]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
14f9c5c9 | 59 | |
4c4b4cd2 PH |
60 | /* Define whether or not the C operator '/' truncates towards zero for |
61 | differently signed operands (truncation direction is undefined in C). | |
62 | Copied from valarith.c. */ | |
63 | ||
64 | #ifndef TRUNCATION_TOWARDS_ZERO | |
65 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
66 | #endif | |
67 | ||
4c4b4cd2 | 68 | static void extract_string (CORE_ADDR addr, char *buf); |
14f9c5c9 | 69 | |
14f9c5c9 AS |
70 | static void modify_general_field (char *, LONGEST, int, int); |
71 | ||
d2e4a39e | 72 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 73 | |
d2e4a39e | 74 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 81 | |
556bdfd4 | 82 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static struct value *desc_data (struct value *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int desc_arity (struct type *); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 103 | |
4c4b4cd2 | 104 | static struct value *ensure_lval (struct value *, CORE_ADDR *); |
14f9c5c9 | 105 | |
d2e4a39e | 106 | static struct value *convert_actual (struct value *, struct type *, |
4c4b4cd2 | 107 | CORE_ADDR *); |
14f9c5c9 | 108 | |
d2e4a39e | 109 | static struct value *make_array_descriptor (struct type *, struct value *, |
4c4b4cd2 | 110 | CORE_ADDR *); |
14f9c5c9 | 111 | |
4c4b4cd2 | 112 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 113 | struct block *, const char *, |
2570f2b7 | 114 | domain_enum, struct objfile *, int); |
14f9c5c9 | 115 | |
4c4b4cd2 | 116 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 117 | |
76a01679 | 118 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 119 | struct block *); |
14f9c5c9 | 120 | |
4c4b4cd2 PH |
121 | static int num_defns_collected (struct obstack *); |
122 | ||
123 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 124 | |
d2e4a39e | 125 | static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab |
76a01679 JB |
126 | *, const char *, int, |
127 | domain_enum, int); | |
14f9c5c9 | 128 | |
4c4b4cd2 | 129 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 130 | struct type *); |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 133 | struct symbol *, struct block *); |
14f9c5c9 | 134 | |
d2e4a39e | 135 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 136 | |
4c4b4cd2 PH |
137 | static char *ada_op_name (enum exp_opcode); |
138 | ||
139 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int numeric_type_p (struct type *); |
14f9c5c9 | 142 | |
d2e4a39e | 143 | static int integer_type_p (struct type *); |
14f9c5c9 | 144 | |
d2e4a39e | 145 | static int scalar_type_p (struct type *); |
14f9c5c9 | 146 | |
d2e4a39e | 147 | static int discrete_type_p (struct type *); |
14f9c5c9 | 148 | |
aeb5907d JB |
149 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
150 | const char **, | |
151 | int *, | |
152 | const char **); | |
153 | ||
154 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
155 | struct block *); | |
156 | ||
4c4b4cd2 | 157 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 158 | int, int, int *); |
4c4b4cd2 | 159 | |
d2e4a39e | 160 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 161 | |
d2e4a39e | 162 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 163 | |
10a2c479 | 164 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 165 | const gdb_byte *, |
4c4b4cd2 PH |
166 | CORE_ADDR, struct value *); |
167 | ||
168 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_fixed_range_type (char *, struct value *, |
4c4b4cd2 | 171 | struct objfile *); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 174 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 175 | |
d2e4a39e | 176 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 177 | |
d2e4a39e | 178 | static struct type *packed_array_type (struct type *, long *); |
14f9c5c9 | 179 | |
d2e4a39e | 180 | static struct type *decode_packed_array_type (struct type *); |
14f9c5c9 | 181 | |
d2e4a39e | 182 | static struct value *decode_packed_array (struct value *); |
14f9c5c9 | 183 | |
d2e4a39e | 184 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 185 | struct value **); |
14f9c5c9 | 186 | |
52ce6436 PH |
187 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int); |
188 | ||
4c4b4cd2 PH |
189 | static struct value *coerce_unspec_val_to_type (struct value *, |
190 | struct type *); | |
14f9c5c9 | 191 | |
d2e4a39e | 192 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 193 | |
d2e4a39e | 194 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int is_name_suffix (const char *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int wild_match (const char *, int, const char *); |
14f9c5c9 | 201 | |
d2e4a39e | 202 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 203 | |
4c4b4cd2 PH |
204 | static LONGEST pos_atr (struct value *); |
205 | ||
3cb382c9 | 206 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 207 | |
d2e4a39e | 208 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 209 | |
4c4b4cd2 PH |
210 | static struct symbol *standard_lookup (const char *, const struct block *, |
211 | domain_enum); | |
14f9c5c9 | 212 | |
4c4b4cd2 PH |
213 | static struct value *ada_search_struct_field (char *, struct value *, int, |
214 | struct type *); | |
215 | ||
216 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
217 | struct type *); | |
218 | ||
76a01679 | 219 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 220 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
221 | |
222 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
223 | struct value *); | |
224 | ||
225 | static struct value *ada_to_fixed_value (struct value *); | |
14f9c5c9 | 226 | |
4c4b4cd2 PH |
227 | static int ada_resolve_function (struct ada_symbol_info *, int, |
228 | struct value **, int, const char *, | |
229 | struct type *); | |
230 | ||
231 | static struct value *ada_coerce_to_simple_array (struct value *); | |
232 | ||
233 | static int ada_is_direct_array_type (struct type *); | |
234 | ||
72d5681a PH |
235 | static void ada_language_arch_info (struct gdbarch *, |
236 | struct language_arch_info *); | |
714e53ab PH |
237 | |
238 | static void check_size (const struct type *); | |
52ce6436 PH |
239 | |
240 | static struct value *ada_index_struct_field (int, struct value *, int, | |
241 | struct type *); | |
242 | ||
243 | static struct value *assign_aggregate (struct value *, struct value *, | |
244 | struct expression *, int *, enum noside); | |
245 | ||
246 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
247 | struct expression *, | |
248 | int *, LONGEST *, int *, | |
249 | int, LONGEST, LONGEST); | |
250 | ||
251 | static void aggregate_assign_positional (struct value *, struct value *, | |
252 | struct expression *, | |
253 | int *, LONGEST *, int *, int, | |
254 | LONGEST, LONGEST); | |
255 | ||
256 | ||
257 | static void aggregate_assign_others (struct value *, struct value *, | |
258 | struct expression *, | |
259 | int *, LONGEST *, int, LONGEST, LONGEST); | |
260 | ||
261 | ||
262 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
263 | ||
264 | ||
265 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
266 | int *, enum noside); | |
267 | ||
268 | static void ada_forward_operator_length (struct expression *, int, int *, | |
269 | int *); | |
4c4b4cd2 PH |
270 | \f |
271 | ||
76a01679 | 272 | |
4c4b4cd2 | 273 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
274 | static unsigned int varsize_limit; |
275 | ||
4c4b4cd2 PH |
276 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
277 | returned by a function that does not return a const char *. */ | |
278 | static char *ada_completer_word_break_characters = | |
279 | #ifdef VMS | |
280 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
281 | #else | |
14f9c5c9 | 282 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 283 | #endif |
14f9c5c9 | 284 | |
4c4b4cd2 | 285 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 286 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 287 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 288 | |
4c4b4cd2 PH |
289 | /* Limit on the number of warnings to raise per expression evaluation. */ |
290 | static int warning_limit = 2; | |
291 | ||
292 | /* Number of warning messages issued; reset to 0 by cleanups after | |
293 | expression evaluation. */ | |
294 | static int warnings_issued = 0; | |
295 | ||
296 | static const char *known_runtime_file_name_patterns[] = { | |
297 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
298 | }; | |
299 | ||
300 | static const char *known_auxiliary_function_name_patterns[] = { | |
301 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
302 | }; | |
303 | ||
304 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
305 | static struct obstack symbol_list_obstack; | |
306 | ||
307 | /* Utilities */ | |
308 | ||
41d27058 JB |
309 | /* Given DECODED_NAME a string holding a symbol name in its |
310 | decoded form (ie using the Ada dotted notation), returns | |
311 | its unqualified name. */ | |
312 | ||
313 | static const char * | |
314 | ada_unqualified_name (const char *decoded_name) | |
315 | { | |
316 | const char *result = strrchr (decoded_name, '.'); | |
317 | ||
318 | if (result != NULL) | |
319 | result++; /* Skip the dot... */ | |
320 | else | |
321 | result = decoded_name; | |
322 | ||
323 | return result; | |
324 | } | |
325 | ||
326 | /* Return a string starting with '<', followed by STR, and '>'. | |
327 | The result is good until the next call. */ | |
328 | ||
329 | static char * | |
330 | add_angle_brackets (const char *str) | |
331 | { | |
332 | static char *result = NULL; | |
333 | ||
334 | xfree (result); | |
88c15c34 | 335 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
336 | return result; |
337 | } | |
96d887e8 | 338 | |
4c4b4cd2 PH |
339 | static char * |
340 | ada_get_gdb_completer_word_break_characters (void) | |
341 | { | |
342 | return ada_completer_word_break_characters; | |
343 | } | |
344 | ||
e79af960 JB |
345 | /* Print an array element index using the Ada syntax. */ |
346 | ||
347 | static void | |
348 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 349 | const struct value_print_options *options) |
e79af960 | 350 | { |
79a45b7d | 351 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
352 | fprintf_filtered (stream, " => "); |
353 | } | |
354 | ||
4c4b4cd2 PH |
355 | /* Read the string located at ADDR from the inferior and store the |
356 | result into BUF. */ | |
357 | ||
358 | static void | |
14f9c5c9 AS |
359 | extract_string (CORE_ADDR addr, char *buf) |
360 | { | |
d2e4a39e | 361 | int char_index = 0; |
14f9c5c9 | 362 | |
4c4b4cd2 PH |
363 | /* Loop, reading one byte at a time, until we reach the '\000' |
364 | end-of-string marker. */ | |
d2e4a39e AS |
365 | do |
366 | { | |
367 | target_read_memory (addr + char_index * sizeof (char), | |
4c4b4cd2 | 368 | buf + char_index * sizeof (char), sizeof (char)); |
d2e4a39e AS |
369 | char_index++; |
370 | } | |
371 | while (buf[char_index - 1] != '\000'); | |
14f9c5c9 AS |
372 | } |
373 | ||
f27cf670 | 374 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 375 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 376 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 377 | |
f27cf670 AS |
378 | void * |
379 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 380 | { |
d2e4a39e AS |
381 | if (*size < min_size) |
382 | { | |
383 | *size *= 2; | |
384 | if (*size < min_size) | |
4c4b4cd2 | 385 | *size = min_size; |
f27cf670 | 386 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 387 | } |
f27cf670 | 388 | return vect; |
14f9c5c9 AS |
389 | } |
390 | ||
391 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 392 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
393 | |
394 | static int | |
ebf56fd3 | 395 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
396 | { |
397 | int len = strlen (target); | |
d2e4a39e | 398 | return |
4c4b4cd2 PH |
399 | (strncmp (field_name, target, len) == 0 |
400 | && (field_name[len] == '\0' | |
401 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
402 | && strcmp (field_name + strlen (field_name) - 6, |
403 | "___XVN") != 0))); | |
14f9c5c9 AS |
404 | } |
405 | ||
406 | ||
872c8b51 JB |
407 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
408 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
409 | and return its index. This function also handles fields whose name | |
410 | have ___ suffixes because the compiler sometimes alters their name | |
411 | by adding such a suffix to represent fields with certain constraints. | |
412 | If the field could not be found, return a negative number if | |
413 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
414 | |
415 | int | |
416 | ada_get_field_index (const struct type *type, const char *field_name, | |
417 | int maybe_missing) | |
418 | { | |
419 | int fieldno; | |
872c8b51 JB |
420 | struct type *struct_type = check_typedef ((struct type *) type); |
421 | ||
422 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
423 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
424 | return fieldno; |
425 | ||
426 | if (!maybe_missing) | |
323e0a4a | 427 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 428 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
429 | |
430 | return -1; | |
431 | } | |
432 | ||
433 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
434 | |
435 | int | |
d2e4a39e | 436 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
437 | { |
438 | if (name == NULL) | |
439 | return 0; | |
d2e4a39e | 440 | else |
14f9c5c9 | 441 | { |
d2e4a39e | 442 | const char *p = strstr (name, "___"); |
14f9c5c9 | 443 | if (p == NULL) |
4c4b4cd2 | 444 | return strlen (name); |
14f9c5c9 | 445 | else |
4c4b4cd2 | 446 | return p - name; |
14f9c5c9 AS |
447 | } |
448 | } | |
449 | ||
4c4b4cd2 PH |
450 | /* Return non-zero if SUFFIX is a suffix of STR. |
451 | Return zero if STR is null. */ | |
452 | ||
14f9c5c9 | 453 | static int |
d2e4a39e | 454 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
455 | { |
456 | int len1, len2; | |
457 | if (str == NULL) | |
458 | return 0; | |
459 | len1 = strlen (str); | |
460 | len2 = strlen (suffix); | |
4c4b4cd2 | 461 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
462 | } |
463 | ||
4c4b4cd2 PH |
464 | /* The contents of value VAL, treated as a value of type TYPE. The |
465 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 466 | |
d2e4a39e | 467 | static struct value * |
4c4b4cd2 | 468 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 469 | { |
61ee279c | 470 | type = ada_check_typedef (type); |
df407dfe | 471 | if (value_type (val) == type) |
4c4b4cd2 | 472 | return val; |
d2e4a39e | 473 | else |
14f9c5c9 | 474 | { |
4c4b4cd2 PH |
475 | struct value *result; |
476 | ||
477 | /* Make sure that the object size is not unreasonable before | |
478 | trying to allocate some memory for it. */ | |
714e53ab | 479 | check_size (type); |
4c4b4cd2 PH |
480 | |
481 | result = allocate_value (type); | |
74bcbdf3 | 482 | set_value_component_location (result, val); |
9bbda503 AC |
483 | set_value_bitsize (result, value_bitsize (val)); |
484 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 485 | set_value_address (result, value_address (val)); |
d69fe07e | 486 | if (value_lazy (val) |
df407dfe | 487 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) |
dfa52d88 | 488 | set_value_lazy (result, 1); |
d2e4a39e | 489 | else |
0fd88904 | 490 | memcpy (value_contents_raw (result), value_contents (val), |
4c4b4cd2 | 491 | TYPE_LENGTH (type)); |
14f9c5c9 AS |
492 | return result; |
493 | } | |
494 | } | |
495 | ||
fc1a4b47 AC |
496 | static const gdb_byte * |
497 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
498 | { |
499 | if (valaddr == NULL) | |
500 | return NULL; | |
501 | else | |
502 | return valaddr + offset; | |
503 | } | |
504 | ||
505 | static CORE_ADDR | |
ebf56fd3 | 506 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
507 | { |
508 | if (address == 0) | |
509 | return 0; | |
d2e4a39e | 510 | else |
14f9c5c9 AS |
511 | return address + offset; |
512 | } | |
513 | ||
4c4b4cd2 PH |
514 | /* Issue a warning (as for the definition of warning in utils.c, but |
515 | with exactly one argument rather than ...), unless the limit on the | |
516 | number of warnings has passed during the evaluation of the current | |
517 | expression. */ | |
a2249542 | 518 | |
77109804 AC |
519 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
520 | provided by "complaint". */ | |
521 | static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2); | |
522 | ||
14f9c5c9 | 523 | static void |
a2249542 | 524 | lim_warning (const char *format, ...) |
14f9c5c9 | 525 | { |
a2249542 MK |
526 | va_list args; |
527 | va_start (args, format); | |
528 | ||
4c4b4cd2 PH |
529 | warnings_issued += 1; |
530 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
531 | vwarning (format, args); |
532 | ||
533 | va_end (args); | |
4c4b4cd2 PH |
534 | } |
535 | ||
714e53ab PH |
536 | /* Issue an error if the size of an object of type T is unreasonable, |
537 | i.e. if it would be a bad idea to allocate a value of this type in | |
538 | GDB. */ | |
539 | ||
540 | static void | |
541 | check_size (const struct type *type) | |
542 | { | |
543 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 544 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
545 | } |
546 | ||
547 | ||
c3e5cd34 PH |
548 | /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from |
549 | gdbtypes.h, but some of the necessary definitions in that file | |
550 | seem to have gone missing. */ | |
551 | ||
552 | /* Maximum value of a SIZE-byte signed integer type. */ | |
4c4b4cd2 | 553 | static LONGEST |
c3e5cd34 | 554 | max_of_size (int size) |
4c4b4cd2 | 555 | { |
76a01679 JB |
556 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
557 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
558 | } |
559 | ||
c3e5cd34 | 560 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 561 | static LONGEST |
c3e5cd34 | 562 | min_of_size (int size) |
4c4b4cd2 | 563 | { |
c3e5cd34 | 564 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
565 | } |
566 | ||
c3e5cd34 | 567 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 568 | static ULONGEST |
c3e5cd34 | 569 | umax_of_size (int size) |
4c4b4cd2 | 570 | { |
76a01679 JB |
571 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
572 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
573 | } |
574 | ||
c3e5cd34 PH |
575 | /* Maximum value of integral type T, as a signed quantity. */ |
576 | static LONGEST | |
577 | max_of_type (struct type *t) | |
4c4b4cd2 | 578 | { |
c3e5cd34 PH |
579 | if (TYPE_UNSIGNED (t)) |
580 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
581 | else | |
582 | return max_of_size (TYPE_LENGTH (t)); | |
583 | } | |
584 | ||
585 | /* Minimum value of integral type T, as a signed quantity. */ | |
586 | static LONGEST | |
587 | min_of_type (struct type *t) | |
588 | { | |
589 | if (TYPE_UNSIGNED (t)) | |
590 | return 0; | |
591 | else | |
592 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
593 | } |
594 | ||
595 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 596 | static LONGEST |
4c4b4cd2 PH |
597 | discrete_type_high_bound (struct type *type) |
598 | { | |
76a01679 | 599 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
600 | { |
601 | case TYPE_CODE_RANGE: | |
690cc4eb | 602 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 603 | case TYPE_CODE_ENUM: |
690cc4eb PH |
604 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
605 | case TYPE_CODE_BOOL: | |
606 | return 1; | |
607 | case TYPE_CODE_CHAR: | |
76a01679 | 608 | case TYPE_CODE_INT: |
690cc4eb | 609 | return max_of_type (type); |
4c4b4cd2 | 610 | default: |
323e0a4a | 611 | error (_("Unexpected type in discrete_type_high_bound.")); |
4c4b4cd2 PH |
612 | } |
613 | } | |
614 | ||
615 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 616 | static LONGEST |
4c4b4cd2 PH |
617 | discrete_type_low_bound (struct type *type) |
618 | { | |
76a01679 | 619 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
620 | { |
621 | case TYPE_CODE_RANGE: | |
690cc4eb | 622 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 623 | case TYPE_CODE_ENUM: |
690cc4eb PH |
624 | return TYPE_FIELD_BITPOS (type, 0); |
625 | case TYPE_CODE_BOOL: | |
626 | return 0; | |
627 | case TYPE_CODE_CHAR: | |
76a01679 | 628 | case TYPE_CODE_INT: |
690cc4eb | 629 | return min_of_type (type); |
4c4b4cd2 | 630 | default: |
323e0a4a | 631 | error (_("Unexpected type in discrete_type_low_bound.")); |
4c4b4cd2 PH |
632 | } |
633 | } | |
634 | ||
635 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 636 | non-range scalar type. */ |
4c4b4cd2 PH |
637 | |
638 | static struct type * | |
639 | base_type (struct type *type) | |
640 | { | |
641 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
642 | { | |
76a01679 JB |
643 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
644 | return type; | |
4c4b4cd2 PH |
645 | type = TYPE_TARGET_TYPE (type); |
646 | } | |
647 | return type; | |
14f9c5c9 | 648 | } |
4c4b4cd2 | 649 | \f |
76a01679 | 650 | |
4c4b4cd2 | 651 | /* Language Selection */ |
14f9c5c9 AS |
652 | |
653 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
654 | (the main program is in Ada iif the adainit symbol is found). | |
655 | ||
4c4b4cd2 | 656 | MAIN_PST is not used. */ |
d2e4a39e | 657 | |
14f9c5c9 | 658 | enum language |
d2e4a39e | 659 | ada_update_initial_language (enum language lang, |
4c4b4cd2 | 660 | struct partial_symtab *main_pst) |
14f9c5c9 | 661 | { |
d2e4a39e | 662 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
663 | (struct objfile *) NULL) != NULL) |
664 | return language_ada; | |
14f9c5c9 AS |
665 | |
666 | return lang; | |
667 | } | |
96d887e8 PH |
668 | |
669 | /* If the main procedure is written in Ada, then return its name. | |
670 | The result is good until the next call. Return NULL if the main | |
671 | procedure doesn't appear to be in Ada. */ | |
672 | ||
673 | char * | |
674 | ada_main_name (void) | |
675 | { | |
676 | struct minimal_symbol *msym; | |
f9bc20b9 | 677 | static char *main_program_name = NULL; |
6c038f32 | 678 | |
96d887e8 PH |
679 | /* For Ada, the name of the main procedure is stored in a specific |
680 | string constant, generated by the binder. Look for that symbol, | |
681 | extract its address, and then read that string. If we didn't find | |
682 | that string, then most probably the main procedure is not written | |
683 | in Ada. */ | |
684 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
685 | ||
686 | if (msym != NULL) | |
687 | { | |
f9bc20b9 JB |
688 | CORE_ADDR main_program_name_addr; |
689 | int err_code; | |
690 | ||
96d887e8 PH |
691 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
692 | if (main_program_name_addr == 0) | |
323e0a4a | 693 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 694 | |
f9bc20b9 JB |
695 | xfree (main_program_name); |
696 | target_read_string (main_program_name_addr, &main_program_name, | |
697 | 1024, &err_code); | |
698 | ||
699 | if (err_code != 0) | |
700 | return NULL; | |
96d887e8 PH |
701 | return main_program_name; |
702 | } | |
703 | ||
704 | /* The main procedure doesn't seem to be in Ada. */ | |
705 | return NULL; | |
706 | } | |
14f9c5c9 | 707 | \f |
4c4b4cd2 | 708 | /* Symbols */ |
d2e4a39e | 709 | |
4c4b4cd2 PH |
710 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
711 | of NULLs. */ | |
14f9c5c9 | 712 | |
d2e4a39e AS |
713 | const struct ada_opname_map ada_opname_table[] = { |
714 | {"Oadd", "\"+\"", BINOP_ADD}, | |
715 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
716 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
717 | {"Odivide", "\"/\"", BINOP_DIV}, | |
718 | {"Omod", "\"mod\"", BINOP_MOD}, | |
719 | {"Orem", "\"rem\"", BINOP_REM}, | |
720 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
721 | {"Olt", "\"<\"", BINOP_LESS}, | |
722 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
723 | {"Ogt", "\">\"", BINOP_GTR}, | |
724 | {"Oge", "\">=\"", BINOP_GEQ}, | |
725 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
726 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
727 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
728 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
729 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
730 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
731 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
732 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
733 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
734 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
735 | {NULL, NULL} | |
14f9c5c9 AS |
736 | }; |
737 | ||
4c4b4cd2 PH |
738 | /* The "encoded" form of DECODED, according to GNAT conventions. |
739 | The result is valid until the next call to ada_encode. */ | |
740 | ||
14f9c5c9 | 741 | char * |
4c4b4cd2 | 742 | ada_encode (const char *decoded) |
14f9c5c9 | 743 | { |
4c4b4cd2 PH |
744 | static char *encoding_buffer = NULL; |
745 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 746 | const char *p; |
14f9c5c9 | 747 | int k; |
d2e4a39e | 748 | |
4c4b4cd2 | 749 | if (decoded == NULL) |
14f9c5c9 AS |
750 | return NULL; |
751 | ||
4c4b4cd2 PH |
752 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
753 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
754 | |
755 | k = 0; | |
4c4b4cd2 | 756 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 757 | { |
cdc7bb92 | 758 | if (*p == '.') |
4c4b4cd2 PH |
759 | { |
760 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
761 | k += 2; | |
762 | } | |
14f9c5c9 | 763 | else if (*p == '"') |
4c4b4cd2 PH |
764 | { |
765 | const struct ada_opname_map *mapping; | |
766 | ||
767 | for (mapping = ada_opname_table; | |
1265e4aa JB |
768 | mapping->encoded != NULL |
769 | && strncmp (mapping->decoded, p, | |
770 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
771 | ; |
772 | if (mapping->encoded == NULL) | |
323e0a4a | 773 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
774 | strcpy (encoding_buffer + k, mapping->encoded); |
775 | k += strlen (mapping->encoded); | |
776 | break; | |
777 | } | |
d2e4a39e | 778 | else |
4c4b4cd2 PH |
779 | { |
780 | encoding_buffer[k] = *p; | |
781 | k += 1; | |
782 | } | |
14f9c5c9 AS |
783 | } |
784 | ||
4c4b4cd2 PH |
785 | encoding_buffer[k] = '\0'; |
786 | return encoding_buffer; | |
14f9c5c9 AS |
787 | } |
788 | ||
789 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
790 | quotes, unfolded, but with the quotes stripped away. Result good |
791 | to next call. */ | |
792 | ||
d2e4a39e AS |
793 | char * |
794 | ada_fold_name (const char *name) | |
14f9c5c9 | 795 | { |
d2e4a39e | 796 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
797 | static size_t fold_buffer_size = 0; |
798 | ||
799 | int len = strlen (name); | |
d2e4a39e | 800 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
801 | |
802 | if (name[0] == '\'') | |
803 | { | |
d2e4a39e AS |
804 | strncpy (fold_buffer, name + 1, len - 2); |
