code () == TYPE_CODE_UNION); |
012370f6 TT |
2323 | |
2324 | resolved_type = copy_type (type); | |
3cabb6b0 SM |
2325 | resolved_type->set_fields |
2326 | ((struct field *) | |
2327 | TYPE_ALLOC (resolved_type, | |
2328 | resolved_type->num_fields () * sizeof (struct field))); | |
80fc5e77 SM |
2329 | memcpy (resolved_type->fields (), |
2330 | type->fields (), | |
1f704f76 SM |
2331 | resolved_type->num_fields () * sizeof (struct field)); |
2332 | for (i = 0; i < resolved_type->num_fields (); ++i) | |
012370f6 TT |
2333 | { |
2334 | struct type *t; | |
2335 | ||
ceacbf6e | 2336 | if (field_is_static (&type->field (i))) |
012370f6 TT |
2337 | continue; |
2338 | ||
940da03e | 2339 | t = resolve_dynamic_type_internal (resolved_type->field (i).type (), |
ee715b5a | 2340 | addr_stack, 0); |
5d14b6e5 | 2341 | resolved_type->field (i).set_type (t); |
2f33032a KS |
2342 | |
2343 | struct type *real_type = check_typedef (t); | |
2344 | if (TYPE_LENGTH (real_type) > max_len) | |
2345 | max_len = TYPE_LENGTH (real_type); | |
012370f6 TT |
2346 | } |
2347 | ||
2348 | TYPE_LENGTH (resolved_type) = max_len; | |
2349 | return resolved_type; | |
2350 | } | |
2351 | ||
ef83a141 TT |
2352 | /* See gdbtypes.h. */ |
2353 | ||
2354 | bool | |
2355 | variant::matches (ULONGEST value, bool is_unsigned) const | |
2356 | { | |
2357 | for (const discriminant_range &range : discriminants) | |
2358 | if (range.contains (value, is_unsigned)) | |
2359 | return true; | |
2360 | return false; | |
2361 | } | |
2362 | ||
2363 | static void | |
2364 | compute_variant_fields_inner (struct type *type, | |
2365 | struct property_addr_info *addr_stack, | |
2366 | const variant_part &part, | |
2367 | std::vector<bool> &flags); | |
2368 | ||
2369 | /* A helper function to determine which variant fields will be active. | |
2370 | This handles both the variant's direct fields, and any variant | |
2371 | parts embedded in this variant. TYPE is the type we're examining. | |
2372 | ADDR_STACK holds information about the concrete object. VARIANT is | |
2373 | the current variant to be handled. FLAGS is where the results are | |
2374 | stored -- this function sets the Nth element in FLAGS if the | |
2375 | corresponding field is enabled. ENABLED is whether this variant is | |
2376 | enabled or not. */ | |
2377 | ||
2378 | static void | |
2379 | compute_variant_fields_recurse (struct type *type, | |
2380 | struct property_addr_info *addr_stack, | |
2381 | const variant &variant, | |
2382 | std::vector<bool> &flags, | |
2383 | bool enabled) | |
2384 | { | |
2385 | for (int field = variant.first_field; field < variant.last_field; ++field) | |
2386 | flags[field] = enabled; | |
2387 | ||
2388 | for (const variant_part &new_part : variant.parts) | |
2389 | { | |
2390 | if (enabled) | |
2391 | compute_variant_fields_inner (type, addr_stack, new_part, flags); | |
2392 | else | |
2393 | { | |
2394 | for (const auto &sub_variant : new_part.variants) | |
2395 | compute_variant_fields_recurse (type, addr_stack, sub_variant, | |
2396 | flags, enabled); | |
2397 | } | |
2398 | } | |
2399 | } | |
2400 | ||
2401 | /* A helper function to determine which variant fields will be active. | |
2402 | This evaluates the discriminant, decides which variant (if any) is | |
2403 | active, and then updates FLAGS to reflect which fields should be | |
2404 | available. TYPE is the type we're examining. ADDR_STACK holds | |
2405 | information about the concrete object. VARIANT is the current | |
2406 | variant to be handled. FLAGS is where the results are stored -- | |
2407 | this function sets the Nth element in FLAGS if the corresponding | |
2408 | field is enabled. */ | |
2409 | ||
2410 | static void | |
2411 | compute_variant_fields_inner (struct type *type, | |
2412 | struct property_addr_info *addr_stack, | |
2413 | const variant_part &part, | |
2414 | std::vector<bool> &flags) | |
2415 | { | |
2416 | /* Evaluate the discriminant. */ | |
2417 | gdb::optional<ULONGEST> discr_value; | |
2418 | if (part.discriminant_index != -1) | |
2419 | { | |
2420 | int idx = part.discriminant_index; | |
2421 | ||
2422 | if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS) | |
2423 | error (_("Cannot determine struct field location" | |
2424 | " (invalid location kind)")); | |
2425 | ||
b249d2c2 TT |
2426 | if (addr_stack->valaddr.data () != NULL) |
2427 | discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (), | |
2428 | idx); | |
ef83a141 TT |
2429 | else |
2430 | { | |
2431 | CORE_ADDR addr = (addr_stack->addr | |
2432 | + (TYPE_FIELD_BITPOS (type, idx) | |
2433 | / TARGET_CHAR_BIT)); | |
2434 | ||
2435 | LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx); | |
2436 | LONGEST size = bitsize / 8; | |
2437 | if (size == 0) | |
940da03e | 2438 | size = TYPE_LENGTH (type->field (idx).type ()); |
ef83a141 TT |
2439 | |
2440 | gdb_byte bits[sizeof (ULONGEST)]; | |
2441 | read_memory (addr, bits, size); | |
2442 | ||
2443 | LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx) | |
2444 | % TARGET_CHAR_BIT); | |
2445 | ||
940da03e | 2446 | discr_value = unpack_bits_as_long (type->field (idx).type (), |
ef83a141 TT |
2447 | bits, bitpos, bitsize); |
2448 | } | |
2449 | } | |
2450 | ||
2451 | /* Go through each variant and see which applies. */ | |
2452 | const variant *default_variant = nullptr; | |
2453 | const variant *applied_variant = nullptr; | |
2454 | for (const auto &variant : part.variants) | |
2455 | { | |
2456 | if (variant.is_default ()) | |
2457 | default_variant = &variant; | |
2458 | else if (discr_value.has_value () | |
2459 | && variant.matches (*discr_value, part.is_unsigned)) | |
2460 | { | |
2461 | applied_variant = &variant; | |
2462 | break; | |
2463 | } | |
2464 | } | |
2465 | if (applied_variant == nullptr) | |
2466 | applied_variant = default_variant; | |
2467 | ||
2468 | for (const auto &variant : part.variants) | |
2469 | compute_variant_fields_recurse (type, addr_stack, variant, | |
2470 | flags, applied_variant == &variant); | |
2471 | } | |
2472 | ||
2473 | /* Determine which variant fields are available in TYPE. The enabled | |
2474 | fields are stored in RESOLVED_TYPE. ADDR_STACK holds information | |
2475 | about the concrete object. PARTS describes the top-level variant | |
2476 | parts for this type. */ | |
2477 | ||
2478 | static void | |
2479 | compute_variant_fields (struct type *type, | |
2480 | struct type *resolved_type, | |
2481 | struct property_addr_info *addr_stack, | |
2482 | const gdb::array_view<variant_part> &parts) | |
2483 | { | |
2484 | /* Assume all fields are included by default. */ | |
1f704f76 | 2485 | std::vector<bool> flags (resolved_type->num_fields (), true); |
ef83a141 TT |
2486 | |
2487 | /* Now disable fields based on the variants that control them. */ | |
2488 | for (const auto &part : parts) | |
2489 | compute_variant_fields_inner (type, addr_stack, part, flags); | |
2490 | ||
5e33d5f4 SM |
2491 | resolved_type->set_num_fields |
2492 | (std::count (flags.begin (), flags.end (), true)); | |
3cabb6b0 SM |
2493 | resolved_type->set_fields |
2494 | ((struct field *) | |
2495 | TYPE_ALLOC (resolved_type, | |
2496 | resolved_type->num_fields () * sizeof (struct field))); | |
2497 | ||
ef83a141 | 2498 | int out = 0; |
1f704f76 | 2499 | for (int i = 0; i < type->num_fields (); ++i) |
ef83a141 TT |
2500 | { |
2501 | if (!flags[i]) | |
2502 | continue; | |
2503 | ||
ceacbf6e | 2504 | resolved_type->field (out) = type->field (i); |
ef83a141 TT |
2505 | ++out; |
2506 | } | |
2507 | } | |
2508 | ||
012370f6 | 2509 | /* Resolve dynamic bounds of members of the struct TYPE to static |
df25ebbd JB |
2510 | bounds. ADDR_STACK is a stack of struct property_addr_info to |
2511 | be used if needed during the dynamic resolution. */ | |
012370f6 TT |
2512 | |
2513 | static struct type * | |
df25ebbd JB |
2514 | resolve_dynamic_struct (struct type *type, |
2515 | struct property_addr_info *addr_stack) | |
012370f6 TT |
2516 | { |
2517 | struct type *resolved_type; | |
2518 | int i; | |
6908c509 | 2519 | unsigned resolved_type_bit_length = 0; |
012370f6 | 2520 | |
78134374 | 2521 | gdb_assert (type->code () == TYPE_CODE_STRUCT); |
1f704f76 | 2522 | gdb_assert (type->num_fields () > 0); |
012370f6 TT |
2523 | |
2524 | resolved_type = copy_type (type); | |
ef83a141 | 2525 | |
24e99c6c | 2526 | dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS); |
8c2e4e06 | 2527 | if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS) |
ef83a141 TT |
2528 | { |
2529 | compute_variant_fields (type, resolved_type, addr_stack, | |
8c2e4e06 | 2530 | *variant_prop->variant_parts ()); |
ef83a141 TT |
2531 | /* We want to leave the property attached, so that the Rust code |
2532 | can tell whether the type was originally an enum. */ | |
8c2e4e06 | 2533 | variant_prop->set_original_type (type); |
ef83a141 TT |
2534 | } |
2535 | else | |
2536 | { | |
3cabb6b0 SM |
2537 | resolved_type->set_fields |
2538 | ((struct field *) | |
2539 | TYPE_ALLOC (resolved_type, | |
2540 | resolved_type->num_fields () * sizeof (struct field))); | |
80fc5e77 SM |
2541 | memcpy (resolved_type->fields (), |
2542 | type->fields (), | |
1f704f76 | 2543 | resolved_type->num_fields () * sizeof (struct field)); |
ef83a141 TT |
2544 | } |
2545 | ||
1f704f76 | 2546 | for (i = 0; i < resolved_type->num_fields (); ++i) |
012370f6 | 2547 | { |
6908c509 | 2548 | unsigned new_bit_length; |
df25ebbd | 2549 | struct property_addr_info pinfo; |
012370f6 | 2550 | |
ceacbf6e | 2551 | if (field_is_static (&resolved_type->field (i))) |
012370f6 TT |
2552 | continue; |
2553 | ||
7d79de9a TT |
2554 | if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK) |
2555 | { | |
2556 | struct dwarf2_property_baton baton; | |
2557 | baton.property_type | |
940da03e | 2558 | = lookup_pointer_type (resolved_type->field (i).type ()); |
7d79de9a TT |
2559 | baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i); |
2560 | ||
2561 | struct dynamic_prop prop; | |
8c2e4e06 | 2562 | prop.set_locexpr (&baton); |
7d79de9a TT |
2563 | |
2564 | CORE_ADDR addr; | |
2565 | if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr, | |
2566 | true)) | |
ceacbf6e | 2567 | SET_FIELD_BITPOS (resolved_type->field (i), |
7d79de9a TT |
2568 | TARGET_CHAR_BIT * (addr - addr_stack->addr)); |
2569 | } | |
2570 | ||
6908c509 JB |
2571 | /* As we know this field is not a static field, the field's |
2572 | field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify | |
2573 | this is the case, but only trigger a simple error rather | |
2574 | than an internal error if that fails. While failing | |
2575 | that verification indicates a bug in our code, the error | |
2576 | is not severe enough to suggest to the user he stops | |
2577 | his debugging session because of it. */ | |
ef83a141 | 2578 | if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS) |
6908c509 JB |
2579 | error (_("Cannot determine struct field location" |
2580 | " (invalid location kind)")); | |
df25ebbd | 2581 | |
940da03e | 2582 | pinfo.type = check_typedef (resolved_type->field (i).type ()); |
c3345124 | 2583 | pinfo.valaddr = addr_stack->valaddr; |
9920b434 BH |
2584 | pinfo.addr |
2585 | = (addr_stack->addr | |
2586 | + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT)); | |
df25ebbd JB |
2587 | pinfo.next = addr_stack; |
2588 | ||
5d14b6e5 | 2589 | resolved_type->field (i).set_type |
940da03e | 2590 | (resolve_dynamic_type_internal (resolved_type->field (i).type (), |
5d14b6e5 | 2591 | &pinfo, 0)); |
df25ebbd JB |
2592 | gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i) |
2593 | == FIELD_LOC_KIND_BITPOS); | |
2594 | ||
6908c509 JB |
2595 | new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i); |
2596 | if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0) | |
2597 | new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i); | |
2598 | else | |
2f33032a KS |
2599 | { |
2600 | struct type *real_type | |
2601 | = check_typedef (resolved_type->field (i).type ()); | |
2602 | ||
2603 | new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT); | |
2604 | } | |
6908c509 JB |
2605 | |
2606 | /* Normally, we would use the position and size of the last field | |
2607 | to determine the size of the enclosing structure. But GCC seems | |
2608 | to be encoding the position of some fields incorrectly when | |
2609 | the struct contains a dynamic field that is not placed last. | |
2610 | So we compute the struct size based on the field that has | |
2611 | the highest position + size - probably the best we can do. */ | |
2612 | if (new_bit_length > resolved_type_bit_length) | |
2613 | resolved_type_bit_length = new_bit_length; | |
012370f6 TT |
2614 | } |
2615 | ||
9920b434 BH |
2616 | /* The length of a type won't change for fortran, but it does for C and Ada. |
2617 | For fortran the size of dynamic fields might change over time but not the | |
2618 | type length of the structure. If we adapt it, we run into problems | |
2619 | when calculating the element offset for arrays of structs. */ | |
2620 | if (current_language->la_language != language_fortran) | |
2621 | TYPE_LENGTH (resolved_type) | |
2622 | = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT; | |
6908c509 | 2623 | |
9e195661 PMR |
2624 | /* The Ada language uses this field as a cache for static fixed types: reset |
2625 | it as RESOLVED_TYPE must have its own static fixed type. */ | |
2626 | TYPE_TARGET_TYPE (resolved_type) = NULL; | |
2627 | ||
012370f6 TT |
2628 | return resolved_type; |
2629 | } | |
2630 | ||
d98b7a16 | 2631 | /* Worker for resolved_dynamic_type. */ |
80180f79 | 2632 | |
d98b7a16 | 2633 | static struct type * |
df25ebbd | 2634 | resolve_dynamic_type_internal (struct type *type, |
ee715b5a PMR |
2635 | struct property_addr_info *addr_stack, |
2636 | int top_level) | |
80180f79 SA |
2637 | { |
2638 | struct type *real_type = check_typedef (type); | |
f8e89861 | 2639 | struct type *resolved_type = nullptr; |
d9823cbb | 2640 | struct dynamic_prop *prop; |
3cdcd0ce | 2641 | CORE_ADDR value; |
80180f79 | 2642 | |
ee715b5a | 2643 | if (!is_dynamic_type_internal (real_type, top_level)) |
80180f79 SA |
2644 | return type; |
2645 | ||
f8e89861 TT |
2646 | gdb::optional<CORE_ADDR> type_length; |
2647 | prop = TYPE_DYNAMIC_LENGTH (type); | |
2648 | if (prop != NULL | |
2649 | && dwarf2_evaluate_property (prop, NULL, addr_stack, &value)) | |
2650 | type_length = value; | |
2651 | ||
78134374 | 2652 | if (type->code () == TYPE_CODE_TYPEDEF) |
6f8a3220 | 2653 | { |
cac9b138 JK |
2654 | resolved_type = copy_type (type); |
2655 | TYPE_TARGET_TYPE (resolved_type) | |
ee715b5a PMR |
2656 | = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack, |
2657 | top_level); | |
5537b577 JK |
2658 | } |
2659 | else | |
2660 | { | |
2661 | /* Before trying to resolve TYPE, make sure it is not a stub. */ | |
2662 | type = real_type; | |
012370f6 | 2663 | |
78134374 | 2664 | switch (type->code ()) |
5537b577 | 2665 | { |
e771e4be PMR |
2666 | case TYPE_CODE_REF: |
2667 | { | |
2668 | struct property_addr_info pinfo; | |
2669 | ||
2670 | pinfo.type = check_typedef (TYPE_TARGET_TYPE (type)); | |
b249d2c2 TT |
2671 | pinfo.valaddr = {}; |
2672 | if (addr_stack->valaddr.data () != NULL) | |
2673 | pinfo.addr = extract_typed_address (addr_stack->valaddr.data (), | |
2674 | type); | |
c3345124 JB |
2675 | else |
2676 | pinfo.addr = read_memory_typed_address (addr_stack->addr, type); | |
e771e4be PMR |
2677 | pinfo.next = addr_stack; |
2678 | ||
2679 | resolved_type = copy_type (type); | |
2680 | TYPE_TARGET_TYPE (resolved_type) | |
2681 | = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), | |
2682 | &pinfo, top_level); | |
2683 | break; | |
2684 | } | |
2685 | ||
216a7e6b AB |
2686 | case TYPE_CODE_STRING: |
2687 | /* Strings are very much like an array of characters, and can be | |
2688 | treated as one here. */ | |
5537b577 | 2689 | case TYPE_CODE_ARRAY: |
216a7e6b | 2690 | resolved_type = resolve_dynamic_array_or_string (type, addr_stack); |
5537b577 JK |
2691 | break; |
2692 | ||
2693 | case TYPE_CODE_RANGE: | |
df25ebbd | 2694 | resolved_type = resolve_dynamic_range (type, addr_stack); |
5537b577 JK |
2695 | break; |
2696 | ||
2697 | case TYPE_CODE_UNION: | |
df25ebbd | 2698 | resolved_type = resolve_dynamic_union (type, addr_stack); |
5537b577 JK |
2699 | break; |
2700 | ||
2701 | case TYPE_CODE_STRUCT: | |
df25ebbd | 2702 | resolved_type = resolve_dynamic_struct (type, addr_stack); |
5537b577 JK |
2703 | break; |
2704 | } | |
6f8a3220 | 2705 | } |
80180f79 | 2706 | |
f8e89861 TT |
2707 | if (resolved_type == nullptr) |
2708 | return type; | |
2709 | ||
2710 | if (type_length.has_value ()) | |
2711 | { | |
2712 | TYPE_LENGTH (resolved_type) = *type_length; | |
7aa91313 | 2713 | resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE); |
f8e89861 TT |
2714 | } |
2715 | ||
3cdcd0ce JB |
2716 | /* Resolve data_location attribute. */ |
2717 | prop = TYPE_DATA_LOCATION (resolved_type); | |
63e43d3a PMR |
2718 | if (prop != NULL |
2719 | && dwarf2_evaluate_property (prop, NULL, addr_stack, &value)) | |
a5c641b5 AB |
2720 | { |
2721 | /* Start of Fortran hack. See comment in f-lang.h for what is going | |
2722 | on here.*/ | |
2723 | if (current_language->la_language == language_fortran | |
2724 | && resolved_type->code () == TYPE_CODE_ARRAY) | |
2725 | value = fortran_adjust_dynamic_array_base_address_hack (resolved_type, | |
2726 | value); | |
2727 | /* End of Fortran hack. */ | |
2728 | prop->set_const_val (value); | |
2729 | } | |
3cdcd0ce | 2730 | |
80180f79 SA |
2731 | return resolved_type; |
2732 | } | |
2733 | ||
d98b7a16 TT |
2734 | /* See gdbtypes.h */ |
2735 | ||
2736 | struct type * | |
b249d2c2 TT |
2737 | resolve_dynamic_type (struct type *type, |
2738 | gdb::array_view<const gdb_byte> valaddr, | |
c3345124 | 2739 | CORE_ADDR addr) |
d98b7a16 | 2740 | { |
c3345124 JB |
2741 | struct property_addr_info pinfo |
2742 | = {check_typedef (type), valaddr, addr, NULL}; | |
df25ebbd | 2743 | |
ee715b5a | 2744 | return resolve_dynamic_type_internal (type, &pinfo, 1); |
d98b7a16 TT |
2745 | } |
2746 | ||
d9823cbb KB |
2747 | /* See gdbtypes.h */ |
2748 | ||
24e99c6c SM |
2749 | dynamic_prop * |
2750 | type::dyn_prop (dynamic_prop_node_kind prop_kind) const | |
d9823cbb | 2751 | { |
98d48915 | 2752 | dynamic_prop_list *node = this->main_type->dyn_prop_list; |
d9823cbb KB |
2753 | |
2754 | while (node != NULL) | |
2755 | { | |
2756 | if (node->prop_kind == prop_kind) | |
dda83cd7 | 2757 | return &node->prop; |
d9823cbb KB |
2758 | node = node->next; |
2759 | } | |
2760 | return NULL; | |
2761 | } | |
2762 | ||
2763 | /* See gdbtypes.h */ | |
2764 | ||
2765 | void | |
5c54719c | 2766 | type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop) |
d9823cbb KB |
2767 | { |
2768 | struct dynamic_prop_list *temp; | |
2769 | ||
5c54719c | 2770 | gdb_assert (TYPE_OBJFILE_OWNED (this)); |
d9823cbb | 2771 | |
5c54719c | 2772 | temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack, |
50a82047 | 2773 | struct dynamic_prop_list); |
d9823cbb | 2774 | temp->prop_kind = prop_kind; |
283a9958 | 2775 | temp->prop = prop; |
98d48915 | 2776 | temp->next = this->main_type->dyn_prop_list; |
d9823cbb | 2777 | |
98d48915 | 2778 | this->main_type->dyn_prop_list = temp; |
d9823cbb KB |
2779 | } |
2780 | ||
7aa91313 | 2781 | /* See gdbtypes.h. */ |
9920b434 BH |
2782 | |
2783 | void | |
7aa91313 | 2784 | type::remove_dyn_prop (dynamic_prop_node_kind kind) |
9920b434 BH |
2785 | { |
2786 | struct dynamic_prop_list *prev_node, *curr_node; | |
2787 | ||
98d48915 | 2788 | curr_node = this->main_type->dyn_prop_list; |
9920b434 BH |
2789 | prev_node = NULL; |
2790 | ||
2791 | while (NULL != curr_node) | |
2792 | { | |
7aa91313 | 2793 | if (curr_node->prop_kind == kind) |
9920b434 BH |
2794 | { |
2795 | /* Update the linked list but don't free anything. | |
2796 | The property was allocated on objstack and it is not known | |
2797 | if we are on top of it. Nevertheless, everything is released | |
2798 | when the complete objstack is freed. */ | |
2799 | if (NULL == prev_node) | |
98d48915 | 2800 | this->main_type->dyn_prop_list = curr_node->next; |
9920b434 BH |
2801 | else |
2802 | prev_node->next = curr_node->next; | |
2803 | ||
2804 | return; | |
2805 | } | |
2806 | ||
2807 | prev_node = curr_node; | |
2808 | curr_node = curr_node->next; | |
2809 | } | |
2810 | } | |
