Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Intel 386 target-dependent stuff. |
2 | Copyright (C) 1988, 1989, 1991, 1994, 1995, 1996, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "gdb_string.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "gdbcore.h" | |
27 | #include "target.h" | |
28 | #include "floatformat.h" | |
29 | #include "symtab.h" | |
30 | #include "gdbcmd.h" | |
31 | #include "command.h" | |
32 | ||
33 | static long i386_get_frame_setup PARAMS ((CORE_ADDR)); | |
34 | ||
35 | static void i386_follow_jump PARAMS ((void)); | |
36 | ||
37 | static void codestream_read PARAMS ((unsigned char *, int)); | |
38 | ||
39 | static void codestream_seek PARAMS ((CORE_ADDR)); | |
40 | ||
41 | static unsigned char codestream_fill PARAMS ((int)); | |
42 | ||
43 | CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *)); | |
44 | ||
45 | static int gdb_print_insn_i386 (bfd_vma, disassemble_info *); | |
46 | ||
47 | void _initialize_i386_tdep PARAMS ((void)); | |
48 | ||
917317f4 JM |
49 | /* i386_register_byte[i] is the offset into the register file of the |
50 | start of register number i. We initialize this from | |
51 | i386_register_raw_size. */ | |
52 | int i386_register_byte[MAX_NUM_REGS]; | |
53 | ||
ceb4951f JB |
54 | /* i386_register_raw_size[i] is the number of bytes of storage in |
55 | GDB's register array occupied by register i. */ | |
917317f4 JM |
56 | int i386_register_raw_size[MAX_NUM_REGS] = { |
57 | 4, 4, 4, 4, | |
58 | 4, 4, 4, 4, | |
59 | 4, 4, 4, 4, | |
60 | 4, 4, 4, 4, | |
61 | 10, 10, 10, 10, | |
62 | 10, 10, 10, 10, | |
63 | 4, 4, 4, 4, | |
64 | 4, 4, 4, 4, | |
65 | 16, 16, 16, 16, | |
66 | 16, 16, 16, 16, | |
67 | 4 | |
68 | }; | |
69 | ||
70 | /* i386_register_virtual_size[i] is the size in bytes of the virtual | |
71 | type of register i. */ | |
72 | int i386_register_virtual_size[MAX_NUM_REGS]; | |
73 | ||
74 | ||
c906108c | 75 | /* This is the variable the is set with "set disassembly-flavor", |
c5aa993b | 76 | and its legitimate values. */ |
c906108c SS |
77 | static char att_flavor[] = "att"; |
78 | static char intel_flavor[] = "intel"; | |
c5aa993b JM |
79 | static char *valid_flavors[] = |
80 | { | |
c906108c SS |
81 | att_flavor, |
82 | intel_flavor, | |
83 | NULL | |
84 | }; | |
85 | static char *disassembly_flavor = att_flavor; | |
86 | ||
d4f3574e SS |
87 | static void i386_print_register PARAMS ((char *, int, int)); |
88 | ||
7a292a7a SS |
89 | /* This is used to keep the bfd arch_info in sync with the disassembly flavor. */ |
90 | static void set_disassembly_flavor_sfunc PARAMS ((char *, int, struct cmd_list_element *)); | |
d4f3574e | 91 | static void set_disassembly_flavor PARAMS ((void)); |
7a292a7a | 92 | |
c906108c SS |
93 | /* Stdio style buffering was used to minimize calls to ptrace, but this |
94 | buffering did not take into account that the code section being accessed | |
95 | may not be an even number of buffers long (even if the buffer is only | |
96 | sizeof(int) long). In cases where the code section size happened to | |
97 | be a non-integral number of buffers long, attempting to read the last | |
98 | buffer would fail. Simply using target_read_memory and ignoring errors, | |
99 | rather than read_memory, is not the correct solution, since legitimate | |
100 | access errors would then be totally ignored. To properly handle this | |
101 | situation and continue to use buffering would require that this code | |
102 | be able to determine the minimum code section size granularity (not the | |
103 | alignment of the section itself, since the actual failing case that | |
104 | pointed out this problem had a section alignment of 4 but was not a | |
105 | multiple of 4 bytes long), on a target by target basis, and then | |
106 | adjust it's buffer size accordingly. This is messy, but potentially | |
107 | feasible. It probably needs the bfd library's help and support. For | |
108 | now, the buffer size is set to 1. (FIXME -fnf) */ | |
109 | ||
110 | #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */ | |
111 | static CORE_ADDR codestream_next_addr; | |
112 | static CORE_ADDR codestream_addr; | |
113 | static unsigned char codestream_buf[CODESTREAM_BUFSIZ]; | |
114 | static int codestream_off; | |
115 | static int codestream_cnt; | |
116 | ||
117 | #define codestream_tell() (codestream_addr + codestream_off) | |
118 | #define codestream_peek() (codestream_cnt == 0 ? \ | |
119 | codestream_fill(1): codestream_buf[codestream_off]) | |
120 | #define codestream_get() (codestream_cnt-- == 0 ? \ | |
121 | codestream_fill(0) : codestream_buf[codestream_off++]) | |
122 | ||
c5aa993b | 123 | static unsigned char |
c906108c | 124 | codestream_fill (peek_flag) |
c5aa993b | 125 | int peek_flag; |
c906108c SS |
126 | { |
127 | codestream_addr = codestream_next_addr; | |
128 | codestream_next_addr += CODESTREAM_BUFSIZ; | |
129 | codestream_off = 0; | |
130 | codestream_cnt = CODESTREAM_BUFSIZ; | |
131 | read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ); | |
c5aa993b | 132 | |
c906108c | 133 | if (peek_flag) |
c5aa993b | 134 | return (codestream_peek ()); |
c906108c | 135 | else |
c5aa993b | 136 | return (codestream_get ()); |
c906108c SS |
137 | } |
138 | ||
139 | static void | |
140 | codestream_seek (place) | |
c5aa993b | 141 | CORE_ADDR place; |
c906108c SS |
142 | { |