805 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
806 | } |
807 | else | |
808 | { | |
809 | int i; | |
810 | for (i = 0; i <= len; i += 1) | |
4c4b4cd2 | 811 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
812 | } |
813 | ||
814 | return fold_buffer; | |
815 | } | |
816 | ||
529cad9c PH |
817 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
818 | ||
819 | static int | |
820 | is_lower_alphanum (const char c) | |
821 | { | |
822 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
823 | } | |
824 | ||
29480c32 JB |
825 | /* Remove either of these suffixes: |
826 | . .{DIGIT}+ | |
827 | . ${DIGIT}+ | |
828 | . ___{DIGIT}+ | |
829 | . __{DIGIT}+. | |
830 | These are suffixes introduced by the compiler for entities such as | |
831 | nested subprogram for instance, in order to avoid name clashes. | |
832 | They do not serve any purpose for the debugger. */ | |
833 | ||
834 | static void | |
835 | ada_remove_trailing_digits (const char *encoded, int *len) | |
836 | { | |
837 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
838 | { | |
839 | int i = *len - 2; | |
840 | while (i > 0 && isdigit (encoded[i])) | |
841 | i--; | |
842 | if (i >= 0 && encoded[i] == '.') | |
843 | *len = i; | |
844 | else if (i >= 0 && encoded[i] == '$') | |
845 | *len = i; | |
846 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
847 | *len = i - 2; | |
848 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
849 | *len = i - 1; | |
850 | } | |
851 | } | |
852 | ||
853 | /* Remove the suffix introduced by the compiler for protected object | |
854 | subprograms. */ | |
855 | ||
856 | static void | |
857 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
858 | { | |
859 | /* Remove trailing N. */ | |
860 | ||
861 | /* Protected entry subprograms are broken into two | |
862 | separate subprograms: The first one is unprotected, and has | |
863 | a 'N' suffix; the second is the protected version, and has | |
864 | the 'P' suffix. The second calls the first one after handling | |
865 | the protection. Since the P subprograms are internally generated, | |
866 | we leave these names undecoded, giving the user a clue that this | |
867 | entity is internal. */ | |
868 | ||
869 | if (*len > 1 | |
870 | && encoded[*len - 1] == 'N' | |
871 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
872 | *len = *len - 1; | |
873 | } | |
874 | ||
875 | /* If ENCODED follows the GNAT entity encoding conventions, then return | |
876 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
877 | replaced by ENCODED. | |
14f9c5c9 | 878 | |
4c4b4cd2 | 879 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 880 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
881 | is returned. */ |
882 | ||
883 | const char * | |
884 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
885 | { |
886 | int i, j; | |
887 | int len0; | |
d2e4a39e | 888 | const char *p; |
4c4b4cd2 | 889 | char *decoded; |
14f9c5c9 | 890 | int at_start_name; |
4c4b4cd2 PH |
891 | static char *decoding_buffer = NULL; |
892 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 893 | |
29480c32 JB |
894 | /* The name of the Ada main procedure starts with "_ada_". |
895 | This prefix is not part of the decoded name, so skip this part | |
896 | if we see this prefix. */ | |
4c4b4cd2 PH |
897 | if (strncmp (encoded, "_ada_", 5) == 0) |
898 | encoded += 5; | |
14f9c5c9 | 899 | |
29480c32 JB |
900 | /* If the name starts with '_', then it is not a properly encoded |
901 | name, so do not attempt to decode it. Similarly, if the name | |
902 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 903 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
904 | goto Suppress; |
905 | ||
4c4b4cd2 | 906 | len0 = strlen (encoded); |
4c4b4cd2 | 907 | |
29480c32 JB |
908 | ada_remove_trailing_digits (encoded, &len0); |
909 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 910 | |
4c4b4cd2 PH |
911 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
912 | the suffix is located before the current "end" of ENCODED. We want | |
913 | to avoid re-matching parts of ENCODED that have previously been | |
914 | marked as discarded (by decrementing LEN0). */ | |
915 | p = strstr (encoded, "___"); | |
916 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
917 | { |
918 | if (p[3] == 'X') | |
4c4b4cd2 | 919 | len0 = p - encoded; |
14f9c5c9 | 920 | else |
4c4b4cd2 | 921 | goto Suppress; |
14f9c5c9 | 922 | } |
4c4b4cd2 | 923 | |
29480c32 JB |
924 | /* Remove any trailing TKB suffix. It tells us that this symbol |
925 | is for the body of a task, but that information does not actually | |
926 | appear in the decoded name. */ | |
927 | ||
4c4b4cd2 | 928 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 929 | len0 -= 3; |
76a01679 | 930 | |
29480c32 JB |
931 | /* Remove trailing "B" suffixes. */ |
932 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
933 | ||
4c4b4cd2 | 934 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
935 | len0 -= 1; |
936 | ||
4c4b4cd2 | 937 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 938 | |
4c4b4cd2 PH |
939 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
940 | decoded = decoding_buffer; | |
14f9c5c9 | 941 | |
29480c32 JB |
942 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
943 | ||
4c4b4cd2 | 944 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 945 | { |
4c4b4cd2 PH |
946 | i = len0 - 2; |
947 | while ((i >= 0 && isdigit (encoded[i])) | |
948 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
949 | i -= 1; | |
950 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
951 | len0 = i - 1; | |
952 | else if (encoded[i] == '$') | |
953 | len0 = i; | |
d2e4a39e | 954 | } |
14f9c5c9 | 955 | |
29480c32 JB |
956 | /* The first few characters that are not alphabetic are not part |
957 | of any encoding we use, so we can copy them over verbatim. */ | |
958 | ||
4c4b4cd2 PH |
959 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
960 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
961 | |
962 | at_start_name = 1; | |
963 | while (i < len0) | |
964 | { | |
29480c32 | 965 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
966 | if (at_start_name && encoded[i] == 'O') |
967 | { | |
968 | int k; | |
969 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) | |
970 | { | |
971 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
972 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
973 | op_len - 1) == 0) | |
974 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
975 | { |
976 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
977 | at_start_name = 0; | |
978 | i += op_len; | |
979 | j += strlen (ada_opname_table[k].decoded); | |
980 | break; | |
981 | } | |
982 | } | |
983 | if (ada_opname_table[k].encoded != NULL) | |
984 | continue; | |
985 | } | |
14f9c5c9 AS |
986 | at_start_name = 0; |
987 | ||
529cad9c PH |
988 | /* Replace "TK__" with "__", which will eventually be translated |
989 | into "." (just below). */ | |
990 | ||
4c4b4cd2 PH |
991 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
992 | i += 2; | |
529cad9c | 993 | |
29480c32 JB |
994 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
995 | be translated into "." (just below). These are internal names | |
996 | generated for anonymous blocks inside which our symbol is nested. */ | |
997 | ||
998 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
999 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1000 | && isdigit (encoded [i+4])) | |
1001 | { | |
1002 | int k = i + 5; | |
1003 | ||
1004 | while (k < len0 && isdigit (encoded[k])) | |
1005 | k++; /* Skip any extra digit. */ | |
1006 | ||
1007 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1008 | is indeed followed by "__". */ | |
1009 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1010 | i = k; | |
1011 | } | |
1012 | ||
529cad9c PH |
1013 | /* Remove _E{DIGITS}+[sb] */ |
1014 | ||
1015 | /* Just as for protected object subprograms, there are 2 categories | |
1016 | of subprograms created by the compiler for each entry. The first | |
1017 | one implements the actual entry code, and has a suffix following | |
1018 | the convention above; the second one implements the barrier and | |
1019 | uses the same convention as above, except that the 'E' is replaced | |
1020 | by a 'B'. | |
1021 | ||
1022 | Just as above, we do not decode the name of barrier functions | |
1023 | to give the user a clue that the code he is debugging has been | |
1024 | internally generated. */ | |
1025 | ||
1026 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1027 | && isdigit (encoded[i+2])) | |
1028 | { | |
1029 | int k = i + 3; | |
1030 | ||
1031 | while (k < len0 && isdigit (encoded[k])) | |
1032 | k++; | |
1033 | ||
1034 | if (k < len0 | |
1035 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1036 | { | |
1037 | k++; | |
1038 | /* Just as an extra precaution, make sure that if this | |
1039 | suffix is followed by anything else, it is a '_'. | |
1040 | Otherwise, we matched this sequence by accident. */ | |
1041 | if (k == len0 | |
1042 | || (k < len0 && encoded[k] == '_')) | |
1043 | i = k; | |
1044 | } | |
1045 | } | |
1046 | ||
1047 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1048 | the GNAT front-end in protected object subprograms. */ | |
1049 | ||
1050 | if (i < len0 + 3 | |
1051 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1052 | { | |
1053 | /* Backtrack a bit up until we reach either the begining of | |
1054 | the encoded name, or "__". Make sure that we only find | |
1055 | digits or lowercase characters. */ | |
1056 | const char *ptr = encoded + i - 1; | |
1057 | ||
1058 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1059 | ptr--; | |
1060 | if (ptr < encoded | |
1061 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1062 | i++; | |
1063 | } | |
1064 | ||
4c4b4cd2 PH |
1065 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1066 | { | |
29480c32 JB |
1067 | /* This is a X[bn]* sequence not separated from the previous |
1068 | part of the name with a non-alpha-numeric character (in other | |
1069 | words, immediately following an alpha-numeric character), then | |
1070 | verify that it is placed at the end of the encoded name. If | |
1071 | not, then the encoding is not valid and we should abort the | |
1072 | decoding. Otherwise, just skip it, it is used in body-nested | |
1073 | package names. */ | |
4c4b4cd2 PH |
1074 | do |
1075 | i += 1; | |
1076 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1077 | if (i < len0) | |
1078 | goto Suppress; | |
1079 | } | |
cdc7bb92 | 1080 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1081 | { |
29480c32 | 1082 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1083 | decoded[j] = '.'; |
1084 | at_start_name = 1; | |
1085 | i += 2; | |
1086 | j += 1; | |
1087 | } | |
14f9c5c9 | 1088 | else |
4c4b4cd2 | 1089 | { |
29480c32 JB |
1090 | /* It's a character part of the decoded name, so just copy it |
1091 | over. */ | |
4c4b4cd2 PH |
1092 | decoded[j] = encoded[i]; |
1093 | i += 1; | |
1094 | j += 1; | |
1095 | } | |
14f9c5c9 | 1096 | } |
4c4b4cd2 | 1097 | decoded[j] = '\000'; |
14f9c5c9 | 1098 | |
29480c32 JB |
1099 | /* Decoded names should never contain any uppercase character. |
1100 | Double-check this, and abort the decoding if we find one. */ | |
1101 | ||
4c4b4cd2 PH |
1102 | for (i = 0; decoded[i] != '\0'; i += 1) |
1103 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1104 | goto Suppress; |
1105 | ||
4c4b4cd2 PH |
1106 | if (strcmp (decoded, encoded) == 0) |
1107 | return encoded; | |
1108 | else | |
1109 | return decoded; | |
14f9c5c9 AS |
1110 | |
1111 | Suppress: | |
4c4b4cd2 PH |
1112 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1113 | decoded = decoding_buffer; | |
1114 | if (encoded[0] == '<') | |
1115 | strcpy (decoded, encoded); | |
14f9c5c9 | 1116 | else |
88c15c34 | 1117 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1118 | return decoded; |
1119 | ||
1120 | } | |
1121 | ||
1122 | /* Table for keeping permanent unique copies of decoded names. Once | |
1123 | allocated, names in this table are never released. While this is a | |
1124 | storage leak, it should not be significant unless there are massive | |
1125 | changes in the set of decoded names in successive versions of a | |
1126 | symbol table loaded during a single session. */ | |
1127 | static struct htab *decoded_names_store; | |
1128 | ||
1129 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1130 | in the language-specific part of GSYMBOL, if it has not been | |
1131 | previously computed. Tries to save the decoded name in the same | |
1132 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1133 | in any case, the decoded symbol has a lifetime at least that of | |
1134 | GSYMBOL). | |
1135 | The GSYMBOL parameter is "mutable" in the C++ sense: logically | |
1136 | const, but nevertheless modified to a semantically equivalent form | |
1137 | when a decoded name is cached in it. | |
76a01679 | 1138 | */ |
4c4b4cd2 | 1139 | |
76a01679 JB |
1140 | char * |
1141 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1142 | { |
76a01679 | 1143 | char **resultp = |
4c4b4cd2 PH |
1144 | (char **) &gsymbol->language_specific.cplus_specific.demangled_name; |
1145 | if (*resultp == NULL) | |
1146 | { | |
1147 | const char *decoded = ada_decode (gsymbol->name); | |
714835d5 | 1148 | if (gsymbol->obj_section != NULL) |
76a01679 | 1149 | { |
714835d5 UW |
1150 | struct objfile *objf = gsymbol->obj_section->objfile; |
1151 | *resultp = obsavestring (decoded, strlen (decoded), | |
1152 | &objf->objfile_obstack); | |
76a01679 | 1153 | } |
4c4b4cd2 | 1154 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1155 | case, we put the result on the heap. Since we only decode |
1156 | when needed, we hope this usually does not cause a | |
1157 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1158 | if (*resultp == NULL) |
76a01679 JB |
1159 | { |
1160 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1161 | decoded, INSERT); | |
1162 | if (*slot == NULL) | |
1163 | *slot = xstrdup (decoded); | |
1164 | *resultp = *slot; | |
1165 | } | |
4c4b4cd2 | 1166 | } |
14f9c5c9 | 1167 | |
4c4b4cd2 PH |
1168 | return *resultp; |
1169 | } | |
76a01679 | 1170 | |
2c0b251b | 1171 | static char * |
76a01679 | 1172 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1173 | { |
1174 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1175 | } |
1176 | ||
1177 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1178 | suffixes that encode debugging information or leading _ada_ on |
1179 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1180 | information that is ignored). If WILD, then NAME need only match a | |
1181 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1182 | either argument is NULL. */ | |
14f9c5c9 | 1183 | |
2c0b251b | 1184 | static int |
d2e4a39e | 1185 | ada_match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1186 | { |
1187 | if (sym_name == NULL || name == NULL) | |
1188 | return 0; | |
1189 | else if (wild) | |
1190 | return wild_match (name, strlen (name), sym_name); | |
d2e4a39e AS |
1191 | else |
1192 | { | |
1193 | int len_name = strlen (name); | |
4c4b4cd2 PH |
1194 | return (strncmp (sym_name, name, len_name) == 0 |
1195 | && is_name_suffix (sym_name + len_name)) | |
1196 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1197 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1198 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1199 | } |
14f9c5c9 | 1200 | } |
14f9c5c9 | 1201 | \f |
d2e4a39e | 1202 | |
4c4b4cd2 | 1203 | /* Arrays */ |
14f9c5c9 | 1204 | |
4c4b4cd2 | 1205 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1206 | |
d2e4a39e AS |
1207 | static char *bound_name[] = { |
1208 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1209 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1210 | }; | |
1211 | ||
1212 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1213 | ||
4c4b4cd2 | 1214 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1215 | |
4c4b4cd2 | 1216 | /* Like modify_field, but allows bitpos > wordlength. */ |
14f9c5c9 AS |
1217 | |
1218 | static void | |
ebf56fd3 | 1219 | modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize) |
14f9c5c9 | 1220 | { |
4c4b4cd2 | 1221 | modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize); |
14f9c5c9 AS |
1222 | } |
1223 | ||
1224 | ||
4c4b4cd2 PH |
1225 | /* The desc_* routines return primitive portions of array descriptors |
1226 | (fat pointers). */ | |
14f9c5c9 AS |
1227 | |
1228 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1229 | level of indirection, if needed. */ |
1230 | ||
d2e4a39e AS |
1231 | static struct type * |
1232 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1233 | { |
1234 | if (type == NULL) | |
1235 | return NULL; | |
61ee279c | 1236 | type = ada_check_typedef (type); |
1265e4aa JB |
1237 | if (type != NULL |
1238 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1239 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1240 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1241 | else |
1242 | return type; | |
1243 | } | |
1244 | ||
4c4b4cd2 PH |
1245 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1246 | ||
14f9c5c9 | 1247 | static int |
d2e4a39e | 1248 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1249 | { |
d2e4a39e | 1250 | return |
14f9c5c9 AS |
1251 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1252 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1253 | } | |
1254 | ||
4c4b4cd2 PH |
1255 | /* The descriptor type for thin pointer type TYPE. */ |
1256 | ||
d2e4a39e AS |
1257 | static struct type * |
1258 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1259 | { |
d2e4a39e | 1260 | struct type *base_type = desc_base_type (type); |
14f9c5c9 AS |
1261 | if (base_type == NULL) |
1262 | return NULL; | |
1263 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1264 | return base_type; | |
d2e4a39e | 1265 | else |
14f9c5c9 | 1266 | { |
d2e4a39e | 1267 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
14f9c5c9 | 1268 | if (alt_type == NULL) |
4c4b4cd2 | 1269 | return base_type; |
14f9c5c9 | 1270 | else |
4c4b4cd2 | 1271 | return alt_type; |
14f9c5c9 AS |
1272 | } |
1273 | } | |
1274 | ||
4c4b4cd2 PH |
1275 | /* A pointer to the array data for thin-pointer value VAL. */ |
1276 | ||
d2e4a39e AS |
1277 | static struct value * |
1278 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1279 | { |
df407dfe | 1280 | struct type *type = value_type (val); |
556bdfd4 UW |
1281 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
1282 | data_type = lookup_pointer_type (data_type); | |
1283 | ||
14f9c5c9 | 1284 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1285 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1286 | else |
42ae5230 | 1287 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1288 | } |
1289 | ||
4c4b4cd2 PH |
1290 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1291 | ||
14f9c5c9 | 1292 | static int |
d2e4a39e | 1293 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1294 | { |
1295 | type = desc_base_type (type); | |
1296 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1297 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1298 | } |
1299 | ||
4c4b4cd2 PH |
1300 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1301 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1302 | |
d2e4a39e AS |
1303 | static struct type * |
1304 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1305 | { |
d2e4a39e | 1306 | struct type *r; |
14f9c5c9 AS |
1307 | |
1308 | type = desc_base_type (type); | |
1309 | ||
1310 | if (type == NULL) | |
1311 | return NULL; | |
1312 | else if (is_thin_pntr (type)) | |
1313 | { | |
1314 | type = thin_descriptor_type (type); | |
1315 | if (type == NULL) | |
4c4b4cd2 | 1316 | return NULL; |
14f9c5c9 AS |
1317 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1318 | if (r != NULL) | |
61ee279c | 1319 | return ada_check_typedef (r); |
14f9c5c9 AS |
1320 | } |
1321 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1322 | { | |
1323 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1324 | if (r != NULL) | |
61ee279c | 1325 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1326 | } |
1327 | return NULL; | |
1328 | } | |
1329 | ||
1330 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1331 | one, a pointer to its bounds data. Otherwise NULL. */ |
1332 | ||
d2e4a39e AS |
1333 | static struct value * |
1334 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1335 | { |
df407dfe | 1336 | struct type *type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1337 | if (is_thin_pntr (type)) |
14f9c5c9 | 1338 | { |
d2e4a39e | 1339 | struct type *bounds_type = |
4c4b4cd2 | 1340 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1341 | LONGEST addr; |
1342 | ||
4cdfadb1 | 1343 | if (bounds_type == NULL) |
323e0a4a | 1344 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1345 | |
1346 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1347 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1348 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1349 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1350 | addr = value_as_long (arr); |
d2e4a39e | 1351 | else |
42ae5230 | 1352 | addr = value_address (arr); |
14f9c5c9 | 1353 | |
d2e4a39e | 1354 | return |
4c4b4cd2 PH |
1355 | value_from_longest (lookup_pointer_type (bounds_type), |
1356 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1357 | } |
1358 | ||
1359 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1360 | return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, |
323e0a4a | 1361 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1362 | else |
1363 | return NULL; | |
1364 | } | |
1365 | ||
4c4b4cd2 PH |
1366 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1367 | position of the field containing the address of the bounds data. */ | |
1368 | ||
14f9c5c9 | 1369 | static int |
d2e4a39e | 1370 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1371 | { |
1372 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1373 | } | |
1374 | ||
1375 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1376 | size of the field containing the address of the bounds data. */ |
1377 | ||
14f9c5c9 | 1378 | static int |
d2e4a39e | 1379 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1380 | { |
1381 | type = desc_base_type (type); | |
1382 | ||
d2e4a39e | 1383 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1384 | return TYPE_FIELD_BITSIZE (type, 1); |
1385 | else | |
61ee279c | 1386 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1387 | } |
1388 | ||
4c4b4cd2 | 1389 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1390 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1391 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1392 | data. */ | |
4c4b4cd2 | 1393 | |
d2e4a39e | 1394 | static struct type * |
556bdfd4 | 1395 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1396 | { |
1397 | type = desc_base_type (type); | |
1398 | ||
4c4b4cd2 | 1399 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1400 | if (is_thin_pntr (type)) |
556bdfd4 | 1401 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1402 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1403 | { |
1404 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1405 | ||
1406 | if (data_type | |
1407 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
1408 | return TYPE_TARGET_TYPE (data_type); | |
1409 | } | |
1410 | ||
1411 | return NULL; | |
14f9c5c9 AS |
1412 | } |
1413 | ||
1414 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1415 | its array data. */ | |
4c4b4cd2 | 1416 | |
d2e4a39e AS |
1417 | static struct value * |
1418 | desc_data (struct value *arr) | |
14f9c5c9 | 1419 | { |
df407dfe | 1420 | struct type *type = value_type (arr); |
14f9c5c9 AS |
1421 | if (is_thin_pntr (type)) |
1422 | return thin_data_pntr (arr); | |
1423 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1424 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1425 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1426 | else |
1427 | return NULL; | |
1428 | } | |
1429 | ||
1430 | ||
1431 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1432 | position of the field containing the address of the data. */ |
1433 | ||
14f9c5c9 | 1434 | static int |
d2e4a39e | 1435 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1436 | { |
1437 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1438 | } | |
1439 | ||
1440 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1441 | size of the field containing the address of the data. */ |
1442 | ||
14f9c5c9 | 1443 | static int |
d2e4a39e | 1444 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1445 | { |
1446 | type = desc_base_type (type); | |
1447 | ||
1448 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1449 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1450 | else |
14f9c5c9 AS |
1451 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1452 | } | |
1453 | ||
4c4b4cd2 | 1454 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1455 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1456 | bound, if WHICH is 1. The first bound is I=1. */ |
1457 | ||
d2e4a39e AS |
1458 | static struct value * |
1459 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1460 | { |
d2e4a39e | 1461 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1462 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1463 | } |
1464 | ||
1465 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1466 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1467 | bound, if WHICH is 1. The first bound is I=1. */ |
1468 | ||
14f9c5c9 | 1469 | static int |
d2e4a39e | 1470 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1471 | { |
d2e4a39e | 1472 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1473 | } |
1474 | ||
1475 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1476 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1477 | bound, if WHICH is 1. The first bound is I=1. */ |
1478 | ||
76a01679 | 1479 | static int |
d2e4a39e | 1480 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1481 | { |
1482 | type = desc_base_type (type); | |
1483 | ||
d2e4a39e AS |
1484 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1485 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1486 | else | |
1487 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1488 | } |
1489 | ||
1490 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1491 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1492 | ||
d2e4a39e AS |
1493 | static struct type * |
1494 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1495 | { |
1496 | type = desc_base_type (type); | |
1497 | ||
1498 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1499 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1500 | else | |
14f9c5c9 AS |
1501 | return NULL; |
1502 | } | |
1503 | ||
4c4b4cd2 PH |
1504 | /* The number of index positions in the array-bounds type TYPE. |
1505 | Return 0 if TYPE is NULL. */ | |
1506 | ||
14f9c5c9 | 1507 | static int |
d2e4a39e | 1508 | desc_arity (struct type *type) |