d9823cbb | 2811 | |
92163a10 JK |
2812 | /* Find the real type of TYPE. This function returns the real type, |
2813 | after removing all layers of typedefs, and completing opaque or stub | |
2814 | types. Completion changes the TYPE argument, but stripping of | |
2815 | typedefs does not. | |
2816 | ||
2817 | Instance flags (e.g. const/volatile) are preserved as typedefs are | |
2818 | stripped. If necessary a new qualified form of the underlying type | |
2819 | is created. | |
2820 | ||
2821 | NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has | |
2822 | not been computed and we're either in the middle of reading symbols, or | |
2823 | there was no name for the typedef in the debug info. | |
2824 | ||
9bc118a5 DE |
2825 | NOTE: Lookup of opaque types can throw errors for invalid symbol files. |
2826 | QUITs in the symbol reading code can also throw. | |
2827 | Thus this function can throw an exception. | |
2828 | ||
92163a10 JK |
2829 | If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of |
2830 | the target type. | |
c906108c SS |
2831 | |
2832 | If this is a stubbed struct (i.e. declared as struct foo *), see if | |
0963b4bd | 2833 | we can find a full definition in some other file. If so, copy this |
7ba81444 MS |
2834 | definition, so we can use it in future. There used to be a comment |
2835 | (but not any code) that if we don't find a full definition, we'd | |
2836 | set a flag so we don't spend time in the future checking the same | |
2837 | type. That would be a mistake, though--we might load in more | |
92163a10 | 2838 | symbols which contain a full definition for the type. */ |
c906108c SS |
2839 | |
2840 | struct type * | |
a02fd225 | 2841 | check_typedef (struct type *type) |
c906108c SS |
2842 | { |
2843 | struct type *orig_type = type; | |
a02fd225 | 2844 | |
423c0af8 MS |
2845 | gdb_assert (type); |
2846 | ||
314ad88d PA |
2847 | /* While we're removing typedefs, we don't want to lose qualifiers. |
2848 | E.g., const/volatile. */ | |
2849 | type_instance_flags instance_flags = type->instance_flags (); | |
2850 | ||
78134374 | 2851 | while (type->code () == TYPE_CODE_TYPEDEF) |
c906108c SS |
2852 | { |
2853 | if (!TYPE_TARGET_TYPE (type)) | |
2854 | { | |
0d5cff50 | 2855 | const char *name; |
c906108c SS |
2856 | struct symbol *sym; |
2857 | ||
2858 | /* It is dangerous to call lookup_symbol if we are currently | |
7ba81444 | 2859 | reading a symtab. Infinite recursion is one danger. */ |
c906108c | 2860 | if (currently_reading_symtab) |
92163a10 | 2861 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 2862 | |
7d93a1e0 | 2863 | name = type->name (); |
e86ca25f TT |
2864 | /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or |
2865 | VAR_DOMAIN as appropriate? */ | |
c906108c SS |
2866 | if (name == NULL) |
2867 | { | |
23136709 | 2868 | stub_noname_complaint (); |
92163a10 | 2869 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 2870 | } |
d12307c1 | 2871 | sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
2872 | if (sym) |
2873 | TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym); | |
7ba81444 | 2874 | else /* TYPE_CODE_UNDEF */ |
e9bb382b | 2875 | TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type)); |
c906108c SS |
2876 | } |
2877 | type = TYPE_TARGET_TYPE (type); | |
c906108c | 2878 | |
92163a10 JK |
2879 | /* Preserve the instance flags as we traverse down the typedef chain. |
2880 | ||
2881 | Handling address spaces/classes is nasty, what do we do if there's a | |
2882 | conflict? | |
2883 | E.g., what if an outer typedef marks the type as class_1 and an inner | |
2884 | typedef marks the type as class_2? | |
2885 | This is the wrong place to do such error checking. We leave it to | |
2886 | the code that created the typedef in the first place to flag the | |
2887 | error. We just pick the outer address space (akin to letting the | |
2888 | outer cast in a chain of casting win), instead of assuming | |
2889 | "it can't happen". */ | |
2890 | { | |
314ad88d PA |
2891 | const type_instance_flags ALL_SPACES |
2892 | = (TYPE_INSTANCE_FLAG_CODE_SPACE | |
2893 | | TYPE_INSTANCE_FLAG_DATA_SPACE); | |
2894 | const type_instance_flags ALL_CLASSES | |
2895 | = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL; | |
2896 | ||
2897 | type_instance_flags new_instance_flags = type->instance_flags (); | |
92163a10 JK |
2898 | |
2899 | /* Treat code vs data spaces and address classes separately. */ | |
2900 | if ((instance_flags & ALL_SPACES) != 0) | |
2901 | new_instance_flags &= ~ALL_SPACES; | |
2902 | if ((instance_flags & ALL_CLASSES) != 0) | |
2903 | new_instance_flags &= ~ALL_CLASSES; | |
2904 | ||
2905 | instance_flags |= new_instance_flags; | |
2906 | } | |
2907 | } | |
a02fd225 | 2908 | |
7ba81444 MS |
2909 | /* If this is a struct/class/union with no fields, then check |
2910 | whether a full definition exists somewhere else. This is for | |
2911 | systems where a type definition with no fields is issued for such | |
2912 | types, instead of identifying them as stub types in the first | |
2913 | place. */ | |
c5aa993b | 2914 | |
7ba81444 MS |
2915 | if (TYPE_IS_OPAQUE (type) |
2916 | && opaque_type_resolution | |
2917 | && !currently_reading_symtab) | |
c906108c | 2918 | { |
7d93a1e0 | 2919 | const char *name = type->name (); |
c5aa993b | 2920 | struct type *newtype; |
d8734c88 | 2921 | |
c906108c SS |
2922 | if (name == NULL) |
2923 | { | |
23136709 | 2924 | stub_noname_complaint (); |
92163a10 | 2925 | return make_qualified_type (type, instance_flags, NULL); |
c906108c SS |
2926 | } |
2927 | newtype = lookup_transparent_type (name); | |
ad766c0a | 2928 | |
c906108c | 2929 | if (newtype) |
ad766c0a | 2930 | { |
7ba81444 MS |
2931 | /* If the resolved type and the stub are in the same |
2932 | objfile, then replace the stub type with the real deal. | |
2933 | But if they're in separate objfiles, leave the stub | |
2934 | alone; we'll just look up the transparent type every time | |
2935 | we call check_typedef. We can't create pointers between | |
2936 | types allocated to different objfiles, since they may | |
2937 | have different lifetimes. Trying to copy NEWTYPE over to | |
2938 | TYPE's objfile is pointless, too, since you'll have to | |
2939 | move over any other types NEWTYPE refers to, which could | |
2940 | be an unbounded amount of stuff. */ | |
ad766c0a | 2941 | if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type)) |
10242f36 | 2942 | type = make_qualified_type (newtype, type->instance_flags (), type); |
ad766c0a JB |
2943 | else |
2944 | type = newtype; | |
2945 | } | |
c906108c | 2946 | } |
7ba81444 MS |
2947 | /* Otherwise, rely on the stub flag being set for opaque/stubbed |
2948 | types. */ | |
e46d3488 | 2949 | else if (type->is_stub () && !currently_reading_symtab) |
c906108c | 2950 | { |
7d93a1e0 | 2951 | const char *name = type->name (); |
e86ca25f | 2952 | /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN |
dda83cd7 | 2953 | as appropriate? */ |
c906108c | 2954 | struct symbol *sym; |
d8734c88 | 2955 | |
c906108c SS |
2956 | if (name == NULL) |
2957 | { | |
23136709 | 2958 | stub_noname_complaint (); |
92163a10 | 2959 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 2960 | } |
d12307c1 | 2961 | sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol; |
c906108c | 2962 | if (sym) |
dda83cd7 SM |
2963 | { |
2964 | /* Same as above for opaque types, we can replace the stub | |
2965 | with the complete type only if they are in the same | |
2966 | objfile. */ | |
78134374 | 2967 | if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type)) |
10242f36 SM |
2968 | type = make_qualified_type (SYMBOL_TYPE (sym), |
2969 | type->instance_flags (), type); | |
c26f2453 JB |
2970 | else |
2971 | type = SYMBOL_TYPE (sym); | |
dda83cd7 | 2972 | } |
c906108c SS |
2973 | } |
2974 | ||
d2183968 | 2975 | if (type->target_is_stub ()) |
c906108c | 2976 | { |
c906108c SS |
2977 | struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); |
2978 | ||
d2183968 | 2979 | if (target_type->is_stub () || target_type->target_is_stub ()) |
c5aa993b | 2980 | { |
73e2eb35 | 2981 | /* Nothing we can do. */ |
c5aa993b | 2982 | } |
78134374 | 2983 | else if (type->code () == TYPE_CODE_RANGE) |
c906108c SS |
2984 | { |
2985 | TYPE_LENGTH (type) = TYPE_LENGTH (target_type); | |
8f53807e | 2986 | type->set_target_is_stub (false); |
c906108c | 2987 | } |
78134374 | 2988 | else if (type->code () == TYPE_CODE_ARRAY |
8dbb1375 | 2989 | && update_static_array_size (type)) |
8f53807e | 2990 | type->set_target_is_stub (false); |
c906108c | 2991 | } |
92163a10 JK |
2992 | |
2993 | type = make_qualified_type (type, instance_flags, NULL); | |
2994 | ||
7ba81444 | 2995 | /* Cache TYPE_LENGTH for future use. */ |
c906108c | 2996 | TYPE_LENGTH (orig_type) = TYPE_LENGTH (type); |
92163a10 | 2997 | |
c906108c SS |
2998 | return type; |
2999 | } | |
3000 | ||
7ba81444 | 3001 | /* Parse a type expression in the string [P..P+LENGTH). If an error |
48319d1f | 3002 | occurs, silently return a void type. */ |
c91ecb25 | 3003 | |
b9362cc7 | 3004 | static struct type * |
f5756acc | 3005 | safe_parse_type (struct gdbarch *gdbarch, const char *p, int length) |
c91ecb25 ND |
3006 | { |
3007 | struct ui_file *saved_gdb_stderr; | |
34365054 | 3008 | struct type *type = NULL; /* Initialize to keep gcc happy. */ |
c91ecb25 | 3009 | |
7ba81444 | 3010 | /* Suppress error messages. */ |
c91ecb25 | 3011 | saved_gdb_stderr = gdb_stderr; |
d7e74731 | 3012 | gdb_stderr = &null_stream; |
c91ecb25 | 3013 | |
7ba81444 | 3014 | /* Call parse_and_eval_type() without fear of longjmp()s. */ |
a70b8144 | 3015 | try |
8e7b59a5 KS |
3016 | { |
3017 | type = parse_and_eval_type (p, length); | |
3018 | } | |
230d2906 | 3019 | catch (const gdb_exception_error &except) |
492d29ea PA |
3020 | { |
3021 | type = builtin_type (gdbarch)->builtin_void; | |
3022 | } | |
c91ecb25 | 3023 | |
7ba81444 | 3024 | /* Stop suppressing error messages. */ |
c91ecb25 ND |
3025 | gdb_stderr = saved_gdb_stderr; |
3026 | ||
3027 | return type; | |
3028 | } | |
3029 | ||
c906108c SS |
3030 | /* Ugly hack to convert method stubs into method types. |
3031 | ||
7ba81444 MS |
3032 | He ain't kiddin'. This demangles the name of the method into a |
3033 | string including argument types, parses out each argument type, | |
3034 | generates a string casting a zero to that type, evaluates the | |
3035 | string, and stuffs the resulting type into an argtype vector!!! | |
3036 | Then it knows the type of the whole function (including argument | |
3037 | types for overloading), which info used to be in the stab's but was | |
3038 | removed to hack back the space required for them. */ | |
c906108c | 3039 | |
de17c821 | 3040 | static void |
fba45db2 | 3041 | check_stub_method (struct type *type, int method_id, int signature_id) |
c906108c | 3042 | { |
50810684 | 3043 | struct gdbarch *gdbarch = get_type_arch (type); |
c906108c SS |
3044 | struct fn_field *f; |
3045 | char *mangled_name = gdb_mangle_name (type, method_id, signature_id); | |
8de20a37 TT |
3046 | char *demangled_name = gdb_demangle (mangled_name, |
3047 | DMGL_PARAMS | DMGL_ANSI); | |
c906108c SS |
3048 | char *argtypetext, *p; |
3049 | int depth = 0, argcount = 1; | |
ad2f7632 | 3050 | struct field *argtypes; |
c906108c SS |
3051 | struct type *mtype; |
3052 | ||
3053 | /* Make sure we got back a function string that we can use. */ | |
3054 | if (demangled_name) | |
3055 | p = strchr (demangled_name, '('); | |
502dcf4e AC |
3056 | else |
3057 | p = NULL; | |
c906108c SS |
3058 | |
3059 | if (demangled_name == NULL || p == NULL) | |
7ba81444 MS |
3060 | error (_("Internal: Cannot demangle mangled name `%s'."), |
3061 | mangled_name); | |
c906108c SS |
3062 | |
3063 | /* Now, read in the parameters that define this type. */ | |
3064 | p += 1; | |
3065 | argtypetext = p; | |
3066 | while (*p) | |
3067 | { | |
070ad9f0 | 3068 | if (*p == '(' || *p == '<') |
c906108c SS |
3069 | { |
3070 | depth += 1; | |
3071 | } | |
070ad9f0 | 3072 | else if (*p == ')' || *p == '>') |
c906108c SS |
3073 | { |
3074 | depth -= 1; | |
3075 | } | |
3076 | else if (*p == ',' && depth == 0) | |
3077 | { | |
3078 | argcount += 1; | |
3079 | } | |
3080 | ||
3081 | p += 1; | |
3082 | } | |
3083 | ||
ad2f7632 | 3084 | /* If we read one argument and it was ``void'', don't count it. */ |
61012eef | 3085 | if (startswith (argtypetext, "(void)")) |
ad2f7632 | 3086 | argcount -= 1; |
c906108c | 3087 | |
ad2f7632 DJ |
3088 | /* We need one extra slot, for the THIS pointer. */ |
3089 | ||
3090 | argtypes = (struct field *) | |
3091 | TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field)); | |
c906108c | 3092 | p = argtypetext; |
4a1970e4 DJ |
3093 | |
3094 | /* Add THIS pointer for non-static methods. */ | |
3095 | f = TYPE_FN_FIELDLIST1 (type, method_id); | |
3096 | if (TYPE_FN_FIELD_STATIC_P (f, signature_id)) | |
3097 | argcount = 0; | |
3098 | else | |
3099 | { | |
5d14b6e5 | 3100 | argtypes[0].set_type (lookup_pointer_type (type)); |
4a1970e4 DJ |
3101 | argcount = 1; |
3102 | } | |
c906108c | 3103 | |
0963b4bd | 3104 | if (*p != ')') /* () means no args, skip while. */ |
c906108c SS |
3105 | { |
3106 | depth = 0; | |
3107 | while (*p) | |
3108 | { | |
3109 | if (depth <= 0 && (*p == ',' || *p == ')')) | |
3110 | { | |
ad2f7632 | 3111 | /* Avoid parsing of ellipsis, they will be handled below. |
dda83cd7 | 3112 | Also avoid ``void'' as above. */ |
ad2f7632 DJ |
3113 | if (strncmp (argtypetext, "...", p - argtypetext) != 0 |
3114 | && strncmp (argtypetext, "void", p - argtypetext) != 0) | |
c906108c | 3115 | { |
5d14b6e5 SM |
3116 | argtypes[argcount].set_type |
3117 | (safe_parse_type (gdbarch, argtypetext, p - argtypetext)); | |
c906108c SS |
3118 | argcount += 1; |
3119 | } | |
3120 | argtypetext = p + 1; | |
3121 | } | |
3122 | ||
070ad9f0 | 3123 | if (*p == '(' || *p == '<') |
c906108c SS |
3124 | { |
3125 | depth += 1; | |
3126 | } | |
070ad9f0 | 3127 | else if (*p == ')' || *p == '>') |
c906108c SS |
3128 | { |
3129 | depth -= 1; | |
3130 | } | |
3131 | ||
3132 | p += 1; | |
3133 | } | |
3134 | } | |
3135 | ||
c906108c SS |
3136 | TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name; |
3137 | ||
3138 | /* Now update the old "stub" type into a real type. */ | |
3139 | mtype = TYPE_FN_FIELD_TYPE (f, signature_id); | |
09e2d7c7 DE |
3140 | /* MTYPE may currently be a function (TYPE_CODE_FUNC). |
3141 | We want a method (TYPE_CODE_METHOD). */ | |
3142 | smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype), | |
3143 | argtypes, argcount, p[-2] == '.'); | |
b4b73759 | 3144 | mtype->set_is_stub (false); |
c906108c | 3145 | TYPE_FN_FIELD_STUB (f, signature_id) = 0; |
ad2f7632 DJ |
3146 | |
3147 | xfree (demangled_name); | |
c906108c SS |
3148 | } |
3149 | ||
7ba81444 MS |
3150 | /* This is the external interface to check_stub_method, above. This |
3151 | function unstubs all of the signatures for TYPE's METHOD_ID method | |
3152 | name. After calling this function TYPE_FN_FIELD_STUB will be | |
3153 | cleared for each signature and TYPE_FN_FIELDLIST_NAME will be | |
3154 | correct. | |
de17c821 DJ |
3155 | |
3156 | This function unfortunately can not die until stabs do. */ | |
3157 | ||
3158 | void | |
3159 | check_stub_method_group (struct type *type, int method_id) | |
3160 | { | |
3161 | int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id); | |
3162 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
de17c821 | 3163 | |
041be526 SM |
3164 | for (int j = 0; j < len; j++) |
3165 | { | |
3166 | if (TYPE_FN_FIELD_STUB (f, j)) | |
de17c821 | 3167 | check_stub_method (type, method_id, j); |
de17c821 DJ |
3168 | } |
3169 | } | |
3170 | ||
405feb71 | 3171 | /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */ |
9655fd1a | 3172 | const struct cplus_struct_type cplus_struct_default = { }; |
c906108c SS |
3173 | |
3174 | void | |
fba45db2 | 3175 | allocate_cplus_struct_type (struct type *type) |
c906108c | 3176 | { |
b4ba55a1 JB |
3177 | if (HAVE_CPLUS_STRUCT (type)) |
3178 | /* Structure was already allocated. Nothing more to do. */ | |
3179 | return; | |
3180 | ||
3181 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF; | |
3182 | TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *) | |
3183 | TYPE_ALLOC (type, sizeof (struct cplus_struct_type)); | |
3184 | *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default; | |
ae6ae975 | 3185 | set_type_vptr_fieldno (type, -1); |
c906108c SS |
3186 | } |
3187 | ||
b4ba55a1 JB |
3188 | const struct gnat_aux_type gnat_aux_default = |
3189 | { NULL }; | |
3190 | ||
3191 | /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF, | |
3192 | and allocate the associated gnat-specific data. The gnat-specific | |
3193 | data is also initialized to gnat_aux_default. */ | |
5212577a | 3194 | |
b4ba55a1 JB |
3195 | void |
3196 | allocate_gnat_aux_type (struct type *type) | |
3197 | { | |
3198 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF; | |
3199 | TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) | |
3200 | TYPE_ALLOC (type, sizeof (struct gnat_aux_type)); | |
3201 | *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default; | |
3202 | } | |
3203 | ||
ae438bc5 UW |
3204 | /* Helper function to initialize a newly allocated type. Set type code |
3205 | to CODE and initialize the type-specific fields accordingly. */ | |
3206 | ||
3207 | static void | |
3208 | set_type_code (struct type *type, enum type_code code) | |
3209 | { | |
67607e24 | 3210 | type->set_code (code); |
ae438bc5 UW |
3211 | |
3212 | switch (code) | |
3213 | { | |
3214 | case TYPE_CODE_STRUCT: | |
3215 | case TYPE_CODE_UNION: | |
3216 | case TYPE_CODE_NAMESPACE: | |
dda83cd7 SM |
3217 | INIT_CPLUS_SPECIFIC (type); |
3218 | break; | |
ae438bc5 | 3219 | case TYPE_CODE_FLT: |
dda83cd7 SM |
3220 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT; |
3221 | break; | |
ae438bc5 UW |
3222 | case TYPE_CODE_FUNC: |
3223 | INIT_FUNC_SPECIFIC (type); | |
09584414 JB |
3224 | break; |
3225 | case TYPE_CODE_FIXED_POINT: | |
3226 | INIT_FIXED_POINT_SPECIFIC (type); | |
dda83cd7 | 3227 | break; |
ae438bc5 UW |
3228 | } |
3229 | } | |
3230 | ||
19f392bc UW |
3231 | /* Helper function to verify floating-point format and size. |
3232 | BIT is the type size in bits; if BIT equals -1, the size is | |
3233 | determined by the floatformat. Returns size to be used. */ | |
3234 | ||
3235 | static int | |
0db7851f | 3236 | verify_floatformat (int bit, const struct floatformat *floatformat) |
19f392bc | 3237 | { |
0db7851f | 3238 | gdb_assert (floatformat != NULL); |
9b790ce7 | 3239 | |
19f392bc | 3240 | if (bit == -1) |
0db7851f | 3241 | bit = floatformat->totalsize; |
19f392bc | 3242 | |
0db7851f UW |
3243 | gdb_assert (bit >= 0); |
3244 | gdb_assert (bit >= floatformat->totalsize); | |
19f392bc UW |
3245 | |
3246 | return bit; | |
3247 | } | |
3248 | ||
0db7851f UW |
3249 | /* Return the floating-point format for a floating-point variable of |
3250 | type TYPE. */ | |
3251 | ||
3252 | const struct floatformat * | |
3253 | floatformat_from_type (const struct type *type) | |
3254 | { | |
78134374 | 3255 | gdb_assert (type->code () == TYPE_CODE_FLT); |
0db7851f UW |
3256 | gdb_assert (TYPE_FLOATFORMAT (type)); |
3257 | return TYPE_FLOATFORMAT (type); | |
3258 | } | |
3259 | ||
c906108c SS |
3260 | /* Helper function to initialize the standard scalar types. |
3261 | ||
86f62fd7 TT |
3262 | If NAME is non-NULL, then it is used to initialize the type name. |
3263 | Note that NAME is not copied; it is required to have a lifetime at | |
3264 | least as long as OBJFILE. */ | |
c906108c SS |
3265 | |
3266 | struct type * | |
77b7c781 | 3267 | init_type (struct objfile *objfile, enum type_code code, int bit, |
19f392bc | 3268 | const char *name) |
c906108c | 3269 | { |
52f0bd74 | 3270 | struct type *type; |
c906108c SS |
3271 | |
3272 | type = alloc_type (objfile); | |
ae438bc5 | 3273 | set_type_code (type, code); |
77b7c781 UW |
3274 | gdb_assert ((bit % TARGET_CHAR_BIT) == 0); |
3275 | TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT; | |
d0e39ea2 | 3276 | type->set_name (name); |
c906108c | 3277 | |
c16abbde | 3278 | return type; |
c906108c | 3279 | } |
19f392bc | 3280 | |
46a4882b PA |
3281 | /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE, |
3282 | to use with variables that have no debug info. NAME is the type | |