143 | codestream_next_addr = place / CODESTREAM_BUFSIZ; | |
144 | codestream_next_addr *= CODESTREAM_BUFSIZ; | |
145 | codestream_cnt = 0; | |
146 | codestream_fill (1); | |
c5aa993b | 147 | while (codestream_tell () != place) |
c906108c SS |
148 | codestream_get (); |
149 | } | |
150 | ||
151 | static void | |
152 | codestream_read (buf, count) | |
153 | unsigned char *buf; | |
154 | int count; | |
155 | { | |
156 | unsigned char *p; | |
157 | int i; | |
158 | p = buf; | |
159 | for (i = 0; i < count; i++) | |
160 | *p++ = codestream_get (); | |
161 | } | |
162 | ||
163 | /* next instruction is a jump, move to target */ | |
164 | ||
165 | static void | |
166 | i386_follow_jump () | |
167 | { | |
168 | unsigned char buf[4]; | |
169 | long delta; | |
170 | ||
171 | int data16; | |
172 | CORE_ADDR pos; | |
173 | ||
174 | pos = codestream_tell (); | |
175 | ||
176 | data16 = 0; | |
177 | if (codestream_peek () == 0x66) | |
178 | { | |
179 | codestream_get (); | |
180 | data16 = 1; | |
181 | } | |
182 | ||
183 | switch (codestream_get ()) | |
184 | { | |
185 | case 0xe9: | |
186 | /* relative jump: if data16 == 0, disp32, else disp16 */ | |
187 | if (data16) | |
188 | { | |
189 | codestream_read (buf, 2); | |
190 | delta = extract_signed_integer (buf, 2); | |
191 | ||
192 | /* include size of jmp inst (including the 0x66 prefix). */ | |
c5aa993b | 193 | pos += delta + 4; |
c906108c SS |
194 | } |
195 | else | |
196 | { | |
197 | codestream_read (buf, 4); | |
198 | delta = extract_signed_integer (buf, 4); | |
199 | ||
200 | pos += delta + 5; | |
201 | } | |
202 | break; | |
203 | case 0xeb: | |
204 | /* relative jump, disp8 (ignore data16) */ | |
205 | codestream_read (buf, 1); | |
206 | /* Sign-extend it. */ | |
207 | delta = extract_signed_integer (buf, 1); | |
208 | ||
209 | pos += delta + 2; | |
210 | break; | |
211 | } | |
212 | codestream_seek (pos); | |
213 | } | |
214 | ||
215 | /* | |
216 | * find & return amound a local space allocated, and advance codestream to | |
217 | * first register push (if any) | |
218 | * | |
219 | * if entry sequence doesn't make sense, return -1, and leave | |
220 | * codestream pointer random | |
221 | */ | |
222 | ||
223 | static long | |
224 | i386_get_frame_setup (pc) | |
225 | CORE_ADDR pc; | |
226 | { | |
227 | unsigned char op; | |
228 | ||
229 | codestream_seek (pc); | |
230 | ||
231 | i386_follow_jump (); | |
232 | ||
233 | op = codestream_get (); | |
234 | ||
235 | if (op == 0x58) /* popl %eax */ | |
236 | { | |
237 | /* | |
238 | * this function must start with | |
239 | * | |
c5aa993b | 240 | * popl %eax 0x58 |
c906108c SS |
241 | * xchgl %eax, (%esp) 0x87 0x04 0x24 |
242 | * or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00 | |
243 | * | |
244 | * (the system 5 compiler puts out the second xchg | |
245 | * inst, and the assembler doesn't try to optimize it, | |
246 | * so the 'sib' form gets generated) | |
247 | * | |
248 | * this sequence is used to get the address of the return | |
249 | * buffer for a function that returns a structure | |
250 | */ | |
251 | int pos; | |
252 | unsigned char buf[4]; | |
c5aa993b JM |
253 | static unsigned char proto1[3] = |
254 | {0x87, 0x04, 0x24}; | |
255 | static unsigned char proto2[4] = | |
256 | {0x87, 0x44, 0x24, 0x00}; | |
c906108c SS |
257 | pos = codestream_tell (); |
258 | codestream_read (buf, 4); | |
259 | if (memcmp (buf, proto1, 3) == 0) | |
260 | pos += 3; | |
261 | else if (memcmp (buf, proto2, 4) == 0) | |
262 | pos += 4; | |
263 | ||
264 | codestream_seek (pos); | |
c5aa993b | 265 | op = codestream_get (); /* update next opcode */ |
c906108c SS |
266 | } |
267 | ||
268 | if (op == 0x68 || op == 0x6a) | |
269 | { | |
270 | /* | |
271 | * this function may start with | |
272 | * | |
273 | * pushl constant | |
274 | * call _probe | |
275 | * addl $4, %esp | |
276 | * followed by | |
277 | * pushl %ebp | |
278 | * etc. | |
279 | */ | |
280 | int pos; | |
281 | unsigned char buf[8]; | |
282 | ||
283 | /* Skip past the pushl instruction; it has either a one-byte | |
284 | or a four-byte operand, depending on the opcode. */ | |
285 | pos = codestream_tell (); | |
286 | if (op == 0x68) | |
287 | pos += 4; | |
288 | else | |
289 | pos += 1; | |
290 | codestream_seek (pos); | |
291 | ||
292 | /* Read the following 8 bytes, which should be "call _probe" (6 bytes) | |
293 | followed by "addl $4,%esp" (2 bytes). */ | |
294 | codestream_read (buf, sizeof (buf)); | |
295 | if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4) | |
296 | pos += sizeof (buf); | |
297 | codestream_seek (pos); | |
c5aa993b | 298 | op = codestream_get (); /* update next opcode */ |
c906108c SS |
299 | } |
300 | ||
301 | if (op == 0x55) /* pushl %ebp */ | |
c5aa993b | 302 | { |
c906108c SS |
303 | /* check for movl %esp, %ebp - can be written two ways */ |
304 | switch (codestream_get ()) | |
305 | { | |
306 | case 0x8b: | |
307 | if (codestream_get () != 0xec) | |
308 | return (-1); | |
309 | break; | |
310 | case 0x89: | |
311 | if (codestream_get () != 0xe5) | |
312 | return (-1); | |
313 | break; | |
314 | default: | |
315 | return (-1); | |
316 | } | |
317 | /* check for stack adjustment | |
c5aa993b | 318 | |
c906108c SS |
319 | * subl $XXX, %esp |
320 | * | |
321 | * note: you can't subtract a 16 bit immediate | |
322 | * from a 32 bit reg, so we don't have to worry | |