14f9c5c9 AS |
1509 | { |
1510 | type = desc_base_type (type); | |
1511 | ||
1512 | if (type != NULL) | |
1513 | return TYPE_NFIELDS (type) / 2; | |
1514 | return 0; | |
1515 | } | |
1516 | ||
4c4b4cd2 PH |
1517 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1518 | an array descriptor type (representing an unconstrained array | |
1519 | type). */ | |
1520 | ||
76a01679 JB |
1521 | static int |
1522 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1523 | { |
1524 | if (type == NULL) | |
1525 | return 0; | |
61ee279c | 1526 | type = ada_check_typedef (type); |
4c4b4cd2 | 1527 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1528 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1529 | } |
1530 | ||
52ce6436 PH |
1531 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
1532 | * to one. */ | |
1533 | ||
2c0b251b | 1534 | static int |
52ce6436 PH |
1535 | ada_is_array_type (struct type *type) |
1536 | { | |
1537 | while (type != NULL | |
1538 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1539 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1540 | type = TYPE_TARGET_TYPE (type); | |
1541 | return ada_is_direct_array_type (type); | |
1542 | } | |
1543 | ||
4c4b4cd2 | 1544 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1545 | |
14f9c5c9 | 1546 | int |
4c4b4cd2 | 1547 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1548 | { |
1549 | if (type == NULL) | |
1550 | return 0; | |
61ee279c | 1551 | type = ada_check_typedef (type); |
14f9c5c9 | 1552 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1553 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1554 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1555 | } |
1556 | ||
4c4b4cd2 PH |
1557 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1558 | ||
14f9c5c9 | 1559 | int |
4c4b4cd2 | 1560 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1561 | { |
556bdfd4 | 1562 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1563 | |
1564 | if (type == NULL) | |
1565 | return 0; | |
61ee279c | 1566 | type = ada_check_typedef (type); |
556bdfd4 UW |
1567 | return (data_type != NULL |
1568 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1569 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1570 | } |
1571 | ||
1572 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1573 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1574 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1575 | is still needed. */ |
1576 | ||
14f9c5c9 | 1577 | int |
ebf56fd3 | 1578 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1579 | { |
d2e4a39e | 1580 | return |
14f9c5c9 AS |
1581 | type != NULL |
1582 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1583 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1584 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1585 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1586 | } |
1587 | ||
1588 | ||
4c4b4cd2 | 1589 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1590 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1591 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1592 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1593 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1594 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1595 | a descriptor. */ |
d2e4a39e AS |
1596 | struct type * |
1597 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1598 | { |
df407dfe AC |
1599 | if (ada_is_packed_array_type (value_type (arr))) |
1600 | return decode_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1601 | |
df407dfe AC |
1602 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1603 | return value_type (arr); | |
d2e4a39e AS |
1604 | |
1605 | if (!bounds) | |
1606 | return | |
556bdfd4 | 1607 | ada_check_typedef (desc_data_target_type (value_type (arr))); |
14f9c5c9 AS |
1608 | else |
1609 | { | |
d2e4a39e | 1610 | struct type *elt_type; |
14f9c5c9 | 1611 | int arity; |
d2e4a39e | 1612 | struct value *descriptor; |
df407dfe | 1613 | struct objfile *objf = TYPE_OBJFILE (value_type (arr)); |
14f9c5c9 | 1614 | |
df407dfe AC |
1615 | elt_type = ada_array_element_type (value_type (arr), -1); |
1616 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1617 | |
d2e4a39e | 1618 | if (elt_type == NULL || arity == 0) |
df407dfe | 1619 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1620 | |
1621 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1622 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1623 | return NULL; |
d2e4a39e | 1624 | while (arity > 0) |
4c4b4cd2 PH |
1625 | { |
1626 | struct type *range_type = alloc_type (objf); | |
1627 | struct type *array_type = alloc_type (objf); | |
1628 | struct value *low = desc_one_bound (descriptor, arity, 0); | |
1629 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
1630 | arity -= 1; | |
1631 | ||
df407dfe | 1632 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1633 | longest_to_int (value_as_long (low)), |
1634 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 PH |
1635 | elt_type = create_array_type (array_type, elt_type, range_type); |
1636 | } | |
14f9c5c9 AS |
1637 | |
1638 | return lookup_pointer_type (elt_type); | |
1639 | } | |
1640 | } | |
1641 | ||
1642 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1643 | Otherwise, returns either a standard GDB array with bounds set |
1644 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1645 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1646 | ||
d2e4a39e AS |
1647 | struct value * |
1648 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1649 | { |
df407dfe | 1650 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1651 | { |
d2e4a39e | 1652 | struct type *arrType = ada_type_of_array (arr, 1); |
14f9c5c9 | 1653 | if (arrType == NULL) |
4c4b4cd2 | 1654 | return NULL; |
14f9c5c9 AS |
1655 | return value_cast (arrType, value_copy (desc_data (arr))); |
1656 | } | |
df407dfe | 1657 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 AS |
1658 | return decode_packed_array (arr); |
1659 | else | |
1660 | return arr; | |
1661 | } | |
1662 | ||
1663 | /* If ARR does not represent an array, returns ARR unchanged. | |
1664 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1665 | be ARR itself if it already is in the proper form). */ |
1666 | ||
1667 | static struct value * | |
d2e4a39e | 1668 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1669 | { |
df407dfe | 1670 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1671 | { |
d2e4a39e | 1672 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
14f9c5c9 | 1673 | if (arrVal == NULL) |
323e0a4a | 1674 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1675 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1676 | return value_ind (arrVal); |
1677 | } | |
df407dfe | 1678 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 | 1679 | return decode_packed_array (arr); |
d2e4a39e | 1680 | else |
14f9c5c9 AS |
1681 | return arr; |
1682 | } | |
1683 | ||
1684 | /* If TYPE represents a GNAT array type, return it translated to an | |
1685 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1686 | packing). For other types, is the identity. */ |
1687 | ||
d2e4a39e AS |
1688 | struct type * |
1689 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1690 | { |
17280b9f UW |
1691 | if (ada_is_packed_array_type (type)) |
1692 | return decode_packed_array_type (type); | |
1693 | ||
1694 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1695 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1696 | |
1697 | return type; | |
14f9c5c9 AS |
1698 | } |
1699 | ||
4c4b4cd2 PH |
1700 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1701 | ||
14f9c5c9 | 1702 | int |
d2e4a39e | 1703 | ada_is_packed_array_type (struct type *type) |
14f9c5c9 AS |
1704 | { |
1705 | if (type == NULL) | |
1706 | return 0; | |
4c4b4cd2 | 1707 | type = desc_base_type (type); |
61ee279c | 1708 | type = ada_check_typedef (type); |
d2e4a39e | 1709 | return |
14f9c5c9 AS |
1710 | ada_type_name (type) != NULL |
1711 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1712 | } | |
1713 | ||
1714 | /* Given that TYPE is a standard GDB array type with all bounds filled | |
1715 | in, and that the element size of its ultimate scalar constituents | |
1716 | (that is, either its elements, or, if it is an array of arrays, its | |
1717 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1718 | but with the bit sizes of its elements (and those of any | |
1719 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1720 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1721 | in bits. */ | |
1722 | ||
d2e4a39e AS |
1723 | static struct type * |
1724 | packed_array_type (struct type *type, long *elt_bits) | |
14f9c5c9 | 1725 | { |
d2e4a39e AS |
1726 | struct type *new_elt_type; |
1727 | struct type *new_type; | |
14f9c5c9 AS |
1728 | LONGEST low_bound, high_bound; |
1729 | ||
61ee279c | 1730 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1731 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1732 | return type; | |
1733 | ||
1734 | new_type = alloc_type (TYPE_OBJFILE (type)); | |
61ee279c | 1735 | new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 1736 | elt_bits); |
262452ec | 1737 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
1738 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
1739 | TYPE_NAME (new_type) = ada_type_name (type); | |
1740 | ||
262452ec | 1741 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 1742 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
1743 | low_bound = high_bound = 0; |
1744 | if (high_bound < low_bound) | |
1745 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 1746 | else |
14f9c5c9 AS |
1747 | { |
1748 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 1749 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 1750 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
1751 | } |
1752 | ||
876cecd0 | 1753 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
1754 | return new_type; |
1755 | } | |
1756 | ||
4c4b4cd2 PH |
1757 | /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */ |
1758 | ||
d2e4a39e AS |
1759 | static struct type * |
1760 | decode_packed_array_type (struct type *type) | |
1761 | { | |
4c4b4cd2 | 1762 | struct symbol *sym; |
d2e4a39e | 1763 | struct block **blocks; |
727e3d2e JB |
1764 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
1765 | char *name; | |
1766 | char *tail; | |
d2e4a39e | 1767 | struct type *shadow_type; |
14f9c5c9 AS |
1768 | long bits; |
1769 | int i, n; | |
1770 | ||
727e3d2e JB |
1771 | if (!raw_name) |
1772 | raw_name = ada_type_name (desc_base_type (type)); | |
1773 | ||
1774 | if (!raw_name) | |
1775 | return NULL; | |
1776 | ||
1777 | name = (char *) alloca (strlen (raw_name) + 1); | |
1778 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
1779 | type = desc_base_type (type); |
1780 | ||
14f9c5c9 AS |
1781 | memcpy (name, raw_name, tail - raw_name); |
1782 | name[tail - raw_name] = '\000'; | |
1783 | ||
4c4b4cd2 PH |
1784 | sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN); |
1785 | if (sym == NULL || SYMBOL_TYPE (sym) == NULL) | |
14f9c5c9 | 1786 | { |
323e0a4a | 1787 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
1788 | return NULL; |
1789 | } | |
4c4b4cd2 | 1790 | shadow_type = SYMBOL_TYPE (sym); |
cb249c71 | 1791 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
1792 | |
1793 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
1794 | { | |
323e0a4a | 1795 | lim_warning (_("could not understand bounds information on packed array")); |
14f9c5c9 AS |
1796 | return NULL; |
1797 | } | |
d2e4a39e | 1798 | |
14f9c5c9 AS |
1799 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) |
1800 | { | |
4c4b4cd2 | 1801 | lim_warning |
323e0a4a | 1802 | (_("could not understand bit size information on packed array")); |
14f9c5c9 AS |
1803 | return NULL; |
1804 | } | |
d2e4a39e | 1805 | |
14f9c5c9 AS |
1806 | return packed_array_type (shadow_type, &bits); |
1807 | } | |
1808 | ||
4c4b4cd2 | 1809 | /* Given that ARR is a struct value *indicating a GNAT packed array, |
14f9c5c9 AS |
1810 | returns a simple array that denotes that array. Its type is a |
1811 | standard GDB array type except that the BITSIZEs of the array | |
1812 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 1813 | type length is set appropriately. */ |
14f9c5c9 | 1814 | |
d2e4a39e AS |
1815 | static struct value * |
1816 | decode_packed_array (struct value *arr) | |
14f9c5c9 | 1817 | { |
4c4b4cd2 | 1818 | struct type *type; |
14f9c5c9 | 1819 | |
4c4b4cd2 | 1820 | arr = ada_coerce_ref (arr); |
284614f0 JB |
1821 | |
1822 | /* If our value is a pointer, then dererence it. Make sure that | |
1823 | this operation does not cause the target type to be fixed, as | |
1824 | this would indirectly cause this array to be decoded. The rest | |
1825 | of the routine assumes that the array hasn't been decoded yet, | |
1826 | so we use the basic "value_ind" routine to perform the dereferencing, | |
1827 | as opposed to using "ada_value_ind". */ | |
df407dfe | 1828 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
284614f0 | 1829 | arr = value_ind (arr); |
4c4b4cd2 | 1830 | |
df407dfe | 1831 | type = decode_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
1832 | if (type == NULL) |
1833 | { | |
323e0a4a | 1834 | error (_("can't unpack array")); |
14f9c5c9 AS |
1835 | return NULL; |
1836 | } | |
61ee279c | 1837 | |
32c9a795 MD |
1838 | if (gdbarch_bits_big_endian (current_gdbarch) |
1839 | && ada_is_modular_type (value_type (arr))) | |
61ee279c PH |
1840 | { |
1841 | /* This is a (right-justified) modular type representing a packed | |
1842 | array with no wrapper. In order to interpret the value through | |
1843 | the (left-justified) packed array type we just built, we must | |
1844 | first left-justify it. */ | |
1845 | int bit_size, bit_pos; | |
1846 | ULONGEST mod; | |
1847 | ||
df407dfe | 1848 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
1849 | bit_size = 0; |
1850 | while (mod > 0) | |
1851 | { | |
1852 | bit_size += 1; | |
1853 | mod >>= 1; | |
1854 | } | |
df407dfe | 1855 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
1856 | arr = ada_value_primitive_packed_val (arr, NULL, |
1857 | bit_pos / HOST_CHAR_BIT, | |
1858 | bit_pos % HOST_CHAR_BIT, | |
1859 | bit_size, | |
1860 | type); | |
1861 | } | |
1862 | ||
4c4b4cd2 | 1863 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
1864 | } |
1865 | ||
1866 | ||
1867 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 1868 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 1869 | |
d2e4a39e AS |
1870 | static struct value * |
1871 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
1872 | { |
1873 | int i; | |
1874 | int bits, elt_off, bit_off; | |
1875 | long elt_total_bit_offset; | |
d2e4a39e AS |
1876 | struct type *elt_type; |
1877 | struct value *v; | |
14f9c5c9 AS |
1878 | |
1879 | bits = 0; | |
1880 | elt_total_bit_offset = 0; | |
df407dfe | 1881 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1882 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 1883 | { |
d2e4a39e | 1884 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1885 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
1886 | error | |
323e0a4a | 1887 | (_("attempt to do packed indexing of something other than a packed array")); |
14f9c5c9 | 1888 | else |
4c4b4cd2 PH |
1889 | { |
1890 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
1891 | LONGEST lowerbound, upperbound; | |
1892 | LONGEST idx; | |
1893 | ||
1894 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
1895 | { | |
323e0a4a | 1896 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
1897 | lowerbound = upperbound = 0; |
1898 | } | |
1899 | ||
3cb382c9 | 1900 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 1901 | if (idx < lowerbound || idx > upperbound) |
323e0a4a | 1902 | lim_warning (_("packed array index %ld out of bounds"), (long) idx); |
4c4b4cd2 PH |
1903 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
1904 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 1905 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 1906 | } |
14f9c5c9 AS |
1907 | } |
1908 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
1909 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
1910 | |
1911 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 1912 | bits, elt_type); |
14f9c5c9 AS |
1913 | return v; |
1914 | } | |
1915 | ||
4c4b4cd2 | 1916 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
1917 | |
1918 | static int | |
d2e4a39e | 1919 | has_negatives (struct type *type) |
14f9c5c9 | 1920 | { |
d2e4a39e AS |
1921 | switch (TYPE_CODE (type)) |
1922 | { | |
1923 | default: | |
1924 | return 0; | |
1925 | case TYPE_CODE_INT: | |
1926 | return !TYPE_UNSIGNED (type); | |
1927 | case TYPE_CODE_RANGE: | |
1928 | return TYPE_LOW_BOUND (type) < 0; | |
1929 | } | |
14f9c5c9 | 1930 | } |
d2e4a39e | 1931 | |
14f9c5c9 AS |
1932 | |
1933 | /* Create a new value of type TYPE from the contents of OBJ starting | |
1934 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
1935 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
4c4b4cd2 PH |
1936 | assigning through the result will set the field fetched from. |
1937 | VALADDR is ignored unless OBJ is NULL, in which case, | |
1938 | VALADDR+OFFSET must address the start of storage containing the | |
1939 | packed value. The value returned in this case is never an lval. | |
1940 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 1941 | |
d2e4a39e | 1942 | struct value * |
fc1a4b47 | 1943 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 1944 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 1945 | struct type *type) |
14f9c5c9 | 1946 | { |
d2e4a39e | 1947 | struct value *v; |
4c4b4cd2 PH |
1948 | int src, /* Index into the source area */ |
1949 | targ, /* Index into the target area */ | |
1950 | srcBitsLeft, /* Number of source bits left to move */ | |
1951 | nsrc, ntarg, /* Number of source and target bytes */ | |
1952 | unusedLS, /* Number of bits in next significant | |
1953 | byte of source that are unused */ | |
1954 | accumSize; /* Number of meaningful bits in accum */ | |
1955 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 1956 | unsigned char *unpacked; |
4c4b4cd2 | 1957 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
1958 | unsigned char sign; |
1959 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
1960 | /* Transmit bytes from least to most significant; delta is the direction |
1961 | the indices move. */ | |
32c9a795 | 1962 | int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1; |
14f9c5c9 | 1963 | |
61ee279c | 1964 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1965 | |
1966 | if (obj == NULL) | |
1967 | { | |
1968 | v = allocate_value (type); | |
d2e4a39e | 1969 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 1970 | } |
9214ee5f | 1971 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
1972 | { |
1973 | v = value_at (type, | |
42ae5230 | 1974 | value_address (obj) + offset); |
d2e4a39e | 1975 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 1976 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 1977 | } |
d2e4a39e | 1978 | else |
14f9c5c9 AS |
1979 | { |
1980 | v = allocate_value (type); | |
0fd88904 | 1981 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 1982 | } |
d2e4a39e AS |
1983 | |
1984 | if (obj != NULL) | |
14f9c5c9 | 1985 | { |
42ae5230 | 1986 | CORE_ADDR new_addr; |
74bcbdf3 | 1987 | set_value_component_location (v, obj); |
42ae5230 | 1988 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
1989 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
1990 | set_value_bitsize (v, bit_size); | |
df407dfe | 1991 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 1992 | { |
42ae5230 | 1993 | ++new_addr; |
9bbda503 | 1994 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 1995 | } |
42ae5230 | 1996 | set_value_address (v, new_addr); |
14f9c5c9 AS |
1997 | } |
1998 | else | |
9bbda503 | 1999 | set_value_bitsize (v, bit_size); |
0fd88904 | 2000 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2001 | |
2002 | srcBitsLeft = bit_size; | |
2003 | nsrc = len; | |
2004 | ntarg = TYPE_LENGTH (type); | |
2005 | sign = 0; | |
2006 | if (bit_size == 0) | |
2007 | { | |
2008 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2009 | return v; | |
2010 | } | |
32c9a795 | 2011 | else if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 | 2012 | { |
d2e4a39e | 2013 | src = len - 1; |
1265e4aa JB |
2014 | if (has_negatives (type) |
2015 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2016 | sign = ~0; |
d2e4a39e AS |
2017 | |
2018 | unusedLS = | |
4c4b4cd2 PH |
2019 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2020 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2021 | |
2022 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2023 | { |
2024 | case TYPE_CODE_ARRAY: | |
2025 | case TYPE_CODE_UNION: | |
2026 | case TYPE_CODE_STRUCT: | |
2027 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2028 | accumSize = | |
2029 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2030 | /* ... And are placed at the beginning (most-significant) bytes | |
2031 | of the target. */ | |
529cad9c | 2032 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2033 | ntarg = targ + 1; |
4c4b4cd2 PH |
2034 | break; |
2035 | default: | |
2036 | accumSize = 0; | |
2037 | targ = TYPE_LENGTH (type) - 1; | |
2038 | break; | |
2039 | } | |
14f9c5c9 | 2040 | } |
d2e4a39e | 2041 | else |
14f9c5c9 AS |
2042 | { |
2043 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2044 | ||
2045 | src = targ = 0; | |
2046 | unusedLS = bit_offset; | |
2047 | accumSize = 0; | |
2048 | ||
d2e4a39e | 2049 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2050 | sign = ~0; |
14f9c5c9 | 2051 | } |
d2e4a39e | 2052 | |
14f9c5c9 AS |
2053 | accum = 0; |
2054 | while (nsrc > 0) | |
2055 | { | |
2056 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2057 | part of the value. */ |
d2e4a39e | 2058 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2059 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2060 | 1; | |
2061 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2062 | unsigned int signMask = sign & ~unusedMSMask; |
d2e4a39e | 2063 | accum |= |
4c4b4cd2 | 2064 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2065 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2066 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2067 | { |
2068 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2069 | accumSize -= HOST_CHAR_BIT; | |
2070 | accum >>= HOST_CHAR_BIT; | |
2071 | ntarg -= 1; | |
2072 | targ += delta; | |
2073 | } | |
14f9c5c9 AS |
2074 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2075 | unusedLS = 0; | |
2076 | nsrc -= 1; | |
2077 | src += delta; | |
2078 | } | |
2079 | while (ntarg > 0) | |
2080 | { | |
2081 | accum |= sign << accumSize; | |
2082 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2083 | accumSize -= HOST_CHAR_BIT; | |
2084 | accum >>= HOST_CHAR_BIT; | |
2085 | ntarg -= 1; | |
2086 | targ += delta; | |
2087 | } | |
2088 | ||
2089 | return v; | |
2090 | } | |
d2e4a39e | 2091 | |
14f9c5c9 AS |
2092 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2093 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2094 | not overlap. */ |
14f9c5c9 | 2095 | static void |
fc1a4b47 | 2096 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
0fd88904 | 2097 | int src_offset, int n) |
14f9c5c9 AS |
2098 | { |
2099 | unsigned int accum, mask; | |
2100 | int accum_bits, chunk_size; | |
2101 | ||
2102 | target += targ_offset / HOST_CHAR_BIT; | |
2103 | targ_offset %= HOST_CHAR_BIT; | |
2104 | source += src_offset / HOST_CHAR_BIT; | |
2105 | src_offset %= HOST_CHAR_BIT; | |
32c9a795 | 2106 | if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 AS |
2107 | { |
2108 | accum = (unsigned char) *source; | |
2109 | source += 1; | |
2110 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2111 | ||
d2e4a39e | 2112 | while (n > 0) |
4c4b4cd2 PH |
2113 | { |
2114 | int unused_right; | |
2115 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; | |
2116 | accum_bits += HOST_CHAR_BIT; | |
2117 | source += 1; | |
2118 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2119 | if (chunk_size > n) | |
2120 | chunk_size = n; | |
2121 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2122 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2123 | *target = | |
2124 | (*target & ~mask) | |
2125 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2126 | n -= chunk_size; | |
2127 | accum_bits -= chunk_size; | |
2128 | target += 1; | |
2129 | targ_offset = 0; | |
2130 | } | |
14f9c5c9 AS |
2131 | } |
2132 | else | |
2133 | { | |
2134 | accum = (unsigned char) *source >> src_offset; | |
2135 | source += 1; | |
2136 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2137 | ||
d2e4a39e | 2138 | while (n > 0) |
4c4b4cd2 PH |
2139 | { |
2140 | accum = accum + ((unsigned char) *source << accum_bits); | |
2141 | accum_bits += HOST_CHAR_BIT; | |
2142 | source += 1; | |
2143 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2144 | if (chunk_size > n) | |
2145 | chunk_size = n; | |
2146 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2147 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2148 | n -= chunk_size; | |
2149 | accum_bits -= chunk_size; | |
2150 | accum >>= chunk_size; | |
2151 | target += 1; | |
2152 | targ_offset = 0; | |
2153 | } | |
14f9c5c9 AS |
2154 | } |
2155 | } | |
2156 | ||
14f9c5c9 AS |
2157 | /* Store the contents of FROMVAL into the location of TOVAL. |
2158 | Return a new value with the location of TOVAL and contents of | |
2159 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2160 | floating-point or non-scalar types. */ |
14f9c5c9 | 2161 | |
d2e4a39e AS |
2162 | static struct value * |
2163 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2164 | { |
df407dfe AC |
2165 | struct type *type = value_type (toval); |
2166 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2167 | |
52ce6436 PH |
2168 | toval = ada_coerce_ref (toval); |
2169 | fromval = ada_coerce_ref (fromval); | |
2170 | ||
2171 | if (ada_is_direct_array_type (value_type (toval))) | |
2172 | toval = ada_coerce_to_simple_array (toval); | |
2173 | if (ada_is_direct_array_type (value_type (fromval))) | |
2174 | fromval = ada_coerce_to_simple_array (fromval); | |
2175 | ||
88e3b34b | 2176 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2177 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2178 | |
d2e4a39e | 2179 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2180 | && bits > 0 |
d2e4a39e | 2181 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2182 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2183 | { |
df407dfe AC |
2184 | int len = (value_bitpos (toval) |
2185 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2186 | int from_size; |
d2e4a39e AS |
2187 | char *buffer = (char *) alloca (len); |
2188 | struct value *val; | |
42ae5230 | 2189 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2190 | |