3283 | name. */ | |
3284 | ||
3285 | static struct type * | |
3286 | init_nodebug_var_type (struct objfile *objfile, const char *name) | |
3287 | { | |
3288 | return init_type (objfile, TYPE_CODE_ERROR, 0, name); | |
3289 | } | |
3290 | ||
19f392bc UW |
3291 | /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE. |
3292 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
3293 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
3294 | ||
3295 | struct type * | |
3296 | init_integer_type (struct objfile *objfile, | |
3297 | int bit, int unsigned_p, const char *name) | |
3298 | { | |
3299 | struct type *t; | |
3300 | ||
77b7c781 | 3301 | t = init_type (objfile, TYPE_CODE_INT, bit, name); |
19f392bc | 3302 | if (unsigned_p) |
653223d3 | 3303 | t->set_is_unsigned (true); |
19f392bc | 3304 | |
20a5fcbd TT |
3305 | TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT; |
3306 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit; | |
3307 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0; | |
3308 | ||
19f392bc UW |
3309 | return t; |
3310 | } | |
3311 | ||
3312 | /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE. | |
3313 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
3314 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
3315 | ||
3316 | struct type * | |
3317 | init_character_type (struct objfile *objfile, | |
3318 | int bit, int unsigned_p, const char *name) | |
3319 | { | |
3320 | struct type *t; | |
3321 | ||
77b7c781 | 3322 | t = init_type (objfile, TYPE_CODE_CHAR, bit, name); |
19f392bc | 3323 | if (unsigned_p) |
653223d3 | 3324 | t->set_is_unsigned (true); |
19f392bc UW |
3325 | |
3326 | return t; | |
3327 | } | |
3328 | ||
3329 | /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE. | |
3330 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
3331 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
3332 | ||
3333 | struct type * | |
3334 | init_boolean_type (struct objfile *objfile, | |
3335 | int bit, int unsigned_p, const char *name) | |
3336 | { | |
3337 | struct type *t; | |
3338 | ||
77b7c781 | 3339 | t = init_type (objfile, TYPE_CODE_BOOL, bit, name); |
19f392bc | 3340 | if (unsigned_p) |
653223d3 | 3341 | t->set_is_unsigned (true); |
19f392bc | 3342 | |
20a5fcbd TT |
3343 | TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT; |
3344 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit; | |
3345 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0; | |
3346 | ||
19f392bc UW |
3347 | return t; |
3348 | } | |
3349 | ||
3350 | /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE. | |
3351 | BIT is the type size in bits; if BIT equals -1, the size is | |
3352 | determined by the floatformat. NAME is the type name. Set the | |
103a685e TT |
3353 | TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order |
3354 | to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte | |
3355 | order of the objfile's architecture is used. */ | |
19f392bc UW |
3356 | |
3357 | struct type * | |
3358 | init_float_type (struct objfile *objfile, | |
3359 | int bit, const char *name, | |
103a685e TT |
3360 | const struct floatformat **floatformats, |
3361 | enum bfd_endian byte_order) | |
19f392bc | 3362 | { |
103a685e TT |
3363 | if (byte_order == BFD_ENDIAN_UNKNOWN) |
3364 | { | |
08feed99 | 3365 | struct gdbarch *gdbarch = objfile->arch (); |
103a685e TT |
3366 | byte_order = gdbarch_byte_order (gdbarch); |
3367 | } | |
3368 | const struct floatformat *fmt = floatformats[byte_order]; | |
19f392bc UW |
3369 | struct type *t; |
3370 | ||
0db7851f | 3371 | bit = verify_floatformat (bit, fmt); |
77b7c781 | 3372 | t = init_type (objfile, TYPE_CODE_FLT, bit, name); |
0db7851f | 3373 | TYPE_FLOATFORMAT (t) = fmt; |
19f392bc UW |
3374 | |
3375 | return t; | |
3376 | } | |
3377 | ||
3378 | /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE. | |
3379 | BIT is the type size in bits. NAME is the type name. */ | |
3380 | ||
3381 | struct type * | |
3382 | init_decfloat_type (struct objfile *objfile, int bit, const char *name) | |
3383 | { | |
3384 | struct type *t; | |
3385 | ||
77b7c781 | 3386 | t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name); |
19f392bc UW |
3387 | return t; |
3388 | } | |
3389 | ||
5b930b45 TT |
3390 | /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type |
3391 | name. TARGET_TYPE is the component type. */ | |
19f392bc UW |
3392 | |
3393 | struct type * | |
5b930b45 | 3394 | init_complex_type (const char *name, struct type *target_type) |
19f392bc UW |
3395 | { |
3396 | struct type *t; | |
3397 | ||
78134374 SM |
3398 | gdb_assert (target_type->code () == TYPE_CODE_INT |
3399 | || target_type->code () == TYPE_CODE_FLT); | |
5b930b45 TT |
3400 | |
3401 | if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr) | |
3402 | { | |
6b9d0dfd | 3403 | if (name == nullptr && target_type->name () != nullptr) |
5b930b45 TT |
3404 | { |
3405 | char *new_name | |
3406 | = (char *) TYPE_ALLOC (target_type, | |
7d93a1e0 | 3407 | strlen (target_type->name ()) |
5b930b45 TT |
3408 | + strlen ("_Complex ") + 1); |
3409 | strcpy (new_name, "_Complex "); | |
7d93a1e0 | 3410 | strcat (new_name, target_type->name ()); |
5b930b45 TT |
3411 | name = new_name; |
3412 | } | |
3413 | ||
3414 | t = alloc_type_copy (target_type); | |
3415 | set_type_code (t, TYPE_CODE_COMPLEX); | |
3416 | TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type); | |
d0e39ea2 | 3417 | t->set_name (name); |
5b930b45 TT |
3418 | |
3419 | TYPE_TARGET_TYPE (t) = target_type; | |
3420 | TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t; | |
3421 | } | |
3422 | ||
3423 | return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type; | |
19f392bc UW |
3424 | } |
3425 | ||
3426 | /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE. | |
3427 | BIT is the pointer type size in bits. NAME is the type name. | |
3428 | TARGET_TYPE is the pointer target type. Always sets the pointer type's | |
3429 | TYPE_UNSIGNED flag. */ | |
3430 | ||
3431 | struct type * | |
3432 | init_pointer_type (struct objfile *objfile, | |
3433 | int bit, const char *name, struct type *target_type) | |
3434 | { | |
3435 | struct type *t; | |
3436 | ||
77b7c781 | 3437 | t = init_type (objfile, TYPE_CODE_PTR, bit, name); |
19f392bc | 3438 | TYPE_TARGET_TYPE (t) = target_type; |
653223d3 | 3439 | t->set_is_unsigned (true); |
19f392bc UW |
3440 | return t; |
3441 | } | |
3442 | ||
09584414 JB |
3443 | /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE. |
3444 | BIT is the pointer type size in bits. | |
3445 | UNSIGNED_P should be nonzero if the type is unsigned. | |
3446 | NAME is the type name. */ | |
3447 | ||
3448 | struct type * | |
3449 | init_fixed_point_type (struct objfile *objfile, | |
3450 | int bit, int unsigned_p, const char *name) | |
3451 | { | |
3452 | struct type *t; | |
3453 | ||
3454 | t = init_type (objfile, TYPE_CODE_FIXED_POINT, bit, name); | |
3455 | if (unsigned_p) | |
3456 | t->set_is_unsigned (true); | |
3457 | ||
3458 | return t; | |
3459 | } | |
3460 | ||
2b4424c3 TT |
3461 | /* See gdbtypes.h. */ |
3462 | ||
3463 | unsigned | |
3464 | type_raw_align (struct type *type) | |
3465 | { | |
3466 | if (type->align_log2 != 0) | |
3467 | return 1 << (type->align_log2 - 1); | |
3468 | return 0; | |
3469 | } | |
3470 | ||
3471 | /* See gdbtypes.h. */ | |
3472 | ||
3473 | unsigned | |
3474 | type_align (struct type *type) | |
3475 | { | |
5561fc30 | 3476 | /* Check alignment provided in the debug information. */ |
2b4424c3 TT |
3477 | unsigned raw_align = type_raw_align (type); |
3478 | if (raw_align != 0) | |
3479 | return raw_align; | |
3480 | ||
5561fc30 AB |
3481 | /* Allow the architecture to provide an alignment. */ |
3482 | struct gdbarch *arch = get_type_arch (type); | |
3483 | ULONGEST align = gdbarch_type_align (arch, type); | |
3484 | if (align != 0) | |
3485 | return align; | |
3486 | ||
78134374 | 3487 | switch (type->code ()) |
2b4424c3 TT |
3488 | { |
3489 | case TYPE_CODE_PTR: | |
3490 | case TYPE_CODE_FUNC: | |
3491 | case TYPE_CODE_FLAGS: | |
3492 | case TYPE_CODE_INT: | |
75ba10dc | 3493 | case TYPE_CODE_RANGE: |
2b4424c3 TT |
3494 | case TYPE_CODE_FLT: |
3495 | case TYPE_CODE_ENUM: | |
3496 | case TYPE_CODE_REF: | |
3497 | case TYPE_CODE_RVALUE_REF: | |
3498 | case TYPE_CODE_CHAR: | |
3499 | case TYPE_CODE_BOOL: | |
3500 | case TYPE_CODE_DECFLOAT: | |
70cd633e AB |
3501 | case TYPE_CODE_METHODPTR: |
3502 | case TYPE_CODE_MEMBERPTR: | |
5561fc30 | 3503 | align = type_length_units (check_typedef (type)); |
2b4424c3 TT |
3504 | break; |
3505 | ||
3506 | case TYPE_CODE_ARRAY: | |
3507 | case TYPE_CODE_COMPLEX: | |
3508 | case TYPE_CODE_TYPEDEF: | |
3509 | align = type_align (TYPE_TARGET_TYPE (type)); | |
3510 | break; | |
3511 | ||
3512 | case TYPE_CODE_STRUCT: | |
3513 | case TYPE_CODE_UNION: | |
3514 | { | |
41077b66 | 3515 | int number_of_non_static_fields = 0; |
1f704f76 | 3516 | for (unsigned i = 0; i < type->num_fields (); ++i) |
2b4424c3 | 3517 | { |
ceacbf6e | 3518 | if (!field_is_static (&type->field (i))) |
2b4424c3 | 3519 | { |
41077b66 | 3520 | number_of_non_static_fields++; |
940da03e | 3521 | ULONGEST f_align = type_align (type->field (i).type ()); |
bf9a735e AB |
3522 | if (f_align == 0) |
3523 | { | |
3524 | /* Don't pretend we know something we don't. */ | |
3525 | align = 0; | |
3526 | break; | |
3527 | } | |
3528 | if (f_align > align) | |
3529 | align = f_align; | |
2b4424c3 | 3530 | } |
2b4424c3 | 3531 | } |
41077b66 AB |
3532 | /* A struct with no fields, or with only static fields has an |
3533 | alignment of 1. */ | |
3534 | if (number_of_non_static_fields == 0) | |
3535 | align = 1; | |
2b4424c3 TT |
3536 | } |
3537 | break; | |
3538 | ||
3539 | case TYPE_CODE_SET: | |
2b4424c3 TT |
3540 | case TYPE_CODE_STRING: |
3541 | /* Not sure what to do here, and these can't appear in C or C++ | |
3542 | anyway. */ | |
3543 | break; | |
3544 | ||
2b4424c3 TT |
3545 | case TYPE_CODE_VOID: |
3546 | align = 1; | |
3547 | break; | |
3548 | ||
3549 | case TYPE_CODE_ERROR: | |
3550 | case TYPE_CODE_METHOD: | |
3551 | default: | |
3552 | break; | |
3553 | } | |
3554 | ||
3555 | if ((align & (align - 1)) != 0) | |
3556 | { | |
3557 | /* Not a power of 2, so pass. */ | |
3558 | align = 0; | |
3559 | } | |
3560 | ||
3561 | return align; | |
3562 | } | |
3563 | ||
3564 | /* See gdbtypes.h. */ | |
3565 | ||
3566 | bool | |
3567 | set_type_align (struct type *type, ULONGEST align) | |
3568 | { | |
3569 | /* Must be a power of 2. Zero is ok. */ | |
3570 | gdb_assert ((align & (align - 1)) == 0); | |
3571 | ||
3572 | unsigned result = 0; | |
3573 | while (align != 0) | |
3574 | { | |
3575 | ++result; | |
3576 | align >>= 1; | |
3577 | } | |
3578 | ||
3579 | if (result >= (1 << TYPE_ALIGN_BITS)) | |
3580 | return false; | |
3581 | ||
3582 | type->align_log2 = result; | |
3583 | return true; | |
3584 | } | |
3585 | ||
5212577a DE |
3586 | \f |
3587 | /* Queries on types. */ | |
c906108c | 3588 | |
c906108c | 3589 | int |
fba45db2 | 3590 | can_dereference (struct type *t) |
c906108c | 3591 | { |
7ba81444 MS |
3592 | /* FIXME: Should we return true for references as well as |
3593 | pointers? */ | |
f168693b | 3594 | t = check_typedef (t); |
c906108c SS |
3595 | return |
3596 | (t != NULL | |
78134374 SM |
3597 | && t->code () == TYPE_CODE_PTR |
3598 | && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID); | |
c906108c SS |
3599 | } |
3600 | ||
adf40b2e | 3601 | int |
fba45db2 | 3602 | is_integral_type (struct type *t) |
adf40b2e | 3603 | { |
f168693b | 3604 | t = check_typedef (t); |
adf40b2e JM |
3605 | return |
3606 | ((t != NULL) | |
09584414 | 3607 | && !is_fixed_point_type (t) |
78134374 SM |
3608 | && ((t->code () == TYPE_CODE_INT) |
3609 | || (t->code () == TYPE_CODE_ENUM) | |
3610 | || (t->code () == TYPE_CODE_FLAGS) | |
3611 | || (t->code () == TYPE_CODE_CHAR) | |
3612 | || (t->code () == TYPE_CODE_RANGE) | |
3613 | || (t->code () == TYPE_CODE_BOOL))); | |
adf40b2e JM |
3614 | } |
3615 | ||
70100014 UW |
3616 | int |
3617 | is_floating_type (struct type *t) | |
3618 | { | |
3619 | t = check_typedef (t); | |
3620 | return | |
3621 | ((t != NULL) | |
78134374 SM |
3622 | && ((t->code () == TYPE_CODE_FLT) |
3623 | || (t->code () == TYPE_CODE_DECFLOAT))); | |
70100014 UW |
3624 | } |
3625 | ||
e09342b5 TJB |
3626 | /* Return true if TYPE is scalar. */ |
3627 | ||
220475ed | 3628 | int |
e09342b5 TJB |
3629 | is_scalar_type (struct type *type) |
3630 | { | |
f168693b | 3631 | type = check_typedef (type); |
e09342b5 | 3632 | |
09584414 JB |
3633 | if (is_fixed_point_type (type)) |
3634 | return 0; /* Implemented as a scalar, but more like a floating point. */ | |
3635 | ||
78134374 | 3636 | switch (type->code ()) |
e09342b5 TJB |
3637 | { |
3638 | case TYPE_CODE_ARRAY: | |
3639 | case TYPE_CODE_STRUCT: | |
3640 | case TYPE_CODE_UNION: | |
3641 | case TYPE_CODE_SET: | |
3642 | case TYPE_CODE_STRING: | |
e09342b5 TJB |
3643 | return 0; |
3644 | default: | |
3645 | return 1; | |
3646 | } | |
3647 | } | |
3648 | ||
3649 | /* Return true if T is scalar, or a composite type which in practice has | |
90e4670f TJB |
3650 | the memory layout of a scalar type. E.g., an array or struct with only |
3651 | one scalar element inside it, or a union with only scalar elements. */ | |
e09342b5 TJB |
3652 | |
3653 | int | |
3654 | is_scalar_type_recursive (struct type *t) | |
3655 | { | |
f168693b | 3656 | t = check_typedef (t); |
e09342b5 TJB |
3657 | |
3658 | if (is_scalar_type (t)) | |
3659 | return 1; | |
3660 | /* Are we dealing with an array or string of known dimensions? */ | |
78134374 | 3661 | else if ((t->code () == TYPE_CODE_ARRAY |
1f704f76 | 3662 | || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1 |
3d967001 | 3663 | && t->index_type ()->code () == TYPE_CODE_RANGE) |
e09342b5 TJB |
3664 | { |
3665 | LONGEST low_bound, high_bound; | |
3666 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t)); | |
3667 | ||
3d967001 | 3668 | get_discrete_bounds (t->index_type (), &low_bound, &high_bound); |
e09342b5 TJB |
3669 | |
3670 | return high_bound == low_bound && is_scalar_type_recursive (elt_type); | |
3671 | } | |
3672 | /* Are we dealing with a struct with one element? */ | |
1f704f76 | 3673 | else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1) |
940da03e | 3674 | return is_scalar_type_recursive (t->field (0).type ()); |
78134374 | 3675 | else if (t->code () == TYPE_CODE_UNION) |
e09342b5 | 3676 | { |
1f704f76 | 3677 | int i, n = t->num_fields (); |
e09342b5 TJB |
3678 | |
3679 | /* If all elements of the union are scalar, then the union is scalar. */ | |
3680 | for (i = 0; i < n; i++) | |
940da03e | 3681 | if (!is_scalar_type_recursive (t->field (i).type ())) |
e09342b5 TJB |
3682 | return 0; |
3683 | ||
3684 | return 1; | |
3685 | } | |
3686 | ||
3687 | return 0; | |
3688 | } | |
3689 | ||
6c659fc2 SC |
3690 | /* Return true is T is a class or a union. False otherwise. */ |
3691 | ||
3692 | int | |
3693 | class_or_union_p (const struct type *t) | |
3694 | { | |
78134374 | 3695 | return (t->code () == TYPE_CODE_STRUCT |
dda83cd7 | 3696 | || t->code () == TYPE_CODE_UNION); |
6c659fc2 SC |
3697 | } |
3698 | ||
4e8f195d TT |
3699 | /* A helper function which returns true if types A and B represent the |
3700 | "same" class type. This is true if the types have the same main | |
3701 | type, or the same name. */ | |
3702 | ||
3703 | int | |
3704 | class_types_same_p (const struct type *a, const struct type *b) | |
3705 | { | |
3706 | return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b) | |
7d93a1e0 SM |
3707 | || (a->name () && b->name () |
3708 | && !strcmp (a->name (), b->name ()))); | |
4e8f195d TT |
3709 | } |
3710 | ||
a9d5ef47 SW |
3711 | /* If BASE is an ancestor of DCLASS return the distance between them. |
3712 | otherwise return -1; | |
3713 | eg: | |
3714 | ||
3715 | class A {}; | |
3716 | class B: public A {}; | |
3717 | class C: public B {}; | |
3718 | class D: C {}; | |
3719 | ||
3720 | distance_to_ancestor (A, A, 0) = 0 | |
3721 | distance_to_ancestor (A, B, 0) = 1 | |
3722 | distance_to_ancestor (A, C, 0) = 2 | |
3723 | distance_to_ancestor (A, D, 0) = 3 | |
3724 | ||
3725 | If PUBLIC is 1 then only public ancestors are considered, | |
3726 | and the function returns the distance only if BASE is a public ancestor | |
3727 | of DCLASS. | |
3728 | Eg: | |
3729 | ||
0963b4bd | 3730 | distance_to_ancestor (A, D, 1) = -1. */ |
c906108c | 3731 | |
0526b37a | 3732 | static int |
fe978cb0 | 3733 | distance_to_ancestor (struct type *base, struct type *dclass, int is_public) |
c906108c SS |
3734 | { |
3735 | int i; | |
a9d5ef47 | 3736 | int d; |
c5aa993b | 3737 | |
f168693b SM |
3738 | base = check_typedef (base); |
3739 | dclass = check_typedef (dclass); | |
c906108c | 3740 | |
4e8f195d | 3741 | if (class_types_same_p (base, dclass)) |
a9d5ef47 | 3742 | return 0; |
c906108c SS |
3743 | |
3744 | for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++) | |
4e8f195d | 3745 | { |
fe978cb0 | 3746 | if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i)) |
0526b37a SW |
3747 | continue; |
3748 | ||
fe978cb0 | 3749 | d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public); |
a9d5ef47 SW |
3750 | if (d >= 0) |
3751 | return 1 + d; | |
4e8f195d | 3752 | } |
c906108c | 3753 | |
a9d5ef47 | 3754 | return -1; |
c906108c | 3755 | } |
4e8f195d | 3756 | |
0526b37a SW |
3757 | /* Check whether BASE is an ancestor or base class or DCLASS |
3758 | Return 1 if so, and 0 if not. | |
3759 | Note: If BASE and DCLASS are of the same type, this function | |
3760 | will return 1. So for some class A, is_ancestor (A, A) will | |
3761 | return 1. */ | |
3762 | ||
3763 | int | |
3764 | is_ancestor (struct type *base, struct type *dclass) | |
3765 | { | |
a9d5ef47 | 3766 | return distance_to_ancestor (base, dclass, 0) >= 0; |
0526b37a SW |
3767 | } |
3768 | ||
4e8f195d TT |
3769 | /* Like is_ancestor, but only returns true when BASE is a public |
3770 | ancestor of DCLASS. */ | |
3771 | ||
3772 | int | |
3773 | is_public_ancestor (struct type *base, struct type *dclass) | |
3774 | { | |
a9d5ef47 | 3775 | return distance_to_ancestor (base, dclass, 1) >= 0; |
4e8f195d TT |
3776 | } |
3777 | ||
3778 | /* A helper function for is_unique_ancestor. */ | |
3779 | ||
3780 | static int | |
3781 | is_unique_ancestor_worker (struct type *base, struct type *dclass, | |
3782 | int *offset, | |
8af8e3bc PA |
3783 | const gdb_byte *valaddr, int embedded_offset, |
3784 | CORE_ADDR address, struct value *val) | |
4e8f195d TT |
3785 | { |
3786 | int i, count = 0; | |
3787 | ||
f168693b SM |
3788 | base = check_typedef (base); |
3789 | dclass = check_typedef (dclass); | |
4e8f195d TT |
3790 | |
3791 | for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i) | |
3792 | { | |
8af8e3bc PA |
3793 | struct type *iter; |
3794 | int this_offset; | |
4e8f195d | 3795 | |
8af8e3bc PA |
3796 | iter = check_typedef (TYPE_BASECLASS (dclass, i)); |
3797 | ||
3798 | this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset, | |
3799 | address, val); | |
4e8f195d TT |
3800 | |
3801 | if (class_types_same_p (base, iter)) | |
3802 | { | |
3803 | /* If this is the first subclass, set *OFFSET and set count | |
3804 | to 1. Otherwise, if this is at the same offset as | |
3805 | previous instances, do nothing. Otherwise, increment | |
3806 | count. */ | |
3807 | if (*offset == -1) | |
3808 | { | |
3809 | *offset = this_offset; | |
3810 | count = 1; | |
3811 | } | |
3812 | else if (this_offset == *offset) | |
3813 | { | |
3814 | /* Nothing. */ | |
3815 | } | |
3816 | else | |
3817 | ++count; | |
3818 | } | |
3819 | else | |
3820 | count += is_unique_ancestor_worker (base, iter, offset, | |
8af8e3bc PA |
3821 | valaddr, |
3822 | embedded_offset + this_offset, | |
3823 | address, val); | |
4e8f195d TT |
3824 | } |
3825 | ||
3826 | return count; | |
3827 | } | |
3828 | ||
3829 | /* Like is_ancestor, but only returns true if BASE is a unique base | |
3830 | class of the type of VAL. */ | |
3831 | ||
3832 | int | |
3833 | is_unique_ancestor (struct type *base, struct value *val) | |
3834 | { | |
3835 | int offset = -1; | |
3836 | ||
3837 | return is_unique_ancestor_worker (base, value_type (val), &offset, | |
8af8e3bc PA |
3838 | value_contents_for_printing (val), |
3839 | value_embedded_offset (val), | |
3840 | value_address (val), val) == 1; | |
4e8f195d TT |
3841 | } |
3842 | ||