323 | * about a data16 prefix | |
324 | */ | |
325 | op = codestream_peek (); | |
326 | if (op == 0x83) | |
327 | { | |
328 | /* subl with 8 bit immed */ | |
329 | codestream_get (); | |
330 | if (codestream_get () != 0xec) | |
331 | /* Some instruction starting with 0x83 other than subl. */ | |
332 | { | |
333 | codestream_seek (codestream_tell () - 2); | |
334 | return 0; | |
335 | } | |
336 | /* subl with signed byte immediate | |
337 | * (though it wouldn't make sense to be negative) | |
338 | */ | |
c5aa993b | 339 | return (codestream_get ()); |
c906108c SS |
340 | } |
341 | else if (op == 0x81) | |
342 | { | |
343 | char buf[4]; | |
344 | /* Maybe it is subl with 32 bit immedediate. */ | |
c5aa993b | 345 | codestream_get (); |
c906108c SS |
346 | if (codestream_get () != 0xec) |
347 | /* Some instruction starting with 0x81 other than subl. */ | |
348 | { | |
349 | codestream_seek (codestream_tell () - 2); | |
350 | return 0; | |
351 | } | |
352 | /* It is subl with 32 bit immediate. */ | |
c5aa993b | 353 | codestream_read ((unsigned char *) buf, 4); |
c906108c SS |
354 | return extract_signed_integer (buf, 4); |
355 | } | |
356 | else | |
357 | { | |
358 | return (0); | |
359 | } | |
360 | } | |
361 | else if (op == 0xc8) | |
362 | { | |
363 | char buf[2]; | |
364 | /* enter instruction: arg is 16 bit unsigned immed */ | |
c5aa993b JM |
365 | codestream_read ((unsigned char *) buf, 2); |
366 | codestream_get (); /* flush final byte of enter instruction */ | |
c906108c SS |
367 | return extract_unsigned_integer (buf, 2); |
368 | } | |
369 | return (-1); | |
370 | } | |
371 | ||
372 | /* Return number of args passed to a frame. | |
373 | Can return -1, meaning no way to tell. */ | |
374 | ||
375 | int | |
376 | i386_frame_num_args (fi) | |
377 | struct frame_info *fi; | |
378 | { | |
379 | #if 1 | |
380 | return -1; | |
381 | #else | |
382 | /* This loses because not only might the compiler not be popping the | |
383 | args right after the function call, it might be popping args from both | |
384 | this call and a previous one, and we would say there are more args | |
385 | than there really are. */ | |
386 | ||
c5aa993b JM |
387 | int retpc; |
388 | unsigned char op; | |
c906108c SS |
389 | struct frame_info *pfi; |
390 | ||
391 | /* on the 386, the instruction following the call could be: | |
392 | popl %ecx - one arg | |
393 | addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits | |
394 | anything else - zero args */ | |
395 | ||
396 | int frameless; | |
397 | ||
392a587b | 398 | frameless = FRAMELESS_FUNCTION_INVOCATION (fi); |
c906108c SS |
399 | if (frameless) |
400 | /* In the absence of a frame pointer, GDB doesn't get correct values | |
401 | for nameless arguments. Return -1, so it doesn't print any | |
402 | nameless arguments. */ | |
403 | return -1; | |
404 | ||
c5aa993b | 405 | pfi = get_prev_frame (fi); |
c906108c SS |
406 | if (pfi == 0) |
407 | { | |
408 | /* Note: this can happen if we are looking at the frame for | |
c5aa993b JM |
409 | main, because FRAME_CHAIN_VALID won't let us go into |
410 | start. If we have debugging symbols, that's not really | |
411 | a big deal; it just means it will only show as many arguments | |
412 | to main as are declared. */ | |
c906108c SS |
413 | return -1; |
414 | } | |
415 | else | |
416 | { | |
c5aa993b JM |
417 | retpc = pfi->pc; |
418 | op = read_memory_integer (retpc, 1); | |
419 | if (op == 0x59) | |
420 | /* pop %ecx */ | |
421 | return 1; | |
c906108c SS |
422 | else if (op == 0x83) |
423 | { | |
c5aa993b JM |
424 | op = read_memory_integer (retpc + 1, 1); |
425 | if (op == 0xc4) | |
426 | /* addl $<signed imm 8 bits>, %esp */ | |
427 | return (read_memory_integer (retpc + 2, 1) & 0xff) / 4; | |
c906108c SS |
428 | else |
429 | return 0; | |
430 | } | |
431 | else if (op == 0x81) | |
c5aa993b JM |
432 | { /* add with 32 bit immediate */ |
433 | op = read_memory_integer (retpc + 1, 1); | |
434 | if (op == 0xc4) | |
435 | /* addl $<imm 32>, %esp */ | |
436 | return read_memory_integer (retpc + 2, 4) / 4; | |
c906108c SS |
437 | else |
438 | return 0; | |
439 | } | |
440 | else | |
441 | { | |
442 | return 0; | |
443 | } | |
444 | } | |
445 | #endif | |
446 | } | |
447 | ||
448 | /* | |
449 | * parse the first few instructions of the function to see | |
450 | * what registers were stored. | |
451 | * | |
452 | * We handle these cases: | |
453 | * | |
454 | * The startup sequence can be at the start of the function, | |
455 | * or the function can start with a branch to startup code at the end. | |
456 | * | |
457 | * %ebp can be set up with either the 'enter' instruction, or | |
458 | * 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful, | |
459 | * but was once used in the sys5 compiler) | |
460 | * | |
461 | * Local space is allocated just below the saved %ebp by either the | |
462 | * 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has | |
463 | * a 16 bit unsigned argument for space to allocate, and the | |
464 | * 'addl' instruction could have either a signed byte, or | |
465 | * 32 bit immediate. | |
466 | * | |
467 | * Next, the registers used by this function are pushed. In | |
468 | * the sys5 compiler they will always be in the order: %edi, %esi, %ebx | |
469 | * (and sometimes a harmless bug causes it to also save but not restore %eax); | |