2191 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2192 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2193 | |
52ce6436 | 2194 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2195 | from_size = value_bitsize (fromval); |
2196 | if (from_size == 0) | |
2197 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
32c9a795 | 2198 | if (gdbarch_bits_big_endian (current_gdbarch)) |
df407dfe | 2199 | move_bits (buffer, value_bitpos (toval), |
aced2898 | 2200 | value_contents (fromval), from_size - bits, bits); |
14f9c5c9 | 2201 | else |
0fd88904 | 2202 | move_bits (buffer, value_bitpos (toval), value_contents (fromval), |
4c4b4cd2 | 2203 | 0, bits); |
52ce6436 PH |
2204 | write_memory (to_addr, buffer, len); |
2205 | if (deprecated_memory_changed_hook) | |
2206 | deprecated_memory_changed_hook (to_addr, len); | |
2207 | ||
14f9c5c9 | 2208 | val = value_copy (toval); |
0fd88904 | 2209 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2210 | TYPE_LENGTH (type)); |
04624583 | 2211 | deprecated_set_value_type (val, type); |
d2e4a39e | 2212 | |
14f9c5c9 AS |
2213 | return val; |
2214 | } | |
2215 | ||
2216 | return value_assign (toval, fromval); | |
2217 | } | |
2218 | ||
2219 | ||
52ce6436 PH |
2220 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2221 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2222 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2223 | * COMPONENT, and not the inferior's memory. The current contents | |
2224 | * of COMPONENT are ignored. */ | |
2225 | static void | |
2226 | value_assign_to_component (struct value *container, struct value *component, | |
2227 | struct value *val) | |
2228 | { | |
2229 | LONGEST offset_in_container = | |
42ae5230 | 2230 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2231 | int bit_offset_in_container = |
2232 | value_bitpos (component) - value_bitpos (container); | |
2233 | int bits; | |
2234 | ||
2235 | val = value_cast (value_type (component), val); | |
2236 | ||
2237 | if (value_bitsize (component) == 0) | |
2238 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2239 | else | |
2240 | bits = value_bitsize (component); | |
2241 | ||
32c9a795 | 2242 | if (gdbarch_bits_big_endian (current_gdbarch)) |
52ce6436 PH |
2243 | move_bits (value_contents_writeable (container) + offset_in_container, |
2244 | value_bitpos (container) + bit_offset_in_container, | |
2245 | value_contents (val), | |
2246 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
2247 | bits); | |
2248 | else | |
2249 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2250 | value_bitpos (container) + bit_offset_in_container, | |
2251 | value_contents (val), 0, bits); | |
2252 | } | |
2253 | ||
4c4b4cd2 PH |
2254 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2255 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2256 | thereto. */ |
2257 | ||
d2e4a39e AS |
2258 | struct value * |
2259 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2260 | { |
2261 | int k; | |
d2e4a39e AS |
2262 | struct value *elt; |
2263 | struct type *elt_type; | |
14f9c5c9 AS |
2264 | |
2265 | elt = ada_coerce_to_simple_array (arr); | |
2266 | ||
df407dfe | 2267 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2268 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2269 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2270 | return value_subscript_packed (elt, arity, ind); | |
2271 | ||
2272 | for (k = 0; k < arity; k += 1) | |
2273 | { | |
2274 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2275 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2276 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2277 | } |
2278 | return elt; | |
2279 | } | |
2280 | ||
2281 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2282 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2283 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2284 | |
2c0b251b | 2285 | static struct value * |
d2e4a39e | 2286 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2287 | struct value **ind) |
14f9c5c9 AS |
2288 | { |
2289 | int k; | |
2290 | ||
2291 | for (k = 0; k < arity; k += 1) | |
2292 | { | |
2293 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2294 | |
2295 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2296 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2297 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2298 | value_copy (arr)); |
14f9c5c9 | 2299 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2300 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2301 | type = TYPE_TARGET_TYPE (type); |
2302 | } | |
2303 | ||
2304 | return value_ind (arr); | |
2305 | } | |
2306 | ||
0b5d8877 | 2307 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2308 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2309 | elements starting at index LOW. The lower bound of this array is LOW, as | |
2310 | per Ada rules. */ | |
0b5d8877 | 2311 | static struct value * |
f5938064 JG |
2312 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2313 | int low, int high) | |
0b5d8877 | 2314 | { |
6c038f32 | 2315 | CORE_ADDR base = value_as_address (array_ptr) |
0b5d8877 PH |
2316 | + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))) |
2317 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); | |
6c038f32 PH |
2318 | struct type *index_type = |
2319 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2320 | low, high); |
6c038f32 | 2321 | struct type *slice_type = |
0b5d8877 | 2322 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
f5938064 | 2323 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2324 | } |
2325 | ||
2326 | ||
2327 | static struct value * | |
2328 | ada_value_slice (struct value *array, int low, int high) | |
2329 | { | |
df407dfe | 2330 | struct type *type = value_type (array); |
6c038f32 | 2331 | struct type *index_type = |
0b5d8877 | 2332 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2333 | struct type *slice_type = |
0b5d8877 | 2334 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
6c038f32 | 2335 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2336 | } |
2337 | ||
14f9c5c9 AS |
2338 | /* If type is a record type in the form of a standard GNAT array |
2339 | descriptor, returns the number of dimensions for type. If arr is a | |
2340 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2341 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2342 | |
2343 | int | |
d2e4a39e | 2344 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2345 | { |
2346 | int arity; | |
2347 | ||
2348 | if (type == NULL) | |
2349 | return 0; | |
2350 | ||
2351 | type = desc_base_type (type); | |
2352 | ||
2353 | arity = 0; | |
d2e4a39e | 2354 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2355 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2356 | else |
2357 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2358 | { |
4c4b4cd2 | 2359 | arity += 1; |
61ee279c | 2360 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2361 | } |
d2e4a39e | 2362 | |
14f9c5c9 AS |
2363 | return arity; |
2364 | } | |
2365 | ||
2366 | /* If TYPE is a record type in the form of a standard GNAT array | |
2367 | descriptor or a simple array type, returns the element type for | |
2368 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2369 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2370 | |
d2e4a39e AS |
2371 | struct type * |
2372 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2373 | { |
2374 | type = desc_base_type (type); | |
2375 | ||
d2e4a39e | 2376 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2377 | { |
2378 | int k; | |
d2e4a39e | 2379 | struct type *p_array_type; |
14f9c5c9 | 2380 | |
556bdfd4 | 2381 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2382 | |
2383 | k = ada_array_arity (type); | |
2384 | if (k == 0) | |
4c4b4cd2 | 2385 | return NULL; |
d2e4a39e | 2386 | |
4c4b4cd2 | 2387 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2388 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2389 | k = nindices; |
d2e4a39e | 2390 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2391 | { |
61ee279c | 2392 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2393 | k -= 1; |
2394 | } | |
14f9c5c9 AS |
2395 | return p_array_type; |
2396 | } | |
2397 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2398 | { | |
2399 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2400 | { |
2401 | type = TYPE_TARGET_TYPE (type); | |
2402 | nindices -= 1; | |
2403 | } | |
14f9c5c9 AS |
2404 | return type; |
2405 | } | |
2406 | ||
2407 | return NULL; | |
2408 | } | |
2409 | ||
4c4b4cd2 PH |
2410 | /* The type of nth index in arrays of given type (n numbering from 1). |
2411 | Does not examine memory. */ | |
14f9c5c9 | 2412 | |
d2e4a39e AS |
2413 | struct type * |
2414 | ada_index_type (struct type *type, int n) | |
14f9c5c9 | 2415 | { |
4c4b4cd2 PH |
2416 | struct type *result_type; |
2417 | ||
14f9c5c9 AS |
2418 | type = desc_base_type (type); |
2419 | ||
2420 | if (n > ada_array_arity (type)) | |
2421 | return NULL; | |
2422 | ||
4c4b4cd2 | 2423 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2424 | { |
2425 | int i; | |
2426 | ||
2427 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2428 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2429 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2430 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2431 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 JB |
2432 | perhaps stabsread.c would make more sense. */ |
2433 | if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF) | |
6d84d3d8 | 2434 | result_type = builtin_type_int32; |
14f9c5c9 | 2435 | |
4c4b4cd2 | 2436 | return result_type; |
14f9c5c9 | 2437 | } |
d2e4a39e | 2438 | else |
14f9c5c9 AS |
2439 | return desc_index_type (desc_bounds_type (type), n); |
2440 | } | |
2441 | ||
2442 | /* Given that arr is an array type, returns the lower bound of the | |
2443 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 PH |
2444 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
2445 | array-descriptor type. If TYPEP is non-null, *TYPEP is set to the | |
2446 | bounds type. It works for other arrays with bounds supplied by | |
2447 | run-time quantities other than discriminants. */ | |
14f9c5c9 | 2448 | |
abb68b3e | 2449 | static LONGEST |
d2e4a39e | 2450 | ada_array_bound_from_type (struct type * arr_type, int n, int which, |
4c4b4cd2 | 2451 | struct type ** typep) |
14f9c5c9 | 2452 | { |
262452ec JK |
2453 | struct type *type, *index_type_desc, *index_type; |
2454 | LONGEST retval; | |
2455 | ||
2456 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 AS |
2457 | |
2458 | if (ada_is_packed_array_type (arr_type)) | |
2459 | arr_type = decode_packed_array_type (arr_type); | |
2460 | ||
4c4b4cd2 | 2461 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
14f9c5c9 AS |
2462 | { |
2463 | if (typep != NULL) | |
6d84d3d8 | 2464 | *typep = builtin_type_int32; |
d2e4a39e | 2465 | return (LONGEST) - which; |
14f9c5c9 AS |
2466 | } |
2467 | ||
2468 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2469 | type = TYPE_TARGET_TYPE (arr_type); | |
2470 | else | |
2471 | type = arr_type; | |
2472 | ||
2473 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
262452ec JK |
2474 | if (index_type_desc != NULL) |
2475 | index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1), | |
2476 | NULL, TYPE_OBJFILE (arr_type)); | |
2477 | else | |
14f9c5c9 | 2478 | { |
d2e4a39e | 2479 | while (n > 1) |
4c4b4cd2 PH |
2480 | { |
2481 | type = TYPE_TARGET_TYPE (type); | |
2482 | n -= 1; | |
2483 | } | |
14f9c5c9 | 2484 | |
abb68b3e | 2485 | index_type = TYPE_INDEX_TYPE (type); |
14f9c5c9 | 2486 | } |
262452ec JK |
2487 | |
2488 | switch (TYPE_CODE (index_type)) | |
14f9c5c9 | 2489 | { |
262452ec JK |
2490 | case TYPE_CODE_RANGE: |
2491 | retval = which == 0 ? TYPE_LOW_BOUND (index_type) | |
2492 | : TYPE_HIGH_BOUND (index_type); | |
2493 | break; | |
2494 | case TYPE_CODE_ENUM: | |
2495 | retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0) | |
2496 | : TYPE_FIELD_BITPOS (index_type, | |
2497 | TYPE_NFIELDS (index_type) - 1); | |
2498 | break; | |
2499 | default: | |
2500 | internal_error (__FILE__, __LINE__, _("invalid type code of index type")); | |
2501 | } | |
abb68b3e | 2502 | |
262452ec JK |
2503 | if (typep != NULL) |
2504 | *typep = index_type; | |
abb68b3e | 2505 | |
262452ec | 2506 | return retval; |
14f9c5c9 AS |
2507 | } |
2508 | ||
2509 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2510 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2511 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2512 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2513 | |
d2e4a39e | 2514 | struct value * |
4dc81987 | 2515 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2516 | { |
df407dfe | 2517 | struct type *arr_type = value_type (arr); |
14f9c5c9 AS |
2518 | |
2519 | if (ada_is_packed_array_type (arr_type)) | |
2520 | return ada_array_bound (decode_packed_array (arr), n, which); | |
4c4b4cd2 | 2521 | else if (ada_is_simple_array_type (arr_type)) |
14f9c5c9 | 2522 | { |
d2e4a39e | 2523 | struct type *type; |
14f9c5c9 AS |
2524 | LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type); |
2525 | return value_from_longest (type, v); | |
2526 | } | |
2527 | else | |
2528 | return desc_one_bound (desc_bounds (arr), n, which); | |
2529 | } | |
2530 | ||
2531 | /* Given that arr is an array value, returns the length of the | |
2532 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2533 | supplied by run-time quantities other than discriminants. |
2534 | Does not work for arrays indexed by enumeration types with representation | |
2535 | clauses at the moment. */ | |
14f9c5c9 | 2536 | |
2c0b251b | 2537 | static struct value * |
d2e4a39e | 2538 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2539 | { |
df407dfe | 2540 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2541 | |
2542 | if (ada_is_packed_array_type (arr_type)) | |
2543 | return ada_array_length (decode_packed_array (arr), n); | |
2544 | ||
4c4b4cd2 | 2545 | if (ada_is_simple_array_type (arr_type)) |
14f9c5c9 | 2546 | { |
d2e4a39e | 2547 | struct type *type; |
14f9c5c9 | 2548 | LONGEST v = |
4c4b4cd2 PH |
2549 | ada_array_bound_from_type (arr_type, n, 1, &type) - |
2550 | ada_array_bound_from_type (arr_type, n, 0, NULL) + 1; | |
14f9c5c9 AS |
2551 | return value_from_longest (type, v); |
2552 | } | |
2553 | else | |
d2e4a39e | 2554 | return |
030b4912 | 2555 | value_from_longest (builtin_type_int32, |
4c4b4cd2 PH |
2556 | value_as_long (desc_one_bound (desc_bounds (arr), |
2557 | n, 1)) | |
2558 | - value_as_long (desc_one_bound (desc_bounds (arr), | |
2559 | n, 0)) + 1); | |
2560 | } | |
2561 | ||
2562 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2563 | with bounds LOW to LOW-1. */ | |
2564 | ||
2565 | static struct value * | |
2566 | empty_array (struct type *arr_type, int low) | |
2567 | { | |
6c038f32 | 2568 | struct type *index_type = |
0b5d8877 PH |
2569 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2570 | low, low - 1); | |
2571 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
2572 | return allocate_value (create_array_type (NULL, elt_type, index_type)); | |
14f9c5c9 | 2573 | } |
14f9c5c9 | 2574 | \f |
d2e4a39e | 2575 | |
4c4b4cd2 | 2576 | /* Name resolution */ |
14f9c5c9 | 2577 | |
4c4b4cd2 PH |
2578 | /* The "decoded" name for the user-definable Ada operator corresponding |
2579 | to OP. */ | |
14f9c5c9 | 2580 | |
d2e4a39e | 2581 | static const char * |
4c4b4cd2 | 2582 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2583 | { |
2584 | int i; | |
2585 | ||
4c4b4cd2 | 2586 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2587 | { |
2588 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2589 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2590 | } |
323e0a4a | 2591 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2592 | } |
2593 | ||
2594 | ||
4c4b4cd2 PH |
2595 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2596 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2597 | undefined namespace) and converts operators that are | |
2598 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2599 | non-null, it provides a preferred result type [at the moment, only |
2600 | type void has any effect---causing procedures to be preferred over | |
2601 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2602 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2603 | |
4c4b4cd2 PH |
2604 | static void |
2605 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 AS |
2606 | { |
2607 | int pc; | |
2608 | pc = 0; | |
4c4b4cd2 | 2609 | resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL); |
14f9c5c9 AS |
2610 | } |
2611 | ||
4c4b4cd2 PH |
2612 | /* Resolve the operator of the subexpression beginning at |
2613 | position *POS of *EXPP. "Resolving" consists of replacing | |
2614 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2615 | with their resolutions, replacing built-in operators with | |
2616 | function calls to user-defined operators, where appropriate, and, | |
2617 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2618 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2619 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2620 | |
d2e4a39e | 2621 | static struct value * |
4c4b4cd2 | 2622 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2623 | struct type *context_type) |
14f9c5c9 AS |
2624 | { |
2625 | int pc = *pos; | |
2626 | int i; | |
4c4b4cd2 | 2627 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2628 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2629 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2630 | int nargs; /* Number of operands. */ | |
52ce6436 | 2631 | int oplen; |
14f9c5c9 AS |
2632 | |
2633 | argvec = NULL; | |
2634 | nargs = 0; | |
2635 | exp = *expp; | |
2636 | ||
52ce6436 PH |
2637 | /* Pass one: resolve operands, saving their types and updating *pos, |
2638 | if needed. */ | |
14f9c5c9 AS |
2639 | switch (op) |
2640 | { | |
4c4b4cd2 PH |
2641 | case OP_FUNCALL: |
2642 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2643 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2644 | *pos += 7; | |
4c4b4cd2 PH |
2645 | else |
2646 | { | |
2647 | *pos += 3; | |
2648 | resolve_subexp (expp, pos, 0, NULL); | |
2649 | } | |
2650 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2651 | break; |
2652 | ||
14f9c5c9 | 2653 | case UNOP_ADDR: |
4c4b4cd2 PH |
2654 | *pos += 1; |
2655 | resolve_subexp (expp, pos, 0, NULL); | |
2656 | break; | |
2657 | ||
52ce6436 PH |
2658 | case UNOP_QUAL: |
2659 | *pos += 3; | |
17466c1a | 2660 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2661 | break; |
2662 | ||
52ce6436 | 2663 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2664 | case OP_ATR_SIZE: |
2665 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2666 | case OP_ATR_FIRST: |
2667 | case OP_ATR_LAST: | |
2668 | case OP_ATR_LENGTH: | |
2669 | case OP_ATR_POS: | |
2670 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2671 | case OP_ATR_MIN: |
2672 | case OP_ATR_MAX: | |
52ce6436 PH |
2673 | case TERNOP_IN_RANGE: |
2674 | case BINOP_IN_BOUNDS: | |
2675 | case UNOP_IN_RANGE: | |
2676 | case OP_AGGREGATE: | |
2677 | case OP_OTHERS: | |
2678 | case OP_CHOICES: | |
2679 | case OP_POSITIONAL: | |
2680 | case OP_DISCRETE_RANGE: | |
2681 | case OP_NAME: | |
2682 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2683 | *pos += oplen; | |
14f9c5c9 AS |
2684 | break; |
2685 | ||
2686 | case BINOP_ASSIGN: | |
2687 | { | |
4c4b4cd2 PH |
2688 | struct value *arg1; |
2689 | ||
2690 | *pos += 1; | |
2691 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2692 | if (arg1 == NULL) | |
2693 | resolve_subexp (expp, pos, 1, NULL); | |
2694 | else | |
df407dfe | 2695 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2696 | break; |
14f9c5c9 AS |
2697 | } |
2698 | ||
4c4b4cd2 | 2699 | case UNOP_CAST: |
4c4b4cd2 PH |
2700 | *pos += 3; |
2701 | nargs = 1; | |
2702 | break; | |
14f9c5c9 | 2703 | |
4c4b4cd2 PH |
2704 | case BINOP_ADD: |
2705 | case BINOP_SUB: | |
2706 | case BINOP_MUL: | |
2707 | case BINOP_DIV: | |
2708 | case BINOP_REM: | |
2709 | case BINOP_MOD: | |
2710 | case BINOP_EXP: | |
2711 | case BINOP_CONCAT: | |
2712 | case BINOP_LOGICAL_AND: | |
2713 | case BINOP_LOGICAL_OR: | |
2714 | case BINOP_BITWISE_AND: | |
2715 | case BINOP_BITWISE_IOR: | |
2716 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2717 | |
4c4b4cd2 PH |
2718 | case BINOP_EQUAL: |
2719 | case BINOP_NOTEQUAL: | |
2720 | case BINOP_LESS: | |
2721 | case BINOP_GTR: | |
2722 | case BINOP_LEQ: | |
2723 | case BINOP_GEQ: | |
14f9c5c9 | 2724 | |
4c4b4cd2 PH |
2725 | case BINOP_REPEAT: |
2726 | case BINOP_SUBSCRIPT: | |
2727 | case BINOP_COMMA: | |
40c8aaa9 JB |
2728 | *pos += 1; |
2729 | nargs = 2; | |
2730 | break; | |
14f9c5c9 | 2731 | |
4c4b4cd2 PH |
2732 | case UNOP_NEG: |
2733 | case UNOP_PLUS: | |
2734 | case UNOP_LOGICAL_NOT: | |
2735 | case UNOP_ABS: | |
2736 | case UNOP_IND: | |
2737 | *pos += 1; | |
2738 | nargs = 1; | |
2739 | break; | |
14f9c5c9 | 2740 | |
4c4b4cd2 PH |
2741 | case OP_LONG: |
2742 | case OP_DOUBLE: | |
2743 | case OP_VAR_VALUE: | |
2744 | *pos += 4; | |
2745 | break; | |
14f9c5c9 | 2746 | |
4c4b4cd2 PH |
2747 | case OP_TYPE: |
2748 | case OP_BOOL: | |
2749 | case OP_LAST: | |
4c4b4cd2 PH |
2750 | case OP_INTERNALVAR: |
2751 | *pos += 3; | |
2752 | break; | |
14f9c5c9 | 2753 | |
4c4b4cd2 PH |
2754 | case UNOP_MEMVAL: |
2755 | *pos += 3; | |
2756 | nargs = 1; | |
2757 | break; | |
2758 | ||
67f3407f DJ |
2759 | case OP_REGISTER: |
2760 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2761 | break; | |
2762 | ||
4c4b4cd2 PH |
2763 | case STRUCTOP_STRUCT: |
2764 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2765 | nargs = 1; | |
2766 | break; | |
2767 | ||
4c4b4cd2 | 2768 | case TERNOP_SLICE: |
4c4b4cd2 PH |
2769 | *pos += 1; |
2770 | nargs = 3; | |
2771 | break; | |
2772 | ||
52ce6436 | 2773 | case OP_STRING: |
14f9c5c9 | 2774 | break; |
4c4b4cd2 PH |
2775 | |
2776 | default: | |
323e0a4a | 2777 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
2778 | } |
2779 | ||
76a01679 | 2780 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
2781 | for (i = 0; i < nargs; i += 1) |
2782 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
2783 | argvec[i] = NULL; | |
2784 | exp = *expp; | |
2785 | ||
2786 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
2787 | switch (op) |
2788 | { | |
2789 | default: | |
2790 | break; | |
2791 | ||
14f9c5c9 | 2792 | case OP_VAR_VALUE: |
4c4b4cd2 | 2793 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
2794 | { |
2795 | struct ada_symbol_info *candidates; | |
2796 | int n_candidates; | |
2797 | ||
2798 | n_candidates = | |
2799 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
2800 | (exp->elts[pc + 2].symbol), | |
2801 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
2802 | &candidates); | |
2803 | ||
2804 | if (n_candidates > 1) | |
2805 | { | |
2806 | /* Types tend to get re-introduced locally, so if there | |
2807 | are any local symbols that are not types, first filter | |
2808 | out all types. */ | |
2809 | int j; | |
2810 | for (j = 0; j < n_candidates; j += 1) | |
2811 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
2812 | { | |
2813 | case LOC_REGISTER: | |
2814 | case LOC_ARG: | |
2815 | case LOC_REF_ARG: | |
76a01679 JB |
2816 | case LOC_REGPARM_ADDR: |
2817 | case LOC_LOCAL: | |
76a01679 | 2818 | case LOC_COMPUTED: |
76a01679 JB |
2819 | goto FoundNonType; |
2820 | default: | |
2821 | break; | |
2822 | } | |
2823 | FoundNonType: | |
2824 | if (j < n_candidates) | |
2825 | { | |
2826 | j = 0; | |
2827 | while (j < n_candidates) | |
2828 | { | |
2829 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
2830 | { | |
2831 | candidates[j] = candidates[n_candidates - 1]; | |
2832 | n_candidates -= 1; | |
2833 | } | |
2834 | else | |
2835 | j += 1; | |
2836 | } | |
2837 | } | |
2838 | } | |
2839 | ||
2840 | if (n_candidates == 0) | |
323e0a4a | 2841 | error (_("No definition found for %s"), |
76a01679 JB |
2842 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2843 | else if (n_candidates == 1) | |
2844 | i = 0; | |
2845 | else if (deprocedure_p | |
2846 | && !is_nonfunction (candidates, n_candidates)) | |
2847 | { | |
06d5cf63 JB |
2848 | i = ada_resolve_function |
2849 | (candidates, n_candidates, NULL, 0, | |
2850 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
2851 | context_type); | |
76a01679 | 2852 | if (i < 0) |
323e0a4a | 2853 | error (_("Could not find a match for %s"), |
76a01679 JB |
2854 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2855 | } | |
2856 | else | |
2857 | { | |
323e0a4a | 2858 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
2859 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2860 | user_select_syms (candidates, n_candidates, 1); | |
2861 | i = 0; | |
2862 | } | |
2863 | ||
2864 | exp->elts[pc + 1].block = candidates[i].block; | |
2865 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
2866 | if (innermost_block == NULL |
2867 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
2868 | innermost_block = candidates[i].block; |
2869 | } | |
2870 | ||
2871 | if (deprocedure_p | |
2872 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
2873 | == TYPE_CODE_FUNC)) | |
2874 | { | |
2875 | replace_operator_with_call (expp, pc, 0, 0, | |
2876 | exp->elts[pc + 2].symbol, | |
2877 | exp->elts[pc + 1].block); | |
2878 | exp = *expp; | |
2879 | } | |
14f9c5c9 AS |
2880 | break; |
2881 | ||
2882 | case OP_FUNCALL: | |
2883 | { | |
4c4b4cd2 | 2884 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 2885 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
2886 | { |
2887 | struct ada_symbol_info *candidates; | |
2888 | int n_candidates; | |
2889 | ||
2890 | n_candidates = | |
76a01679 JB |
2891 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
2892 | (exp->elts[pc + 5].symbol), | |
2893 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
2894 | &candidates); | |
4c4b4cd2 PH |
2895 | if (n_candidates == 1) |
2896 | i = 0; | |
2897 | else | |
2898 | { | |
06d5cf63 JB |
2899 | i = ada_resolve_function |
2900 | (candidates, n_candidates, | |
2901 | argvec, nargs, | |
2902 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
2903 | context_type); | |
4c4b4cd2 | 2904 | if (i < 0) |
323e0a4a | 2905 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
2906 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
2907 | } | |
2908 | ||
2909 | exp->elts[pc + 4].block = candidates[i].block; | |
2910 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
2911 | if (innermost_block == NULL |
2912 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
2913 | innermost_block = candidates[i].block; |
2914 | } | |
14f9c5c9 AS |
2915 | } |
2916 | break; | |
2917 | case BINOP_ADD: | |
2918 | case BINOP_SUB: | |
2919 | case BINOP_MUL: | |
2920 | case BINOP_DIV: | |
2921 | case BINOP_REM: | |
2922 | case BINOP_MOD: | |
2923 | case BINOP_CONCAT: | |
2924 | case BINOP_BITWISE_AND: | |
2925 | case BINOP_BITWISE_IOR: | |
2926 | case BINOP_BITWISE_XOR: | |
2927 | case BINOP_EQUAL: | |
2928 | case BINOP_NOTEQUAL: | |