7ab4a236 TT |
3843 | /* See gdbtypes.h. */ |
3844 | ||
3845 | enum bfd_endian | |
3846 | type_byte_order (const struct type *type) | |
3847 | { | |
3848 | bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type)); | |
04f5bab2 | 3849 | if (type->endianity_is_not_default ()) |
7ab4a236 TT |
3850 | { |
3851 | if (byteorder == BFD_ENDIAN_BIG) | |
dda83cd7 | 3852 | return BFD_ENDIAN_LITTLE; |
7ab4a236 TT |
3853 | else |
3854 | { | |
3855 | gdb_assert (byteorder == BFD_ENDIAN_LITTLE); | |
3856 | return BFD_ENDIAN_BIG; | |
3857 | } | |
3858 | } | |
3859 | ||
3860 | return byteorder; | |
3861 | } | |
3862 | ||
c906108c | 3863 | \f |
5212577a | 3864 | /* Overload resolution. */ |
c906108c | 3865 | |
6403aeea SW |
3866 | /* Return the sum of the rank of A with the rank of B. */ |
3867 | ||
3868 | struct rank | |
3869 | sum_ranks (struct rank a, struct rank b) | |
3870 | { | |
3871 | struct rank c; | |
3872 | c.rank = a.rank + b.rank; | |
a9d5ef47 | 3873 | c.subrank = a.subrank + b.subrank; |
6403aeea SW |
3874 | return c; |
3875 | } | |
3876 | ||
3877 | /* Compare rank A and B and return: | |
3878 | 0 if a = b | |
3879 | 1 if a is better than b | |
3880 | -1 if b is better than a. */ | |
3881 | ||
3882 | int | |
3883 | compare_ranks (struct rank a, struct rank b) | |
3884 | { | |
3885 | if (a.rank == b.rank) | |
a9d5ef47 SW |
3886 | { |
3887 | if (a.subrank == b.subrank) | |
3888 | return 0; | |
3889 | if (a.subrank < b.subrank) | |
3890 | return 1; | |
3891 | if (a.subrank > b.subrank) | |
3892 | return -1; | |
3893 | } | |
6403aeea SW |
3894 | |
3895 | if (a.rank < b.rank) | |
3896 | return 1; | |
3897 | ||
0963b4bd | 3898 | /* a.rank > b.rank */ |
6403aeea SW |
3899 | return -1; |
3900 | } | |
c5aa993b | 3901 | |
0963b4bd | 3902 | /* Functions for overload resolution begin here. */ |
c906108c SS |
3903 | |
3904 | /* Compare two badness vectors A and B and return the result. | |
7ba81444 MS |
3905 | 0 => A and B are identical |
3906 | 1 => A and B are incomparable | |
3907 | 2 => A is better than B | |
3908 | 3 => A is worse than B */ | |
c906108c SS |
3909 | |
3910 | int | |
82ceee50 | 3911 | compare_badness (const badness_vector &a, const badness_vector &b) |
c906108c SS |
3912 | { |
3913 | int i; | |
3914 | int tmp; | |
c5aa993b JM |
3915 | short found_pos = 0; /* any positives in c? */ |
3916 | short found_neg = 0; /* any negatives in c? */ | |
3917 | ||
82ceee50 PA |
3918 | /* differing sizes => incomparable */ |
3919 | if (a.size () != b.size ()) | |
c906108c SS |
3920 | return 1; |
3921 | ||
c5aa993b | 3922 | /* Subtract b from a */ |
82ceee50 | 3923 | for (i = 0; i < a.size (); i++) |
c906108c | 3924 | { |
82ceee50 | 3925 | tmp = compare_ranks (b[i], a[i]); |
c906108c | 3926 | if (tmp > 0) |
c5aa993b | 3927 | found_pos = 1; |
c906108c | 3928 | else if (tmp < 0) |
c5aa993b | 3929 | found_neg = 1; |
c906108c SS |
3930 | } |
3931 | ||
3932 | if (found_pos) | |
3933 | { | |
3934 | if (found_neg) | |
c5aa993b | 3935 | return 1; /* incomparable */ |
c906108c | 3936 | else |
c5aa993b | 3937 | return 3; /* A > B */ |
c906108c | 3938 | } |
c5aa993b JM |
3939 | else |
3940 | /* no positives */ | |
c906108c SS |
3941 | { |
3942 | if (found_neg) | |
c5aa993b | 3943 | return 2; /* A < B */ |
c906108c | 3944 | else |
c5aa993b | 3945 | return 0; /* A == B */ |
c906108c SS |
3946 | } |
3947 | } | |
3948 | ||
6b1747cd | 3949 | /* Rank a function by comparing its parameter types (PARMS), to the |
82ceee50 PA |
3950 | types of an argument list (ARGS). Return the badness vector. This |
3951 | has ARGS.size() + 1 entries. */ | |
c906108c | 3952 | |
82ceee50 | 3953 | badness_vector |
6b1747cd PA |
3954 | rank_function (gdb::array_view<type *> parms, |
3955 | gdb::array_view<value *> args) | |
c906108c | 3956 | { |
82ceee50 PA |
3957 | /* add 1 for the length-match rank. */ |
3958 | badness_vector bv; | |
3959 | bv.reserve (1 + args.size ()); | |
c906108c SS |
3960 | |
3961 | /* First compare the lengths of the supplied lists. | |
7ba81444 | 3962 | If there is a mismatch, set it to a high value. */ |
c5aa993b | 3963 | |
c906108c | 3964 | /* pai/1997-06-03 FIXME: when we have debug info about default |
7ba81444 MS |
3965 | arguments and ellipsis parameter lists, we should consider those |
3966 | and rank the length-match more finely. */ | |
c906108c | 3967 | |
82ceee50 PA |
3968 | bv.push_back ((args.size () != parms.size ()) |
3969 | ? LENGTH_MISMATCH_BADNESS | |
3970 | : EXACT_MATCH_BADNESS); | |
c906108c | 3971 | |
0963b4bd | 3972 | /* Now rank all the parameters of the candidate function. */ |
82ceee50 PA |
3973 | size_t min_len = std::min (parms.size (), args.size ()); |
3974 | ||
3975 | for (size_t i = 0; i < min_len; i++) | |
3976 | bv.push_back (rank_one_type (parms[i], value_type (args[i]), | |
3977 | args[i])); | |
c906108c | 3978 | |
0963b4bd | 3979 | /* If more arguments than parameters, add dummy entries. */ |
82ceee50 PA |
3980 | for (size_t i = min_len; i < args.size (); i++) |
3981 | bv.push_back (TOO_FEW_PARAMS_BADNESS); | |
c906108c SS |
3982 | |
3983 | return bv; | |
3984 | } | |
3985 | ||
973ccf8b DJ |
3986 | /* Compare the names of two integer types, assuming that any sign |
3987 | qualifiers have been checked already. We do it this way because | |
3988 | there may be an "int" in the name of one of the types. */ | |
3989 | ||
3990 | static int | |
3991 | integer_types_same_name_p (const char *first, const char *second) | |
3992 | { | |
3993 | int first_p, second_p; | |
3994 | ||
7ba81444 MS |
3995 | /* If both are shorts, return 1; if neither is a short, keep |
3996 | checking. */ | |
973ccf8b DJ |
3997 | first_p = (strstr (first, "short") != NULL); |
3998 | second_p = (strstr (second, "short") != NULL); | |
3999 | if (first_p && second_p) | |
4000 | return 1; | |
4001 | if (first_p || second_p) | |
4002 | return 0; | |
4003 | ||
4004 | /* Likewise for long. */ | |
4005 | first_p = (strstr (first, "long") != NULL); | |
4006 | second_p = (strstr (second, "long") != NULL); | |
4007 | if (first_p && second_p) | |
4008 | return 1; | |
4009 | if (first_p || second_p) | |
4010 | return 0; | |
4011 | ||
4012 | /* Likewise for char. */ | |
4013 | first_p = (strstr (first, "char") != NULL); | |
4014 | second_p = (strstr (second, "char") != NULL); | |
4015 | if (first_p && second_p) | |
4016 | return 1; | |
4017 | if (first_p || second_p) | |
4018 | return 0; | |
4019 | ||
4020 | /* They must both be ints. */ | |
4021 | return 1; | |
4022 | } | |
4023 | ||
894882e3 TT |
4024 | /* Compares type A to type B. Returns true if they represent the same |
4025 | type, false otherwise. */ | |
7062b0a0 | 4026 | |
894882e3 | 4027 | bool |
7062b0a0 SW |
4028 | types_equal (struct type *a, struct type *b) |
4029 | { | |
4030 | /* Identical type pointers. */ | |
4031 | /* However, this still doesn't catch all cases of same type for b | |
4032 | and a. The reason is that builtin types are different from | |
4033 | the same ones constructed from the object. */ | |
4034 | if (a == b) | |
894882e3 | 4035 | return true; |
7062b0a0 SW |
4036 | |
4037 | /* Resolve typedefs */ | |
78134374 | 4038 | if (a->code () == TYPE_CODE_TYPEDEF) |
7062b0a0 | 4039 | a = check_typedef (a); |
78134374 | 4040 | if (b->code () == TYPE_CODE_TYPEDEF) |
7062b0a0 SW |
4041 | b = check_typedef (b); |
4042 | ||
4043 | /* If after resolving typedefs a and b are not of the same type | |
4044 | code then they are not equal. */ | |
78134374 | 4045 | if (a->code () != b->code ()) |
894882e3 | 4046 | return false; |
7062b0a0 SW |
4047 | |
4048 | /* If a and b are both pointers types or both reference types then | |
4049 | they are equal of the same type iff the objects they refer to are | |
4050 | of the same type. */ | |
78134374 SM |
4051 | if (a->code () == TYPE_CODE_PTR |
4052 | || a->code () == TYPE_CODE_REF) | |
7062b0a0 | 4053 | return types_equal (TYPE_TARGET_TYPE (a), |
dda83cd7 | 4054 | TYPE_TARGET_TYPE (b)); |
7062b0a0 | 4055 | |
0963b4bd | 4056 | /* Well, damnit, if the names are exactly the same, I'll say they |
7062b0a0 SW |
4057 | are exactly the same. This happens when we generate method |
4058 | stubs. The types won't point to the same address, but they | |
0963b4bd | 4059 | really are the same. */ |
7062b0a0 | 4060 | |
7d93a1e0 SM |
4061 | if (a->name () && b->name () |
4062 | && strcmp (a->name (), b->name ()) == 0) | |
894882e3 | 4063 | return true; |
7062b0a0 SW |
4064 | |
4065 | /* Check if identical after resolving typedefs. */ | |
4066 | if (a == b) | |
894882e3 | 4067 | return true; |
7062b0a0 | 4068 | |
9ce98649 TT |
4069 | /* Two function types are equal if their argument and return types |
4070 | are equal. */ | |
78134374 | 4071 | if (a->code () == TYPE_CODE_FUNC) |
9ce98649 TT |
4072 | { |
4073 | int i; | |
4074 | ||
1f704f76 | 4075 | if (a->num_fields () != b->num_fields ()) |
894882e3 | 4076 | return false; |
9ce98649 TT |
4077 | |
4078 | if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b))) | |
894882e3 | 4079 | return false; |
9ce98649 | 4080 | |
1f704f76 | 4081 | for (i = 0; i < a->num_fields (); ++i) |
940da03e | 4082 | if (!types_equal (a->field (i).type (), b->field (i).type ())) |
894882e3 | 4083 | return false; |
9ce98649 | 4084 | |
894882e3 | 4085 | return true; |
9ce98649 TT |
4086 | } |
4087 | ||
894882e3 | 4088 | return false; |
7062b0a0 | 4089 | } |
ca092b61 DE |
4090 | \f |
4091 | /* Deep comparison of types. */ | |
4092 | ||
4093 | /* An entry in the type-equality bcache. */ | |
4094 | ||
894882e3 | 4095 | struct type_equality_entry |
ca092b61 | 4096 | { |
894882e3 TT |
4097 | type_equality_entry (struct type *t1, struct type *t2) |
4098 | : type1 (t1), | |
4099 | type2 (t2) | |
4100 | { | |
4101 | } | |
ca092b61 | 4102 | |
894882e3 TT |
4103 | struct type *type1, *type2; |
4104 | }; | |
ca092b61 | 4105 | |
894882e3 TT |
4106 | /* A helper function to compare two strings. Returns true if they are |
4107 | the same, false otherwise. Handles NULLs properly. */ | |
ca092b61 | 4108 | |
894882e3 | 4109 | static bool |
ca092b61 DE |
4110 | compare_maybe_null_strings (const char *s, const char *t) |
4111 | { | |
894882e3 TT |
4112 | if (s == NULL || t == NULL) |
4113 | return s == t; | |
ca092b61 DE |
4114 | return strcmp (s, t) == 0; |
4115 | } | |
4116 | ||
4117 | /* A helper function for check_types_worklist that checks two types for | |
894882e3 TT |
4118 | "deep" equality. Returns true if the types are considered the |
4119 | same, false otherwise. */ | |
ca092b61 | 4120 | |
894882e3 | 4121 | static bool |
ca092b61 | 4122 | check_types_equal (struct type *type1, struct type *type2, |
894882e3 | 4123 | std::vector<type_equality_entry> *worklist) |
ca092b61 | 4124 | { |
f168693b SM |
4125 | type1 = check_typedef (type1); |
4126 | type2 = check_typedef (type2); | |
ca092b61 DE |
4127 | |
4128 | if (type1 == type2) | |
894882e3 | 4129 | return true; |
ca092b61 | 4130 | |
78134374 | 4131 | if (type1->code () != type2->code () |
ca092b61 | 4132 | || TYPE_LENGTH (type1) != TYPE_LENGTH (type2) |
c6d940a9 | 4133 | || type1->is_unsigned () != type2->is_unsigned () |
20ce4123 | 4134 | || type1->has_no_signedness () != type2->has_no_signedness () |
04f5bab2 | 4135 | || type1->endianity_is_not_default () != type2->endianity_is_not_default () |
a409645d | 4136 | || type1->has_varargs () != type2->has_varargs () |
bd63c870 | 4137 | || type1->is_vector () != type2->is_vector () |
ca092b61 | 4138 | || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2) |
10242f36 | 4139 | || type1->instance_flags () != type2->instance_flags () |
1f704f76 | 4140 | || type1->num_fields () != type2->num_fields ()) |
894882e3 | 4141 | return false; |
ca092b61 | 4142 | |
7d93a1e0 | 4143 | if (!compare_maybe_null_strings (type1->name (), type2->name ())) |
894882e3 | 4144 | return false; |
7d93a1e0 | 4145 | if (!compare_maybe_null_strings (type1->name (), type2->name ())) |
894882e3 | 4146 | return false; |
ca092b61 | 4147 | |
78134374 | 4148 | if (type1->code () == TYPE_CODE_RANGE) |
ca092b61 | 4149 | { |
599088e3 | 4150 | if (*type1->bounds () != *type2->bounds ()) |
894882e3 | 4151 | return false; |
ca092b61 DE |
4152 | } |
4153 | else | |
4154 | { | |
4155 | int i; | |
4156 | ||
1f704f76 | 4157 | for (i = 0; i < type1->num_fields (); ++i) |
ca092b61 | 4158 | { |
ceacbf6e SM |
4159 | const struct field *field1 = &type1->field (i); |
4160 | const struct field *field2 = &type2->field (i); | |
ca092b61 DE |
4161 | |
4162 | if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2) | |
4163 | || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2) | |
4164 | || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2)) | |
894882e3 | 4165 | return false; |
ca092b61 DE |
4166 | if (!compare_maybe_null_strings (FIELD_NAME (*field1), |
4167 | FIELD_NAME (*field2))) | |
894882e3 | 4168 | return false; |
ca092b61 DE |
4169 | switch (FIELD_LOC_KIND (*field1)) |
4170 | { | |
4171 | case FIELD_LOC_KIND_BITPOS: | |
4172 | if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2)) | |
894882e3 | 4173 | return false; |
ca092b61 DE |
4174 | break; |
4175 | case FIELD_LOC_KIND_ENUMVAL: | |
4176 | if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2)) | |
894882e3 | 4177 | return false; |
fa639f55 HD |
4178 | /* Don't compare types of enum fields, because they don't |
4179 | have a type. */ | |
4180 | continue; | |
ca092b61 DE |
4181 | case FIELD_LOC_KIND_PHYSADDR: |
4182 | if (FIELD_STATIC_PHYSADDR (*field1) | |
4183 | != FIELD_STATIC_PHYSADDR (*field2)) | |
894882e3 | 4184 | return false; |
ca092b61 DE |
4185 | break; |
4186 | case FIELD_LOC_KIND_PHYSNAME: | |
4187 | if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1), | |
4188 | FIELD_STATIC_PHYSNAME (*field2))) | |
894882e3 | 4189 | return false; |
ca092b61 DE |
4190 | break; |
4191 | case FIELD_LOC_KIND_DWARF_BLOCK: | |
4192 | { | |
4193 | struct dwarf2_locexpr_baton *block1, *block2; | |
4194 | ||
4195 | block1 = FIELD_DWARF_BLOCK (*field1); | |
4196 | block2 = FIELD_DWARF_BLOCK (*field2); | |
4197 | if (block1->per_cu != block2->per_cu | |
4198 | || block1->size != block2->size | |
4199 | || memcmp (block1->data, block2->data, block1->size) != 0) | |
894882e3 | 4200 | return false; |
ca092b61 DE |
4201 | } |
4202 | break; | |
4203 | default: | |
4204 | internal_error (__FILE__, __LINE__, _("Unsupported field kind " | |
4205 | "%d by check_types_equal"), | |
4206 | FIELD_LOC_KIND (*field1)); | |
4207 | } | |
4208 | ||
b6cdac4b | 4209 | worklist->emplace_back (field1->type (), field2->type ()); |
ca092b61 DE |
4210 | } |
4211 | } | |
4212 | ||
4213 | if (TYPE_TARGET_TYPE (type1) != NULL) | |
4214 | { | |
ca092b61 | 4215 | if (TYPE_TARGET_TYPE (type2) == NULL) |
894882e3 | 4216 | return false; |
ca092b61 | 4217 | |
894882e3 TT |
4218 | worklist->emplace_back (TYPE_TARGET_TYPE (type1), |
4219 | TYPE_TARGET_TYPE (type2)); | |
ca092b61 DE |
4220 | } |
4221 | else if (TYPE_TARGET_TYPE (type2) != NULL) | |
894882e3 | 4222 | return false; |
ca092b61 | 4223 | |
894882e3 | 4224 | return true; |
ca092b61 DE |
4225 | } |
4226 | ||
894882e3 TT |
4227 | /* Check types on a worklist for equality. Returns false if any pair |
4228 | is not equal, true if they are all considered equal. */ | |
ca092b61 | 4229 | |
894882e3 TT |
4230 | static bool |
4231 | check_types_worklist (std::vector<type_equality_entry> *worklist, | |
dfb65191 | 4232 | gdb::bcache *cache) |
ca092b61 | 4233 | { |
894882e3 | 4234 | while (!worklist->empty ()) |
ca092b61 | 4235 | { |
ef5e5b0b | 4236 | bool added; |
ca092b61 | 4237 | |
894882e3 TT |
4238 | struct type_equality_entry entry = std::move (worklist->back ()); |
4239 | worklist->pop_back (); | |
ca092b61 DE |
4240 | |
4241 | /* If the type pair has already been visited, we know it is | |
4242 | ok. */ | |
25629dfd | 4243 | cache->insert (&entry, sizeof (entry), &added); |
ca092b61 DE |
4244 | if (!added) |
4245 | continue; | |
4246 | ||
894882e3 TT |
4247 | if (!check_types_equal (entry.type1, entry.type2, worklist)) |
4248 | return false; | |
ca092b61 | 4249 | } |
7062b0a0 | 4250 | |
894882e3 | 4251 | return true; |
ca092b61 DE |
4252 | } |
4253 | ||
894882e3 TT |
4254 | /* Return true if types TYPE1 and TYPE2 are equal, as determined by a |
4255 | "deep comparison". Otherwise return false. */ | |
ca092b61 | 4256 | |
894882e3 | 4257 | bool |
ca092b61 DE |
4258 | types_deeply_equal (struct type *type1, struct type *type2) |
4259 | { | |
894882e3 | 4260 | std::vector<type_equality_entry> worklist; |
ca092b61 DE |
4261 | |
4262 | gdb_assert (type1 != NULL && type2 != NULL); | |
4263 | ||
4264 | /* Early exit for the simple case. */ | |
4265 | if (type1 == type2) | |
894882e3 | 4266 | return true; |
ca092b61 | 4267 | |
89806626 | 4268 | gdb::bcache cache; |
894882e3 | 4269 | worklist.emplace_back (type1, type2); |
25629dfd | 4270 | return check_types_worklist (&worklist, &cache); |
ca092b61 | 4271 | } |
3f2f83dd KB |
4272 | |
4273 | /* Allocated status of type TYPE. Return zero if type TYPE is allocated. | |
4274 | Otherwise return one. */ | |
4275 | ||
4276 | int | |
4277 | type_not_allocated (const struct type *type) | |
4278 | { | |
4279 | struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type); | |
4280 | ||
8a6d5e35 | 4281 | return (prop != nullptr && prop->kind () == PROP_CONST |
5555c86d | 4282 | && prop->const_val () == 0); |
3f2f83dd KB |
4283 | } |
4284 | ||
4285 | /* Associated status of type TYPE. Return zero if type TYPE is associated. | |
4286 | Otherwise return one. */ | |
4287 | ||
4288 | int | |
4289 | type_not_associated (const struct type *type) | |
4290 | { | |
4291 | struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type); | |
4292 | ||
8a6d5e35 | 4293 | return (prop != nullptr && prop->kind () == PROP_CONST |
5555c86d | 4294 | && prop->const_val () == 0); |
3f2f83dd | 4295 | } |
9293fc63 SM |
4296 | |
4297 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */ | |
4298 | ||
4299 | static struct rank | |
4300 | rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value) | |
4301 | { | |
4302 | struct rank rank = {0,0}; | |
4303 | ||
78134374 | 4304 | switch (arg->code ()) |
9293fc63 SM |
4305 | { |
4306 | case TYPE_CODE_PTR: | |
4307 | ||
4308 | /* Allowed pointer conversions are: | |
4309 | (a) pointer to void-pointer conversion. */ | |
78134374 | 4310 | if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID) |
9293fc63 SM |
4311 | return VOID_PTR_CONVERSION_BADNESS; |
4312 | ||
4313 | /* (b) pointer to ancestor-pointer conversion. */ | |
4314 | rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm), | |
4315 | TYPE_TARGET_TYPE (arg), | |
4316 | 0); | |
4317 | if (rank.subrank >= 0) | |
4318 | return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank); | |
4319 | ||
4320 | return INCOMPATIBLE_TYPE_BADNESS; | |
4321 | case TYPE_CODE_ARRAY: | |
4322 | { | |
4323 | struct type *t1 = TYPE_TARGET_TYPE (parm); | |
4324 | struct type *t2 = TYPE_TARGET_TYPE (arg); | |
4325 | ||
4326 | if (types_equal (t1, t2)) | |
4327 | { | |
4328 | /* Make sure they are CV equal. */ | |
4329 | if (TYPE_CONST (t1) != TYPE_CONST (t2)) | |
4330 | rank.subrank |= CV_CONVERSION_CONST; | |
4331 | if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2)) | |
4332 | rank.subrank |= CV_CONVERSION_VOLATILE; | |
4333 | if (rank.subrank != 0) | |
4334 | return sum_ranks (CV_CONVERSION_BADNESS, rank); | |
4335 | return EXACT_MATCH_BADNESS; | |
4336 | } | |
4337 | return INCOMPATIBLE_TYPE_BADNESS; | |
4338 | } | |
4339 | case TYPE_CODE_FUNC: | |
4340 | return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL); | |
4341 | case TYPE_CODE_INT: | |
78134374 | 4342 | if (value != NULL && value_type (value)->code () == TYPE_CODE_INT) |
9293fc63 SM |
4343 | { |
4344 | if (value_as_long (value) == 0) | |
4345 | { | |
4346 | /* Null pointer conversion: allow it to be cast to a pointer. | |
4347 | [4.10.1 of C++ standard draft n3290] */ | |
4348 | return NULL_POINTER_CONVERSION_BADNESS; | |
4349 | } | |
4350 | else | |
4351 | { | |
4352 | /* If type checking is disabled, allow the conversion. */ | |
4353 | if (!strict_type_checking) | |
4354 | return NS_INTEGER_POINTER_CONVERSION_BADNESS; | |
4355 | } | |
4356 | } | |
4357 | /* fall through */ | |
4358 | case TYPE_CODE_ENUM: | |
4359 | case TYPE_CODE_FLAGS: | |
4360 | case TYPE_CODE_CHAR: | |
4361 | case TYPE_CODE_RANGE: | |
4362 | case TYPE_CODE_BOOL: | |
4363 | default: | |
4364 | return INCOMPATIBLE_TYPE_BADNESS; | |