470 | * however, the code below is willing to see the pushes in any order, | |
471 | * and will handle up to 8 of them. | |
472 | * | |
473 | * If the setup sequence is at the end of the function, then the | |
474 | * next instruction will be a branch back to the start. | |
475 | */ | |
476 | ||
477 | void | |
1211c4e4 | 478 | i386_frame_init_saved_regs (fip) |
c906108c | 479 | struct frame_info *fip; |
c906108c SS |
480 | { |
481 | long locals = -1; | |
482 | unsigned char op; | |
483 | CORE_ADDR dummy_bottom; | |
484 | CORE_ADDR adr; | |
485 | CORE_ADDR pc; | |
486 | int i; | |
c5aa993b | 487 | |
1211c4e4 AC |
488 | if (fip->saved_regs) |
489 | return; | |
490 | ||
491 | frame_saved_regs_zalloc (fip); | |
c5aa993b | 492 | |
c906108c SS |
493 | /* if frame is the end of a dummy, compute where the |
494 | * beginning would be | |
495 | */ | |
496 | dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH; | |
c5aa993b | 497 | |
c906108c | 498 | /* check if the PC is in the stack, in a dummy frame */ |
c5aa993b | 499 | if (dummy_bottom <= fip->pc && fip->pc <= fip->frame) |
c906108c SS |
500 | { |
501 | /* all regs were saved by push_call_dummy () */ | |
502 | adr = fip->frame; | |
c5aa993b | 503 | for (i = 0; i < NUM_REGS; i++) |
c906108c SS |
504 | { |
505 | adr -= REGISTER_RAW_SIZE (i); | |
1211c4e4 | 506 | fip->saved_regs[i] = adr; |
c906108c SS |
507 | } |
508 | return; | |
509 | } | |
c5aa993b | 510 | |
c906108c SS |
511 | pc = get_pc_function_start (fip->pc); |
512 | if (pc != 0) | |
513 | locals = i386_get_frame_setup (pc); | |
c5aa993b JM |
514 | |
515 | if (locals >= 0) | |
c906108c SS |
516 | { |
517 | adr = fip->frame - 4 - locals; | |
c5aa993b | 518 | for (i = 0; i < 8; i++) |
c906108c SS |
519 | { |
520 | op = codestream_get (); | |
521 | if (op < 0x50 || op > 0x57) | |
522 | break; | |
523 | #ifdef I386_REGNO_TO_SYMMETRY | |
524 | /* Dynix uses different internal numbering. Ick. */ | |
1211c4e4 | 525 | fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = adr; |
c906108c | 526 | #else |
1211c4e4 | 527 | fip->saved_regs[op - 0x50] = adr; |
c906108c SS |
528 | #endif |
529 | adr -= 4; | |
530 | } | |
531 | } | |
c5aa993b | 532 | |
1211c4e4 AC |
533 | fip->saved_regs[PC_REGNUM] = fip->frame + 4; |
534 | fip->saved_regs[FP_REGNUM] = fip->frame; | |
c906108c SS |
535 | } |
536 | ||
537 | /* return pc of first real instruction */ | |
538 | ||
539 | int | |
540 | i386_skip_prologue (pc) | |
541 | int pc; | |
542 | { | |
543 | unsigned char op; | |
544 | int i; | |
c5aa993b JM |
545 | static unsigned char pic_pat[6] = |
546 | {0xe8, 0, 0, 0, 0, /* call 0x0 */ | |
547 | 0x5b, /* popl %ebx */ | |
548 | }; | |
c906108c | 549 | CORE_ADDR pos; |
c5aa993b | 550 | |
c906108c SS |
551 | if (i386_get_frame_setup (pc) < 0) |
552 | return (pc); | |
c5aa993b | 553 | |
c906108c SS |
554 | /* found valid frame setup - codestream now points to |
555 | * start of push instructions for saving registers | |
556 | */ | |
c5aa993b | 557 | |
c906108c SS |
558 | /* skip over register saves */ |
559 | for (i = 0; i < 8; i++) | |
560 | { | |
561 | op = codestream_peek (); | |
562 | /* break if not pushl inst */ | |
c5aa993b | 563 | if (op < 0x50 || op > 0x57) |
c906108c SS |
564 | break; |
565 | codestream_get (); | |
566 | } | |
567 | ||
568 | /* The native cc on SVR4 in -K PIC mode inserts the following code to get | |
569 | the address of the global offset table (GOT) into register %ebx. | |
c5aa993b JM |
570 | call 0x0 |
571 | popl %ebx | |
572 | movl %ebx,x(%ebp) (optional) | |
573 | addl y,%ebx | |
c906108c SS |
574 | This code is with the rest of the prologue (at the end of the |
575 | function), so we have to skip it to get to the first real | |
576 | instruction at the start of the function. */ | |
c5aa993b | 577 | |
c906108c SS |
578 | pos = codestream_tell (); |
579 | for (i = 0; i < 6; i++) | |
580 | { | |
581 | op = codestream_get (); | |
c5aa993b | 582 | if (pic_pat[i] != op) |
c906108c SS |
583 | break; |
584 | } | |
585 | if (i == 6) | |
586 | { | |
587 | unsigned char buf[4]; | |
588 | long delta = 6; | |
589 | ||
590 | op = codestream_get (); | |
c5aa993b | 591 | if (op == 0x89) /* movl %ebx, x(%ebp) */ |
c906108c SS |
592 | { |
593 | op = codestream_get (); | |
c5aa993b | 594 | if (op == 0x5d) /* one byte offset from %ebp */ |
c906108c SS |
595 | { |
596 | delta += 3; | |
597 | codestream_read (buf, 1); | |
598 | } | |
c5aa993b | 599 | else if (op == 0x9d) /* four byte offset from %ebp */ |
c906108c SS |
600 | { |
601 | delta += 6; | |
602 | codestream_read (buf, 4); | |
603 | } | |
c5aa993b JM |
604 | else /* unexpected instruction */ |
605 | delta = -1; | |
606 | op = codestream_get (); | |
c906108c | 607 | } |
c5aa993b JM |
608 | /* addl y,%ebx */ |
609 | if (delta > 0 && op == 0x81 && codestream_get () == 0xc3) | |
c906108c | 610 | { |
c5aa993b | 611 | pos += delta + 6; |
c906108c SS |
612 | } |
613 | } | |
614 | codestream_seek (pos); | |
c5aa993b | 615 | |
c906108c | 616 | i386_follow_jump (); |
c5aa993b | 617 | |
c906108c SS |
618 | return (codestream_tell ()); |
619 | } | |
620 | ||
621 | void | |
622 | i386_push_dummy_frame () | |
623 | { | |
624 | CORE_ADDR sp = read_register (SP_REGNUM); | |
625 | int regnum; | |
626 | char regbuf[MAX_REGISTER_RAW_SIZE]; | |
c5aa993b | 627 | |
c906108c SS |
628 | sp = push_word (sp, read_register (PC_REGNUM)); |