2929 | case BINOP_LESS: | |
2930 | case BINOP_GTR: | |
2931 | case BINOP_LEQ: | |
2932 | case BINOP_GEQ: | |
2933 | case BINOP_EXP: | |
2934 | case UNOP_NEG: | |
2935 | case UNOP_PLUS: | |
2936 | case UNOP_LOGICAL_NOT: | |
2937 | case UNOP_ABS: | |
2938 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
2939 | { |
2940 | struct ada_symbol_info *candidates; | |
2941 | int n_candidates; | |
2942 | ||
2943 | n_candidates = | |
2944 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
2945 | (struct block *) NULL, VAR_DOMAIN, | |
2946 | &candidates); | |
2947 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 2948 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
2949 | if (i < 0) |
2950 | break; | |
2951 | ||
76a01679 JB |
2952 | replace_operator_with_call (expp, pc, nargs, 1, |
2953 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
2954 | exp = *expp; |
2955 | } | |
14f9c5c9 | 2956 | break; |
4c4b4cd2 PH |
2957 | |
2958 | case OP_TYPE: | |
b3dbf008 | 2959 | case OP_REGISTER: |
4c4b4cd2 | 2960 | return NULL; |
14f9c5c9 AS |
2961 | } |
2962 | ||
2963 | *pos = pc; | |
2964 | return evaluate_subexp_type (exp, pos); | |
2965 | } | |
2966 | ||
2967 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 PH |
2968 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
2969 | a non-pointer. A type of 'void' (which is never a valid expression type) | |
2970 | by convention matches anything. */ | |
14f9c5c9 | 2971 | /* The term "match" here is rather loose. The match is heuristic and |
4c4b4cd2 | 2972 | liberal. FIXME: TOO liberal, in fact. */ |
14f9c5c9 AS |
2973 | |
2974 | static int | |
4dc81987 | 2975 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 2976 | { |
61ee279c PH |
2977 | ftype = ada_check_typedef (ftype); |
2978 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
2979 | |
2980 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
2981 | ftype = TYPE_TARGET_TYPE (ftype); | |
2982 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
2983 | atype = TYPE_TARGET_TYPE (atype); | |
2984 | ||
d2e4a39e | 2985 | if (TYPE_CODE (ftype) == TYPE_CODE_VOID |
14f9c5c9 AS |
2986 | || TYPE_CODE (atype) == TYPE_CODE_VOID) |
2987 | return 1; | |
2988 | ||
d2e4a39e | 2989 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
2990 | { |
2991 | default: | |
2992 | return 1; | |
2993 | case TYPE_CODE_PTR: | |
2994 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
2995 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
2996 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 2997 | else |
1265e4aa JB |
2998 | return (may_deref |
2999 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3000 | case TYPE_CODE_INT: |
3001 | case TYPE_CODE_ENUM: | |
3002 | case TYPE_CODE_RANGE: | |
3003 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3004 | { |
3005 | case TYPE_CODE_INT: | |
3006 | case TYPE_CODE_ENUM: | |
3007 | case TYPE_CODE_RANGE: | |
3008 | return 1; | |
3009 | default: | |
3010 | return 0; | |
3011 | } | |
14f9c5c9 AS |
3012 | |
3013 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3014 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3015 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3016 | |
3017 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3018 | if (ada_is_array_descriptor_type (ftype)) |
3019 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3020 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3021 | else |
4c4b4cd2 PH |
3022 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3023 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3024 | |
3025 | case TYPE_CODE_UNION: | |
3026 | case TYPE_CODE_FLT: | |
3027 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3028 | } | |
3029 | } | |
3030 | ||
3031 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3032 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3033 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3034 | argument function. */ |
14f9c5c9 AS |
3035 | |
3036 | static int | |
d2e4a39e | 3037 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3038 | { |
3039 | int i; | |
d2e4a39e | 3040 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3041 | |
1265e4aa JB |
3042 | if (SYMBOL_CLASS (func) == LOC_CONST |
3043 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3044 | return (n_actuals == 0); |
3045 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3046 | return 0; | |
3047 | ||
3048 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3049 | return 0; | |
3050 | ||
3051 | for (i = 0; i < n_actuals; i += 1) | |
3052 | { | |
4c4b4cd2 | 3053 | if (actuals[i] == NULL) |
76a01679 JB |
3054 | return 0; |
3055 | else | |
3056 | { | |
61ee279c | 3057 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i)); |
df407dfe | 3058 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3059 | |
76a01679 JB |
3060 | if (!ada_type_match (ftype, atype, 1)) |
3061 | return 0; | |
3062 | } | |
14f9c5c9 AS |
3063 | } |
3064 | return 1; | |
3065 | } | |
3066 | ||
3067 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3068 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3069 | FUNC_TYPE is not a valid function type with a non-null return type | |
3070 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3071 | ||
3072 | static int | |
d2e4a39e | 3073 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3074 | { |
d2e4a39e | 3075 | struct type *return_type; |
14f9c5c9 AS |
3076 | |
3077 | if (func_type == NULL) | |
3078 | return 1; | |
3079 | ||
4c4b4cd2 PH |
3080 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3081 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3082 | else | |
3083 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3084 | if (return_type == NULL) |
3085 | return 1; | |
3086 | ||
4c4b4cd2 | 3087 | context_type = base_type (context_type); |
14f9c5c9 AS |
3088 | |
3089 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3090 | return context_type == NULL || return_type == context_type; | |
3091 | else if (context_type == NULL) | |
3092 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3093 | else | |
3094 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3095 | } | |
3096 | ||
3097 | ||
4c4b4cd2 | 3098 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3099 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3100 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3101 | that returns that type, then eliminate matches that don't. If | |
3102 | CONTEXT_TYPE is void and there is at least one match that does not | |
3103 | return void, eliminate all matches that do. | |
3104 | ||
14f9c5c9 AS |
3105 | Asks the user if there is more than one match remaining. Returns -1 |
3106 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3107 | solely for messages. May re-arrange and modify SYMS in |
3108 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3109 | |
4c4b4cd2 PH |
3110 | static int |
3111 | ada_resolve_function (struct ada_symbol_info syms[], | |
3112 | int nsyms, struct value **args, int nargs, | |
3113 | const char *name, struct type *context_type) | |
14f9c5c9 AS |
3114 | { |
3115 | int k; | |
4c4b4cd2 | 3116 | int m; /* Number of hits */ |
d2e4a39e AS |
3117 | struct type *fallback; |
3118 | struct type *return_type; | |
14f9c5c9 AS |
3119 | |
3120 | return_type = context_type; | |
3121 | if (context_type == NULL) | |
3122 | fallback = builtin_type_void; | |
3123 | else | |
3124 | fallback = NULL; | |
3125 | ||
d2e4a39e | 3126 | m = 0; |
14f9c5c9 AS |
3127 | while (1) |
3128 | { | |
3129 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3130 | { |
61ee279c | 3131 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3132 | |
3133 | if (ada_args_match (syms[k].sym, args, nargs) | |
3134 | && return_match (type, return_type)) | |
3135 | { | |
3136 | syms[m] = syms[k]; | |
3137 | m += 1; | |
3138 | } | |
3139 | } | |
14f9c5c9 | 3140 | if (m > 0 || return_type == fallback) |
4c4b4cd2 | 3141 | break; |
14f9c5c9 | 3142 | else |
4c4b4cd2 | 3143 | return_type = fallback; |
14f9c5c9 AS |
3144 | } |
3145 | ||
3146 | if (m == 0) | |
3147 | return -1; | |
3148 | else if (m > 1) | |
3149 | { | |
323e0a4a | 3150 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3151 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3152 | return 0; |
3153 | } | |
3154 | return 0; | |
3155 | } | |
3156 | ||
4c4b4cd2 PH |
3157 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3158 | in a listing of choices during disambiguation (see sort_choices, below). | |
3159 | The idea is that overloadings of a subprogram name from the | |
3160 | same package should sort in their source order. We settle for ordering | |
3161 | such symbols by their trailing number (__N or $N). */ | |
3162 | ||
14f9c5c9 | 3163 | static int |
4c4b4cd2 | 3164 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3165 | { |
3166 | if (N1 == NULL) | |
3167 | return 0; | |
3168 | else if (N0 == NULL) | |
3169 | return 1; | |
3170 | else | |
3171 | { | |
3172 | int k0, k1; | |
d2e4a39e | 3173 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3174 | ; |
d2e4a39e | 3175 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3176 | ; |
d2e4a39e | 3177 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3178 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3179 | { | |
3180 | int n0, n1; | |
3181 | n0 = k0; | |
3182 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3183 | n0 -= 1; | |
3184 | n1 = k1; | |
3185 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3186 | n1 -= 1; | |
3187 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3188 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3189 | } | |
14f9c5c9 AS |
3190 | return (strcmp (N0, N1) < 0); |
3191 | } | |
3192 | } | |
d2e4a39e | 3193 | |
4c4b4cd2 PH |
3194 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3195 | encoded names. */ | |
3196 | ||
d2e4a39e | 3197 | static void |
4c4b4cd2 | 3198 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3199 | { |
4c4b4cd2 | 3200 | int i; |
d2e4a39e | 3201 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3202 | { |
4c4b4cd2 | 3203 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3204 | int j; |
3205 | ||
d2e4a39e | 3206 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3207 | { |
3208 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3209 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3210 | break; | |
3211 | syms[j + 1] = syms[j]; | |
3212 | } | |
d2e4a39e | 3213 | syms[j + 1] = sym; |
14f9c5c9 AS |
3214 | } |
3215 | } | |
3216 | ||
4c4b4cd2 PH |
3217 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3218 | by asking the user (if necessary), returning the number selected, | |
3219 | and setting the first elements of SYMS items. Error if no symbols | |
3220 | selected. */ | |
14f9c5c9 AS |
3221 | |
3222 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3223 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3224 | |
3225 | int | |
4c4b4cd2 | 3226 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3227 | { |
3228 | int i; | |
d2e4a39e | 3229 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3230 | int n_chosen; |
3231 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3232 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3233 | |
3234 | if (max_results < 1) | |
323e0a4a | 3235 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3236 | if (nsyms <= 1) |
3237 | return nsyms; | |
3238 | ||
717d2f5a JB |
3239 | if (select_mode == multiple_symbols_cancel) |
3240 | error (_("\ | |
3241 | canceled because the command is ambiguous\n\ | |
3242 | See set/show multiple-symbol.")); | |
3243 | ||
3244 | /* If select_mode is "all", then return all possible symbols. | |
3245 | Only do that if more than one symbol can be selected, of course. | |
3246 | Otherwise, display the menu as usual. */ | |
3247 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3248 | return nsyms; | |
3249 | ||
323e0a4a | 3250 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3251 | if (max_results > 1) |
323e0a4a | 3252 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3253 | |
4c4b4cd2 | 3254 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3255 | |
3256 | for (i = 0; i < nsyms; i += 1) | |
3257 | { | |
4c4b4cd2 PH |
3258 | if (syms[i].sym == NULL) |
3259 | continue; | |
3260 | ||
3261 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3262 | { | |
76a01679 JB |
3263 | struct symtab_and_line sal = |
3264 | find_function_start_sal (syms[i].sym, 1); | |
323e0a4a AC |
3265 | if (sal.symtab == NULL) |
3266 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3267 | i + first_choice, | |
3268 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3269 | sal.line); | |
3270 | else | |
3271 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3272 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3273 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3274 | continue; |
3275 | } | |
d2e4a39e | 3276 | else |
4c4b4cd2 PH |
3277 | { |
3278 | int is_enumeral = | |
3279 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3280 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3281 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3282 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3283 | |
3284 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3285 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3286 | i + first_choice, |
3287 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3288 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3289 | else if (is_enumeral |
3290 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3291 | { |
a3f17187 | 3292 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3293 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3294 | gdb_stdout, -1, 0); | |
323e0a4a | 3295 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3296 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3297 | } | |
3298 | else if (symtab != NULL) | |
3299 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3300 | ? _("[%d] %s in %s (enumeral)\n") |
3301 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3302 | i + first_choice, |
3303 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3304 | symtab->filename); | |
3305 | else | |
3306 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3307 | ? _("[%d] %s (enumeral)\n") |
3308 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3309 | i + first_choice, |
3310 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3311 | } | |
14f9c5c9 | 3312 | } |
d2e4a39e | 3313 | |
14f9c5c9 | 3314 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3315 | "overload-choice"); |
14f9c5c9 AS |
3316 | |
3317 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3318 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3319 | |
3320 | return n_chosen; | |
3321 | } | |
3322 | ||
3323 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3324 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3325 | order in CHOICES[0 .. N-1], and return N. |
3326 | ||
3327 | The user types choices as a sequence of numbers on one line | |
3328 | separated by blanks, encoding them as follows: | |
3329 | ||
4c4b4cd2 | 3330 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3331 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3332 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3333 | ||
4c4b4cd2 | 3334 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3335 | |
3336 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3337 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3338 | |
3339 | int | |
d2e4a39e | 3340 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3341 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3342 | { |
d2e4a39e | 3343 | char *args; |
0bcd0149 | 3344 | char *prompt; |
14f9c5c9 AS |
3345 | int n_chosen; |
3346 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3347 | |
14f9c5c9 AS |
3348 | prompt = getenv ("PS2"); |
3349 | if (prompt == NULL) | |
0bcd0149 | 3350 | prompt = "> "; |
14f9c5c9 | 3351 | |
0bcd0149 | 3352 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3353 | |
14f9c5c9 | 3354 | if (args == NULL) |
323e0a4a | 3355 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3356 | |
3357 | n_chosen = 0; | |
76a01679 | 3358 | |
4c4b4cd2 PH |
3359 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3360 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3361 | while (1) |
3362 | { | |
d2e4a39e | 3363 | char *args2; |
14f9c5c9 AS |
3364 | int choice, j; |
3365 | ||
3366 | while (isspace (*args)) | |
4c4b4cd2 | 3367 | args += 1; |
14f9c5c9 | 3368 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3369 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3370 | else if (*args == '\0') |
4c4b4cd2 | 3371 | break; |
14f9c5c9 AS |
3372 | |
3373 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3374 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3375 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3376 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3377 | args = args2; |
3378 | ||
d2e4a39e | 3379 | if (choice == 0) |
323e0a4a | 3380 | error (_("cancelled")); |
14f9c5c9 AS |
3381 | |
3382 | if (choice < first_choice) | |
4c4b4cd2 PH |
3383 | { |
3384 | n_chosen = n_choices; | |
3385 | for (j = 0; j < n_choices; j += 1) | |
3386 | choices[j] = j; | |
3387 | break; | |
3388 | } | |
14f9c5c9 AS |
3389 | choice -= first_choice; |
3390 | ||
d2e4a39e | 3391 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3392 | { |
3393 | } | |
14f9c5c9 AS |
3394 | |
3395 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3396 | { |
3397 | int k; | |
3398 | for (k = n_chosen - 1; k > j; k -= 1) | |
3399 | choices[k + 1] = choices[k]; | |
3400 | choices[j + 1] = choice; | |
3401 | n_chosen += 1; | |
3402 | } | |
14f9c5c9 AS |
3403 | } |
3404 | ||
3405 | if (n_chosen > max_results) | |
323e0a4a | 3406 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3407 | |
14f9c5c9 AS |
3408 | return n_chosen; |
3409 | } | |
3410 | ||
4c4b4cd2 PH |
3411 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3412 | on the function identified by SYM and BLOCK, and taking NARGS | |
3413 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3414 | |
3415 | static void | |
d2e4a39e | 3416 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3417 | int oplen, struct symbol *sym, |
3418 | struct block *block) | |
14f9c5c9 AS |
3419 | { |
3420 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3421 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3422 | struct expression *newexp = (struct expression *) |
14f9c5c9 | 3423 | xmalloc (sizeof (struct expression) |
4c4b4cd2 | 3424 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3425 | struct expression *exp = *expp; |
14f9c5c9 AS |
3426 | |
3427 | newexp->nelts = exp->nelts + 7 - oplen; | |
3428 | newexp->language_defn = exp->language_defn; | |
3429 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3430 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3431 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3432 | |
3433 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3434 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3435 | ||
3436 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3437 | newexp->elts[pc + 4].block = block; | |
3438 | newexp->elts[pc + 5].symbol = sym; | |
3439 | ||
3440 | *expp = newexp; | |
aacb1f0a | 3441 | xfree (exp); |
d2e4a39e | 3442 | } |
14f9c5c9 AS |
3443 | |
3444 | /* Type-class predicates */ | |
3445 | ||
4c4b4cd2 PH |
3446 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3447 | or FLOAT). */ | |
14f9c5c9 AS |
3448 | |
3449 | static int | |
d2e4a39e | 3450 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3451 | { |
3452 | if (type == NULL) | |
3453 | return 0; | |
d2e4a39e AS |
3454 | else |
3455 | { | |
3456 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3457 | { |
3458 | case TYPE_CODE_INT: | |
3459 | case TYPE_CODE_FLT: | |
3460 | return 1; | |
3461 | case TYPE_CODE_RANGE: | |
3462 | return (type == TYPE_TARGET_TYPE (type) | |
3463 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3464 | default: | |
3465 | return 0; | |
3466 | } | |
d2e4a39e | 3467 | } |
14f9c5c9 AS |
3468 | } |
3469 | ||
4c4b4cd2 | 3470 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3471 | |
3472 | static int | |
d2e4a39e | 3473 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3474 | { |
3475 | if (type == NULL) | |
3476 | return 0; | |
d2e4a39e AS |
3477 | else |
3478 | { | |
3479 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3480 | { |
3481 | case TYPE_CODE_INT: | |
3482 | return 1; | |
3483 | case TYPE_CODE_RANGE: | |
3484 | return (type == TYPE_TARGET_TYPE (type) | |
3485 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3486 | default: | |
3487 | return 0; | |
3488 | } | |
d2e4a39e | 3489 | } |
14f9c5c9 AS |
3490 | } |
3491 | ||
4c4b4cd2 | 3492 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3493 | |
3494 | static int | |
d2e4a39e | 3495 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3496 | { |
3497 | if (type == NULL) | |
3498 | return 0; | |
d2e4a39e AS |
3499 | else |
3500 | { | |
3501 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3502 | { |
3503 | case TYPE_CODE_INT: | |
3504 | case TYPE_CODE_RANGE: | |
3505 | case TYPE_CODE_ENUM: | |
3506 | case TYPE_CODE_FLT: | |
3507 | return 1; | |
3508 | default: | |
3509 | return 0; | |
3510 | } | |
d2e4a39e | 3511 | } |
14f9c5c9 AS |
3512 | } |
3513 | ||
4c4b4cd2 | 3514 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3515 | |
3516 | static int | |
d2e4a39e | 3517 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3518 | { |
3519 | if (type == NULL) | |
3520 | return 0; | |
d2e4a39e AS |
3521 | else |
3522 | { | |
3523 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3524 | { |
3525 | case TYPE_CODE_INT: | |
3526 | case TYPE_CODE_RANGE: | |
3527 | case TYPE_CODE_ENUM: | |
3528 | return 1; | |
3529 | default: | |
3530 | return 0; | |
3531 | } | |
d2e4a39e | 3532 | } |
14f9c5c9 AS |
3533 | } |
3534 | ||
4c4b4cd2 PH |
3535 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3536 | a user-defined function. Errs on the side of pre-defined operators | |
3537 | (i.e., result 0). */ | |
14f9c5c9 AS |
3538 | |
3539 | static int | |
d2e4a39e | 3540 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3541 | { |
76a01679 | 3542 | struct type *type0 = |
df407dfe | 3543 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3544 | struct type *type1 = |
df407dfe | 3545 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3546 | |
4c4b4cd2 PH |
3547 | if (type0 == NULL) |
3548 | return 0; | |
3549 | ||
14f9c5c9 AS |
3550 | switch (op) |
3551 | { | |
3552 | default: | |
3553 | return 0; | |
3554 | ||
3555 | case BINOP_ADD: | |
3556 | case BINOP_SUB: | |
3557 | case BINOP_MUL: | |
3558 | case BINOP_DIV: | |
d2e4a39e | 3559 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3560 | |
3561 | case BINOP_REM: | |
3562 | case BINOP_MOD: | |
3563 | case BINOP_BITWISE_AND: | |
3564 | case BINOP_BITWISE_IOR: | |
3565 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3566 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3567 | |
3568 | case BINOP_EQUAL: | |
3569 | case BINOP_NOTEQUAL: | |
3570 | case BINOP_LESS: | |
3571 | case BINOP_GTR: | |
3572 | case BINOP_LEQ: | |
3573 | case BINOP_GEQ: | |
d2e4a39e | 3574 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3575 | |
3576 | case BINOP_CONCAT: | |
ee90b9ab | 3577 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3578 | |
3579 | case BINOP_EXP: | |
d2e4a39e | 3580 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3581 | |
3582 | case UNOP_NEG: | |
3583 | case UNOP_PLUS: | |
3584 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3585 | case UNOP_ABS: |
3586 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3587 | |
3588 | } | |
3589 | } | |
3590 | \f | |
4c4b4cd2 | 3591 | /* Renaming */ |
14f9c5c9 | 3592 | |
aeb5907d JB |
3593 | /* NOTES: |
3594 | ||
3595 | 1. In the following, we assume that a renaming type's name may | |
3596 | have an ___XD suffix. It would be nice if this went away at some | |
3597 | point. | |
3598 | 2. We handle both the (old) purely type-based representation of | |
3599 | renamings and the (new) variable-based encoding. At some point, | |
3600 | it is devoutly to be hoped that the former goes away | |
3601 | (FIXME: hilfinger-2007-07-09). | |
3602 | 3. Subprogram renamings are not implemented, although the XRS | |
3603 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3604 | ||
3605 | /* If SYM encodes a renaming, | |
3606 | ||
3607 | <renaming> renames <renamed entity>, | |
3608 | ||
3609 | sets *LEN to the length of the renamed entity's name, | |
3610 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3611 | the string describing the subcomponent selected from the renamed | |
3612 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming | |
3613 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR | |
3614 | are undefined). Otherwise, returns a value indicating the category | |
3615 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3616 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3617 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3618 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3619 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3620 | may be NULL, in which case they are not assigned. | |
3621 | ||
3622 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3623 | ||
3624 | enum ada_renaming_category | |
3625 | ada_parse_renaming (struct symbol *sym, | |
3626 | const char **renamed_entity, int *len, | |
3627 | const char **renaming_expr) | |
3628 | { | |
3629 | enum ada_renaming_category kind; | |
3630 | const char *info; | |
3631 | const char *suffix; | |
3632 | ||
3633 | if (sym == NULL) | |
3634 | return ADA_NOT_RENAMING; | |
3635 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3636 | { |
aeb5907d JB |
3637 | default: |
3638 | return ADA_NOT_RENAMING; | |
3639 | case LOC_TYPEDEF: | |
3640 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3641 | renamed_entity, len, renaming_expr); | |
3642 | case LOC_LOCAL: | |
3643 | case LOC_STATIC: | |
3644 | case LOC_COMPUTED: | |
3645 | case LOC_OPTIMIZED_OUT: | |
3646 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3647 | if (info == NULL) | |
3648 | return ADA_NOT_RENAMING; | |
3649 | switch (info[5]) | |
3650 | { | |
3651 | case '_': | |
3652 | kind = ADA_OBJECT_RENAMING; | |
3653 | info += 6; | |
3654 | break; | |
3655 | case 'E': | |
3656 | kind = ADA_EXCEPTION_RENAMING; | |
3657 | info += 7; | |
3658 | break; | |
3659 | case 'P': | |
3660 | kind = ADA_PACKAGE_RENAMING; | |
3661 | info += 7; | |
3662 | break; | |
3663 | case 'S': | |
3664 | kind = ADA_SUBPROGRAM_RENAMING; | |
3665 | info += 7; | |
3666 | break; | |
3667 | default: | |
3668 | return ADA_NOT_RENAMING; | |
3669 | } | |
14f9c5c9 | 3670 | } |
4c4b4cd2 | 3671 | |
aeb5907d JB |
3672 | if (renamed_entity != NULL) |
3673 | *renamed_entity = info; | |
3674 | suffix = strstr (info, "___XE"); | |
3675 | if (suffix == NULL || suffix == info) | |
3676 | return ADA_NOT_RENAMING; | |
3677 | if (len != NULL) | |
3678 | *len = strlen (info) - strlen (suffix); | |