4365 | } | |
4366 | } | |
4367 | ||
b9f4512f SM |
4368 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */ |
4369 | ||
4370 | static struct rank | |
4371 | rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value) | |
4372 | { | |
78134374 | 4373 | switch (arg->code ()) |
b9f4512f SM |
4374 | { |
4375 | case TYPE_CODE_PTR: | |
4376 | case TYPE_CODE_ARRAY: | |
4377 | return rank_one_type (TYPE_TARGET_TYPE (parm), | |
4378 | TYPE_TARGET_TYPE (arg), NULL); | |
4379 | default: | |
4380 | return INCOMPATIBLE_TYPE_BADNESS; | |
4381 | } | |
4382 | } | |
4383 | ||
f1f832d6 SM |
4384 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */ |
4385 | ||
4386 | static struct rank | |
4387 | rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value) | |
4388 | { | |
78134374 | 4389 | switch (arg->code ()) |
f1f832d6 SM |
4390 | { |
4391 | case TYPE_CODE_PTR: /* funcptr -> func */ | |
4392 | return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL); | |
4393 | default: | |
4394 | return INCOMPATIBLE_TYPE_BADNESS; | |
4395 | } | |
4396 | } | |
4397 | ||
34910087 SM |
4398 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */ |
4399 | ||
4400 | static struct rank | |
4401 | rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value) | |
4402 | { | |
78134374 | 4403 | switch (arg->code ()) |
34910087 SM |
4404 | { |
4405 | case TYPE_CODE_INT: | |
4406 | if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm)) | |
4407 | { | |
4408 | /* Deal with signed, unsigned, and plain chars and | |
4409 | signed and unsigned ints. */ | |
20ce4123 | 4410 | if (parm->has_no_signedness ()) |
34910087 SM |
4411 | { |
4412 | /* This case only for character types. */ | |
20ce4123 | 4413 | if (arg->has_no_signedness ()) |
34910087 SM |
4414 | return EXACT_MATCH_BADNESS; /* plain char -> plain char */ |
4415 | else /* signed/unsigned char -> plain char */ | |
4416 | return INTEGER_CONVERSION_BADNESS; | |
4417 | } | |
c6d940a9 | 4418 | else if (parm->is_unsigned ()) |
34910087 | 4419 | { |
c6d940a9 | 4420 | if (arg->is_unsigned ()) |
34910087 SM |
4421 | { |
4422 | /* unsigned int -> unsigned int, or | |
4423 | unsigned long -> unsigned long */ | |
7d93a1e0 SM |
4424 | if (integer_types_same_name_p (parm->name (), |
4425 | arg->name ())) | |
34910087 | 4426 | return EXACT_MATCH_BADNESS; |
7d93a1e0 | 4427 | else if (integer_types_same_name_p (arg->name (), |
34910087 | 4428 | "int") |
7d93a1e0 | 4429 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4430 | "long")) |
4431 | /* unsigned int -> unsigned long */ | |
4432 | return INTEGER_PROMOTION_BADNESS; | |
4433 | else | |
4434 | /* unsigned long -> unsigned int */ | |
4435 | return INTEGER_CONVERSION_BADNESS; | |
4436 | } | |
4437 | else | |
4438 | { | |
7d93a1e0 | 4439 | if (integer_types_same_name_p (arg->name (), |
34910087 | 4440 | "long") |
7d93a1e0 | 4441 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4442 | "int")) |
4443 | /* signed long -> unsigned int */ | |
4444 | return INTEGER_CONVERSION_BADNESS; | |
4445 | else | |
4446 | /* signed int/long -> unsigned int/long */ | |
4447 | return INTEGER_CONVERSION_BADNESS; | |
4448 | } | |
4449 | } | |
20ce4123 | 4450 | else if (!arg->has_no_signedness () && !arg->is_unsigned ()) |
34910087 | 4451 | { |
7d93a1e0 SM |
4452 | if (integer_types_same_name_p (parm->name (), |
4453 | arg->name ())) | |
34910087 | 4454 | return EXACT_MATCH_BADNESS; |
7d93a1e0 | 4455 | else if (integer_types_same_name_p (arg->name (), |
34910087 | 4456 | "int") |
7d93a1e0 | 4457 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4458 | "long")) |
4459 | return INTEGER_PROMOTION_BADNESS; | |
4460 | else | |
4461 | return INTEGER_CONVERSION_BADNESS; | |
4462 | } | |
4463 | else | |
4464 | return INTEGER_CONVERSION_BADNESS; | |
4465 | } | |
4466 | else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) | |
4467 | return INTEGER_PROMOTION_BADNESS; | |
4468 | else | |
4469 | return INTEGER_CONVERSION_BADNESS; | |
4470 | case TYPE_CODE_ENUM: | |
4471 | case TYPE_CODE_FLAGS: | |
4472 | case TYPE_CODE_CHAR: | |
4473 | case TYPE_CODE_RANGE: | |
4474 | case TYPE_CODE_BOOL: | |
4475 | if (TYPE_DECLARED_CLASS (arg)) | |
4476 | return INCOMPATIBLE_TYPE_BADNESS; | |
4477 | return INTEGER_PROMOTION_BADNESS; | |
4478 | case TYPE_CODE_FLT: | |
4479 | return INT_FLOAT_CONVERSION_BADNESS; | |
4480 | case TYPE_CODE_PTR: | |
4481 | return NS_POINTER_CONVERSION_BADNESS; | |
4482 | default: | |
4483 | return INCOMPATIBLE_TYPE_BADNESS; | |
4484 | } | |
4485 | } | |
4486 | ||
793cd1d2 SM |
4487 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */ |
4488 | ||
4489 | static struct rank | |
4490 | rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value) | |
4491 | { | |
78134374 | 4492 | switch (arg->code ()) |
793cd1d2 SM |
4493 | { |
4494 | case TYPE_CODE_INT: | |
4495 | case TYPE_CODE_CHAR: | |
4496 | case TYPE_CODE_RANGE: | |
4497 | case TYPE_CODE_BOOL: | |
4498 | case TYPE_CODE_ENUM: | |
4499 | if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg)) | |
4500 | return INCOMPATIBLE_TYPE_BADNESS; | |
4501 | return INTEGER_CONVERSION_BADNESS; | |
4502 | case TYPE_CODE_FLT: | |
4503 | return INT_FLOAT_CONVERSION_BADNESS; | |
4504 | default: | |
4505 | return INCOMPATIBLE_TYPE_BADNESS; | |
4506 | } | |
4507 | } | |
4508 | ||
41ea4728 SM |
4509 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */ |
4510 | ||
4511 | static struct rank | |
4512 | rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value) | |
4513 | { | |
78134374 | 4514 | switch (arg->code ()) |
41ea4728 SM |
4515 | { |
4516 | case TYPE_CODE_RANGE: | |
4517 | case TYPE_CODE_BOOL: | |
4518 | case TYPE_CODE_ENUM: | |
4519 | if (TYPE_DECLARED_CLASS (arg)) | |
4520 | return INCOMPATIBLE_TYPE_BADNESS; | |
4521 | return INTEGER_CONVERSION_BADNESS; | |
4522 | case TYPE_CODE_FLT: | |
4523 | return INT_FLOAT_CONVERSION_BADNESS; | |
4524 | case TYPE_CODE_INT: | |
4525 | if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm)) | |
4526 | return INTEGER_CONVERSION_BADNESS; | |
4527 | else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) | |
4528 | return INTEGER_PROMOTION_BADNESS; | |
4529 | /* fall through */ | |
4530 | case TYPE_CODE_CHAR: | |
4531 | /* Deal with signed, unsigned, and plain chars for C++ and | |
4532 | with int cases falling through from previous case. */ | |
20ce4123 | 4533 | if (parm->has_no_signedness ()) |
41ea4728 | 4534 | { |
20ce4123 | 4535 | if (arg->has_no_signedness ()) |
41ea4728 SM |
4536 | return EXACT_MATCH_BADNESS; |
4537 | else | |
4538 | return INTEGER_CONVERSION_BADNESS; | |
4539 | } | |
c6d940a9 | 4540 | else if (parm->is_unsigned ()) |
41ea4728 | 4541 | { |
c6d940a9 | 4542 | if (arg->is_unsigned ()) |
41ea4728 SM |
4543 | return EXACT_MATCH_BADNESS; |
4544 | else | |
4545 | return INTEGER_PROMOTION_BADNESS; | |
4546 | } | |
20ce4123 | 4547 | else if (!arg->has_no_signedness () && !arg->is_unsigned ()) |
41ea4728 SM |
4548 | return EXACT_MATCH_BADNESS; |
4549 | else | |
4550 | return INTEGER_CONVERSION_BADNESS; | |
4551 | default: | |
4552 | return INCOMPATIBLE_TYPE_BADNESS; | |
4553 | } | |
4554 | } | |
4555 | ||
0dd322dc SM |
4556 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */ |
4557 | ||
4558 | static struct rank | |
4559 | rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value) | |
4560 | { | |
78134374 | 4561 | switch (arg->code ()) |
0dd322dc SM |
4562 | { |
4563 | case TYPE_CODE_INT: | |
4564 | case TYPE_CODE_CHAR: | |
4565 | case TYPE_CODE_RANGE: | |
4566 | case TYPE_CODE_BOOL: | |
4567 | case TYPE_CODE_ENUM: | |
4568 | return INTEGER_CONVERSION_BADNESS; | |
4569 | case TYPE_CODE_FLT: | |
4570 | return INT_FLOAT_CONVERSION_BADNESS; | |
4571 | default: | |
4572 | return INCOMPATIBLE_TYPE_BADNESS; | |
4573 | } | |
4574 | } | |
4575 | ||
2c509035 SM |
4576 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */ |
4577 | ||
4578 | static struct rank | |
4579 | rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value) | |
4580 | { | |
78134374 | 4581 | switch (arg->code ()) |
2c509035 SM |
4582 | { |
4583 | /* n3290 draft, section 4.12.1 (conv.bool): | |
4584 | ||
4585 | "A prvalue of arithmetic, unscoped enumeration, pointer, or | |
4586 | pointer to member type can be converted to a prvalue of type | |
4587 | bool. A zero value, null pointer value, or null member pointer | |
4588 | value is converted to false; any other value is converted to | |
4589 | true. A prvalue of type std::nullptr_t can be converted to a | |
4590 | prvalue of type bool; the resulting value is false." */ | |
4591 | case TYPE_CODE_INT: | |
4592 | case TYPE_CODE_CHAR: | |
4593 | case TYPE_CODE_ENUM: | |
4594 | case TYPE_CODE_FLT: | |
4595 | case TYPE_CODE_MEMBERPTR: | |
4596 | case TYPE_CODE_PTR: | |
4597 | return BOOL_CONVERSION_BADNESS; | |
4598 | case TYPE_CODE_RANGE: | |
4599 | return INCOMPATIBLE_TYPE_BADNESS; | |
4600 | case TYPE_CODE_BOOL: | |
4601 | return EXACT_MATCH_BADNESS; | |
4602 | default: | |
4603 | return INCOMPATIBLE_TYPE_BADNESS; | |
4604 | } | |
4605 | } | |
4606 | ||
7f17b20d SM |
4607 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */ |
4608 | ||
4609 | static struct rank | |
4610 | rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value) | |
4611 | { | |
78134374 | 4612 | switch (arg->code ()) |
7f17b20d SM |
4613 | { |
4614 | case TYPE_CODE_FLT: | |
4615 | if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) | |
4616 | return FLOAT_PROMOTION_BADNESS; | |
4617 | else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm)) | |
4618 | return EXACT_MATCH_BADNESS; | |
4619 | else | |
4620 | return FLOAT_CONVERSION_BADNESS; | |
4621 | case TYPE_CODE_INT: | |
4622 | case TYPE_CODE_BOOL: | |
4623 | case TYPE_CODE_ENUM: | |
4624 | case TYPE_CODE_RANGE: | |
4625 | case TYPE_CODE_CHAR: | |
4626 | return INT_FLOAT_CONVERSION_BADNESS; | |
4627 | default: | |
4628 | return INCOMPATIBLE_TYPE_BADNESS; | |
4629 | } | |
4630 | } | |
4631 | ||
2598a94b SM |
4632 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */ |
4633 | ||
4634 | static struct rank | |
4635 | rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value) | |
4636 | { | |
78134374 | 4637 | switch (arg->code ()) |
2598a94b SM |
4638 | { /* Strictly not needed for C++, but... */ |
4639 | case TYPE_CODE_FLT: | |
4640 | return FLOAT_PROMOTION_BADNESS; | |
4641 | case TYPE_CODE_COMPLEX: | |
4642 | return EXACT_MATCH_BADNESS; | |
4643 | default: | |
4644 | return INCOMPATIBLE_TYPE_BADNESS; | |
4645 | } | |
4646 | } | |
4647 | ||
595f96a9 SM |
4648 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */ |
4649 | ||
4650 | static struct rank | |
4651 | rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value) | |
4652 | { | |
4653 | struct rank rank = {0, 0}; | |
4654 | ||
78134374 | 4655 | switch (arg->code ()) |
595f96a9 SM |
4656 | { |
4657 | case TYPE_CODE_STRUCT: | |
4658 | /* Check for derivation */ | |
4659 | rank.subrank = distance_to_ancestor (parm, arg, 0); | |
4660 | if (rank.subrank >= 0) | |
4661 | return sum_ranks (BASE_CONVERSION_BADNESS, rank); | |
4662 | /* fall through */ | |
4663 | default: | |
4664 | return INCOMPATIBLE_TYPE_BADNESS; | |
4665 | } | |
4666 | } | |
4667 | ||
f09ce22d SM |
4668 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */ |
4669 | ||
4670 | static struct rank | |
4671 | rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value) | |
4672 | { | |
78134374 | 4673 | switch (arg->code ()) |
f09ce22d SM |
4674 | { |
4675 | /* Not in C++ */ | |
4676 | case TYPE_CODE_SET: | |
940da03e SM |
4677 | return rank_one_type (parm->field (0).type (), |
4678 | arg->field (0).type (), NULL); | |
f09ce22d SM |
4679 | default: |
4680 | return INCOMPATIBLE_TYPE_BADNESS; | |
4681 | } | |
4682 | } | |
4683 | ||
c906108c SS |
4684 | /* Compare one type (PARM) for compatibility with another (ARG). |
4685 | * PARM is intended to be the parameter type of a function; and | |
4686 | * ARG is the supplied argument's type. This function tests if | |
4687 | * the latter can be converted to the former. | |
da096638 | 4688 | * VALUE is the argument's value or NULL if none (or called recursively) |
c906108c SS |
4689 | * |
4690 | * Return 0 if they are identical types; | |
4691 | * Otherwise, return an integer which corresponds to how compatible | |
7ba81444 MS |
4692 | * PARM is to ARG. The higher the return value, the worse the match. |
4693 | * Generally the "bad" conversions are all uniformly assigned a 100. */ | |
c906108c | 4694 | |
6403aeea | 4695 | struct rank |
da096638 | 4696 | rank_one_type (struct type *parm, struct type *arg, struct value *value) |
c906108c | 4697 | { |
a9d5ef47 | 4698 | struct rank rank = {0,0}; |
7062b0a0 | 4699 | |
c906108c | 4700 | /* Resolve typedefs */ |
78134374 | 4701 | if (parm->code () == TYPE_CODE_TYPEDEF) |
c906108c | 4702 | parm = check_typedef (parm); |
78134374 | 4703 | if (arg->code () == TYPE_CODE_TYPEDEF) |
c906108c SS |
4704 | arg = check_typedef (arg); |
4705 | ||
e15c3eb4 | 4706 | if (TYPE_IS_REFERENCE (parm) && value != NULL) |
15c0a2a9 | 4707 | { |
e15c3eb4 KS |
4708 | if (VALUE_LVAL (value) == not_lval) |
4709 | { | |
4710 | /* Rvalues should preferably bind to rvalue references or const | |
4711 | lvalue references. */ | |
78134374 | 4712 | if (parm->code () == TYPE_CODE_RVALUE_REF) |
e15c3eb4 KS |
4713 | rank.subrank = REFERENCE_CONVERSION_RVALUE; |
4714 | else if (TYPE_CONST (TYPE_TARGET_TYPE (parm))) | |
4715 | rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE; | |
4716 | else | |
4717 | return INCOMPATIBLE_TYPE_BADNESS; | |
4718 | return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS); | |
4719 | } | |
4720 | else | |
4721 | { | |
330f1d38 | 4722 | /* It's illegal to pass an lvalue as an rvalue. */ |
78134374 | 4723 | if (parm->code () == TYPE_CODE_RVALUE_REF) |
330f1d38 | 4724 | return INCOMPATIBLE_TYPE_BADNESS; |
e15c3eb4 | 4725 | } |
15c0a2a9 AV |
4726 | } |
4727 | ||
4728 | if (types_equal (parm, arg)) | |
15c0a2a9 | 4729 | { |
e15c3eb4 KS |
4730 | struct type *t1 = parm; |
4731 | struct type *t2 = arg; | |
15c0a2a9 | 4732 | |
e15c3eb4 | 4733 | /* For pointers and references, compare target type. */ |
78134374 | 4734 | if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm)) |
e15c3eb4 KS |
4735 | { |
4736 | t1 = TYPE_TARGET_TYPE (parm); | |
4737 | t2 = TYPE_TARGET_TYPE (arg); | |
4738 | } | |
15c0a2a9 | 4739 | |
e15c3eb4 KS |
4740 | /* Make sure they are CV equal, too. */ |
4741 | if (TYPE_CONST (t1) != TYPE_CONST (t2)) | |
4742 | rank.subrank |= CV_CONVERSION_CONST; | |
4743 | if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2)) | |
4744 | rank.subrank |= CV_CONVERSION_VOLATILE; | |
4745 | if (rank.subrank != 0) | |
4746 | return sum_ranks (CV_CONVERSION_BADNESS, rank); | |
4747 | return EXACT_MATCH_BADNESS; | |
15c0a2a9 AV |
4748 | } |
4749 | ||
db577aea | 4750 | /* See through references, since we can almost make non-references |
7ba81444 | 4751 | references. */ |
aa006118 AV |
4752 | |
4753 | if (TYPE_IS_REFERENCE (arg)) | |
da096638 | 4754 | return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL), |
dda83cd7 | 4755 | REFERENCE_SEE_THROUGH_BADNESS)); |
aa006118 | 4756 | if (TYPE_IS_REFERENCE (parm)) |
da096638 | 4757 | return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL), |
dda83cd7 | 4758 | REFERENCE_SEE_THROUGH_BADNESS)); |
5d161b24 | 4759 | if (overload_debug) |
7ba81444 | 4760 | /* Debugging only. */ |
78134374 | 4761 | fprintf_filtered (gdb_stderr, |
7ba81444 | 4762 | "------ Arg is %s [%d], parm is %s [%d]\n", |
7d93a1e0 SM |
4763 | arg->name (), arg->code (), |
4764 | parm->name (), parm->code ()); | |
c906108c | 4765 | |
0963b4bd | 4766 | /* x -> y means arg of type x being supplied for parameter of type y. */ |
c906108c | 4767 | |
78134374 | 4768 | switch (parm->code ()) |
c906108c | 4769 | { |
c5aa993b | 4770 | case TYPE_CODE_PTR: |
9293fc63 | 4771 | return rank_one_type_parm_ptr (parm, arg, value); |
c5aa993b | 4772 | case TYPE_CODE_ARRAY: |
b9f4512f | 4773 | return rank_one_type_parm_array (parm, arg, value); |
c5aa993b | 4774 | case TYPE_CODE_FUNC: |
f1f832d6 | 4775 | return rank_one_type_parm_func (parm, arg, value); |
c5aa993b | 4776 | case TYPE_CODE_INT: |
34910087 | 4777 | return rank_one_type_parm_int (parm, arg, value); |
c5aa993b | 4778 | case TYPE_CODE_ENUM: |
793cd1d2 | 4779 | return rank_one_type_parm_enum (parm, arg, value); |
c5aa993b | 4780 | case TYPE_CODE_CHAR: |
41ea4728 | 4781 | return rank_one_type_parm_char (parm, arg, value); |
c5aa993b | 4782 | case TYPE_CODE_RANGE: |
0dd322dc | 4783 | return rank_one_type_parm_range (parm, arg, value); |
c5aa993b | 4784 | case TYPE_CODE_BOOL: |
2c509035 | 4785 | return rank_one_type_parm_bool (parm, arg, value); |
c5aa993b | 4786 | case TYPE_CODE_FLT: |
7f17b20d | 4787 | return rank_one_type_parm_float (parm, arg, value); |
c5aa993b | 4788 | case TYPE_CODE_COMPLEX: |
2598a94b | 4789 | return rank_one_type_parm_complex (parm, arg, value); |
c5aa993b | 4790 | case TYPE_CODE_STRUCT: |
595f96a9 | 4791 | return rank_one_type_parm_struct (parm, arg, value); |
c5aa993b | 4792 | case TYPE_CODE_SET: |
f09ce22d | 4793 | return rank_one_type_parm_set (parm, arg, value); |
c5aa993b JM |
4794 | default: |
4795 | return INCOMPATIBLE_TYPE_BADNESS; | |
78134374 | 4796 | } /* switch (arg->code ()) */ |
c906108c SS |
4797 | } |
4798 | ||
0963b4bd | 4799 | /* End of functions for overload resolution. */ |
5212577a DE |
4800 | \f |
4801 | /* Routines to pretty-print types. */ | |
c906108c | 4802 | |
c906108c | 4803 | static void |
fba45db2 | 4804 | print_bit_vector (B_TYPE *bits, int nbits) |
c906108c SS |
4805 | { |
4806 | int bitno; | |
4807 | ||
4808 | for (bitno = 0; bitno < nbits; bitno++) | |
4809 | { | |
4810 | if ((bitno % 8) == 0) | |
4811 | { | |
4812 | puts_filtered (" "); | |
4813 | } | |
4814 | if (B_TST (bits, bitno)) | |
a3f17187 | 4815 | printf_filtered (("1")); |
c906108c | 4816 | else |
a3f17187 | 4817 | printf_filtered (("0")); |
c906108c SS |
4818 | } |
4819 | } | |
4820 | ||
ad2f7632 | 4821 | /* Note the first arg should be the "this" pointer, we may not want to |
7ba81444 MS |
4822 | include it since we may get into a infinitely recursive |
4823 | situation. */ | |
c906108c SS |
4824 | |
4825 | static void | |
4c9e8482 | 4826 | print_args (struct field *args, int nargs, int spaces) |
c906108c SS |
4827 | { |
4828 | if (args != NULL) | |
4829 | { | |
ad2f7632 DJ |
4830 | int i; |
4831 | ||
4832 | for (i = 0; i < nargs; i++) | |
4c9e8482 | 4833 | { |
32f47895 TT |
4834 | printf_filtered ("%*s[%d] name '%s'\n", spaces, "", i, |
4835 | args[i].name != NULL ? args[i].name : "<NULL>"); | |
5d14b6e5 | 4836 | recursive_dump_type (args[i].type (), spaces + 2); |
4c9e8482 | 4837 | } |
c906108c SS |
4838 | } |
4839 | } | |
4840 | ||
d6a843b5 JK |
4841 | int |
4842 | field_is_static (struct field *f) | |
4843 | { | |
4844 | /* "static" fields are the fields whose location is not relative | |
4845 | to the address of the enclosing struct. It would be nice to | |
4846 | have a dedicated flag that would be set for static fields when | |
4847 | the type is being created. But in practice, checking the field | |
254e6b9e | 4848 | loc_kind should give us an accurate answer. */ |
d6a843b5 JK |
4849 | return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME |
4850 | || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR); | |
4851 | } | |
4852 | ||
c906108c | 4853 | static void |
fba45db2 | 4854 | dump_fn_fieldlists (struct type *type, int spaces) |
c906108c SS |
4855 | { |
4856 | int method_idx; | |
4857 | int overload_idx; | |
4858 | struct fn_field *f; | |
4859 | ||
32f47895 | 4860 | printf_filtered ("%*sfn_fieldlists ", spaces, ""); |
d4f3574e | 4861 | gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout); |
c906108c SS |
4862 | printf_filtered ("\n"); |
4863 | for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++) | |
4864 | { | |
4865 | f = TYPE_FN_FIELDLIST1 (type, method_idx); | |
32f47895 TT |
4866 | printf_filtered ("%*s[%d] name '%s' (", spaces + 2, "", |
4867 | method_idx, | |
4868 | TYPE_FN_FIELDLIST_NAME (type, method_idx)); | |
d4f3574e SS |
4869 | gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx), |
4870 | gdb_stdout); | |
a3f17187 | 4871 | printf_filtered (_(") length %d\n"), |
c906108c SS |
4872 | TYPE_FN_FIELDLIST_LENGTH (type, method_idx)); |
4873 | for (overload_idx = 0; | |
4874 | overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx); | |