629 | sp = push_word (sp, read_register (FP_REGNUM)); | |
630 | write_register (FP_REGNUM, sp); | |
631 | for (regnum = 0; regnum < NUM_REGS; regnum++) | |
632 | { | |
633 | read_register_gen (regnum, regbuf); | |
634 | sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum)); | |
635 | } | |
636 | write_register (SP_REGNUM, sp); | |
637 | } | |
638 | ||
639 | void | |
640 | i386_pop_frame () | |
641 | { | |
642 | struct frame_info *frame = get_current_frame (); | |
643 | CORE_ADDR fp; | |
644 | int regnum; | |
c906108c | 645 | char regbuf[MAX_REGISTER_RAW_SIZE]; |
c5aa993b | 646 | |
c906108c | 647 | fp = FRAME_FP (frame); |
1211c4e4 AC |
648 | i386_frame_init_saved_regs (frame); |
649 | ||
c5aa993b | 650 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
c906108c SS |
651 | { |
652 | CORE_ADDR adr; | |
1211c4e4 | 653 | adr = frame->saved_regs[regnum]; |
c906108c SS |
654 | if (adr) |
655 | { | |
656 | read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum)); | |
657 | write_register_bytes (REGISTER_BYTE (regnum), regbuf, | |
658 | REGISTER_RAW_SIZE (regnum)); | |
659 | } | |
660 | } | |
661 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); | |
662 | write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); | |
663 | write_register (SP_REGNUM, fp + 8); | |
664 | flush_cached_frames (); | |
665 | } | |
666 | ||
667 | #ifdef GET_LONGJMP_TARGET | |
668 | ||
669 | /* Figure out where the longjmp will land. Slurp the args out of the stack. | |
670 | We expect the first arg to be a pointer to the jmp_buf structure from which | |
671 | we extract the pc (JB_PC) that we will land at. The pc is copied into PC. | |
672 | This routine returns true on success. */ | |
673 | ||
674 | int | |
c5aa993b | 675 | get_longjmp_target (pc) |
c906108c SS |
676 | CORE_ADDR *pc; |
677 | { | |
678 | char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; | |
679 | CORE_ADDR sp, jb_addr; | |
680 | ||
681 | sp = read_register (SP_REGNUM); | |
682 | ||
c5aa993b | 683 | if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */ |
c906108c SS |
684 | buf, |
685 | TARGET_PTR_BIT / TARGET_CHAR_BIT)) | |
686 | return 0; | |
687 | ||
688 | jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT); | |
689 | ||
690 | if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, | |
691 | TARGET_PTR_BIT / TARGET_CHAR_BIT)) | |
692 | return 0; | |
693 | ||
694 | *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT); | |
695 | ||
696 | return 1; | |
697 | } | |
698 | ||
699 | #endif /* GET_LONGJMP_TARGET */ | |
700 | ||
701 | void | |
c5aa993b | 702 | i386_extract_return_value (type, regbuf, valbuf) |
c906108c SS |
703 | struct type *type; |
704 | char regbuf[REGISTER_BYTES]; | |
705 | char *valbuf; | |
706 | { | |
02409499 AC |
707 | /* On AIX, i386 GNU/Linux and DJGPP, floating point values are |
708 | returned in floating point registers. */ | |
709 | /* FIXME: cagney/2000-02-29: This function needs to be rewritten | |
710 | using multi-arch. Please don't keep adding to this #ifdef | |
711 | spaghetti. */ | |
712 | #if defined(I386_AIX_TARGET) || defined(I386_GNULINUX_TARGET) || defined(I386_DJGPP_TARGET) | |
c5aa993b | 713 | if (TYPE_CODE_FLT == TYPE_CODE (type)) |
c906108c SS |
714 | { |
715 | double d; | |
716 | /* 387 %st(0), gcc uses this */ | |
717 | floatformat_to_double (&floatformat_i387_ext, | |
c2c6d25f JM |
718 | #if defined(FPDATA_REGNUM) |
719 | ®buf[REGISTER_BYTE (FPDATA_REGNUM)], | |
720 | #else /* !FPDATA_REGNUM */ | |
721 | ®buf[REGISTER_BYTE (FP0_REGNUM)], | |
722 | #endif /* FPDATA_REGNUM */ | |
723 | ||
c906108c SS |
724 | &d); |
725 | store_floating (valbuf, TYPE_LENGTH (type), d); | |
726 | } | |
727 | else | |
02409499 | 728 | #endif /* I386_AIX_TARGET || I386_GNULINUX_TARGET || I386_DJGPP_TARGET */ |
c5aa993b | 729 | { |
c2c6d25f | 730 | #if defined(LOW_RETURN_REGNUM) |
d4f3574e SS |
731 | int len = TYPE_LENGTH (type); |
732 | int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM); | |
733 | int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM); | |
734 | ||
735 | if (len <= low_size) | |
736 | memcpy (valbuf, regbuf + REGISTER_BYTE (LOW_RETURN_REGNUM), len); | |
737 | else if (len <= (low_size + high_size)) | |
738 | { | |
739 | memcpy (valbuf, | |
740 | regbuf + REGISTER_BYTE (LOW_RETURN_REGNUM), | |
741 | low_size); | |
742 | memcpy (valbuf + low_size, | |
743 | regbuf + REGISTER_BYTE (HIGH_RETURN_REGNUM), | |
744 | len - low_size); | |
745 | } | |
746 | else | |
747 | error ("GDB bug: i386-tdep.c (i386_extract_return_value): Don't know how to find a return value %d bytes long", len); | |
c2c6d25f JM |
748 | #else /* !LOW_RETURN_REGNUM */ |
749 | memcpy (valbuf, regbuf, TYPE_LENGTH (type)); | |
750 | #endif /* LOW_RETURN_REGNUM */ | |
c906108c SS |
751 | } |
752 | } | |
753 | ||
754 | #ifdef I386V4_SIGTRAMP_SAVED_PC | |
755 | /* Get saved user PC for sigtramp from the pushed ucontext on the stack | |
756 | for all three variants of SVR4 sigtramps. */ | |
757 | ||
758 | CORE_ADDR | |
759 | i386v4_sigtramp_saved_pc (frame) | |
760 | struct frame_info *frame; | |
761 | { | |
762 | CORE_ADDR saved_pc_offset = 4; | |
763 | char *name = NULL; | |
764 | ||
765 | find_pc_partial_function (frame->pc, &name, NULL, NULL); | |
766 | if (name) | |
767 | { | |
768 | if (STREQ (name, "_sigreturn")) | |
769 | saved_pc_offset = 132 + 14 * 4; | |