3679 | suffix += 5; | |
3680 | if (renaming_expr != NULL) | |
3681 | *renaming_expr = suffix; | |
3682 | return kind; | |
3683 | } | |
3684 | ||
3685 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3686 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3687 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3688 | ADA_NOT_RENAMING otherwise. */ | |
3689 | static enum ada_renaming_category | |
3690 | parse_old_style_renaming (struct type *type, | |
3691 | const char **renamed_entity, int *len, | |
3692 | const char **renaming_expr) | |
3693 | { | |
3694 | enum ada_renaming_category kind; | |
3695 | const char *name; | |
3696 | const char *info; | |
3697 | const char *suffix; | |
14f9c5c9 | 3698 | |
aeb5907d JB |
3699 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3700 | || TYPE_NFIELDS (type) != 1) | |
3701 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3702 | |
aeb5907d JB |
3703 | name = type_name_no_tag (type); |
3704 | if (name == NULL) | |
3705 | return ADA_NOT_RENAMING; | |
3706 | ||
3707 | name = strstr (name, "___XR"); | |
3708 | if (name == NULL) | |
3709 | return ADA_NOT_RENAMING; | |
3710 | switch (name[5]) | |
3711 | { | |
3712 | case '\0': | |
3713 | case '_': | |
3714 | kind = ADA_OBJECT_RENAMING; | |
3715 | break; | |
3716 | case 'E': | |
3717 | kind = ADA_EXCEPTION_RENAMING; | |
3718 | break; | |
3719 | case 'P': | |
3720 | kind = ADA_PACKAGE_RENAMING; | |
3721 | break; | |
3722 | case 'S': | |
3723 | kind = ADA_SUBPROGRAM_RENAMING; | |
3724 | break; | |
3725 | default: | |
3726 | return ADA_NOT_RENAMING; | |
3727 | } | |
14f9c5c9 | 3728 | |
aeb5907d JB |
3729 | info = TYPE_FIELD_NAME (type, 0); |
3730 | if (info == NULL) | |
3731 | return ADA_NOT_RENAMING; | |
3732 | if (renamed_entity != NULL) | |
3733 | *renamed_entity = info; | |
3734 | suffix = strstr (info, "___XE"); | |
3735 | if (renaming_expr != NULL) | |
3736 | *renaming_expr = suffix + 5; | |
3737 | if (suffix == NULL || suffix == info) | |
3738 | return ADA_NOT_RENAMING; | |
3739 | if (len != NULL) | |
3740 | *len = suffix - info; | |
3741 | return kind; | |
3742 | } | |
52ce6436 | 3743 | |
14f9c5c9 | 3744 | \f |
d2e4a39e | 3745 | |
4c4b4cd2 | 3746 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3747 | |
4c4b4cd2 PH |
3748 | /* Return an lvalue containing the value VAL. This is the identity on |
3749 | lvalues, and otherwise has the side-effect of pushing a copy of VAL | |
3750 | on the stack, using and updating *SP as the stack pointer, and | |
42ae5230 | 3751 | returning an lvalue whose value_address points to the copy. */ |
14f9c5c9 | 3752 | |
d2e4a39e | 3753 | static struct value * |
4c4b4cd2 | 3754 | ensure_lval (struct value *val, CORE_ADDR *sp) |
14f9c5c9 | 3755 | { |
c3e5cd34 PH |
3756 | if (! VALUE_LVAL (val)) |
3757 | { | |
df407dfe | 3758 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
c3e5cd34 PH |
3759 | |
3760 | /* The following is taken from the structure-return code in | |
3761 | call_function_by_hand. FIXME: Therefore, some refactoring seems | |
3762 | indicated. */ | |
4d1e7dd1 | 3763 | if (gdbarch_inner_than (current_gdbarch, 1, 2)) |
c3e5cd34 | 3764 | { |
42ae5230 | 3765 | /* Stack grows downward. Align SP and value_address (val) after |
c3e5cd34 PH |
3766 | reserving sufficient space. */ |
3767 | *sp -= len; | |
3768 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3769 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
42ae5230 | 3770 | set_value_address (val, *sp); |
c3e5cd34 PH |
3771 | } |
3772 | else | |
3773 | { | |
3774 | /* Stack grows upward. Align the frame, allocate space, and | |
3775 | then again, re-align the frame. */ | |
3776 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3777 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
42ae5230 | 3778 | set_value_address (val, *sp); |
c3e5cd34 PH |
3779 | *sp += len; |
3780 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3781 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3782 | } | |
a84a8a0d | 3783 | VALUE_LVAL (val) = lval_memory; |
14f9c5c9 | 3784 | |
42ae5230 | 3785 | write_memory (value_address (val), value_contents_raw (val), len); |
c3e5cd34 | 3786 | } |
14f9c5c9 AS |
3787 | |
3788 | return val; | |
3789 | } | |
3790 | ||
3791 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3792 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3793 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 3794 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 3795 | |
a93c0eb6 JB |
3796 | struct value * |
3797 | ada_convert_actual (struct value *actual, struct type *formal_type0, | |
3798 | CORE_ADDR *sp) | |
14f9c5c9 | 3799 | { |
df407dfe | 3800 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 3801 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
3802 | struct type *formal_target = |
3803 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 3804 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
3805 | struct type *actual_target = |
3806 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 3807 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 3808 | |
4c4b4cd2 | 3809 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 AS |
3810 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
3811 | return make_array_descriptor (formal_type, actual, sp); | |
a84a8a0d JB |
3812 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
3813 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 3814 | { |
a84a8a0d | 3815 | struct value *result; |
14f9c5c9 | 3816 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3817 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 3818 | result = desc_data (actual); |
14f9c5c9 | 3819 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
3820 | { |
3821 | if (VALUE_LVAL (actual) != lval_memory) | |
3822 | { | |
3823 | struct value *val; | |
df407dfe | 3824 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 3825 | val = allocate_value (actual_type); |
990a07ab | 3826 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 3827 | (char *) value_contents (actual), |
4c4b4cd2 PH |
3828 | TYPE_LENGTH (actual_type)); |
3829 | actual = ensure_lval (val, sp); | |
3830 | } | |
a84a8a0d | 3831 | result = value_addr (actual); |
4c4b4cd2 | 3832 | } |
a84a8a0d JB |
3833 | else |
3834 | return actual; | |
3835 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
3836 | } |
3837 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3838 | return ada_value_ind (actual); | |
3839 | ||
3840 | return actual; | |
3841 | } | |
3842 | ||
3843 | ||
4c4b4cd2 PH |
3844 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
3845 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 3846 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
3847 | to-descriptor type rather than a descriptor type), a struct value * |
3848 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 3849 | |
d2e4a39e AS |
3850 | static struct value * |
3851 | make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp) | |
14f9c5c9 | 3852 | { |
d2e4a39e AS |
3853 | struct type *bounds_type = desc_bounds_type (type); |
3854 | struct type *desc_type = desc_base_type (type); | |
3855 | struct value *descriptor = allocate_value (desc_type); | |
3856 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 3857 | int i; |
d2e4a39e | 3858 | |
df407dfe | 3859 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) |
14f9c5c9 | 3860 | { |
0fd88904 | 3861 | modify_general_field (value_contents_writeable (bounds), |
4c4b4cd2 PH |
3862 | value_as_long (ada_array_bound (arr, i, 0)), |
3863 | desc_bound_bitpos (bounds_type, i, 0), | |
3864 | desc_bound_bitsize (bounds_type, i, 0)); | |
0fd88904 | 3865 | modify_general_field (value_contents_writeable (bounds), |
4c4b4cd2 PH |
3866 | value_as_long (ada_array_bound (arr, i, 1)), |
3867 | desc_bound_bitpos (bounds_type, i, 1), | |
3868 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 3869 | } |
d2e4a39e | 3870 | |
4c4b4cd2 | 3871 | bounds = ensure_lval (bounds, sp); |
d2e4a39e | 3872 | |
0fd88904 | 3873 | modify_general_field (value_contents_writeable (descriptor), |
42ae5230 | 3874 | value_address (ensure_lval (arr, sp)), |
76a01679 JB |
3875 | fat_pntr_data_bitpos (desc_type), |
3876 | fat_pntr_data_bitsize (desc_type)); | |
4c4b4cd2 | 3877 | |
0fd88904 | 3878 | modify_general_field (value_contents_writeable (descriptor), |
42ae5230 | 3879 | value_address (bounds), |
4c4b4cd2 PH |
3880 | fat_pntr_bounds_bitpos (desc_type), |
3881 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 3882 | |
4c4b4cd2 | 3883 | descriptor = ensure_lval (descriptor, sp); |
14f9c5c9 AS |
3884 | |
3885 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3886 | return value_addr (descriptor); | |
3887 | else | |
3888 | return descriptor; | |
3889 | } | |
14f9c5c9 | 3890 | \f |
963a6417 PH |
3891 | /* Dummy definitions for an experimental caching module that is not |
3892 | * used in the public sources. */ | |
96d887e8 | 3893 | |
96d887e8 PH |
3894 | static int |
3895 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 3896 | struct symbol **sym, struct block **block) |
96d887e8 PH |
3897 | { |
3898 | return 0; | |
3899 | } | |
3900 | ||
3901 | static void | |
3902 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 3903 | struct block *block) |
96d887e8 PH |
3904 | { |
3905 | } | |
4c4b4cd2 PH |
3906 | \f |
3907 | /* Symbol Lookup */ | |
3908 | ||
3909 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
3910 | given DOMAIN, visible from lexical block BLOCK. */ | |
3911 | ||
3912 | static struct symbol * | |
3913 | standard_lookup (const char *name, const struct block *block, | |
3914 | domain_enum domain) | |
3915 | { | |
3916 | struct symbol *sym; | |
4c4b4cd2 | 3917 | |
2570f2b7 | 3918 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 3919 | return sym; |
2570f2b7 UW |
3920 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
3921 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
3922 | return sym; |
3923 | } | |
3924 | ||
3925 | ||
3926 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
3927 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
3928 | since they contend in overloading in the same way. */ | |
3929 | static int | |
3930 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
3931 | { | |
3932 | int i; | |
3933 | ||
3934 | for (i = 0; i < n; i += 1) | |
3935 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
3936 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
3937 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
3938 | return 1; |
3939 | ||
3940 | return 0; | |
3941 | } | |
3942 | ||
3943 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 3944 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
3945 | |
3946 | static int | |
d2e4a39e | 3947 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 3948 | { |
d2e4a39e | 3949 | if (type0 == type1) |
14f9c5c9 | 3950 | return 1; |
d2e4a39e | 3951 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
3952 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
3953 | return 0; | |
d2e4a39e | 3954 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
3955 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
3956 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 3957 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 3958 | return 1; |
d2e4a39e | 3959 | |
14f9c5c9 AS |
3960 | return 0; |
3961 | } | |
3962 | ||
3963 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 3964 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
3965 | |
3966 | static int | |
d2e4a39e | 3967 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
3968 | { |
3969 | if (sym0 == sym1) | |
3970 | return 1; | |
176620f1 | 3971 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
3972 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
3973 | return 0; | |
3974 | ||
d2e4a39e | 3975 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
3976 | { |
3977 | case LOC_UNDEF: | |
3978 | return 1; | |
3979 | case LOC_TYPEDEF: | |
3980 | { | |
4c4b4cd2 PH |
3981 | struct type *type0 = SYMBOL_TYPE (sym0); |
3982 | struct type *type1 = SYMBOL_TYPE (sym1); | |
3983 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
3984 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
3985 | int len0 = strlen (name0); | |
3986 | return | |
3987 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
3988 | && (equiv_types (type0, type1) | |
3989 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
3990 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
3991 | } |
3992 | case LOC_CONST: | |
3993 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 3994 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
3995 | default: |
3996 | return 0; | |
14f9c5c9 AS |
3997 | } |
3998 | } | |
3999 | ||
4c4b4cd2 PH |
4000 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4001 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4002 | |
4003 | static void | |
76a01679 JB |
4004 | add_defn_to_vec (struct obstack *obstackp, |
4005 | struct symbol *sym, | |
2570f2b7 | 4006 | struct block *block) |
14f9c5c9 AS |
4007 | { |
4008 | int i; | |
4009 | size_t tmp; | |
4c4b4cd2 | 4010 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4011 | |
529cad9c PH |
4012 | /* Do not try to complete stub types, as the debugger is probably |
4013 | already scanning all symbols matching a certain name at the | |
4014 | time when this function is called. Trying to replace the stub | |
4015 | type by its associated full type will cause us to restart a scan | |
4016 | which may lead to an infinite recursion. Instead, the client | |
4017 | collecting the matching symbols will end up collecting several | |
4018 | matches, with at least one of them complete. It can then filter | |
4019 | out the stub ones if needed. */ | |
4020 | ||
4c4b4cd2 PH |
4021 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4022 | { | |
4023 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4024 | return; | |
4025 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4026 | { | |
4027 | prevDefns[i].sym = sym; | |
4028 | prevDefns[i].block = block; | |
4c4b4cd2 | 4029 | return; |
76a01679 | 4030 | } |
4c4b4cd2 PH |
4031 | } |
4032 | ||
4033 | { | |
4034 | struct ada_symbol_info info; | |
4035 | ||
4036 | info.sym = sym; | |
4037 | info.block = block; | |
4c4b4cd2 PH |
4038 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4039 | } | |
4040 | } | |
4041 | ||
4042 | /* Number of ada_symbol_info structures currently collected in | |
4043 | current vector in *OBSTACKP. */ | |
4044 | ||
76a01679 JB |
4045 | static int |
4046 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4047 | { |
4048 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4049 | } | |
4050 | ||
4051 | /* Vector of ada_symbol_info structures currently collected in current | |
4052 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4053 | its final address. */ | |
4054 | ||
76a01679 | 4055 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4056 | defns_collected (struct obstack *obstackp, int finish) |
4057 | { | |
4058 | if (finish) | |
4059 | return obstack_finish (obstackp); | |
4060 | else | |
4061 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4062 | } | |
4063 | ||
96d887e8 PH |
4064 | /* Look, in partial_symtab PST, for symbol NAME in given namespace. |
4065 | Check the global symbols if GLOBAL, the static symbols if not. | |
4066 | Do wild-card match if WILD. */ | |
4c4b4cd2 | 4067 | |
96d887e8 PH |
4068 | static struct partial_symbol * |
4069 | ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name, | |
4070 | int global, domain_enum namespace, int wild) | |
4c4b4cd2 | 4071 | { |
96d887e8 PH |
4072 | struct partial_symbol **start; |
4073 | int name_len = strlen (name); | |
4074 | int length = (global ? pst->n_global_syms : pst->n_static_syms); | |
4075 | int i; | |
4c4b4cd2 | 4076 | |
96d887e8 | 4077 | if (length == 0) |
4c4b4cd2 | 4078 | { |
96d887e8 | 4079 | return (NULL); |
4c4b4cd2 PH |
4080 | } |
4081 | ||
96d887e8 PH |
4082 | start = (global ? |
4083 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
4084 | pst->objfile->static_psymbols.list + pst->statics_offset); | |
4c4b4cd2 | 4085 | |
96d887e8 | 4086 | if (wild) |
4c4b4cd2 | 4087 | { |
96d887e8 PH |
4088 | for (i = 0; i < length; i += 1) |
4089 | { | |
4090 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4091 | |
5eeb2539 AR |
4092 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4093 | SYMBOL_DOMAIN (psym), namespace) | |
1265e4aa | 4094 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym))) |
96d887e8 PH |
4095 | return psym; |
4096 | } | |
4097 | return NULL; | |
4c4b4cd2 | 4098 | } |
96d887e8 PH |
4099 | else |
4100 | { | |
4101 | if (global) | |
4102 | { | |
4103 | int U; | |
4104 | i = 0; | |
4105 | U = length - 1; | |
4106 | while (U - i > 4) | |
4107 | { | |
4108 | int M = (U + i) >> 1; | |
4109 | struct partial_symbol *psym = start[M]; | |
4110 | if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0]) | |
4111 | i = M + 1; | |
4112 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0]) | |
4113 | U = M - 1; | |
4114 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0) | |
4115 | i = M + 1; | |
4116 | else | |
4117 | U = M; | |
4118 | } | |
4119 | } | |
4120 | else | |
4121 | i = 0; | |
4c4b4cd2 | 4122 | |
96d887e8 PH |
4123 | while (i < length) |
4124 | { | |
4125 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4126 | |
5eeb2539 AR |
4127 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4128 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4129 | { |
4130 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len); | |
4c4b4cd2 | 4131 | |
96d887e8 PH |
4132 | if (cmp < 0) |
4133 | { | |
4134 | if (global) | |
4135 | break; | |
4136 | } | |
4137 | else if (cmp == 0 | |
4138 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4139 | + name_len)) |
96d887e8 PH |
4140 | return psym; |
4141 | } | |
4142 | i += 1; | |
4143 | } | |
4c4b4cd2 | 4144 | |
96d887e8 PH |
4145 | if (global) |
4146 | { | |
4147 | int U; | |
4148 | i = 0; | |
4149 | U = length - 1; | |
4150 | while (U - i > 4) | |
4151 | { | |
4152 | int M = (U + i) >> 1; | |
4153 | struct partial_symbol *psym = start[M]; | |
4154 | if (SYMBOL_LINKAGE_NAME (psym)[0] < '_') | |
4155 | i = M + 1; | |
4156 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_') | |
4157 | U = M - 1; | |
4158 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0) | |
4159 | i = M + 1; | |
4160 | else | |
4161 | U = M; | |
4162 | } | |
4163 | } | |
4164 | else | |
4165 | i = 0; | |
4c4b4cd2 | 4166 | |
96d887e8 PH |
4167 | while (i < length) |
4168 | { | |
4169 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4170 | |
5eeb2539 AR |
4171 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4172 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4173 | { |
4174 | int cmp; | |
4c4b4cd2 | 4175 | |
96d887e8 PH |
4176 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0]; |
4177 | if (cmp == 0) | |
4178 | { | |
4179 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5); | |
4180 | if (cmp == 0) | |
4181 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5, | |
76a01679 | 4182 | name_len); |
96d887e8 | 4183 | } |
4c4b4cd2 | 4184 | |
96d887e8 PH |
4185 | if (cmp < 0) |
4186 | { | |
4187 | if (global) | |
4188 | break; | |
4189 | } | |
4190 | else if (cmp == 0 | |
4191 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4192 | + name_len + 5)) |
96d887e8 PH |
4193 | return psym; |
4194 | } | |
4195 | i += 1; | |
4196 | } | |
4197 | } | |
4198 | return NULL; | |
4c4b4cd2 PH |
4199 | } |
4200 | ||
96d887e8 PH |
4201 | /* Return a minimal symbol matching NAME according to Ada decoding |
4202 | rules. Returns NULL if there is no such minimal symbol. Names | |
4203 | prefixed with "standard__" are handled specially: "standard__" is | |
4204 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4205 | |
96d887e8 PH |
4206 | struct minimal_symbol * |
4207 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4208 | { |
4c4b4cd2 | 4209 | struct objfile *objfile; |
96d887e8 PH |
4210 | struct minimal_symbol *msymbol; |
4211 | int wild_match; | |
4c4b4cd2 | 4212 | |
96d887e8 | 4213 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4214 | { |
96d887e8 | 4215 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4216 | wild_match = 0; |
4c4b4cd2 PH |
4217 | } |
4218 | else | |
96d887e8 | 4219 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4220 | |
96d887e8 PH |
4221 | ALL_MSYMBOLS (objfile, msymbol) |
4222 | { | |
4223 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) | |
4224 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4225 | return msymbol; | |
4226 | } | |
4c4b4cd2 | 4227 | |
96d887e8 PH |
4228 | return NULL; |
4229 | } | |
4c4b4cd2 | 4230 | |
96d887e8 PH |
4231 | /* For all subprograms that statically enclose the subprogram of the |
4232 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4233 | and their blocks to the list of data in OBSTACKP, as for | |
4234 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4235 | wildcard prefix. */ | |
4c4b4cd2 | 4236 | |
96d887e8 PH |
4237 | static void |
4238 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4239 | const char *name, domain_enum namespace, |
96d887e8 PH |
4240 | int wild_match) |
4241 | { | |
96d887e8 | 4242 | } |
14f9c5c9 | 4243 | |
96d887e8 PH |
4244 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4245 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4246 | |
96d887e8 PH |
4247 | static int |
4248 | is_nondebugging_type (struct type *type) | |
4249 | { | |
4250 | char *name = ada_type_name (type); | |
4251 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); | |
4252 | } | |
4c4b4cd2 | 4253 | |
96d887e8 PH |
4254 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4255 | duplicate other symbols in the list (The only case I know of where | |
4256 | this happens is when object files containing stabs-in-ecoff are | |
4257 | linked with files containing ordinary ecoff debugging symbols (or no | |
4258 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4259 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4260 | |
96d887e8 PH |
4261 | static int |
4262 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4263 | { | |
4264 | int i, j; | |
4c4b4cd2 | 4265 | |
96d887e8 PH |
4266 | i = 0; |
4267 | while (i < nsyms) | |
4268 | { | |
339c13b6 JB |
4269 | int remove = 0; |
4270 | ||
4271 | /* If two symbols have the same name and one of them is a stub type, | |
4272 | the get rid of the stub. */ | |
4273 | ||
4274 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4275 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4276 | { | |
4277 | for (j = 0; j < nsyms; j++) | |
4278 | { | |
4279 | if (j != i | |
4280 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4281 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4282 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4283 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4284 | remove = 1; | |
4285 | } | |
4286 | } | |
4287 | ||
4288 | /* Two symbols with the same name, same class and same address | |
4289 | should be identical. */ | |
4290 | ||
4291 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4292 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4293 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4294 | { | |
4295 | for (j = 0; j < nsyms; j += 1) | |
4296 | { | |
4297 | if (i != j | |
4298 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4299 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4300 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4301 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4302 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4303 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4304 | remove = 1; |
4c4b4cd2 | 4305 | } |
4c4b4cd2 | 4306 | } |
339c13b6 JB |
4307 | |
4308 | if (remove) | |
4309 | { | |
4310 | for (j = i + 1; j < nsyms; j += 1) | |
4311 | syms[j - 1] = syms[j]; | |
4312 | nsyms -= 1; | |
4313 | } | |
4314 | ||
96d887e8 | 4315 | i += 1; |
14f9c5c9 | 4316 | } |
96d887e8 | 4317 | return nsyms; |
14f9c5c9 AS |
4318 | } |
4319 | ||
96d887e8 PH |
4320 | /* Given a type that corresponds to a renaming entity, use the type name |
4321 | to extract the scope (package name or function name, fully qualified, | |
4322 | and following the GNAT encoding convention) where this renaming has been | |
4323 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4324 | |
96d887e8 PH |
4325 | static char * |
4326 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4327 | { |
96d887e8 PH |
4328 | /* The renaming types adhere to the following convention: |
4329 | <scope>__<rename>___<XR extension>. | |
4330 | So, to extract the scope, we search for the "___XR" extension, | |
4331 | and then backtrack until we find the first "__". */ | |
76a01679 | 4332 | |
96d887e8 PH |
4333 | const char *name = type_name_no_tag (renaming_type); |
4334 | char *suffix = strstr (name, "___XR"); | |
4335 | char *last; | |
4336 | int scope_len; | |
4337 | char *scope; | |
14f9c5c9 | 4338 | |
96d887e8 PH |
4339 | /* Now, backtrack a bit until we find the first "__". Start looking |
4340 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4341 | |
96d887e8 PH |
4342 | for (last = suffix - 3; last > name; last--) |
4343 | if (last[0] == '_' && last[1] == '_') | |
4344 | break; | |
76a01679 | 4345 | |
96d887e8 | 4346 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4347 | |
96d887e8 PH |
4348 | scope_len = last - name; |
4349 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4350 | |
96d887e8 PH |
4351 | strncpy (scope, name, scope_len); |
4352 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4353 | |
96d887e8 | 4354 | return scope; |
4c4b4cd2 PH |
4355 | } |
4356 | ||
96d887e8 | 4357 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4358 | |
96d887e8 PH |
4359 | static int |
4360 | is_package_name (const char *name) | |
4c4b4cd2 | 4361 | { |
96d887e8 PH |
4362 | /* Here, We take advantage of the fact that no symbols are generated |
4363 | for packages, while symbols are generated for each function. | |
4364 | So the condition for NAME represent a package becomes equivalent | |
4365 | to NAME not existing in our list of symbols. There is only one | |
4366 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4367 | |
96d887e8 | 4368 | char *fun_name; |
76a01679 | 4369 | |
96d887e8 PH |
4370 | /* If it is a function that has not been defined at library level, |
4371 | then we should be able to look it up in the symbols. */ | |
4372 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4373 | return 0; | |
14f9c5c9 | 4374 | |
96d887e8 PH |
4375 | /* Library-level function names start with "_ada_". See if function |
4376 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4377 | |
96d887e8 | 4378 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4379 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4380 | if (strstr (name, "__") != NULL) |
4381 | return 0; | |
4c4b4cd2 | 4382 | |
b435e160 | 4383 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4384 | |
96d887e8 PH |