4875 | overload_idx++) | |
4876 | { | |
32f47895 TT |
4877 | printf_filtered ("%*s[%d] physname '%s' (", |
4878 | spaces + 4, "", overload_idx, | |
4879 | TYPE_FN_FIELD_PHYSNAME (f, overload_idx)); | |
d4f3574e SS |
4880 | gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx), |
4881 | gdb_stdout); | |
c906108c | 4882 | printf_filtered (")\n"); |
32f47895 | 4883 | printf_filtered ("%*stype ", spaces + 8, ""); |
7ba81444 MS |
4884 | gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), |
4885 | gdb_stdout); | |
c906108c SS |
4886 | printf_filtered ("\n"); |
4887 | ||
4888 | recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx), | |
4889 | spaces + 8 + 2); | |
4890 | ||
32f47895 | 4891 | printf_filtered ("%*sargs ", spaces + 8, ""); |
7ba81444 MS |
4892 | gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), |
4893 | gdb_stdout); | |
c906108c | 4894 | printf_filtered ("\n"); |
4c9e8482 | 4895 | print_args (TYPE_FN_FIELD_ARGS (f, overload_idx), |
1f704f76 | 4896 | TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (), |
4c9e8482 | 4897 | spaces + 8 + 2); |
32f47895 | 4898 | printf_filtered ("%*sfcontext ", spaces + 8, ""); |
d4f3574e SS |
4899 | gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx), |
4900 | gdb_stdout); | |
c906108c SS |
4901 | printf_filtered ("\n"); |
4902 | ||
32f47895 TT |
4903 | printf_filtered ("%*sis_const %d\n", spaces + 8, "", |
4904 | TYPE_FN_FIELD_CONST (f, overload_idx)); | |
4905 | printf_filtered ("%*sis_volatile %d\n", spaces + 8, "", | |
4906 | TYPE_FN_FIELD_VOLATILE (f, overload_idx)); | |
4907 | printf_filtered ("%*sis_private %d\n", spaces + 8, "", | |
4908 | TYPE_FN_FIELD_PRIVATE (f, overload_idx)); | |
4909 | printf_filtered ("%*sis_protected %d\n", spaces + 8, "", | |
4910 | TYPE_FN_FIELD_PROTECTED (f, overload_idx)); | |
4911 | printf_filtered ("%*sis_stub %d\n", spaces + 8, "", | |
4912 | TYPE_FN_FIELD_STUB (f, overload_idx)); | |
4913 | printf_filtered ("%*sdefaulted %d\n", spaces + 8, "", | |
4914 | TYPE_FN_FIELD_DEFAULTED (f, overload_idx)); | |
4915 | printf_filtered ("%*sis_deleted %d\n", spaces + 8, "", | |
4916 | TYPE_FN_FIELD_DELETED (f, overload_idx)); | |
4917 | printf_filtered ("%*svoffset %u\n", spaces + 8, "", | |
4918 | TYPE_FN_FIELD_VOFFSET (f, overload_idx)); | |
c906108c SS |
4919 | } |
4920 | } | |
4921 | } | |
4922 | ||
4923 | static void | |
fba45db2 | 4924 | print_cplus_stuff (struct type *type, int spaces) |
c906108c | 4925 | { |
32f47895 TT |
4926 | printf_filtered ("%*svptr_fieldno %d\n", spaces, "", |
4927 | TYPE_VPTR_FIELDNO (type)); | |
4928 | printf_filtered ("%*svptr_basetype ", spaces, ""); | |
ae6ae975 DE |
4929 | gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout); |
4930 | puts_filtered ("\n"); | |
4931 | if (TYPE_VPTR_BASETYPE (type) != NULL) | |
4932 | recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); | |
4933 | ||
32f47895 TT |
4934 | printf_filtered ("%*sn_baseclasses %d\n", spaces, "", |
4935 | TYPE_N_BASECLASSES (type)); | |
4936 | printf_filtered ("%*snfn_fields %d\n", spaces, "", | |
4937 | TYPE_NFN_FIELDS (type)); | |
c906108c SS |
4938 | if (TYPE_N_BASECLASSES (type) > 0) |
4939 | { | |
32f47895 TT |
4940 | printf_filtered ("%*svirtual_field_bits (%d bits at *", |
4941 | spaces, "", TYPE_N_BASECLASSES (type)); | |
7ba81444 MS |
4942 | gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), |
4943 | gdb_stdout); | |
c906108c SS |
4944 | printf_filtered (")"); |
4945 | ||
4946 | print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type), | |
4947 | TYPE_N_BASECLASSES (type)); | |
4948 | puts_filtered ("\n"); | |
4949 | } | |
1f704f76 | 4950 | if (type->num_fields () > 0) |
c906108c SS |
4951 | { |
4952 | if (TYPE_FIELD_PRIVATE_BITS (type) != NULL) | |
4953 | { | |
32f47895 TT |
4954 | printf_filtered ("%*sprivate_field_bits (%d bits at *", |
4955 | spaces, "", type->num_fields ()); | |
7ba81444 MS |
4956 | gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), |
4957 | gdb_stdout); | |
c906108c SS |
4958 | printf_filtered (")"); |
4959 | print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type), | |
1f704f76 | 4960 | type->num_fields ()); |
c906108c SS |
4961 | puts_filtered ("\n"); |
4962 | } | |
4963 | if (TYPE_FIELD_PROTECTED_BITS (type) != NULL) | |
4964 | { | |
32f47895 TT |
4965 | printf_filtered ("%*sprotected_field_bits (%d bits at *", |
4966 | spaces, "", type->num_fields ()); | |
7ba81444 MS |
4967 | gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), |
4968 | gdb_stdout); | |
c906108c SS |
4969 | printf_filtered (")"); |
4970 | print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type), | |
1f704f76 | 4971 | type->num_fields ()); |
c906108c SS |
4972 | puts_filtered ("\n"); |
4973 | } | |
4974 | } | |
4975 | if (TYPE_NFN_FIELDS (type) > 0) | |
4976 | { | |
4977 | dump_fn_fieldlists (type, spaces); | |
4978 | } | |
e35000a7 | 4979 | |
32f47895 TT |
4980 | printf_filtered ("%*scalling_convention %d\n", spaces, "", |
4981 | TYPE_CPLUS_CALLING_CONVENTION (type)); | |
c906108c SS |
4982 | } |
4983 | ||
b4ba55a1 JB |
4984 | /* Print the contents of the TYPE's type_specific union, assuming that |
4985 | its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */ | |
4986 | ||
4987 | static void | |
4988 | print_gnat_stuff (struct type *type, int spaces) | |
4989 | { | |
4990 | struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type); | |
4991 | ||
8cd00c59 | 4992 | if (descriptive_type == NULL) |
32f47895 | 4993 | printf_filtered ("%*sno descriptive type\n", spaces + 2, ""); |
8cd00c59 PMR |
4994 | else |
4995 | { | |
32f47895 | 4996 | printf_filtered ("%*sdescriptive type\n", spaces + 2, ""); |
8cd00c59 PMR |
4997 | recursive_dump_type (descriptive_type, spaces + 4); |
4998 | } | |
b4ba55a1 JB |
4999 | } |
5000 | ||
09584414 JB |
5001 | /* Print the contents of the TYPE's type_specific union, assuming that |
5002 | its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */ | |
5003 | ||
5004 | static void | |
5005 | print_fixed_point_type_info (struct type *type, int spaces) | |
5006 | { | |
32f47895 TT |
5007 | printf_filtered ("%*sscaling factor: %s\n", spaces + 2, "", |
5008 | type->fixed_point_scaling_factor ().str ().c_str ()); | |
09584414 JB |
5009 | } |
5010 | ||
c906108c SS |
5011 | static struct obstack dont_print_type_obstack; |
5012 | ||
53d5a2a5 TV |
5013 | /* Print the dynamic_prop PROP. */ |
5014 | ||
5015 | static void | |
5016 | dump_dynamic_prop (dynamic_prop const& prop) | |
5017 | { | |
5018 | switch (prop.kind ()) | |
5019 | { | |
5020 | case PROP_CONST: | |
5021 | printf_filtered ("%s", plongest (prop.const_val ())); | |
5022 | break; | |
5023 | case PROP_UNDEFINED: | |
5024 | printf_filtered ("(undefined)"); | |
5025 | break; | |
5026 | case PROP_LOCEXPR: | |
5027 | case PROP_LOCLIST: | |
5028 | printf_filtered ("(dynamic)"); | |
5029 | break; | |
5030 | default: | |
5031 | gdb_assert_not_reached ("unhandled prop kind"); | |
5032 | break; | |
5033 | } | |
5034 | } | |
5035 | ||
c906108c | 5036 | void |
fba45db2 | 5037 | recursive_dump_type (struct type *type, int spaces) |
c906108c SS |
5038 | { |
5039 | int idx; | |
5040 | ||
5041 | if (spaces == 0) | |
5042 | obstack_begin (&dont_print_type_obstack, 0); | |
5043 | ||
1f704f76 | 5044 | if (type->num_fields () > 0 |
b4ba55a1 | 5045 | || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0)) |
c906108c SS |
5046 | { |
5047 | struct type **first_dont_print | |
7ba81444 | 5048 | = (struct type **) obstack_base (&dont_print_type_obstack); |
c906108c | 5049 | |
7ba81444 MS |
5050 | int i = (struct type **) |
5051 | obstack_next_free (&dont_print_type_obstack) - first_dont_print; | |
c906108c SS |
5052 | |
5053 | while (--i >= 0) | |
5054 | { | |
5055 | if (type == first_dont_print[i]) | |
5056 | { | |
32f47895 | 5057 | printf_filtered ("%*stype node ", spaces, ""); |
d4f3574e | 5058 | gdb_print_host_address (type, gdb_stdout); |
a3f17187 | 5059 | printf_filtered (_(" <same as already seen type>\n")); |
c906108c SS |
5060 | return; |
5061 | } | |
5062 | } | |
5063 | ||
5064 | obstack_ptr_grow (&dont_print_type_obstack, type); | |
5065 | } | |
5066 | ||
32f47895 | 5067 | printf_filtered ("%*stype node ", spaces, ""); |
d4f3574e | 5068 | gdb_print_host_address (type, gdb_stdout); |
c906108c | 5069 | printf_filtered ("\n"); |
32f47895 TT |
5070 | printf_filtered ("%*sname '%s' (", spaces, "", |
5071 | type->name () ? type->name () : "<NULL>"); | |
7d93a1e0 | 5072 | gdb_print_host_address (type->name (), gdb_stdout); |
c906108c | 5073 | printf_filtered (")\n"); |
32f47895 | 5074 | printf_filtered ("%*scode 0x%x ", spaces, "", type->code ()); |
78134374 | 5075 | switch (type->code ()) |
c906108c | 5076 | { |
c5aa993b JM |
5077 | case TYPE_CODE_UNDEF: |
5078 | printf_filtered ("(TYPE_CODE_UNDEF)"); | |
5079 | break; | |
5080 | case TYPE_CODE_PTR: | |
5081 | printf_filtered ("(TYPE_CODE_PTR)"); | |
5082 | break; | |
5083 | case TYPE_CODE_ARRAY: | |
5084 | printf_filtered ("(TYPE_CODE_ARRAY)"); | |
5085 | break; | |
5086 | case TYPE_CODE_STRUCT: | |
5087 | printf_filtered ("(TYPE_CODE_STRUCT)"); | |
5088 | break; | |
5089 | case TYPE_CODE_UNION: | |
5090 | printf_filtered ("(TYPE_CODE_UNION)"); | |
5091 | break; | |
5092 | case TYPE_CODE_ENUM: | |
5093 | printf_filtered ("(TYPE_CODE_ENUM)"); | |
5094 | break; | |
4f2aea11 MK |
5095 | case TYPE_CODE_FLAGS: |
5096 | printf_filtered ("(TYPE_CODE_FLAGS)"); | |
5097 | break; | |
c5aa993b JM |
5098 | case TYPE_CODE_FUNC: |
5099 | printf_filtered ("(TYPE_CODE_FUNC)"); | |
5100 | break; | |
5101 | case TYPE_CODE_INT: | |
5102 | printf_filtered ("(TYPE_CODE_INT)"); | |
5103 | break; | |
5104 | case TYPE_CODE_FLT: | |
5105 | printf_filtered ("(TYPE_CODE_FLT)"); | |
5106 | break; | |
5107 | case TYPE_CODE_VOID: | |
5108 | printf_filtered ("(TYPE_CODE_VOID)"); | |
5109 | break; | |
5110 | case TYPE_CODE_SET: | |
5111 | printf_filtered ("(TYPE_CODE_SET)"); | |
5112 | break; | |
5113 | case TYPE_CODE_RANGE: | |
5114 | printf_filtered ("(TYPE_CODE_RANGE)"); | |
5115 | break; | |
5116 | case TYPE_CODE_STRING: | |
5117 | printf_filtered ("(TYPE_CODE_STRING)"); | |
5118 | break; | |
5119 | case TYPE_CODE_ERROR: | |
5120 | printf_filtered ("(TYPE_CODE_ERROR)"); | |
5121 | break; | |
0d5de010 DJ |
5122 | case TYPE_CODE_MEMBERPTR: |
5123 | printf_filtered ("(TYPE_CODE_MEMBERPTR)"); | |
5124 | break; | |
5125 | case TYPE_CODE_METHODPTR: | |
5126 | printf_filtered ("(TYPE_CODE_METHODPTR)"); | |
c5aa993b JM |
5127 | break; |
5128 | case TYPE_CODE_METHOD: | |
5129 | printf_filtered ("(TYPE_CODE_METHOD)"); | |
5130 | break; | |
5131 | case TYPE_CODE_REF: | |
5132 | printf_filtered ("(TYPE_CODE_REF)"); | |
5133 | break; | |
5134 | case TYPE_CODE_CHAR: | |
5135 | printf_filtered ("(TYPE_CODE_CHAR)"); | |
5136 | break; | |
5137 | case TYPE_CODE_BOOL: | |
5138 | printf_filtered ("(TYPE_CODE_BOOL)"); | |
5139 | break; | |
e9e79dd9 FF |
5140 | case TYPE_CODE_COMPLEX: |
5141 | printf_filtered ("(TYPE_CODE_COMPLEX)"); | |
5142 | break; | |
c5aa993b JM |
5143 | case TYPE_CODE_TYPEDEF: |
5144 | printf_filtered ("(TYPE_CODE_TYPEDEF)"); | |
5145 | break; | |
5c4e30ca DC |
5146 | case TYPE_CODE_NAMESPACE: |
5147 | printf_filtered ("(TYPE_CODE_NAMESPACE)"); | |
5148 | break; | |
09584414 JB |
5149 | case TYPE_CODE_FIXED_POINT: |
5150 | printf_filtered ("(TYPE_CODE_FIXED_POINT)"); | |
5151 | break; | |
c5aa993b JM |
5152 | default: |
5153 | printf_filtered ("(UNKNOWN TYPE CODE)"); | |
5154 | break; | |
c906108c SS |
5155 | } |
5156 | puts_filtered ("\n"); | |
32f47895 TT |
5157 | printf_filtered ("%*slength %s\n", spaces, "", |
5158 | pulongest (TYPE_LENGTH (type))); | |
e9bb382b UW |
5159 | if (TYPE_OBJFILE_OWNED (type)) |
5160 | { | |
32f47895 | 5161 | printf_filtered ("%*sobjfile ", spaces, ""); |
e9bb382b UW |
5162 | gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout); |
5163 | } | |
5164 | else | |
5165 | { | |
32f47895 | 5166 | printf_filtered ("%*sgdbarch ", spaces, ""); |
e9bb382b UW |
5167 | gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout); |
5168 | } | |
c906108c | 5169 | printf_filtered ("\n"); |
32f47895 | 5170 | printf_filtered ("%*starget_type ", spaces, ""); |
d4f3574e | 5171 | gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout); |
c906108c SS |
5172 | printf_filtered ("\n"); |
5173 | if (TYPE_TARGET_TYPE (type) != NULL) | |
5174 | { | |
5175 | recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2); | |
5176 | } | |
32f47895 | 5177 | printf_filtered ("%*spointer_type ", spaces, ""); |
d4f3574e | 5178 | gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout); |
c906108c | 5179 | printf_filtered ("\n"); |
32f47895 | 5180 | printf_filtered ("%*sreference_type ", spaces, ""); |
d4f3574e | 5181 | gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout); |
c906108c | 5182 | printf_filtered ("\n"); |
32f47895 | 5183 | printf_filtered ("%*stype_chain ", spaces, ""); |
2fdde8f8 | 5184 | gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout); |
e9e79dd9 | 5185 | printf_filtered ("\n"); |
32f47895 TT |
5186 | printf_filtered ("%*sinstance_flags 0x%x", spaces, "", |
5187 | (unsigned) type->instance_flags ()); | |
2fdde8f8 DJ |
5188 | if (TYPE_CONST (type)) |
5189 | { | |
a9ff5f12 | 5190 | puts_filtered (" TYPE_CONST"); |
2fdde8f8 DJ |
5191 | } |
5192 | if (TYPE_VOLATILE (type)) | |
5193 | { | |
a9ff5f12 | 5194 | puts_filtered (" TYPE_VOLATILE"); |
2fdde8f8 DJ |
5195 | } |
5196 | if (TYPE_CODE_SPACE (type)) | |
5197 | { | |
a9ff5f12 | 5198 | puts_filtered (" TYPE_CODE_SPACE"); |
2fdde8f8 DJ |
5199 | } |
5200 | if (TYPE_DATA_SPACE (type)) | |
5201 | { | |
a9ff5f12 | 5202 | puts_filtered (" TYPE_DATA_SPACE"); |
2fdde8f8 | 5203 | } |
8b2dbe47 KB |
5204 | if (TYPE_ADDRESS_CLASS_1 (type)) |
5205 | { | |
a9ff5f12 | 5206 | puts_filtered (" TYPE_ADDRESS_CLASS_1"); |
8b2dbe47 KB |
5207 | } |
5208 | if (TYPE_ADDRESS_CLASS_2 (type)) | |
5209 | { | |
a9ff5f12 | 5210 | puts_filtered (" TYPE_ADDRESS_CLASS_2"); |
8b2dbe47 | 5211 | } |
06d66ee9 TT |
5212 | if (TYPE_RESTRICT (type)) |
5213 | { | |
a9ff5f12 | 5214 | puts_filtered (" TYPE_RESTRICT"); |
06d66ee9 | 5215 | } |
a2c2acaf MW |
5216 | if (TYPE_ATOMIC (type)) |
5217 | { | |
a9ff5f12 | 5218 | puts_filtered (" TYPE_ATOMIC"); |
a2c2acaf | 5219 | } |
2fdde8f8 | 5220 | puts_filtered ("\n"); |
876cecd0 | 5221 | |
32f47895 | 5222 | printf_filtered ("%*sflags", spaces, ""); |
c6d940a9 | 5223 | if (type->is_unsigned ()) |
c906108c | 5224 | { |
a9ff5f12 | 5225 | puts_filtered (" TYPE_UNSIGNED"); |
c906108c | 5226 | } |
20ce4123 | 5227 | if (type->has_no_signedness ()) |
762a036f | 5228 | { |
a9ff5f12 | 5229 | puts_filtered (" TYPE_NOSIGN"); |
762a036f | 5230 | } |
04f5bab2 | 5231 | if (type->endianity_is_not_default ()) |
34877895 PJ |
5232 | { |
5233 | puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT"); | |
5234 | } | |
e46d3488 | 5235 | if (type->is_stub ()) |
c906108c | 5236 | { |
a9ff5f12 | 5237 | puts_filtered (" TYPE_STUB"); |
c906108c | 5238 | } |
d2183968 | 5239 | if (type->target_is_stub ()) |
762a036f | 5240 | { |
a9ff5f12 | 5241 | puts_filtered (" TYPE_TARGET_STUB"); |
762a036f | 5242 | } |
7f9f399b | 5243 | if (type->is_prototyped ()) |
762a036f | 5244 | { |
a9ff5f12 | 5245 | puts_filtered (" TYPE_PROTOTYPED"); |
762a036f | 5246 | } |
a409645d | 5247 | if (type->has_varargs ()) |
762a036f | 5248 | { |
a9ff5f12 | 5249 | puts_filtered (" TYPE_VARARGS"); |
762a036f | 5250 | } |
f5f8a009 EZ |
5251 | /* This is used for things like AltiVec registers on ppc. Gcc emits |
5252 | an attribute for the array type, which tells whether or not we | |
5253 | have a vector, instead of a regular array. */ | |
bd63c870 | 5254 | if (type->is_vector ()) |
f5f8a009 | 5255 | { |
a9ff5f12 | 5256 | puts_filtered (" TYPE_VECTOR"); |
f5f8a009 | 5257 | } |
22c4c60c | 5258 | if (type->is_fixed_instance ()) |
876cecd0 TT |
5259 | { |
5260 | puts_filtered (" TYPE_FIXED_INSTANCE"); | |
5261 | } | |
3f46044c | 5262 | if (type->stub_is_supported ()) |
876cecd0 TT |
5263 | { |
5264 | puts_filtered (" TYPE_STUB_SUPPORTED"); | |
5265 | } | |
5266 | if (TYPE_NOTTEXT (type)) | |
5267 | { | |
5268 | puts_filtered (" TYPE_NOTTEXT"); | |
5269 | } | |
c906108c | 5270 | puts_filtered ("\n"); |
32f47895 | 5271 | printf_filtered ("%*snfields %d ", spaces, "", type->num_fields ()); |
80fc5e77 | 5272 | gdb_print_host_address (type->fields (), gdb_stdout); |
c906108c | 5273 | puts_filtered ("\n"); |
1f704f76 | 5274 | for (idx = 0; idx < type->num_fields (); idx++) |
c906108c | 5275 | { |
78134374 | 5276 | if (type->code () == TYPE_CODE_ENUM) |
32f47895 TT |
5277 | printf_filtered ("%*s[%d] enumval %s type ", spaces + 2, "", |
5278 | idx, plongest (TYPE_FIELD_ENUMVAL (type, idx))); | |
14e75d8e | 5279 | else |
32f47895 TT |
5280 | printf_filtered ("%*s[%d] bitpos %s bitsize %d type ", spaces + 2, "", |
5281 | idx, plongest (TYPE_FIELD_BITPOS (type, idx)), | |
5282 | TYPE_FIELD_BITSIZE (type, idx)); | |
940da03e | 5283 | gdb_print_host_address (type->field (idx).type (), gdb_stdout); |
c906108c SS |
5284 | printf_filtered (" name '%s' (", |
5285 | TYPE_FIELD_NAME (type, idx) != NULL | |
5286 | ? TYPE_FIELD_NAME (type, idx) | |
5287 | : "<NULL>"); | |
d4f3574e | 5288 | gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout); |
c906108c | 5289 | printf_filtered (")\n"); |
940da03e | 5290 | if (type->field (idx).type () != NULL) |
c906108c | 5291 | { |
940da03e | 5292 | recursive_dump_type (type->field (idx).type (), spaces + 4); |
c906108c SS |
5293 | } |
5294 | } | |
78134374 | 5295 | if (type->code () == TYPE_CODE_RANGE) |
43bbcdc2 | 5296 | { |
32f47895 | 5297 | printf_filtered ("%*slow ", spaces, ""); |
53d5a2a5 TV |
5298 | dump_dynamic_prop (type->bounds ()->low); |
5299 | printf_filtered (" high "); | |
5300 | dump_dynamic_prop (type->bounds ()->high); | |
5301 | printf_filtered ("\n"); | |
43bbcdc2 | 5302 | } |
c906108c | 5303 | |
b4ba55a1 JB |
5304 | switch (TYPE_SPECIFIC_FIELD (type)) |
5305 | { | |
5306 | case TYPE_SPECIFIC_CPLUS_STUFF: | |
32f47895 | 5307 | printf_filtered ("%*scplus_stuff ", spaces, ""); |
b4ba55a1 JB |
5308 | gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), |
5309 | gdb_stdout); | |
5310 | puts_filtered ("\n"); | |
5311 | print_cplus_stuff (type, spaces); | |
5312 | break; | |
8da61cc4 | 5313 | |
b4ba55a1 | 5314 | case TYPE_SPECIFIC_GNAT_STUFF: |
32f47895 | 5315 | printf_filtered ("%*sgnat_stuff ", spaces, ""); |
b4ba55a1 JB |
5316 | gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout); |
5317 | puts_filtered ("\n"); | |
5318 | print_gnat_stuff (type, spaces); | |
5319 | break; | |
701c159d | 5320 | |
b4ba55a1 | 5321 | case TYPE_SPECIFIC_FLOATFORMAT: |
32f47895 | 5322 | printf_filtered ("%*sfloatformat ", spaces, ""); |
0db7851f UW |
5323 | if (TYPE_FLOATFORMAT (type) == NULL |
5324 | || TYPE_FLOATFORMAT (type)->name == NULL) | |
b4ba55a1 JB |
5325 | puts_filtered ("(null)"); |
5326 | else | |
0db7851f | 5327 | puts_filtered (TYPE_FLOATFORMAT (type)->name); |
b4ba55a1 JB |
5328 | puts_filtered ("\n"); |
5329 | break; | |
c906108c | 5330 | |
b6cdc2c1 | 5331 | case TYPE_SPECIFIC_FUNC: |
32f47895 TT |
5332 | printf_filtered ("%*scalling_convention %d\n", spaces, "", |
5333 | TYPE_CALLING_CONVENTION (type)); | |
b6cdc2c1 | 5334 | /* tail_call_list is not printed. */ |
b4ba55a1 | 5335 | break; |
09e2d7c7 DE |
5336 | |
5337 | case TYPE_SPECIFIC_SELF_TYPE: | |
32f47895 | 5338 | printf_filtered ("%*sself_type ", spaces, ""); |
09e2d7c7 DE |
5339 | gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout); |
5340 | puts_filtered ("\n"); | |
5341 | break; | |
20a5fcbd | 5342 | |
09584414 | 5343 | case TYPE_SPECIFIC_FIXED_POINT: |
32f47895 | 5344 | printf_filtered ("%*sfixed_point_info ", spaces, ""); |
09584414 JB |
5345 | print_fixed_point_type_info (type, spaces); |
5346 | puts_filtered ("\n"); | |
5347 | break; | |
5348 | ||
20a5fcbd TT |
5349 | case TYPE_SPECIFIC_INT: |
5350 | if (type->bit_size_differs_p ()) | |
5351 | { | |
5352 | unsigned bit_size = type->bit_size (); | |
5353 | unsigned bit_off = type->bit_offset (); | |
32f47895 TT |
5354 | printf_filtered ("%*s bit size = %u, bit offset = %u\n", spaces, "", |
5355 | bit_size, bit_off); | |
20a5fcbd TT |
5356 | } |
5357 | break; | |
c906108c | 5358 | } |
b4ba55a1 | 5359 | |
c906108c SS |
5360 | if (spaces == 0) |
5361 | obstack_free (&dont_print_type_obstack, NULL); | |
5362 | } | |
5212577a | 5363 | \f |