770 | else if (STREQ (name, "_sigacthandler")) | |
771 | saved_pc_offset = 80 + 14 * 4; | |
772 | else if (STREQ (name, "sigvechandler")) | |
773 | saved_pc_offset = 120 + 14 * 4; | |
774 | } | |
775 | ||
776 | if (frame->next) | |
777 | return read_memory_integer (frame->next->frame + saved_pc_offset, 4); | |
778 | return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4); | |
779 | } | |
780 | #endif /* I386V4_SIGTRAMP_SAVED_PC */ | |
781 | ||
a0b3c4fd JM |
782 | #ifdef I386_LINUX_SIGTRAMP |
783 | ||
45a816d9 MK |
784 | /* Linux has two flavors of signals. Normal signal handlers, and |
785 | "realtime" (RT) signals. The RT signals can provide additional | |
786 | information to the signal handler if the SA_SIGINFO flag is set | |
787 | when establishing a signal handler using `sigaction'. It is not | |
788 | unlikely that future versions of Linux will support SA_SIGINFO for | |
789 | normal signals too. */ | |
790 | ||
791 | /* When the i386 Linux kernel calls a signal handler and the | |
792 | SA_RESTORER flag isn't set, the return address points to a bit of | |
793 | code on the stack. This function returns whether the PC appears to | |
794 | be within this bit of code. | |
795 | ||
796 | The instruction sequence for normal signals is | |
a0b3c4fd JM |
797 | pop %eax |
798 | mov $0x77,%eax | |
799 | int $0x80 | |
800 | or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80. | |
801 | ||
802 | Checking for the code sequence should be somewhat reliable, because | |
803 | the effect is to call the system call sigreturn. This is unlikely | |
804 | to occur anywhere other than a signal trampoline. | |
805 | ||
806 | It kind of sucks that we have to read memory from the process in | |
807 | order to identify a signal trampoline, but there doesn't seem to be | |
808 | any other way. The IN_SIGTRAMP macro in tm-linux.h arranges to | |
809 | only call us if no function name could be identified, which should | |
45a816d9 MK |
810 | be the case since the code is on the stack. |
811 | ||
812 | Detection of signal trampolines for handlers that set the | |
813 | SA_RESTORER flag is in general not possible. Unfortunately this is | |
814 | what the GNU C Library has been doing for quite some time now. | |
815 | However, as of version 2.1.2, the GNU C Library uses signal | |
816 | trampolines (named __restore and __restore_rt) that are identical | |
817 | to the ones used by the kernel. Therefore, these trampolines are | |
818 | supported too. */ | |
a0b3c4fd JM |
819 | |
820 | #define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */ | |
821 | #define LINUX_SIGTRAMP_OFFSET0 (0) | |
822 | #define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */ | |
823 | #define LINUX_SIGTRAMP_OFFSET1 (1) | |
824 | #define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */ | |
825 | #define LINUX_SIGTRAMP_OFFSET2 (6) | |
826 | ||
827 | static const unsigned char linux_sigtramp_code[] = | |
828 | { | |
829 | LINUX_SIGTRAMP_INSN0, /* pop %eax */ | |
830 | LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */ | |
831 | LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */ | |
832 | }; | |
833 | ||
834 | #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code) | |
835 | ||
836 | /* If PC is in a sigtramp routine, return the address of the start of | |
837 | the routine. Otherwise, return 0. */ | |
838 | ||
839 | static CORE_ADDR | |
45a816d9 | 840 | i386_linux_sigtramp_start (CORE_ADDR pc) |
a0b3c4fd JM |
841 | { |
842 | unsigned char buf[LINUX_SIGTRAMP_LEN]; | |
843 | ||
844 | /* We only recognize a signal trampoline if PC is at the start of | |
845 | one of the three instructions. We optimize for finding the PC at | |
846 | the start, as will be the case when the trampoline is not the | |
847 | first frame on the stack. We assume that in the case where the | |
848 | PC is not at the start of the instruction sequence, there will be | |
849 | a few trailing readable bytes on the stack. */ | |
850 | ||
851 | if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0) | |
852 | return 0; | |
853 | ||
854 | if (buf[0] != LINUX_SIGTRAMP_INSN0) | |
855 | { | |
856 | int adjust; | |
857 | ||
858 | switch (buf[0]) | |
859 | { | |
860 | case LINUX_SIGTRAMP_INSN1: | |
861 | adjust = LINUX_SIGTRAMP_OFFSET1; | |
862 | break; | |
863 | case LINUX_SIGTRAMP_INSN2: | |
864 | adjust = LINUX_SIGTRAMP_OFFSET2; | |
865 | break; | |
866 | default: | |
867 | return 0; | |
868 | } | |
869 | ||
870 | pc -= adjust; | |
871 | ||
872 | if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0) | |
873 | return 0; | |
874 | } | |
875 | ||
876 | if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0) | |
877 | return 0; | |
878 | ||
879 | return pc; | |
880 | } | |
881 | ||
45a816d9 MK |
882 | /* This function does the same for RT signals. Here the instruction |
883 | sequence is | |
884 | mov $0xad,%eax | |
885 | int $0x80 | |
886 | or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80. | |
887 | ||
888 | The effect is to call the system call rt_sigreturn. */ | |
889 | ||
890 | #define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */ | |
891 | #define LINUX_RT_SIGTRAMP_OFFSET0 (0) | |
892 | #define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */ | |
893 | #define LINUX_RT_SIGTRAMP_OFFSET1 (5) | |
894 | ||
895 | static const unsigned char linux_rt_sigtramp_code[] = | |