4385 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4386 | } | |
14f9c5c9 | 4387 | |
96d887e8 | 4388 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4389 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4390 | |
96d887e8 | 4391 | static int |
aeb5907d | 4392 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4393 | { |
aeb5907d JB |
4394 | char *scope; |
4395 | ||
4396 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4397 | return 0; | |
4398 | ||
4399 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4400 | |
96d887e8 | 4401 | make_cleanup (xfree, scope); |
14f9c5c9 | 4402 | |
96d887e8 PH |
4403 | /* If the rename has been defined in a package, then it is visible. */ |
4404 | if (is_package_name (scope)) | |
aeb5907d | 4405 | return 0; |
14f9c5c9 | 4406 | |
96d887e8 PH |
4407 | /* Check that the rename is in the current function scope by checking |
4408 | that its name starts with SCOPE. */ | |
76a01679 | 4409 | |
96d887e8 PH |
4410 | /* If the function name starts with "_ada_", it means that it is |
4411 | a library-level function. Strip this prefix before doing the | |
4412 | comparison, as the encoding for the renaming does not contain | |
4413 | this prefix. */ | |
4414 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4415 | function_name += 5; | |
f26caa11 | 4416 | |
aeb5907d | 4417 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4418 | } |
4419 | ||
aeb5907d JB |
4420 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4421 | is not visible from the function associated with CURRENT_BLOCK or | |
4422 | that is superfluous due to the presence of more specific renaming | |
4423 | information. Places surviving symbols in the initial entries of | |
4424 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4425 | |
4426 | Rationale: | |
aeb5907d JB |
4427 | First, in cases where an object renaming is implemented as a |
4428 | reference variable, GNAT may produce both the actual reference | |
4429 | variable and the renaming encoding. In this case, we discard the | |
4430 | latter. | |
4431 | ||
4432 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4433 | entity. Unfortunately, STABS currently does not support the definition |
4434 | of types that are local to a given lexical block, so all renamings types | |
4435 | are emitted at library level. As a consequence, if an application | |
4436 | contains two renaming entities using the same name, and a user tries to | |
4437 | print the value of one of these entities, the result of the ada symbol | |
4438 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4439 | |
96d887e8 PH |
4440 | This function partially covers for this limitation by attempting to |
4441 | remove from the SYMS list renaming symbols that should be visible | |
4442 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4443 | method with the current information available. The implementation | |
4444 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4445 | ||
4446 | - When the user tries to print a rename in a function while there | |
4447 | is another rename entity defined in a package: Normally, the | |
4448 | rename in the function has precedence over the rename in the | |
4449 | package, so the latter should be removed from the list. This is | |
4450 | currently not the case. | |
4451 | ||
4452 | - This function will incorrectly remove valid renames if | |
4453 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4454 | has been changed by an "Export" pragma. As a consequence, | |
4455 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4456 | |
14f9c5c9 | 4457 | static int |
aeb5907d JB |
4458 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4459 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4460 | { |
4461 | struct symbol *current_function; | |
4462 | char *current_function_name; | |
4463 | int i; | |
aeb5907d JB |
4464 | int is_new_style_renaming; |
4465 | ||
4466 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4467 | a simple variable foo in the same block, discard the latter. | |
4468 | First, zero out such symbols, then compress. */ | |
4469 | is_new_style_renaming = 0; | |
4470 | for (i = 0; i < nsyms; i += 1) | |
4471 | { | |
4472 | struct symbol *sym = syms[i].sym; | |
4473 | struct block *block = syms[i].block; | |
4474 | const char *name; | |
4475 | const char *suffix; | |
4476 | ||
4477 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4478 | continue; | |
4479 | name = SYMBOL_LINKAGE_NAME (sym); | |
4480 | suffix = strstr (name, "___XR"); | |
4481 | ||
4482 | if (suffix != NULL) | |
4483 | { | |
4484 | int name_len = suffix - name; | |
4485 | int j; | |
4486 | is_new_style_renaming = 1; | |
4487 | for (j = 0; j < nsyms; j += 1) | |
4488 | if (i != j && syms[j].sym != NULL | |
4489 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4490 | name_len) == 0 | |
4491 | && block == syms[j].block) | |
4492 | syms[j].sym = NULL; | |
4493 | } | |
4494 | } | |
4495 | if (is_new_style_renaming) | |
4496 | { | |
4497 | int j, k; | |
4498 | ||
4499 | for (j = k = 0; j < nsyms; j += 1) | |
4500 | if (syms[j].sym != NULL) | |
4501 | { | |
4502 | syms[k] = syms[j]; | |
4503 | k += 1; | |
4504 | } | |
4505 | return k; | |
4506 | } | |
4c4b4cd2 PH |
4507 | |
4508 | /* Extract the function name associated to CURRENT_BLOCK. | |
4509 | Abort if unable to do so. */ | |
76a01679 | 4510 | |
4c4b4cd2 PH |
4511 | if (current_block == NULL) |
4512 | return nsyms; | |
76a01679 | 4513 | |
7f0df278 | 4514 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4515 | if (current_function == NULL) |
4516 | return nsyms; | |
4517 | ||
4518 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4519 | if (current_function_name == NULL) | |
4520 | return nsyms; | |
4521 | ||
4522 | /* Check each of the symbols, and remove it from the list if it is | |
4523 | a type corresponding to a renaming that is out of the scope of | |
4524 | the current block. */ | |
4525 | ||
4526 | i = 0; | |
4527 | while (i < nsyms) | |
4528 | { | |
aeb5907d JB |
4529 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4530 | == ADA_OBJECT_RENAMING | |
4531 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4532 | { |
4533 | int j; | |
aeb5907d | 4534 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4535 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4536 | nsyms -= 1; |
4537 | } | |
4538 | else | |
4539 | i += 1; | |
4540 | } | |
4541 | ||
4542 | return nsyms; | |
4543 | } | |
4544 | ||
339c13b6 JB |
4545 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4546 | whose name and domain match NAME and DOMAIN respectively. | |
4547 | If no match was found, then extend the search to "enclosing" | |
4548 | routines (in other words, if we're inside a nested function, | |
4549 | search the symbols defined inside the enclosing functions). | |
4550 | ||
4551 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4552 | ||
4553 | static void | |
4554 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4555 | struct block *block, domain_enum domain, | |
4556 | int wild_match) | |
4557 | { | |
4558 | int block_depth = 0; | |
4559 | ||
4560 | while (block != NULL) | |
4561 | { | |
4562 | block_depth += 1; | |
4563 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4564 | ||
4565 | /* If we found a non-function match, assume that's the one. */ | |
4566 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4567 | num_defns_collected (obstackp))) | |
4568 | return; | |
4569 | ||
4570 | block = BLOCK_SUPERBLOCK (block); | |
4571 | } | |
4572 | ||
4573 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4574 | enclosing subprogram. */ | |
4575 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4576 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4577 | } | |
4578 | ||
4579 | /* Add to OBSTACKP all non-local symbols whose name and domain match | |
4580 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4581 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4582 | ||
4583 | static void | |
4584 | ada_add_non_local_symbols (struct obstack *obstackp, const char *name, | |
4585 | domain_enum domain, int global, | |
4586 | int wild_match) | |
4587 | { | |
4588 | struct objfile *objfile; | |
4589 | struct partial_symtab *ps; | |
4590 | ||
4591 | ALL_PSYMTABS (objfile, ps) | |
4592 | { | |
4593 | QUIT; | |
4594 | if (ps->readin | |
4595 | || ada_lookup_partial_symbol (ps, name, global, domain, wild_match)) | |
4596 | { | |
4597 | struct symtab *s = PSYMTAB_TO_SYMTAB (ps); | |
4598 | const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK; | |
4599 | ||
4600 | if (s == NULL || !s->primary) | |
4601 | continue; | |
4602 | ada_add_block_symbols (obstackp, | |
4603 | BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind), | |
4604 | name, domain, objfile, wild_match); | |
4605 | } | |
4606 | } | |
4607 | } | |
4608 | ||
4c4b4cd2 PH |
4609 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4610 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4611 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4612 | indicating the symbols found and the blocks and symbol tables (if |
4613 | any) in which they were found. This vector are transient---good only to | |
4614 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4615 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4616 | is the one match returned (no other matches in that or | |
4617 | enclosing blocks is returned). If there are any matches in or | |
4618 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4619 | search extends to global and file-scope (static) symbol tables. | |
4620 | Names prefixed with "standard__" are handled specially: "standard__" | |
4621 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4622 | |
4623 | int | |
4c4b4cd2 | 4624 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4625 | domain_enum namespace, |
4626 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4627 | { |
4628 | struct symbol *sym; | |
14f9c5c9 | 4629 | struct block *block; |
4c4b4cd2 | 4630 | const char *name; |
4c4b4cd2 | 4631 | int wild_match; |
14f9c5c9 | 4632 | int cacheIfUnique; |
4c4b4cd2 | 4633 | int ndefns; |
14f9c5c9 | 4634 | |
4c4b4cd2 PH |
4635 | obstack_free (&symbol_list_obstack, NULL); |
4636 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4637 | |
14f9c5c9 AS |
4638 | cacheIfUnique = 0; |
4639 | ||
4640 | /* Search specified block and its superiors. */ | |
4641 | ||
4c4b4cd2 PH |
4642 | wild_match = (strstr (name0, "__") == NULL); |
4643 | name = name0; | |
76a01679 JB |
4644 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4645 | needed, but adding const will | |
4646 | have a cascade effect. */ | |
339c13b6 JB |
4647 | |
4648 | /* Special case: If the user specifies a symbol name inside package | |
4649 | Standard, do a non-wild matching of the symbol name without | |
4650 | the "standard__" prefix. This was primarily introduced in order | |
4651 | to allow the user to specifically access the standard exceptions | |
4652 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4653 | is ambiguous (due to the user defining its own Constraint_Error | |
4654 | entity inside its program). */ | |
4c4b4cd2 PH |
4655 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4656 | { | |
4657 | wild_match = 0; | |
4658 | block = NULL; | |
4659 | name = name0 + sizeof ("standard__") - 1; | |
4660 | } | |
4661 | ||
339c13b6 | 4662 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 4663 | |
339c13b6 JB |
4664 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
4665 | wild_match); | |
4c4b4cd2 | 4666 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4667 | goto done; |
d2e4a39e | 4668 | |
339c13b6 JB |
4669 | /* No non-global symbols found. Check our cache to see if we have |
4670 | already performed this search before. If we have, then return | |
4671 | the same result. */ | |
4672 | ||
14f9c5c9 | 4673 | cacheIfUnique = 1; |
2570f2b7 | 4674 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4675 | { |
4676 | if (sym != NULL) | |
2570f2b7 | 4677 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4678 | goto done; |
4679 | } | |
14f9c5c9 | 4680 | |
339c13b6 JB |
4681 | /* Search symbols from all global blocks. */ |
4682 | ||
4683 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1, | |
4684 | wild_match); | |
d2e4a39e | 4685 | |
4c4b4cd2 | 4686 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 4687 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 4688 | |
4c4b4cd2 | 4689 | if (num_defns_collected (&symbol_list_obstack) == 0) |
339c13b6 JB |
4690 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0, |
4691 | wild_match); | |
14f9c5c9 | 4692 | |
4c4b4cd2 PH |
4693 | done: |
4694 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4695 | *results = defns_collected (&symbol_list_obstack, 1); | |
4696 | ||
4697 | ndefns = remove_extra_symbols (*results, ndefns); | |
4698 | ||
d2e4a39e | 4699 | if (ndefns == 0) |
2570f2b7 | 4700 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4701 | |
4c4b4cd2 | 4702 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4703 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4704 | |
aeb5907d | 4705 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4706 | |
14f9c5c9 AS |
4707 | return ndefns; |
4708 | } | |
4709 | ||
d2e4a39e | 4710 | struct symbol * |
aeb5907d | 4711 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4712 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4713 | { |
4c4b4cd2 | 4714 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4715 | int n_candidates; |
4716 | ||
aeb5907d | 4717 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4718 | |
4719 | if (n_candidates == 0) | |
4720 | return NULL; | |
4c4b4cd2 | 4721 | |
aeb5907d JB |
4722 | if (block_found != NULL) |
4723 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4724 | |
21b556f4 | 4725 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4726 | } |
4727 | ||
4728 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4729 | scope and in global scopes, or NULL if none. NAME is folded and | |
4730 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
4731 | choosing the first symbol if there are multiple choices. | |
4732 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol | |
4733 | table in which the symbol was found (in both cases, these | |
4734 | assignments occur only if the pointers are non-null). */ | |
4735 | struct symbol * | |
4736 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4737 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4738 | { |
4739 | if (is_a_field_of_this != NULL) | |
4740 | *is_a_field_of_this = 0; | |
4741 | ||
4742 | return | |
4743 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4744 | block0, namespace, NULL); |
4c4b4cd2 | 4745 | } |
14f9c5c9 | 4746 | |
4c4b4cd2 PH |
4747 | static struct symbol * |
4748 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 JB |
4749 | const char *linkage_name, |
4750 | const struct block *block, | |
21b556f4 | 4751 | const domain_enum domain) |
4c4b4cd2 PH |
4752 | { |
4753 | if (linkage_name == NULL) | |
4754 | linkage_name = name; | |
76a01679 | 4755 | return ada_lookup_symbol (linkage_name, block_static_block (block), domain, |
21b556f4 | 4756 | NULL); |
14f9c5c9 AS |
4757 | } |
4758 | ||
4759 | ||
4c4b4cd2 PH |
4760 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4761 | that is to be ignored for matching purposes. Suffixes of parallel | |
4762 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4763 | are given by any of the regular expressions: |
4c4b4cd2 | 4764 | |
babe1480 JB |
4765 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4766 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4767 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4768 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4769 | |
4770 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4771 | match is performed. This sequence is used to differentiate homonyms, | |
4772 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4773 | |
14f9c5c9 | 4774 | static int |
d2e4a39e | 4775 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4776 | { |
4777 | int k; | |
4c4b4cd2 PH |
4778 | const char *matching; |
4779 | const int len = strlen (str); | |
4780 | ||
babe1480 JB |
4781 | /* Skip optional leading __[0-9]+. */ |
4782 | ||
4c4b4cd2 PH |
4783 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4784 | { | |
babe1480 JB |
4785 | str += 3; |
4786 | while (isdigit (str[0])) | |
4787 | str += 1; | |
4c4b4cd2 | 4788 | } |
babe1480 JB |
4789 | |
4790 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4791 | |
babe1480 | 4792 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 4793 | { |
babe1480 | 4794 | matching = str + 1; |
4c4b4cd2 PH |
4795 | while (isdigit (matching[0])) |
4796 | matching += 1; | |
4797 | if (matching[0] == '\0') | |
4798 | return 1; | |
4799 | } | |
4800 | ||
4801 | /* ___[0-9]+ */ | |
babe1480 | 4802 | |
4c4b4cd2 PH |
4803 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
4804 | { | |
4805 | matching = str + 3; | |
4806 | while (isdigit (matching[0])) | |
4807 | matching += 1; | |
4808 | if (matching[0] == '\0') | |
4809 | return 1; | |
4810 | } | |
4811 | ||
529cad9c PH |
4812 | #if 0 |
4813 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
4814 | with a N at the end. Unfortunately, the compiler uses the same | |
4815 | convention for other internal types it creates. So treating | |
4816 | all entity names that end with an "N" as a name suffix causes | |
4817 | some regressions. For instance, consider the case of an enumerated | |
4818 | type. To support the 'Image attribute, it creates an array whose | |
4819 | name ends with N. | |
4820 | Having a single character like this as a suffix carrying some | |
4821 | information is a bit risky. Perhaps we should change the encoding | |
4822 | to be something like "_N" instead. In the meantime, do not do | |
4823 | the following check. */ | |
4824 | /* Protected Object Subprograms */ | |
4825 | if (len == 1 && str [0] == 'N') | |
4826 | return 1; | |
4827 | #endif | |
4828 | ||
4829 | /* _E[0-9]+[bs]$ */ | |
4830 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
4831 | { | |
4832 | matching = str + 3; | |
4833 | while (isdigit (matching[0])) | |
4834 | matching += 1; | |
4835 | if ((matching[0] == 'b' || matching[0] == 's') | |
4836 | && matching [1] == '\0') | |
4837 | return 1; | |
4838 | } | |
4839 | ||
4c4b4cd2 PH |
4840 | /* ??? We should not modify STR directly, as we are doing below. This |
4841 | is fine in this case, but may become problematic later if we find | |
4842 | that this alternative did not work, and want to try matching | |
4843 | another one from the begining of STR. Since we modified it, we | |
4844 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
4845 | if (str[0] == 'X') |
4846 | { | |
4847 | str += 1; | |
d2e4a39e | 4848 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
4849 | { |
4850 | if (str[0] != 'n' && str[0] != 'b') | |
4851 | return 0; | |
4852 | str += 1; | |
4853 | } | |
14f9c5c9 | 4854 | } |
babe1480 | 4855 | |
14f9c5c9 AS |
4856 | if (str[0] == '\000') |
4857 | return 1; | |
babe1480 | 4858 | |
d2e4a39e | 4859 | if (str[0] == '_') |
14f9c5c9 AS |
4860 | { |
4861 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 4862 | return 0; |
d2e4a39e | 4863 | if (str[2] == '_') |
4c4b4cd2 | 4864 | { |
61ee279c PH |
4865 | if (strcmp (str + 3, "JM") == 0) |
4866 | return 1; | |
4867 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
4868 | the LJM suffix in favor of the JM one. But we will | |
4869 | still accept LJM as a valid suffix for a reasonable | |
4870 | amount of time, just to allow ourselves to debug programs | |
4871 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
4872 | if (strcmp (str + 3, "LJM") == 0) |
4873 | return 1; | |
4874 | if (str[3] != 'X') | |
4875 | return 0; | |
1265e4aa JB |
4876 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
4877 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
4878 | return 1; |
4879 | if (str[4] == 'R' && str[5] != 'T') | |
4880 | return 1; | |
4881 | return 0; | |
4882 | } | |
4883 | if (!isdigit (str[2])) | |
4884 | return 0; | |
4885 | for (k = 3; str[k] != '\0'; k += 1) | |
4886 | if (!isdigit (str[k]) && str[k] != '_') | |
4887 | return 0; | |
14f9c5c9 AS |
4888 | return 1; |
4889 | } | |
4c4b4cd2 | 4890 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 4891 | { |
4c4b4cd2 PH |
4892 | for (k = 2; str[k] != '\0'; k += 1) |
4893 | if (!isdigit (str[k]) && str[k] != '_') | |
4894 | return 0; | |
14f9c5c9 AS |
4895 | return 1; |
4896 | } | |
4897 | return 0; | |
4898 | } | |
d2e4a39e | 4899 | |
aeb5907d JB |
4900 | /* Return non-zero if the string starting at NAME and ending before |
4901 | NAME_END contains no capital letters. */ | |
529cad9c PH |
4902 | |
4903 | static int | |
4904 | is_valid_name_for_wild_match (const char *name0) | |
4905 | { | |
4906 | const char *decoded_name = ada_decode (name0); | |
4907 | int i; | |
4908 | ||
5823c3ef JB |
4909 | /* If the decoded name starts with an angle bracket, it means that |
4910 | NAME0 does not follow the GNAT encoding format. It should then | |
4911 | not be allowed as a possible wild match. */ | |
4912 | if (decoded_name[0] == '<') | |
4913 | return 0; | |
4914 | ||
529cad9c PH |
4915 | for (i=0; decoded_name[i] != '\0'; i++) |
4916 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
4917 | return 0; | |
4918 | ||
4919 | return 1; | |
4920 | } | |
4921 | ||
4c4b4cd2 PH |
4922 | /* True if NAME represents a name of the form A1.A2....An, n>=1 and |
4923 | PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores | |
4924 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
4925 | true). */ | |
4926 | ||
14f9c5c9 | 4927 | static int |
4c4b4cd2 | 4928 | wild_match (const char *patn0, int patn_len, const char *name0) |
14f9c5c9 | 4929 | { |
5823c3ef JB |
4930 | char* match; |
4931 | const char* start; | |
4932 | start = name0; | |
4933 | while (1) | |
14f9c5c9 | 4934 | { |
5823c3ef JB |
4935 | match = strstr (start, patn0); |
4936 | if (match == NULL) | |
4937 | return 0; | |
4938 | if ((match == name0 | |
4939 | || match[-1] == '.' | |
4940 | || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_') | |
4941 | || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0)) | |
4942 | && is_name_suffix (match + patn_len)) | |
4943 | return (match == name0 || is_valid_name_for_wild_match (name0)); | |
4944 | start = match + 1; | |
96d887e8 | 4945 | } |
96d887e8 PH |
4946 | } |
4947 | ||
96d887e8 PH |
4948 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
4949 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
4950 | (if necessary). If WILD, treat as NAME with a wildcard prefix. | |
4951 | OBJFILE is the section containing BLOCK. | |
4952 | SYMTAB is recorded with each symbol added. */ | |
4953 | ||
4954 | static void | |
4955 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 4956 | struct block *block, const char *name, |
96d887e8 | 4957 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 4958 | int wild) |
96d887e8 PH |
4959 | { |
4960 | struct dict_iterator iter; | |
4961 | int name_len = strlen (name); | |
4962 | /* A matching argument symbol, if any. */ | |
4963 | struct symbol *arg_sym; | |
4964 | /* Set true when we find a matching non-argument symbol. */ | |
4965 | int found_sym; | |
4966 | struct symbol *sym; | |
4967 | ||
4968 | arg_sym = NULL; | |
4969 | found_sym = 0; | |
4970 | if (wild) | |
4971 | { | |
4972 | struct symbol *sym; | |
4973 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 4974 | { |
5eeb2539 AR |
4975 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
4976 | SYMBOL_DOMAIN (sym), domain) | |
1265e4aa | 4977 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym))) |
76a01679 | 4978 | { |
2a2d4dc3 AS |
4979 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
4980 | continue; | |
4981 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4982 | arg_sym = sym; | |
4983 | else | |
4984 | { | |
76a01679 JB |
4985 | found_sym = 1; |
4986 | add_defn_to_vec (obstackp, | |
4987 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 4988 | block); |
76a01679 JB |
4989 | } |
4990 | } | |
4991 | } | |
96d887e8 PH |
4992 | } |
4993 | else | |
4994 | { | |
4995 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 4996 | { |
5eeb2539 AR |
4997 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
4998 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
4999 | { |
5000 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); | |
5001 | if (cmp == 0 | |
5002 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) | |
5003 | { | |
2a2d4dc3 AS |
5004 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5005 | { | |
5006 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5007 | arg_sym = sym; | |
5008 | else | |
5009 | { | |
5010 | found_sym = 1; | |
5011 | add_defn_to_vec (obstackp, | |
5012 | fixup_symbol_section (sym, objfile), | |
5013 | block); | |
5014 | } | |
5015 | } | |
76a01679 JB |
5016 | } |
5017 | } | |
5018 | } | |
96d887e8 PH |
5019 | } |
5020 | ||
5021 | if (!found_sym && arg_sym != NULL) | |
5022 | { | |
76a01679 JB |
5023 | add_defn_to_vec (obstackp, |
5024 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5025 | block); |
96d887e8 PH |
5026 | } |
5027 | ||
5028 | if (!wild) | |
5029 | { | |
5030 | arg_sym = NULL; | |
5031 | found_sym = 0; | |
5032 | ||
5033 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5034 | { |
5eeb2539 AR |
5035 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5036 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5037 | { |
5038 | int cmp; | |
5039 | ||
5040 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5041 | if (cmp == 0) | |
5042 | { | |
5043 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5044 | if (cmp == 0) | |
5045 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5046 | name_len); | |
5047 | } | |
5048 | ||
5049 | if (cmp == 0 | |
5050 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5051 | { | |
2a2d4dc3 AS |
5052 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5053 | { | |
5054 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5055 | arg_sym = sym; | |
5056 | else | |
5057 | { | |
5058 | found_sym = 1; | |
5059 | add_defn_to_vec (obstackp, | |
5060 | fixup_symbol_section (sym, objfile), | |
5061 | block); | |
5062 | } | |
5063 | } | |
76a01679 JB |
5064 | } |
5065 | } | |
76a01679 | 5066 | } |
96d887e8 PH |
5067 | |
5068 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5069 | They aren't parameters, right? */ | |
5070 | if (!found_sym && arg_sym != NULL) | |
5071 | { | |
5072 | add_defn_to_vec (obstackp, | |
76a01679 | 5073 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5074 | block); |
96d887e8 PH |
5075 | } |
5076 | } | |
5077 | } | |
5078 | \f | |
41d27058 JB |
5079 | |
5080 | /* Symbol Completion */ | |
5081 | ||
5082 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5083 | name in a form that's appropriate for the completion. The result | |
5084 | does not need to be deallocated, but is only good until the next call. | |
5085 | ||