ae5a43e0 DJ |
5364 | /* Trivial helpers for the libiberty hash table, for mapping one |
5365 | type to another. */ | |
5366 | ||
fd90ace4 | 5367 | struct type_pair : public allocate_on_obstack |
ae5a43e0 | 5368 | { |
fd90ace4 YQ |
5369 | type_pair (struct type *old_, struct type *newobj_) |
5370 | : old (old_), newobj (newobj_) | |
5371 | {} | |
5372 | ||
5373 | struct type * const old, * const newobj; | |
ae5a43e0 DJ |
5374 | }; |
5375 | ||
5376 | static hashval_t | |
5377 | type_pair_hash (const void *item) | |
5378 | { | |
9a3c8263 | 5379 | const struct type_pair *pair = (const struct type_pair *) item; |
d8734c88 | 5380 | |
ae5a43e0 DJ |
5381 | return htab_hash_pointer (pair->old); |
5382 | } | |
5383 | ||
5384 | static int | |
5385 | type_pair_eq (const void *item_lhs, const void *item_rhs) | |
5386 | { | |
9a3c8263 SM |
5387 | const struct type_pair *lhs = (const struct type_pair *) item_lhs; |
5388 | const struct type_pair *rhs = (const struct type_pair *) item_rhs; | |
d8734c88 | 5389 | |
ae5a43e0 DJ |
5390 | return lhs->old == rhs->old; |
5391 | } | |
5392 | ||
5393 | /* Allocate the hash table used by copy_type_recursive to walk | |
5394 | types without duplicates. We use OBJFILE's obstack, because | |
5395 | OBJFILE is about to be deleted. */ | |
5396 | ||
6108fd18 | 5397 | htab_up |
ae5a43e0 DJ |
5398 | create_copied_types_hash (struct objfile *objfile) |
5399 | { | |
6108fd18 TT |
5400 | return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq, |
5401 | NULL, &objfile->objfile_obstack, | |
5402 | hashtab_obstack_allocate, | |
5403 | dummy_obstack_deallocate)); | |
ae5a43e0 DJ |
5404 | } |
5405 | ||
d9823cbb KB |
5406 | /* Recursively copy (deep copy) a dynamic attribute list of a type. */ |
5407 | ||
5408 | static struct dynamic_prop_list * | |
5409 | copy_dynamic_prop_list (struct obstack *objfile_obstack, | |
5410 | struct dynamic_prop_list *list) | |
5411 | { | |
5412 | struct dynamic_prop_list *copy = list; | |
5413 | struct dynamic_prop_list **node_ptr = © | |
5414 | ||
5415 | while (*node_ptr != NULL) | |
5416 | { | |
5417 | struct dynamic_prop_list *node_copy; | |
5418 | ||
224c3ddb SM |
5419 | node_copy = ((struct dynamic_prop_list *) |
5420 | obstack_copy (objfile_obstack, *node_ptr, | |
5421 | sizeof (struct dynamic_prop_list))); | |
283a9958 | 5422 | node_copy->prop = (*node_ptr)->prop; |
d9823cbb KB |
5423 | *node_ptr = node_copy; |
5424 | ||
5425 | node_ptr = &node_copy->next; | |
5426 | } | |
5427 | ||
5428 | return copy; | |
5429 | } | |
5430 | ||
7ba81444 | 5431 | /* Recursively copy (deep copy) TYPE, if it is associated with |
eed8b28a PP |
5432 | OBJFILE. Return a new type owned by the gdbarch associated with the type, a |
5433 | saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if | |
5434 | it is not associated with OBJFILE. */ | |
ae5a43e0 DJ |
5435 | |
5436 | struct type * | |
7ba81444 MS |
5437 | copy_type_recursive (struct objfile *objfile, |
5438 | struct type *type, | |
ae5a43e0 DJ |
5439 | htab_t copied_types) |
5440 | { | |
ae5a43e0 DJ |
5441 | void **slot; |
5442 | struct type *new_type; | |
5443 | ||
e9bb382b | 5444 | if (! TYPE_OBJFILE_OWNED (type)) |
ae5a43e0 DJ |
5445 | return type; |
5446 | ||
7ba81444 MS |
5447 | /* This type shouldn't be pointing to any types in other objfiles; |
5448 | if it did, the type might disappear unexpectedly. */ | |
ae5a43e0 DJ |
5449 | gdb_assert (TYPE_OBJFILE (type) == objfile); |
5450 | ||
fd90ace4 YQ |
5451 | struct type_pair pair (type, nullptr); |
5452 | ||
ae5a43e0 DJ |
5453 | slot = htab_find_slot (copied_types, &pair, INSERT); |
5454 | if (*slot != NULL) | |
fe978cb0 | 5455 | return ((struct type_pair *) *slot)->newobj; |
ae5a43e0 | 5456 | |
e9bb382b | 5457 | new_type = alloc_type_arch (get_type_arch (type)); |
ae5a43e0 DJ |
5458 | |
5459 | /* We must add the new type to the hash table immediately, in case | |
5460 | we encounter this type again during a recursive call below. */ | |
fd90ace4 YQ |
5461 | struct type_pair *stored |
5462 | = new (&objfile->objfile_obstack) struct type_pair (type, new_type); | |
5463 | ||
ae5a43e0 DJ |
5464 | *slot = stored; |
5465 | ||
876cecd0 TT |
5466 | /* Copy the common fields of types. For the main type, we simply |
5467 | copy the entire thing and then update specific fields as needed. */ | |
5468 | *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type); | |
e9bb382b UW |
5469 | TYPE_OBJFILE_OWNED (new_type) = 0; |
5470 | TYPE_OWNER (new_type).gdbarch = get_type_arch (type); | |
876cecd0 | 5471 | |
7d93a1e0 SM |
5472 | if (type->name ()) |
5473 | new_type->set_name (xstrdup (type->name ())); | |
ae5a43e0 | 5474 | |
314ad88d | 5475 | new_type->set_instance_flags (type->instance_flags ()); |
ae5a43e0 DJ |
5476 | TYPE_LENGTH (new_type) = TYPE_LENGTH (type); |
5477 | ||
5478 | /* Copy the fields. */ | |
1f704f76 | 5479 | if (type->num_fields ()) |
ae5a43e0 DJ |
5480 | { |
5481 | int i, nfields; | |
5482 | ||
1f704f76 | 5483 | nfields = type->num_fields (); |
3cabb6b0 SM |
5484 | new_type->set_fields |
5485 | ((struct field *) | |
5486 | TYPE_ZALLOC (new_type, nfields * sizeof (struct field))); | |
5487 | ||
ae5a43e0 DJ |
5488 | for (i = 0; i < nfields; i++) |
5489 | { | |
7ba81444 MS |
5490 | TYPE_FIELD_ARTIFICIAL (new_type, i) = |
5491 | TYPE_FIELD_ARTIFICIAL (type, i); | |
ae5a43e0 | 5492 | TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i); |
940da03e | 5493 | if (type->field (i).type ()) |
5d14b6e5 | 5494 | new_type->field (i).set_type |
940da03e | 5495 | (copy_type_recursive (objfile, type->field (i).type (), |
5d14b6e5 | 5496 | copied_types)); |
ae5a43e0 | 5497 | if (TYPE_FIELD_NAME (type, i)) |
7ba81444 MS |
5498 | TYPE_FIELD_NAME (new_type, i) = |
5499 | xstrdup (TYPE_FIELD_NAME (type, i)); | |
d6a843b5 | 5500 | switch (TYPE_FIELD_LOC_KIND (type, i)) |
ae5a43e0 | 5501 | { |
d6a843b5 | 5502 | case FIELD_LOC_KIND_BITPOS: |
ceacbf6e | 5503 | SET_FIELD_BITPOS (new_type->field (i), |
d6a843b5 JK |
5504 | TYPE_FIELD_BITPOS (type, i)); |
5505 | break; | |
14e75d8e | 5506 | case FIELD_LOC_KIND_ENUMVAL: |
ceacbf6e | 5507 | SET_FIELD_ENUMVAL (new_type->field (i), |
14e75d8e JK |
5508 | TYPE_FIELD_ENUMVAL (type, i)); |
5509 | break; | |
d6a843b5 | 5510 | case FIELD_LOC_KIND_PHYSADDR: |
ceacbf6e | 5511 | SET_FIELD_PHYSADDR (new_type->field (i), |
d6a843b5 JK |
5512 | TYPE_FIELD_STATIC_PHYSADDR (type, i)); |
5513 | break; | |
5514 | case FIELD_LOC_KIND_PHYSNAME: | |
ceacbf6e | 5515 | SET_FIELD_PHYSNAME (new_type->field (i), |
d6a843b5 JK |
5516 | xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type, |
5517 | i))); | |
5518 | break; | |
5519 | default: | |
5520 | internal_error (__FILE__, __LINE__, | |
5521 | _("Unexpected type field location kind: %d"), | |
5522 | TYPE_FIELD_LOC_KIND (type, i)); | |
ae5a43e0 DJ |
5523 | } |
5524 | } | |
5525 | } | |
5526 | ||
0963b4bd | 5527 | /* For range types, copy the bounds information. */ |
78134374 | 5528 | if (type->code () == TYPE_CODE_RANGE) |
43bbcdc2 | 5529 | { |
c4dfcb36 | 5530 | range_bounds *bounds |
dda83cd7 | 5531 | = ((struct range_bounds *) TYPE_ALLOC |
c4dfcb36 SM |
5532 | (new_type, sizeof (struct range_bounds))); |
5533 | ||
5534 | *bounds = *type->bounds (); | |
5535 | new_type->set_bounds (bounds); | |
43bbcdc2 PH |
5536 | } |
5537 | ||
98d48915 SM |
5538 | if (type->main_type->dyn_prop_list != NULL) |
5539 | new_type->main_type->dyn_prop_list | |
d9823cbb | 5540 | = copy_dynamic_prop_list (&objfile->objfile_obstack, |
98d48915 | 5541 | type->main_type->dyn_prop_list); |
d9823cbb | 5542 | |
3cdcd0ce | 5543 | |
ae5a43e0 DJ |
5544 | /* Copy pointers to other types. */ |
5545 | if (TYPE_TARGET_TYPE (type)) | |
7ba81444 MS |
5546 | TYPE_TARGET_TYPE (new_type) = |
5547 | copy_type_recursive (objfile, | |
5548 | TYPE_TARGET_TYPE (type), | |
5549 | copied_types); | |
f6b3afbf | 5550 | |
ae5a43e0 DJ |
5551 | /* Maybe copy the type_specific bits. |
5552 | ||
5553 | NOTE drow/2005-12-09: We do not copy the C++-specific bits like | |
5554 | base classes and methods. There's no fundamental reason why we | |
5555 | can't, but at the moment it is not needed. */ | |
5556 | ||
f6b3afbf DE |
5557 | switch (TYPE_SPECIFIC_FIELD (type)) |
5558 | { | |
5559 | case TYPE_SPECIFIC_NONE: | |
5560 | break; | |
5561 | case TYPE_SPECIFIC_FUNC: | |
5562 | INIT_FUNC_SPECIFIC (new_type); | |
5563 | TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type); | |
5564 | TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type); | |
5565 | TYPE_TAIL_CALL_LIST (new_type) = NULL; | |
5566 | break; | |
5567 | case TYPE_SPECIFIC_FLOATFORMAT: | |
5568 | TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type); | |
5569 | break; | |
5570 | case TYPE_SPECIFIC_CPLUS_STUFF: | |
5571 | INIT_CPLUS_SPECIFIC (new_type); | |
5572 | break; | |
5573 | case TYPE_SPECIFIC_GNAT_STUFF: | |
5574 | INIT_GNAT_SPECIFIC (new_type); | |
5575 | break; | |
09e2d7c7 DE |
5576 | case TYPE_SPECIFIC_SELF_TYPE: |
5577 | set_type_self_type (new_type, | |
5578 | copy_type_recursive (objfile, TYPE_SELF_TYPE (type), | |
5579 | copied_types)); | |
5580 | break; | |
09584414 JB |
5581 | case TYPE_SPECIFIC_FIXED_POINT: |
5582 | INIT_FIXED_POINT_SPECIFIC (new_type); | |
2a12c336 JB |
5583 | new_type->fixed_point_info ().scaling_factor |
5584 | = type->fixed_point_info ().scaling_factor; | |
09584414 | 5585 | break; |
20a5fcbd TT |
5586 | case TYPE_SPECIFIC_INT: |
5587 | TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT; | |
5588 | TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff | |
5589 | = TYPE_MAIN_TYPE (type)->type_specific.int_stuff; | |
5590 | break; | |
5591 | ||
f6b3afbf DE |
5592 | default: |
5593 | gdb_assert_not_reached ("bad type_specific_kind"); | |
5594 | } | |
ae5a43e0 DJ |
5595 | |
5596 | return new_type; | |
5597 | } | |
5598 | ||
4af88198 JB |
5599 | /* Make a copy of the given TYPE, except that the pointer & reference |
5600 | types are not preserved. | |
5601 | ||
5602 | This function assumes that the given type has an associated objfile. | |
5603 | This objfile is used to allocate the new type. */ | |
5604 | ||
5605 | struct type * | |
5606 | copy_type (const struct type *type) | |
5607 | { | |
5608 | struct type *new_type; | |
5609 | ||
e9bb382b | 5610 | gdb_assert (TYPE_OBJFILE_OWNED (type)); |
4af88198 | 5611 | |
e9bb382b | 5612 | new_type = alloc_type_copy (type); |
314ad88d | 5613 | new_type->set_instance_flags (type->instance_flags ()); |
4af88198 JB |
5614 | TYPE_LENGTH (new_type) = TYPE_LENGTH (type); |
5615 | memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type), | |
5616 | sizeof (struct main_type)); | |
98d48915 SM |
5617 | if (type->main_type->dyn_prop_list != NULL) |
5618 | new_type->main_type->dyn_prop_list | |
d9823cbb | 5619 | = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack, |
98d48915 | 5620 | type->main_type->dyn_prop_list); |
4af88198 JB |
5621 | |
5622 | return new_type; | |
5623 | } | |
5212577a | 5624 | \f |
e9bb382b UW |
5625 | /* Helper functions to initialize architecture-specific types. */ |
5626 | ||
5627 | /* Allocate a type structure associated with GDBARCH and set its | |
5628 | CODE, LENGTH, and NAME fields. */ | |
5212577a | 5629 | |
e9bb382b UW |
5630 | struct type * |
5631 | arch_type (struct gdbarch *gdbarch, | |
77b7c781 | 5632 | enum type_code code, int bit, const char *name) |
e9bb382b UW |
5633 | { |
5634 | struct type *type; | |
5635 | ||
5636 | type = alloc_type_arch (gdbarch); | |
ae438bc5 | 5637 | set_type_code (type, code); |
77b7c781 UW |
5638 | gdb_assert ((bit % TARGET_CHAR_BIT) == 0); |
5639 | TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT; | |
e9bb382b UW |
5640 | |
5641 | if (name) | |
d0e39ea2 | 5642 | type->set_name (gdbarch_obstack_strdup (gdbarch, name)); |
e9bb382b UW |
5643 | |
5644 | return type; | |
5645 | } | |
5646 | ||
5647 | /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH. | |
5648 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
5649 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
5212577a | 5650 | |
e9bb382b UW |
5651 | struct type * |
5652 | arch_integer_type (struct gdbarch *gdbarch, | |
695bfa52 | 5653 | int bit, int unsigned_p, const char *name) |
e9bb382b UW |
5654 | { |
5655 | struct type *t; | |
5656 | ||
77b7c781 | 5657 | t = arch_type (gdbarch, TYPE_CODE_INT, bit, name); |
e9bb382b | 5658 | if (unsigned_p) |
653223d3 | 5659 | t->set_is_unsigned (true); |
e9bb382b UW |
5660 | |
5661 | return t; | |
5662 | } | |
5663 | ||
5664 | /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH. | |
5665 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
5666 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
5212577a | 5667 | |
e9bb382b UW |
5668 | struct type * |
5669 | arch_character_type (struct gdbarch *gdbarch, | |
695bfa52 | 5670 | int bit, int unsigned_p, const char *name) |
e9bb382b UW |
5671 | { |
5672 | struct type *t; | |
5673 | ||
77b7c781 | 5674 | t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name); |
e9bb382b | 5675 | if (unsigned_p) |
653223d3 | 5676 | t->set_is_unsigned (true); |
e9bb382b UW |
5677 | |
5678 | return t; | |
5679 | } | |
5680 | ||
5681 | /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH. | |
5682 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
5683 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
5212577a | 5684 | |
e9bb382b UW |
5685 | struct type * |
5686 | arch_boolean_type (struct gdbarch *gdbarch, | |
695bfa52 | 5687 | int bit, int unsigned_p, const char *name) |
e9bb382b UW |
5688 | { |
5689 | struct type *t; | |
5690 | ||
77b7c781 | 5691 | t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name); |
e9bb382b | 5692 | if (unsigned_p) |
653223d3 | 5693 | t->set_is_unsigned (true); |
e9bb382b UW |
5694 | |
5695 | return t; | |
5696 | } | |
5697 | ||
5698 | /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH. | |
5699 | BIT is the type size in bits; if BIT equals -1, the size is | |
5700 | determined by the floatformat. NAME is the type name. Set the | |
5701 | TYPE_FLOATFORMAT from FLOATFORMATS. */ | |
5212577a | 5702 | |
27067745 | 5703 | struct type * |
e9bb382b | 5704 | arch_float_type (struct gdbarch *gdbarch, |
695bfa52 TT |
5705 | int bit, const char *name, |
5706 | const struct floatformat **floatformats) | |
8da61cc4 | 5707 | { |
0db7851f | 5708 | const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)]; |
8da61cc4 DJ |
5709 | struct type *t; |
5710 | ||
0db7851f | 5711 | bit = verify_floatformat (bit, fmt); |
77b7c781 | 5712 | t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name); |
0db7851f | 5713 | TYPE_FLOATFORMAT (t) = fmt; |
b79497cb | 5714 | |
8da61cc4 DJ |
5715 | return t; |
5716 | } | |
5717 | ||
88dfca6c UW |
5718 | /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH. |
5719 | BIT is the type size in bits. NAME is the type name. */ | |
5720 | ||
5721 | struct type * | |
5722 | arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name) | |
5723 | { | |
5724 | struct type *t; | |
5725 | ||
77b7c781 | 5726 | t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name); |
88dfca6c UW |
5727 | return t; |
5728 | } | |
5729 | ||
88dfca6c UW |
5730 | /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH. |
5731 | BIT is the pointer type size in bits. NAME is the type name. | |
5732 | TARGET_TYPE is the pointer target type. Always sets the pointer type's | |
5733 | TYPE_UNSIGNED flag. */ | |
5734 | ||
5735 | struct type * | |
5736 | arch_pointer_type (struct gdbarch *gdbarch, | |
5737 | int bit, const char *name, struct type *target_type) | |
5738 | { | |
5739 | struct type *t; | |
5740 | ||
77b7c781 | 5741 | t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name); |
88dfca6c | 5742 | TYPE_TARGET_TYPE (t) = target_type; |
653223d3 | 5743 | t->set_is_unsigned (true); |
88dfca6c UW |
5744 | return t; |
5745 | } | |
5746 | ||
e9bb382b | 5747 | /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH. |
77b7c781 | 5748 | NAME is the type name. BIT is the size of the flag word in bits. */ |
5212577a | 5749 | |
e9bb382b | 5750 | struct type * |
77b7c781 | 5751 | arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit) |
e9bb382b | 5752 | { |
e9bb382b UW |
5753 | struct type *type; |
5754 | ||
77b7c781 | 5755 | type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name); |
653223d3 | 5756 | type->set_is_unsigned (true); |
5e33d5f4 | 5757 | type->set_num_fields (0); |
81516450 | 5758 | /* Pre-allocate enough space assuming every field is one bit. */ |
3cabb6b0 SM |
5759 | type->set_fields |
5760 | ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field))); | |
e9bb382b UW |
5761 | |
5762 | return type; | |
5763 | } | |
5764 | ||
5765 | /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
81516450 DE |
5766 | position BITPOS is called NAME. Pass NAME as "" for fields that |
5767 | should not be printed. */ | |
5768 | ||
5769 | void | |
5770 | append_flags_type_field (struct type *type, int start_bitpos, int nr_bits, | |
695bfa52 | 5771 | struct type *field_type, const char *name) |
81516450 DE |
5772 | { |
5773 | int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT; | |
1f704f76 | 5774 | int field_nr = type->num_fields (); |
81516450 | 5775 | |
78134374 | 5776 | gdb_assert (type->code () == TYPE_CODE_FLAGS); |
1f704f76 | 5777 | gdb_assert (type->num_fields () + 1 <= type_bitsize); |
81516450 DE |
5778 | gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize); |
5779 | gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize); | |
5780 | gdb_assert (name != NULL); | |
5781 | ||
5782 | TYPE_FIELD_NAME (type, field_nr) = xstrdup (name); | |
5d14b6e5 | 5783 | type->field (field_nr).set_type (field_type); |
ceacbf6e | 5784 | SET_FIELD_BITPOS (type->field (field_nr), start_bitpos); |
81516450 | 5785 | TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits; |
5e33d5f4 | 5786 | type->set_num_fields (type->num_fields () + 1); |
81516450 DE |
5787 | } |
5788 | ||
5789 | /* Special version of append_flags_type_field to add a flag field. | |
5790 | Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
e9bb382b | 5791 | position BITPOS is called NAME. */ |
5212577a | 5792 | |
e9bb382b | 5793 | void |
695bfa52 | 5794 | append_flags_type_flag (struct type *type, int bitpos, const char *name) |
e9bb382b | 5795 | { |
81516450 | 5796 | struct gdbarch *gdbarch = get_type_arch (type); |
e9bb382b | 5797 | |
81516450 DE |
5798 | append_flags_type_field (type, bitpos, 1, |
5799 | builtin_type (gdbarch)->builtin_bool, | |
5800 | name); | |
e9bb382b UW |
5801 | } |
5802 | ||
5803 | /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as | |
5804 | specified by CODE) associated with GDBARCH. NAME is the type name. */ | |
5212577a | 5805 | |
e9bb382b | 5806 | struct type * |
695bfa52 TT |
5807 | arch_composite_type (struct gdbarch *gdbarch, const char *name, |
5808 | enum type_code code) | |
e9bb382b UW |
5809 | { |
5810 | struct type *t; | |
d8734c88 | 5811 | |
e9bb382b UW |
5812 | gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION); |
5813 | t = arch_type (gdbarch, code, 0, NULL); | |
d0e39ea2 | 5814 | t->set_name (name); |
e9bb382b UW |
5815 | INIT_CPLUS_SPECIFIC (t); |
5816 | return t; | |
5817 | } | |
5818 | ||
5819 | /* Add new field with name NAME and type FIELD to composite type T. | |
f5dff777 DJ |
5820 | Do not set the field's position or adjust the type's length; |
5821 | the caller should do so. Return the new field. */ | |
5212577a | 5822 | |
f5dff777 | 5823 | struct field * |
695bfa52 | 5824 | append_composite_type_field_raw (struct type *t, const char *name, |
f5dff777 | 5825 | struct type *field) |
e9bb382b UW |
5826 | { |
5827 | struct field *f; | |
d8734c88 | 5828 | |
1f704f76 | 5829 | t->set_num_fields (t->num_fields () + 1); |
80fc5e77 | 5830 | t->set_fields (XRESIZEVEC (struct field, t->fields (), |
3cabb6b0 | 5831 | t->num_fields ())); |
80fc5e77 | 5832 | f = &t->field (t->num_fields () - 1); |
e9bb382b | 5833 | memset (f, 0, sizeof f[0]); |
5d14b6e5 | 5834 | f[0].set_type (field); |
e9bb382b | 5835 | FIELD_NAME (f[0]) = name; |
f5dff777 DJ |
5836 | return f; |
5837 | } | |
5838 | ||
5839 | /* Add new field with name NAME and type FIELD to composite type T. | |
5840 | ALIGNMENT (if non-zero) specifies the minimum field alignment. */ | |
5212577a | 5841 | |
f5dff777 | 5842 | void |
695bfa52 | 5843 | append_composite_type_field_aligned (struct type *t, const char *name, |
f5dff777 DJ |