896 | { | |
897 | LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad,%eax */ | |
898 | LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */ | |
899 | }; | |
900 | ||
901 | #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code) | |
902 | ||
903 | /* If PC is in a RT sigtramp routine, return the address of the start | |
904 | of the routine. Otherwise, return 0. */ | |
905 | ||
906 | static CORE_ADDR | |
907 | i386_linux_rt_sigtramp_start (CORE_ADDR pc) | |
908 | { | |
909 | unsigned char buf[LINUX_RT_SIGTRAMP_LEN]; | |
910 | ||
911 | /* We only recognize a signal trampoline if PC is at the start of | |
912 | one of the two instructions. We optimize for finding the PC at | |
913 | the start, as will be the case when the trampoline is not the | |
914 | first frame on the stack. We assume that in the case where the | |
915 | PC is not at the start of the instruction sequence, there will be | |
916 | a few trailing readable bytes on the stack. */ | |
917 | ||
918 | if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0) | |
919 | return 0; | |
920 | ||
921 | if (buf[0] != LINUX_RT_SIGTRAMP_INSN0) | |
922 | { | |
923 | if (buf[0] != LINUX_RT_SIGTRAMP_INSN1) | |
924 | return 0; | |
925 | ||
926 | pc -= LINUX_RT_SIGTRAMP_OFFSET1; | |
927 | ||
928 | if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0) | |
929 | return 0; | |
930 | } | |
931 | ||
932 | if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0) | |
933 | return 0; | |
934 | ||
935 | return pc; | |
936 | } | |
937 | ||
a0b3c4fd JM |
938 | /* Return whether PC is in a Linux sigtramp routine. */ |
939 | ||
940 | int | |
45a816d9 | 941 | i386_linux_in_sigtramp (CORE_ADDR pc, char *name) |
a0b3c4fd | 942 | { |
45a816d9 MK |
943 | if (name) |
944 | return STREQ ("__restore", name) || STREQ ("__restore_rt", name); | |
945 | ||
946 | return (i386_linux_sigtramp_start (pc) != 0 | |
947 | || i386_linux_rt_sigtramp_start (pc) != 0); | |
a0b3c4fd JM |
948 | } |
949 | ||
45a816d9 MK |
950 | /* Assuming FRAME is for a Linux sigtramp routine, return the address |
951 | of the associated sigcontext structure. */ | |
a0b3c4fd JM |
952 | |
953 | CORE_ADDR | |
45a816d9 | 954 | i386_linux_sigcontext_addr (struct frame_info *frame) |
a0b3c4fd JM |
955 | { |
956 | CORE_ADDR pc; | |
957 | ||
958 | pc = i386_linux_sigtramp_start (frame->pc); | |
45a816d9 MK |
959 | if (pc) |
960 | { | |
961 | CORE_ADDR sp; | |
962 | ||
963 | if (frame->next) | |
964 | /* If this isn't the top frame, the next frame must be for the | |
965 | signal handler itself. The sigcontext structure lives on | |
966 | the stack, right after the signum argument. */ | |
967 | return frame->next->frame + 12; | |
968 | ||
969 | /* This is the top frame. We'll have to find the address of the | |
970 | sigcontext structure by looking at the stack pointer. Keep | |
971 | in mind that the first instruction of the sigtramp code is | |
972 | "pop %eax". If the PC is at this instruction, adjust the | |
973 | returned value accordingly. */ | |
974 | sp = read_register (SP_REGNUM); | |
975 | if (pc == frame->pc) | |
976 | return sp + 4; | |
977 | return sp; | |
978 | } | |
979 | ||
980 | pc = i386_linux_rt_sigtramp_start (frame->pc); | |
981 | if (pc) | |
982 | { | |
983 | if (frame->next) | |
984 | /* If this isn't the top frame, the next frame must be for the | |
985 | signal handler itself. The sigcontext structure is part of | |
986 | the user context. A pointer to the user context is passed | |
987 | as the third argument to the signal handler. */ | |
988 | return read_memory_integer (frame->next->frame + 16, 4) + 20; | |
989 | ||
990 | /* This is the top frame. Again, use the stack pointer to find | |
991 | the address of the sigcontext structure. */ | |
992 | return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20; | |
993 | } | |
994 | ||
995 | error ("Couldn't recognize signal trampoline."); | |
996 | return 0; | |
a0b3c4fd JM |
997 | } |
998 | ||
45a816d9 MK |
999 | /* Offset to saved PC in sigcontext, from <asm/sigcontext.h>. */ |
1000 | #define LINUX_SIGCONTEXT_PC_OFFSET (56) | |
1001 | ||
a0b3c4fd | 1002 | /* Assuming FRAME is for a Linux sigtramp routine, return the saved |
45a816d9 | 1003 | program counter. */ |
a0b3c4fd JM |
1004 | |
1005 | CORE_ADDR | |
45a816d9 | 1006 | i386_linux_sigtramp_saved_pc (struct frame_info *frame) |
a0b3c4fd | 1007 | { |
45a816d9 MK |
1008 | CORE_ADDR addr; |
1009 | addr = i386_linux_sigcontext_addr (frame); | |
1010 | return read_memory_integer (addr + LINUX_SIGCONTEXT_PC_OFFSET, 4); | |
1011 | } | |
a0b3c4fd | 1012 | |
45a816d9 MK |
1013 | /* Offset to saved SP in sigcontext, from <asm/sigcontext.h>. */ |
1014 | #define LINUX_SIGCONTEXT_SP_OFFSET (28) | |
1015 | ||
1016 | /* Assuming FRAME is for a Linux sigtramp routine, return the saved | |
1017 | stack pointer. */ | |
1018 | ||
1019 | CORE_ADDR | |
1020 | i386_linux_sigtramp_saved_sp (struct frame_info *frame) | |
1021 | { | |
1022 | CORE_ADDR addr; | |
1023 | addr = i386_linux_sigcontext_addr (frame); | |
1024 | return read_memory_integer (addr + LINUX_SIGCONTEXT_SP_OFFSET, 4); | |
a0b3c4fd JM |
1025 | } |
1026 | ||
4cc24188 MK |
1027 | /* Immediately after a function call, return the saved pc. */ |
1028 | ||
1029 | CORE_ADDR | |
1030 | i386_linux_saved_pc_after_call (struct frame_info *frame) | |
1031 | { | |
1032 | if (frame->signal_handler_caller) | |
1033 | return i386_linux_sigtramp_saved_pc (frame); | |
1034 | ||
1035 | return read_memory_integer (read_register (SP_REGNUM), 4); | |
1036 | } | |
1037 | ||
a0b3c4fd JM |
1038 | #endif /* I386_LINUX_SIGTRAMP */ |
1039 | ||
c906108c SS |
1040 | #ifdef STATIC_TRANSFORM_NAME |
1041 | /* SunPRO encodes the static variables. This is not related to C++ mangling, | |
1042 | it is done for C too. */ | |
1043 | ||
1044 | char * | |
1045 | sunpro_static_transform_name (name) | |
1046 | char *name; | |
1047 | { | |
1048 | char *p; | |
1049 | if (IS_STATIC_TRANSFORM_NAME (name)) | |
1050 | { | |
1051 | /* For file-local statics there will be a period, a bunch | |
c5aa993b JM |
1052 | of junk (the contents of which match a string given in the |
1053 | N_OPT), a period and the name. For function-local statics | |
1054 | there will be a bunch of junk (which seems to change the | |
1055 | second character from 'A' to 'B'), a period, the name of the | |
1056 | function, and the name. So just skip everything before the | |
1057 | last period. */ | |
c906108c SS |
1058 | p = strrchr (name, '.'); |
1059 | if (p != NULL) | |
1060 | name = p + 1; | |
1061 | } | |
1062 | return name; | |
1063 | } | |
1064 | #endif /* STATIC_TRANSFORM_NAME */ | |
1065 | ||
1066 | ||
1067 | ||
1068 | /* Stuff for WIN32 PE style DLL's but is pretty generic really. */ | |
1069 | ||
1070 | CORE_ADDR | |
1071 | skip_trampoline_code (pc, name) | |
1072 | CORE_ADDR pc; | |
1073 | char *name; | |
1074 | { | |
c5aa993b | 1075 | if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */ |
c906108c | 1076 | { |
c5aa993b | 1077 | unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4); |
c906108c | 1078 | struct minimal_symbol *indsym = |
c5aa993b JM |
1079 | indirect ? lookup_minimal_symbol_by_pc (indirect) : 0; |
1080 | char *symname = indsym ? SYMBOL_NAME (indsym) : 0; | |
c906108c | 1081 | |
c5aa993b | 1082 | if (symname) |
c906108c | 1083 | { |
c5aa993b JM |
1084 | if (strncmp (symname, "__imp_", 6) == 0 |
1085 | || strncmp (symname, "_imp_", 5) == 0) | |
c906108c SS |
1086 | return name ? 1 : read_memory_unsigned_integer (indirect, 4); |
1087 | } | |
1088 | } | |
1089 | return 0; /* not a trampoline */ | |
1090 | } | |
1091 | ||
1092 | static int | |
1093 | gdb_print_insn_i386 (memaddr, info) | |
1094 | bfd_vma memaddr; | |
c5aa993b | 1095 | disassemble_info *info; |
c906108c SS |
1096 | { |
1097 | if (disassembly_flavor == att_flavor) | |
1098 | return print_insn_i386_att (memaddr, info); | |
1099 | else if (disassembly_flavor == intel_flavor) | |
1100 | return print_insn_i386_intel (memaddr, info); | |
7a292a7a SS |
1101 | /* Never reached - disassembly_flavour is always either att_flavor |
1102 | or intel_flavor */ | |
1103 | abort (); | |
1104 | } | |
1105 | ||
1106 | /* If the disassembly mode is intel, we have to also switch the | |
1107 | bfd mach_type. This function is run in the set disassembly_flavor | |
1108 | command, and does that. */ | |
1109 | ||
1110 | static void | |
1111 | set_disassembly_flavor_sfunc (args, from_tty, c) | |
1112 | char *args; | |
1113 | int from_tty; | |
1114 | struct cmd_list_element *c; | |
1115 | { | |
1116 | set_disassembly_flavor (); | |
7a292a7a SS |
1117 | } |
1118 | ||
1119 | static void | |
1120 | set_disassembly_flavor () | |
1121 | { | |
1122 | if (disassembly_flavor == att_flavor) | |
1123 | set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386); | |
1124 | else if (disassembly_flavor == intel_flavor) | |
1125 | set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386_intel_syntax); | |
c906108c SS |
1126 | } |
1127 | ||
2acceee2 | 1128 | |
c906108c SS |
1129 | void |
1130 | _initialize_i386_tdep () | |
1131 | { | |
917317f4 JM |
1132 | /* Initialize the table saying where each register starts in the |
1133 | register file. */ | |
1134 | { | |
1135 | int i, offset; | |
1136 | ||
1137 | offset = 0; | |
1138 | for (i = 0; i < MAX_NUM_REGS; i++) | |
1139 | { | |
1140 | i386_register_byte[i] = offset; | |
1141 | offset += i386_register_raw_size[i]; | |
1142 | } | |
1143 | } | |
1144 | ||
1145 | /* Initialize the table of virtual register sizes. */ | |
1146 | { | |
1147 | int i; | |
1148 | ||
1149 | for (i = 0; i < MAX_NUM_REGS; i++) | |
1150 | i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i)); | |
1151 | } | |
c5aa993b | 1152 | |
c906108c SS |
1153 | tm_print_insn = gdb_print_insn_i386; |
1154 | tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach; | |
1155 | ||
1156 | /* Add the variable that controls the disassembly flavor */ | |
917317f4 JM |
1157 | { |
1158 | struct cmd_list_element *new_cmd; | |
7a292a7a | 1159 | |
917317f4 JM |
1160 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, |
1161 | valid_flavors, | |
1162 | (char *) &disassembly_flavor, | |
1163 | "Set the disassembly flavor, the valid values are \"att\" and \"intel\", \ | |
c906108c | 1164 | and the default value is \"att\".", |
917317f4 JM |
1165 | &setlist); |
1166 | new_cmd->function.sfunc = set_disassembly_flavor_sfunc; | |
1167 | add_show_from_set (new_cmd, &showlist); | |
1168 | } | |
c5aa993b | 1169 | |
7a292a7a SS |
1170 | /* Finally, initialize the disassembly flavor to the default given |
1171 | in the disassembly_flavor variable */ | |
c906108c | 1172 | |
7a292a7a | 1173 | set_disassembly_flavor (); |
c906108c | 1174 | } |