5844 | struct type *field, int alignment) |
5845 | { | |
5846 | struct field *f = append_composite_type_field_raw (t, name, field); | |
d8734c88 | 5847 | |
78134374 | 5848 | if (t->code () == TYPE_CODE_UNION) |
e9bb382b UW |
5849 | { |
5850 | if (TYPE_LENGTH (t) < TYPE_LENGTH (field)) | |
5851 | TYPE_LENGTH (t) = TYPE_LENGTH (field); | |
5852 | } | |
78134374 | 5853 | else if (t->code () == TYPE_CODE_STRUCT) |
e9bb382b UW |
5854 | { |
5855 | TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field); | |
1f704f76 | 5856 | if (t->num_fields () > 1) |
e9bb382b | 5857 | { |
f41f5e61 PA |
5858 | SET_FIELD_BITPOS (f[0], |
5859 | (FIELD_BITPOS (f[-1]) | |
b6cdac4b | 5860 | + (TYPE_LENGTH (f[-1].type ()) |
f41f5e61 | 5861 | * TARGET_CHAR_BIT))); |
e9bb382b UW |
5862 | |
5863 | if (alignment) | |
5864 | { | |
86c3c1fc AB |
5865 | int left; |
5866 | ||
5867 | alignment *= TARGET_CHAR_BIT; | |
5868 | left = FIELD_BITPOS (f[0]) % alignment; | |
d8734c88 | 5869 | |
e9bb382b UW |
5870 | if (left) |
5871 | { | |
f41f5e61 | 5872 | SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left)); |
86c3c1fc | 5873 | TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT; |
e9bb382b UW |
5874 | } |
5875 | } | |
5876 | } | |
5877 | } | |
5878 | } | |
5879 | ||
5880 | /* Add new field with name NAME and type FIELD to composite type T. */ | |
5212577a | 5881 | |
e9bb382b | 5882 | void |
695bfa52 | 5883 | append_composite_type_field (struct type *t, const char *name, |
e9bb382b UW |
5884 | struct type *field) |
5885 | { | |
5886 | append_composite_type_field_aligned (t, name, field, 0); | |
5887 | } | |
5888 | ||
09584414 JB |
5889 | \f |
5890 | ||
5891 | /* We manage the lifetimes of fixed_point_type_info objects by | |
5892 | attaching them to the objfile. Currently, these objects are | |
5893 | modified during construction, and GMP does not provide a way to | |
5894 | hash the contents of an mpq_t; so it's a bit of a pain to hash-cons | |
5895 | them. If we did do this, they could be moved to the per-BFD and | |
5896 | shared across objfiles. */ | |
5897 | typedef std::vector<std::unique_ptr<fixed_point_type_info>> | |
5898 | fixed_point_type_storage; | |
5899 | ||
5900 | /* Key used for managing the storage of fixed-point type info. */ | |
5901 | static const struct objfile_key<fixed_point_type_storage> | |
5902 | fixed_point_objfile_key; | |
5903 | ||
5904 | /* See gdbtypes.h. */ | |
5905 | ||
2a12c336 | 5906 | void |
09584414 JB |
5907 | allocate_fixed_point_type_info (struct type *type) |
5908 | { | |
5909 | std::unique_ptr<fixed_point_type_info> up (new fixed_point_type_info); | |
2a12c336 | 5910 | fixed_point_type_info *info; |
09584414 JB |
5911 | |
5912 | if (TYPE_OBJFILE_OWNED (type)) | |
5913 | { | |
5914 | fixed_point_type_storage *storage | |
5915 | = fixed_point_objfile_key.get (TYPE_OBJFILE (type)); | |
5916 | if (storage == nullptr) | |
5917 | storage = fixed_point_objfile_key.emplace (TYPE_OBJFILE (type)); | |
2a12c336 | 5918 | info = up.get (); |
09584414 JB |
5919 | storage->push_back (std::move (up)); |
5920 | } | |
5921 | else | |
5922 | { | |
5923 | /* We just leak the memory, because that's what we do generally | |
5924 | for non-objfile-attached types. */ | |
2a12c336 | 5925 | info = up.release (); |
09584414 JB |
5926 | } |
5927 | ||
2a12c336 | 5928 | type->set_fixed_point_info (info); |
09584414 JB |
5929 | } |
5930 | ||
5931 | /* See gdbtypes.h. */ | |
5932 | ||
5933 | bool | |
5934 | is_fixed_point_type (struct type *type) | |
5935 | { | |
5936 | while (check_typedef (type)->code () == TYPE_CODE_RANGE) | |
5937 | type = TYPE_TARGET_TYPE (check_typedef (type)); | |
5938 | type = check_typedef (type); | |
5939 | ||
5940 | return type->code () == TYPE_CODE_FIXED_POINT; | |
5941 | } | |
5942 | ||
5943 | /* See gdbtypes.h. */ | |
5944 | ||
5945 | struct type * | |
d19937a7 | 5946 | type::fixed_point_type_base_type () |
09584414 | 5947 | { |
d19937a7 JB |
5948 | struct type *type = this; |
5949 | ||
09584414 JB |
5950 | while (check_typedef (type)->code () == TYPE_CODE_RANGE) |
5951 | type = TYPE_TARGET_TYPE (check_typedef (type)); | |
5952 | type = check_typedef (type); | |
5953 | ||
5954 | gdb_assert (type->code () == TYPE_CODE_FIXED_POINT); | |
5955 | return type; | |
5956 | } | |
5957 | ||
5958 | /* See gdbtypes.h. */ | |
5959 | ||
5960 | const gdb_mpq & | |
e6fcee3a | 5961 | type::fixed_point_scaling_factor () |
09584414 | 5962 | { |
e6fcee3a | 5963 | struct type *type = this->fixed_point_type_base_type (); |
09584414 | 5964 | |
2a12c336 | 5965 | return type->fixed_point_info ().scaling_factor; |
09584414 JB |
5966 | } |
5967 | ||
5968 | \f | |
5969 | ||
000177f0 AC |
5970 | static struct gdbarch_data *gdbtypes_data; |
5971 | ||
5972 | const struct builtin_type * | |
5973 | builtin_type (struct gdbarch *gdbarch) | |
5974 | { | |
9a3c8263 | 5975 | return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data); |
000177f0 AC |
5976 | } |
5977 | ||
5978 | static void * | |
5979 | gdbtypes_post_init (struct gdbarch *gdbarch) | |
5980 | { | |
5981 | struct builtin_type *builtin_type | |
5982 | = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type); | |
5983 | ||
46bf5051 | 5984 | /* Basic types. */ |
e9bb382b | 5985 | builtin_type->builtin_void |
77b7c781 | 5986 | = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); |
e9bb382b UW |
5987 | builtin_type->builtin_char |
5988 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, | |
5989 | !gdbarch_char_signed (gdbarch), "char"); | |
15152a54 | 5990 | builtin_type->builtin_char->set_has_no_signedness (true); |
e9bb382b UW |
5991 | builtin_type->builtin_signed_char |
5992 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, | |
5993 | 0, "signed char"); | |
5994 | builtin_type->builtin_unsigned_char | |
5995 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, | |
5996 | 1, "unsigned char"); | |
5997 | builtin_type->builtin_short | |
5998 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
5999 | 0, "short"); | |
6000 | builtin_type->builtin_unsigned_short | |
6001 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
6002 | 1, "unsigned short"); | |
6003 | builtin_type->builtin_int | |
6004 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
6005 | 0, "int"); | |
6006 | builtin_type->builtin_unsigned_int | |
6007 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
6008 | 1, "unsigned int"); | |
6009 | builtin_type->builtin_long | |
6010 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
6011 | 0, "long"); | |
6012 | builtin_type->builtin_unsigned_long | |
6013 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
6014 | 1, "unsigned long"); | |
6015 | builtin_type->builtin_long_long | |
6016 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
6017 | 0, "long long"); | |
6018 | builtin_type->builtin_unsigned_long_long | |
6019 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
6020 | 1, "unsigned long long"); | |
a6d0f249 AH |
6021 | builtin_type->builtin_half |
6022 | = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch), | |
6023 | "half", gdbarch_half_format (gdbarch)); | |
70bd8e24 | 6024 | builtin_type->builtin_float |
e9bb382b | 6025 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), |
27067745 | 6026 | "float", gdbarch_float_format (gdbarch)); |
2a67f09d FW |
6027 | builtin_type->builtin_bfloat16 |
6028 | = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch), | |
6029 | "bfloat16", gdbarch_bfloat16_format (gdbarch)); | |
70bd8e24 | 6030 | builtin_type->builtin_double |
e9bb382b | 6031 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), |
27067745 | 6032 | "double", gdbarch_double_format (gdbarch)); |
70bd8e24 | 6033 | builtin_type->builtin_long_double |
e9bb382b | 6034 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
27067745 | 6035 | "long double", gdbarch_long_double_format (gdbarch)); |
70bd8e24 | 6036 | builtin_type->builtin_complex |
5b930b45 | 6037 | = init_complex_type ("complex", builtin_type->builtin_float); |
70bd8e24 | 6038 | builtin_type->builtin_double_complex |
5b930b45 | 6039 | = init_complex_type ("double complex", builtin_type->builtin_double); |
e9bb382b | 6040 | builtin_type->builtin_string |
77b7c781 | 6041 | = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string"); |
e9bb382b | 6042 | builtin_type->builtin_bool |
77b7c781 | 6043 | = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool"); |
000177f0 | 6044 | |
7678ef8f TJB |
6045 | /* The following three are about decimal floating point types, which |
6046 | are 32-bits, 64-bits and 128-bits respectively. */ | |
6047 | builtin_type->builtin_decfloat | |
88dfca6c | 6048 | = arch_decfloat_type (gdbarch, 32, "_Decimal32"); |
7678ef8f | 6049 | builtin_type->builtin_decdouble |
88dfca6c | 6050 | = arch_decfloat_type (gdbarch, 64, "_Decimal64"); |
7678ef8f | 6051 | builtin_type->builtin_declong |
88dfca6c | 6052 | = arch_decfloat_type (gdbarch, 128, "_Decimal128"); |
7678ef8f | 6053 | |
69feb676 | 6054 | /* "True" character types. */ |
e9bb382b UW |
6055 | builtin_type->builtin_true_char |
6056 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character"); | |
6057 | builtin_type->builtin_true_unsigned_char | |
6058 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character"); | |
69feb676 | 6059 | |
df4df182 | 6060 | /* Fixed-size integer types. */ |
e9bb382b UW |
6061 | builtin_type->builtin_int0 |
6062 | = arch_integer_type (gdbarch, 0, 0, "int0_t"); | |
6063 | builtin_type->builtin_int8 | |
6064 | = arch_integer_type (gdbarch, 8, 0, "int8_t"); | |
6065 | builtin_type->builtin_uint8 | |
6066 | = arch_integer_type (gdbarch, 8, 1, "uint8_t"); | |
6067 | builtin_type->builtin_int16 | |
6068 | = arch_integer_type (gdbarch, 16, 0, "int16_t"); | |
6069 | builtin_type->builtin_uint16 | |
6070 | = arch_integer_type (gdbarch, 16, 1, "uint16_t"); | |
d1908f2d JD |
6071 | builtin_type->builtin_int24 |
6072 | = arch_integer_type (gdbarch, 24, 0, "int24_t"); | |
6073 | builtin_type->builtin_uint24 | |
6074 | = arch_integer_type (gdbarch, 24, 1, "uint24_t"); | |
e9bb382b UW |
6075 | builtin_type->builtin_int32 |
6076 | = arch_integer_type (gdbarch, 32, 0, "int32_t"); | |
6077 | builtin_type->builtin_uint32 | |
6078 | = arch_integer_type (gdbarch, 32, 1, "uint32_t"); | |
6079 | builtin_type->builtin_int64 | |
6080 | = arch_integer_type (gdbarch, 64, 0, "int64_t"); | |
6081 | builtin_type->builtin_uint64 | |
6082 | = arch_integer_type (gdbarch, 64, 1, "uint64_t"); | |
6083 | builtin_type->builtin_int128 | |
6084 | = arch_integer_type (gdbarch, 128, 0, "int128_t"); | |
6085 | builtin_type->builtin_uint128 | |
6086 | = arch_integer_type (gdbarch, 128, 1, "uint128_t"); | |
314ad88d PA |
6087 | |
6088 | builtin_type->builtin_int8->set_instance_flags | |
6089 | (builtin_type->builtin_int8->instance_flags () | |
6090 | | TYPE_INSTANCE_FLAG_NOTTEXT); | |
6091 | ||
6092 | builtin_type->builtin_uint8->set_instance_flags | |
6093 | (builtin_type->builtin_uint8->instance_flags () | |
6094 | | TYPE_INSTANCE_FLAG_NOTTEXT); | |
df4df182 | 6095 | |
9a22f0d0 PM |
6096 | /* Wide character types. */ |
6097 | builtin_type->builtin_char16 | |
53e710ac | 6098 | = arch_integer_type (gdbarch, 16, 1, "char16_t"); |
9a22f0d0 | 6099 | builtin_type->builtin_char32 |
53e710ac | 6100 | = arch_integer_type (gdbarch, 32, 1, "char32_t"); |
53375380 PA |
6101 | builtin_type->builtin_wchar |
6102 | = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch), | |
6103 | !gdbarch_wchar_signed (gdbarch), "wchar_t"); | |
9a22f0d0 | 6104 | |
46bf5051 | 6105 | /* Default data/code pointer types. */ |
e9bb382b UW |
6106 | builtin_type->builtin_data_ptr |
6107 | = lookup_pointer_type (builtin_type->builtin_void); | |
6108 | builtin_type->builtin_func_ptr | |
6109 | = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void)); | |
0875794a JK |
6110 | builtin_type->builtin_func_func |
6111 | = lookup_function_type (builtin_type->builtin_func_ptr); | |
46bf5051 | 6112 | |
78267919 | 6113 | /* This type represents a GDB internal function. */ |
e9bb382b UW |
6114 | builtin_type->internal_fn |
6115 | = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0, | |
6116 | "<internal function>"); | |
78267919 | 6117 | |
e81e7f5e SC |
6118 | /* This type represents an xmethod. */ |
6119 | builtin_type->xmethod | |
6120 | = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>"); | |
6121 | ||
46bf5051 UW |
6122 | return builtin_type; |
6123 | } | |
6124 | ||
46bf5051 UW |
6125 | /* This set of objfile-based types is intended to be used by symbol |
6126 | readers as basic types. */ | |
6127 | ||
7a102139 TT |
6128 | static const struct objfile_key<struct objfile_type, |
6129 | gdb::noop_deleter<struct objfile_type>> | |
6130 | objfile_type_data; | |
46bf5051 UW |
6131 | |
6132 | const struct objfile_type * | |
6133 | objfile_type (struct objfile *objfile) | |
6134 | { | |
6135 | struct gdbarch *gdbarch; | |
7a102139 | 6136 | struct objfile_type *objfile_type = objfile_type_data.get (objfile); |
46bf5051 UW |
6137 | |
6138 | if (objfile_type) | |
6139 | return objfile_type; | |
6140 | ||
6141 | objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
6142 | 1, struct objfile_type); | |
6143 | ||
6144 | /* Use the objfile architecture to determine basic type properties. */ | |
08feed99 | 6145 | gdbarch = objfile->arch (); |
46bf5051 UW |
6146 | |
6147 | /* Basic types. */ | |
6148 | objfile_type->builtin_void | |
77b7c781 | 6149 | = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); |
46bf5051 | 6150 | objfile_type->builtin_char |
19f392bc UW |
6151 | = init_integer_type (objfile, TARGET_CHAR_BIT, |
6152 | !gdbarch_char_signed (gdbarch), "char"); | |
15152a54 | 6153 | objfile_type->builtin_char->set_has_no_signedness (true); |
46bf5051 | 6154 | objfile_type->builtin_signed_char |
19f392bc UW |
6155 | = init_integer_type (objfile, TARGET_CHAR_BIT, |
6156 | 0, "signed char"); | |
46bf5051 | 6157 | objfile_type->builtin_unsigned_char |
19f392bc UW |
6158 | = init_integer_type (objfile, TARGET_CHAR_BIT, |
6159 | 1, "unsigned char"); | |
46bf5051 | 6160 | objfile_type->builtin_short |
19f392bc UW |
6161 | = init_integer_type (objfile, gdbarch_short_bit (gdbarch), |
6162 | 0, "short"); | |
46bf5051 | 6163 | objfile_type->builtin_unsigned_short |
19f392bc UW |
6164 | = init_integer_type (objfile, gdbarch_short_bit (gdbarch), |
6165 | 1, "unsigned short"); | |
46bf5051 | 6166 | objfile_type->builtin_int |
19f392bc UW |
6167 | = init_integer_type (objfile, gdbarch_int_bit (gdbarch), |
6168 | 0, "int"); | |
46bf5051 | 6169 | objfile_type->builtin_unsigned_int |
19f392bc UW |
6170 | = init_integer_type (objfile, gdbarch_int_bit (gdbarch), |
6171 | 1, "unsigned int"); | |
46bf5051 | 6172 | objfile_type->builtin_long |
19f392bc UW |
6173 | = init_integer_type (objfile, gdbarch_long_bit (gdbarch), |
6174 | 0, "long"); | |
46bf5051 | 6175 | objfile_type->builtin_unsigned_long |
19f392bc UW |
6176 | = init_integer_type (objfile, gdbarch_long_bit (gdbarch), |
6177 | 1, "unsigned long"); | |
46bf5051 | 6178 | objfile_type->builtin_long_long |
19f392bc UW |
6179 | = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch), |
6180 | 0, "long long"); | |
46bf5051 | 6181 | objfile_type->builtin_unsigned_long_long |
19f392bc UW |
6182 | = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch), |
6183 | 1, "unsigned long long"); | |
46bf5051 | 6184 | objfile_type->builtin_float |
19f392bc UW |
6185 | = init_float_type (objfile, gdbarch_float_bit (gdbarch), |
6186 | "float", gdbarch_float_format (gdbarch)); | |
46bf5051 | 6187 | objfile_type->builtin_double |
19f392bc UW |
6188 | = init_float_type (objfile, gdbarch_double_bit (gdbarch), |
6189 | "double", gdbarch_double_format (gdbarch)); | |
46bf5051 | 6190 | objfile_type->builtin_long_double |
19f392bc UW |
6191 | = init_float_type (objfile, gdbarch_long_double_bit (gdbarch), |
6192 | "long double", gdbarch_long_double_format (gdbarch)); | |
46bf5051 UW |
6193 | |
6194 | /* This type represents a type that was unrecognized in symbol read-in. */ | |
6195 | objfile_type->builtin_error | |
19f392bc | 6196 | = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>"); |
46bf5051 UW |
6197 | |
6198 | /* The following set of types is used for symbols with no | |
6199 | debug information. */ | |
6200 | objfile_type->nodebug_text_symbol | |
77b7c781 | 6201 | = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT, |
19f392bc | 6202 | "<text variable, no debug info>"); |
03cc7249 | 6203 | |
0875794a | 6204 | objfile_type->nodebug_text_gnu_ifunc_symbol |
77b7c781 | 6205 | = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT, |
19f392bc | 6206 | "<text gnu-indirect-function variable, no debug info>"); |
03cc7249 SM |
6207 | objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true); |
6208 | ||
0875794a | 6209 | objfile_type->nodebug_got_plt_symbol |
19f392bc UW |
6210 | = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch), |
6211 | "<text from jump slot in .got.plt, no debug info>", | |
6212 | objfile_type->nodebug_text_symbol); | |
46bf5051 | 6213 | objfile_type->nodebug_data_symbol |
46a4882b | 6214 | = init_nodebug_var_type (objfile, "<data variable, no debug info>"); |
46bf5051 | 6215 | objfile_type->nodebug_unknown_symbol |
46a4882b | 6216 | = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>"); |
46bf5051 | 6217 | objfile_type->nodebug_tls_symbol |
46a4882b | 6218 | = init_nodebug_var_type (objfile, "<thread local variable, no debug info>"); |
000177f0 AC |
6219 | |
6220 | /* NOTE: on some targets, addresses and pointers are not necessarily | |
0a7cfe2c | 6221 | the same. |
000177f0 AC |
6222 | |
6223 | The upshot is: | |
6224 | - gdb's `struct type' always describes the target's | |
6225 | representation. | |
6226 | - gdb's `struct value' objects should always hold values in | |
6227 | target form. | |
6228 | - gdb's CORE_ADDR values are addresses in the unified virtual | |
6229 | address space that the assembler and linker work with. Thus, | |
6230 | since target_read_memory takes a CORE_ADDR as an argument, it | |
6231 | can access any memory on the target, even if the processor has | |
6232 | separate code and data address spaces. | |
6233 | ||
46bf5051 UW |
6234 | In this context, objfile_type->builtin_core_addr is a bit odd: |
6235 | it's a target type for a value the target will never see. It's | |
6236 | only used to hold the values of (typeless) linker symbols, which | |
6237 | are indeed in the unified virtual address space. */ | |
000177f0 | 6238 | |
46bf5051 | 6239 | objfile_type->builtin_core_addr |
19f392bc UW |
6240 | = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1, |
6241 | "__CORE_ADDR"); | |
64c50499 | 6242 | |
7a102139 | 6243 | objfile_type_data.set (objfile, objfile_type); |
46bf5051 | 6244 | return objfile_type; |
000177f0 AC |
6245 | } |
6246 | ||
6c265988 | 6247 | void _initialize_gdbtypes (); |
c906108c | 6248 | void |
6c265988 | 6249 | _initialize_gdbtypes () |
c906108c | 6250 | { |
5674de60 UW |
6251 | gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init); |
6252 | ||
ccce17b0 YQ |
6253 | add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug, |
6254 | _("Set debugging of C++ overloading."), | |
6255 | _("Show debugging of C++ overloading."), | |
6256 | _("When enabled, ranking of the " | |
6257 | "functions is displayed."), | |
6258 | NULL, | |
6259 | show_overload_debug, | |
6260 | &setdebuglist, &showdebuglist); | |
5674de60 | 6261 | |
7ba81444 | 6262 | /* Add user knob for controlling resolution of opaque types. */ |
5674de60 | 6263 | add_setshow_boolean_cmd ("opaque-type-resolution", class_support, |
3e43a32a MS |
6264 | &opaque_type_resolution, |
6265 | _("Set resolution of opaque struct/class/union" | |
6266 | " types (if set before loading symbols)."), | |
6267 | _("Show resolution of opaque struct/class/union" | |
6268 | " types (if set before loading symbols)."), | |
6269 | NULL, NULL, | |
5674de60 UW |
6270 | show_opaque_type_resolution, |
6271 | &setlist, &showlist); | |
a451cb65 KS |
6272 | |
6273 | /* Add an option to permit non-strict type checking. */ | |
6274 | add_setshow_boolean_cmd ("type", class_support, | |
6275 | &strict_type_checking, | |
6276 | _("Set strict type checking."), | |
6277 | _("Show strict type checking."), | |
6278 | NULL, NULL, | |
6279 | show_strict_type_checking, | |
6280 | &setchecklist, &showchecklist); | |
c906108c | 6281 | } |