5086 | TEXT_LEN is equal to the length of TEXT. | |
5087 | Perform a wild match if WILD_MATCH is set. | |
5088 | ENCODED should be set if TEXT represents the start of a symbol name | |
5089 | in its encoded form. */ | |
5090 | ||
5091 | static const char * | |
5092 | symbol_completion_match (const char *sym_name, | |
5093 | const char *text, int text_len, | |
5094 | int wild_match, int encoded) | |
5095 | { | |
5096 | char *result; | |
5097 | const int verbatim_match = (text[0] == '<'); | |
5098 | int match = 0; | |
5099 | ||
5100 | if (verbatim_match) | |
5101 | { | |
5102 | /* Strip the leading angle bracket. */ | |
5103 | text = text + 1; | |
5104 | text_len--; | |
5105 | } | |
5106 | ||
5107 | /* First, test against the fully qualified name of the symbol. */ | |
5108 | ||
5109 | if (strncmp (sym_name, text, text_len) == 0) | |
5110 | match = 1; | |
5111 | ||
5112 | if (match && !encoded) | |
5113 | { | |
5114 | /* One needed check before declaring a positive match is to verify | |
5115 | that iff we are doing a verbatim match, the decoded version | |
5116 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5117 | is not a suitable completion. */ | |
5118 | const char *sym_name_copy = sym_name; | |
5119 | int has_angle_bracket; | |
5120 | ||
5121 | sym_name = ada_decode (sym_name); | |
5122 | has_angle_bracket = (sym_name[0] == '<'); | |
5123 | match = (has_angle_bracket == verbatim_match); | |
5124 | sym_name = sym_name_copy; | |
5125 | } | |
5126 | ||
5127 | if (match && !verbatim_match) | |
5128 | { | |
5129 | /* When doing non-verbatim match, another check that needs to | |
5130 | be done is to verify that the potentially matching symbol name | |
5131 | does not include capital letters, because the ada-mode would | |
5132 | not be able to understand these symbol names without the | |
5133 | angle bracket notation. */ | |
5134 | const char *tmp; | |
5135 | ||
5136 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5137 | if (*tmp != '\0') | |
5138 | match = 0; | |
5139 | } | |
5140 | ||
5141 | /* Second: Try wild matching... */ | |
5142 | ||
5143 | if (!match && wild_match) | |
5144 | { | |
5145 | /* Since we are doing wild matching, this means that TEXT | |
5146 | may represent an unqualified symbol name. We therefore must | |
5147 | also compare TEXT against the unqualified name of the symbol. */ | |
5148 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5149 | ||
5150 | if (strncmp (sym_name, text, text_len) == 0) | |
5151 | match = 1; | |
5152 | } | |
5153 | ||
5154 | /* Finally: If we found a mach, prepare the result to return. */ | |
5155 | ||
5156 | if (!match) | |
5157 | return NULL; | |
5158 | ||
5159 | if (verbatim_match) | |
5160 | sym_name = add_angle_brackets (sym_name); | |
5161 | ||
5162 | if (!encoded) | |
5163 | sym_name = ada_decode (sym_name); | |
5164 | ||
5165 | return sym_name; | |
5166 | } | |
5167 | ||
2ba95b9b JB |
5168 | typedef char *char_ptr; |
5169 | DEF_VEC_P (char_ptr); | |
5170 | ||
41d27058 JB |
5171 | /* A companion function to ada_make_symbol_completion_list(). |
5172 | Check if SYM_NAME represents a symbol which name would be suitable | |
5173 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5174 | it is appended at the end of the given string vector SV. | |
5175 | ||
5176 | ORIG_TEXT is the string original string from the user command | |
5177 | that needs to be completed. WORD is the entire command on which | |
5178 | completion should be performed. These two parameters are used to | |
5179 | determine which part of the symbol name should be added to the | |
5180 | completion vector. | |
5181 | if WILD_MATCH is set, then wild matching is performed. | |
5182 | ENCODED should be set if TEXT represents a symbol name in its | |
5183 | encoded formed (in which case the completion should also be | |
5184 | encoded). */ | |
5185 | ||
5186 | static void | |
d6565258 | 5187 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5188 | const char *sym_name, |
5189 | const char *text, int text_len, | |
5190 | const char *orig_text, const char *word, | |
5191 | int wild_match, int encoded) | |
5192 | { | |
5193 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5194 | wild_match, encoded); | |
5195 | char *completion; | |
5196 | ||
5197 | if (match == NULL) | |
5198 | return; | |
5199 | ||
5200 | /* We found a match, so add the appropriate completion to the given | |
5201 | string vector. */ | |
5202 | ||
5203 | if (word == orig_text) | |
5204 | { | |
5205 | completion = xmalloc (strlen (match) + 5); | |
5206 | strcpy (completion, match); | |
5207 | } | |
5208 | else if (word > orig_text) | |
5209 | { | |
5210 | /* Return some portion of sym_name. */ | |
5211 | completion = xmalloc (strlen (match) + 5); | |
5212 | strcpy (completion, match + (word - orig_text)); | |
5213 | } | |
5214 | else | |
5215 | { | |
5216 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5217 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5218 | strncpy (completion, word, orig_text - word); | |
5219 | completion[orig_text - word] = '\0'; | |
5220 | strcat (completion, match); | |
5221 | } | |
5222 | ||
d6565258 | 5223 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5224 | } |
5225 | ||
5226 | /* Return a list of possible symbol names completing TEXT0. The list | |
5227 | is NULL terminated. WORD is the entire command on which completion | |
5228 | is made. */ | |
5229 | ||
5230 | static char ** | |
5231 | ada_make_symbol_completion_list (char *text0, char *word) | |
5232 | { | |
5233 | char *text; | |
5234 | int text_len; | |
5235 | int wild_match; | |
5236 | int encoded; | |
2ba95b9b | 5237 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5238 | struct symbol *sym; |
5239 | struct symtab *s; | |
5240 | struct partial_symtab *ps; | |
5241 | struct minimal_symbol *msymbol; | |
5242 | struct objfile *objfile; | |
5243 | struct block *b, *surrounding_static_block = 0; | |
5244 | int i; | |
5245 | struct dict_iterator iter; | |
5246 | ||
5247 | if (text0[0] == '<') | |
5248 | { | |
5249 | text = xstrdup (text0); | |
5250 | make_cleanup (xfree, text); | |
5251 | text_len = strlen (text); | |
5252 | wild_match = 0; | |
5253 | encoded = 1; | |
5254 | } | |
5255 | else | |
5256 | { | |
5257 | text = xstrdup (ada_encode (text0)); | |
5258 | make_cleanup (xfree, text); | |
5259 | text_len = strlen (text); | |
5260 | for (i = 0; i < text_len; i++) | |
5261 | text[i] = tolower (text[i]); | |
5262 | ||
5263 | encoded = (strstr (text0, "__") != NULL); | |
5264 | /* If the name contains a ".", then the user is entering a fully | |
5265 | qualified entity name, and the match must not be done in wild | |
5266 | mode. Similarly, if the user wants to complete what looks like | |
5267 | an encoded name, the match must not be done in wild mode. */ | |
5268 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5269 | } | |
5270 | ||
5271 | /* First, look at the partial symtab symbols. */ | |
5272 | ALL_PSYMTABS (objfile, ps) | |
5273 | { | |
5274 | struct partial_symbol **psym; | |
5275 | ||
5276 | /* If the psymtab's been read in we'll get it when we search | |
5277 | through the blockvector. */ | |
5278 | if (ps->readin) | |
5279 | continue; | |
5280 | ||
5281 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
5282 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
5283 | + ps->n_global_syms); psym++) | |
5284 | { | |
5285 | QUIT; | |
d6565258 | 5286 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5287 | text, text_len, text0, word, |
5288 | wild_match, encoded); | |
5289 | } | |
5290 | ||
5291 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
5292 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
5293 | + ps->n_static_syms); psym++) | |
5294 | { | |
5295 | QUIT; | |
d6565258 | 5296 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5297 | text, text_len, text0, word, |
5298 | wild_match, encoded); | |
5299 | } | |
5300 | } | |
5301 | ||
5302 | /* At this point scan through the misc symbol vectors and add each | |
5303 | symbol you find to the list. Eventually we want to ignore | |
5304 | anything that isn't a text symbol (everything else will be | |
5305 | handled by the psymtab code above). */ | |
5306 | ||
5307 | ALL_MSYMBOLS (objfile, msymbol) | |
5308 | { | |
5309 | QUIT; | |
d6565258 | 5310 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5311 | text, text_len, text0, word, wild_match, encoded); |
5312 | } | |
5313 | ||
5314 | /* Search upwards from currently selected frame (so that we can | |
5315 | complete on local vars. */ | |
5316 | ||
5317 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5318 | { | |
5319 | if (!BLOCK_SUPERBLOCK (b)) | |
5320 | surrounding_static_block = b; /* For elmin of dups */ | |
5321 | ||
5322 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5323 | { | |
d6565258 | 5324 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5325 | text, text_len, text0, word, |
5326 | wild_match, encoded); | |
5327 | } | |
5328 | } | |
5329 | ||
5330 | /* Go through the symtabs and check the externs and statics for | |
5331 | symbols which match. */ | |
5332 | ||
5333 | ALL_SYMTABS (objfile, s) | |
5334 | { | |
5335 | QUIT; | |
5336 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5337 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5338 | { | |
d6565258 | 5339 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5340 | text, text_len, text0, word, |
5341 | wild_match, encoded); | |
5342 | } | |
5343 | } | |
5344 | ||
5345 | ALL_SYMTABS (objfile, s) | |
5346 | { | |
5347 | QUIT; | |
5348 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5349 | /* Don't do this block twice. */ | |
5350 | if (b == surrounding_static_block) | |
5351 | continue; | |
5352 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5353 | { | |
d6565258 | 5354 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5355 | text, text_len, text0, word, |
5356 | wild_match, encoded); | |
5357 | } | |
5358 | } | |
5359 | ||
5360 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5361 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5362 | |
2ba95b9b JB |
5363 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5364 | return the copy. It's unfortunate that we have to make a copy | |
5365 | of an array that we're about to destroy, but there is nothing much | |
5366 | we can do about it. Fortunately, it's typically not a very large | |
5367 | array. */ | |
5368 | { | |
5369 | const size_t completions_size = | |
5370 | VEC_length (char_ptr, completions) * sizeof (char *); | |
5371 | char **result = malloc (completions_size); | |
5372 | ||
5373 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5374 | ||
5375 | VEC_free (char_ptr, completions); | |
5376 | return result; | |
5377 | } | |
41d27058 JB |
5378 | } |
5379 | ||
963a6417 | 5380 | /* Field Access */ |
96d887e8 | 5381 | |
73fb9985 JB |
5382 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5383 | for tagged types. */ | |
5384 | ||
5385 | static int | |
5386 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5387 | { | |
5388 | char *name; | |
5389 | ||
5390 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5391 | return 0; | |
5392 | ||
5393 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5394 | if (name == NULL) | |
5395 | return 0; | |
5396 | ||
5397 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5398 | } | |
5399 | ||
963a6417 PH |
5400 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5401 | to be invisible to users. */ | |
96d887e8 | 5402 | |
963a6417 PH |
5403 | int |
5404 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5405 | { |
963a6417 PH |
5406 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5407 | return 1; | |
73fb9985 JB |
5408 | |
5409 | /* Check the name of that field. */ | |
5410 | { | |
5411 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5412 | ||
5413 | /* Anonymous field names should not be printed. | |
5414 | brobecker/2007-02-20: I don't think this can actually happen | |
5415 | but we don't want to print the value of annonymous fields anyway. */ | |
5416 | if (name == NULL) | |
5417 | return 1; | |
5418 | ||
5419 | /* A field named "_parent" is internally generated by GNAT for | |
5420 | tagged types, and should not be printed either. */ | |
5421 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5422 | return 1; | |
5423 | } | |
5424 | ||
5425 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5426 | if (ada_is_tagged_type (type, 1) | |
5427 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5428 | return 1; | |
5429 | ||
5430 | /* Not a special field, so it should not be ignored. */ | |
5431 | return 0; | |
963a6417 | 5432 | } |
96d887e8 | 5433 | |
963a6417 PH |
5434 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
5435 | pointer or reference type whose ultimate target has a tag field. */ | |
96d887e8 | 5436 | |
963a6417 PH |
5437 | int |
5438 | ada_is_tagged_type (struct type *type, int refok) | |
5439 | { | |
5440 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5441 | } | |
96d887e8 | 5442 | |
963a6417 | 5443 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5444 | |
963a6417 PH |
5445 | int |
5446 | ada_is_tag_type (struct type *type) | |
5447 | { | |
5448 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5449 | return 0; | |
5450 | else | |
96d887e8 | 5451 | { |
963a6417 PH |
5452 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5453 | return (name != NULL | |
5454 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5455 | } |
96d887e8 PH |
5456 | } |
5457 | ||
963a6417 | 5458 | /* The type of the tag on VAL. */ |
76a01679 | 5459 | |
963a6417 PH |
5460 | struct type * |
5461 | ada_tag_type (struct value *val) | |
96d887e8 | 5462 | { |
df407dfe | 5463 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5464 | } |
96d887e8 | 5465 | |
963a6417 | 5466 | /* The value of the tag on VAL. */ |
96d887e8 | 5467 | |
963a6417 PH |
5468 | struct value * |
5469 | ada_value_tag (struct value *val) | |
5470 | { | |
03ee6b2e | 5471 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5472 | } |
5473 | ||
963a6417 PH |
5474 | /* The value of the tag on the object of type TYPE whose contents are |
5475 | saved at VALADDR, if it is non-null, or is at memory address | |
5476 | ADDRESS. */ | |
96d887e8 | 5477 | |
963a6417 | 5478 | static struct value * |
10a2c479 | 5479 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5480 | const gdb_byte *valaddr, |
963a6417 | 5481 | CORE_ADDR address) |
96d887e8 | 5482 | { |
963a6417 PH |
5483 | int tag_byte_offset, dummy1, dummy2; |
5484 | struct type *tag_type; | |
5485 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, | |
52ce6436 | 5486 | NULL, NULL, NULL)) |
96d887e8 | 5487 | { |
fc1a4b47 | 5488 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5489 | ? NULL |
5490 | : valaddr + tag_byte_offset); | |
963a6417 | 5491 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5492 | |
963a6417 | 5493 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5494 | } |
963a6417 PH |
5495 | return NULL; |
5496 | } | |
96d887e8 | 5497 | |
963a6417 PH |
5498 | static struct type * |
5499 | type_from_tag (struct value *tag) | |
5500 | { | |
5501 | const char *type_name = ada_tag_name (tag); | |
5502 | if (type_name != NULL) | |
5503 | return ada_find_any_type (ada_encode (type_name)); | |
5504 | return NULL; | |
5505 | } | |
96d887e8 | 5506 | |
963a6417 PH |
5507 | struct tag_args |
5508 | { | |
5509 | struct value *tag; | |
5510 | char *name; | |
5511 | }; | |
4c4b4cd2 | 5512 | |
529cad9c PH |
5513 | |
5514 | static int ada_tag_name_1 (void *); | |
5515 | static int ada_tag_name_2 (struct tag_args *); | |
5516 | ||
4c4b4cd2 PH |
5517 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
5518 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. | |
5519 | The value stored in ARGS->name is valid until the next call to | |
5520 | ada_tag_name_1. */ | |
5521 | ||
5522 | static int | |
5523 | ada_tag_name_1 (void *args0) | |
5524 | { | |
5525 | struct tag_args *args = (struct tag_args *) args0; | |
5526 | static char name[1024]; | |
76a01679 | 5527 | char *p; |
4c4b4cd2 PH |
5528 | struct value *val; |
5529 | args->name = NULL; | |
03ee6b2e | 5530 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5531 | if (val == NULL) |
5532 | return ada_tag_name_2 (args); | |
03ee6b2e | 5533 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5534 | if (val == NULL) |
5535 | return 0; | |
5536 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5537 | for (p = name; *p != '\0'; p += 1) | |
5538 | if (isalpha (*p)) | |
5539 | *p = tolower (*p); | |
5540 | args->name = name; | |
5541 | return 0; | |
5542 | } | |
5543 | ||
5544 | /* Utility function for ada_tag_name_1 that tries the second | |
5545 | representation for the dispatch table (in which there is no | |
5546 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
5547 | the tsd pointer is stored just before the dispatch table. */ | |
5548 | ||
5549 | static int | |
5550 | ada_tag_name_2 (struct tag_args *args) | |
5551 | { | |
5552 | struct type *info_type; | |
5553 | static char name[1024]; | |
5554 | char *p; | |
5555 | struct value *val, *valp; | |
5556 | ||
5557 | args->name = NULL; | |
5558 | info_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5559 | if (info_type == NULL) | |
5560 | return 0; | |
5561 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5562 | valp = value_cast (info_type, args->tag); | |
5563 | if (valp == NULL) | |
5564 | return 0; | |
2497b498 | 5565 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
5566 | if (val == NULL) |
5567 | return 0; | |
03ee6b2e | 5568 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5569 | if (val == NULL) |
5570 | return 0; | |
5571 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5572 | for (p = name; *p != '\0'; p += 1) | |
5573 | if (isalpha (*p)) | |
5574 | *p = tolower (*p); | |
5575 | args->name = name; | |
5576 | return 0; | |
5577 | } | |
5578 | ||
5579 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
5580 | * a C string. */ | |
5581 | ||
5582 | const char * | |
5583 | ada_tag_name (struct value *tag) | |
5584 | { | |
5585 | struct tag_args args; | |
df407dfe | 5586 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5587 | return NULL; |
76a01679 | 5588 | args.tag = tag; |
4c4b4cd2 PH |
5589 | args.name = NULL; |
5590 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5591 | return args.name; | |
5592 | } | |
5593 | ||
5594 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5595 | |
d2e4a39e | 5596 | struct type * |
ebf56fd3 | 5597 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5598 | { |
5599 | int i; | |
5600 | ||
61ee279c | 5601 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5602 | |
5603 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5604 | return NULL; | |
5605 | ||
5606 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5607 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5608 | { |
5609 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5610 | ||
5611 | /* If the _parent field is a pointer, then dereference it. */ | |
5612 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5613 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5614 | /* If there is a parallel XVS type, get the actual base type. */ | |
5615 | parent_type = ada_get_base_type (parent_type); | |
5616 | ||
5617 | return ada_check_typedef (parent_type); | |
5618 | } | |
14f9c5c9 AS |
5619 | |
5620 | return NULL; | |
5621 | } | |
5622 | ||
4c4b4cd2 PH |
5623 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5624 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5625 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5626 | |
5627 | int | |
ebf56fd3 | 5628 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5629 | { |
61ee279c | 5630 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
4c4b4cd2 PH |
5631 | return (name != NULL |
5632 | && (strncmp (name, "PARENT", 6) == 0 | |
5633 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5634 | } |
5635 | ||
4c4b4cd2 | 5636 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5637 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5638 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5639 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5640 | structures. */ |
14f9c5c9 AS |
5641 | |
5642 | int | |
ebf56fd3 | 5643 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5644 | { |
d2e4a39e AS |
5645 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5646 | return (name != NULL | |
4c4b4cd2 PH |
5647 | && (strncmp (name, "PARENT", 6) == 0 |
5648 | || strcmp (name, "REP") == 0 | |
5649 | || strncmp (name, "_parent", 7) == 0 | |
5650 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5651 | } |
5652 | ||
4c4b4cd2 PH |
5653 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5654 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5655 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5656 | |
5657 | int | |
ebf56fd3 | 5658 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5659 | { |
d2e4a39e | 5660 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
14f9c5c9 | 5661 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5662 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5663 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5664 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5665 | } |
5666 | ||
5667 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5668 | whose discriminants are contained in the record type OUTER_TYPE, |
14f9c5c9 AS |
5669 | returns the type of the controlling discriminant for the variant. */ |
5670 | ||
d2e4a39e | 5671 | struct type * |
ebf56fd3 | 5672 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5673 | { |
d2e4a39e | 5674 | char *name = ada_variant_discrim_name (var_type); |
76a01679 | 5675 | struct type *type = |
4c4b4cd2 | 5676 | ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 | 5677 | if (type == NULL) |
6d84d3d8 | 5678 | return builtin_type_int32; |
14f9c5c9 AS |
5679 | else |
5680 | return type; | |
5681 | } | |
5682 | ||
4c4b4cd2 | 5683 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5684 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5685 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5686 | |
5687 | int | |
ebf56fd3 | 5688 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5689 | { |
d2e4a39e | 5690 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5691 | return (name != NULL && name[0] == 'O'); |
5692 | } | |
5693 | ||
5694 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5695 | returns the name of the discriminant controlling the variant. |
5696 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5697 | |
d2e4a39e | 5698 | char * |
ebf56fd3 | 5699 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5700 | { |
d2e4a39e | 5701 | static char *result = NULL; |
14f9c5c9 | 5702 | static size_t result_len = 0; |
d2e4a39e AS |
5703 | struct type *type; |
5704 | const char *name; | |
5705 | const char *discrim_end; | |
5706 | const char *discrim_start; | |
14f9c5c9 AS |
5707 | |
5708 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5709 | type = TYPE_TARGET_TYPE (type0); | |
5710 | else | |
5711 | type = type0; | |
5712 | ||
5713 | name = ada_type_name (type); | |
5714 | ||
5715 | if (name == NULL || name[0] == '\000') | |
5716 | return ""; | |
5717 | ||
5718 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5719 | discrim_end -= 1) | |
5720 | { | |
4c4b4cd2 PH |
5721 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
5722 | break; | |
14f9c5c9 AS |
5723 | } |
5724 | if (discrim_end == name) | |
5725 | return ""; | |
5726 | ||
d2e4a39e | 5727 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
5728 | discrim_start -= 1) |
5729 | { | |
d2e4a39e | 5730 | if (discrim_start == name + 1) |
4c4b4cd2 | 5731 | return ""; |
76a01679 | 5732 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
5733 | && strncmp (discrim_start - 3, "___", 3) == 0) |
5734 | || discrim_start[-1] == '.') | |
5735 | break; | |
14f9c5c9 AS |
5736 | } |
5737 | ||
5738 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5739 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 5740 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
5741 | return result; |
5742 | } | |
5743 | ||
4c4b4cd2 PH |
5744 | /* Scan STR for a subtype-encoded number, beginning at position K. |
5745 | Put the position of the character just past the number scanned in | |
5746 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
5747 | Return 1 if there was a valid number at the given position, and 0 | |
5748 | otherwise. A "subtype-encoded" number consists of the absolute value | |
5749 | in decimal, followed by the letter 'm' to indicate a negative number. | |
5750 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
5751 | |
5752 | int | |
d2e4a39e | 5753 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
5754 | { |
5755 | ULONGEST RU; | |
5756 | ||
d2e4a39e | 5757 | if (!isdigit (str[k])) |
14f9c5c9 AS |
5758 | return 0; |
5759 | ||
4c4b4cd2 | 5760 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 5761 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 5762 | LONGEST. */ |
14f9c5c9 AS |
5763 | RU = 0; |
5764 | while (isdigit (str[k])) | |
5765 | { | |
d2e4a39e | 5766 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
5767 | k += 1; |
5768 | } | |
5769 | ||
d2e4a39e | 5770 | if (str[k] == 'm') |
14f9c5c9 AS |
5771 | { |
5772 | if (R != NULL) | |
4c4b4cd2 | 5773 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
5774 | k += 1; |
5775 | } | |
5776 | else if (R != NULL) | |
5777 | *R = (LONGEST) RU; | |
5778 | ||
4c4b4cd2 | 5779 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
5780 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
5781 | number representable as a LONGEST (although either would probably work | |
5782 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 5783 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
5784 | |
5785 | if (new_k != NULL) | |
5786 | *new_k = k; | |
5787 | return 1; | |
5788 | } | |
5789 | ||
4c4b4cd2 PH |
5790 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
5791 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
5792 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 5793 | |
d2e4a39e | 5794 | int |
ebf56fd3 | 5795 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 5796 | { |
d2e4a39e | 5797 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5798 | int p; |
5799 | ||
5800 | p = 0; | |
5801 | while (1) | |
5802 | { | |
d2e4a39e | 5803 | switch (name[p]) |
4c4b4cd2 PH |
5804 | { |
5805 | case '\0': | |
5806 | return 0; | |
5807 | case 'S': | |
5808 | { | |
5809 | LONGEST W; | |
5810 | if (!ada_scan_number (name, p + 1, &W, &p)) | |
5811 | return 0; | |
5812 | if (val == W) | |
5813 | return 1; | |
5814 | break; | |
5815 | } | |
5816 | case 'R': | |
5817 | { | |
5818 | LONGEST L, U; | |
5819 | if (!ada_scan_number (name, p + 1, &L, &p) | |
5820 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
5821 | return 0; | |
5822 | if (val >= L && val <= U) | |
5823 | return 1; | |
5824 | break; | |
5825 | } | |
5826 | case 'O': | |
5827 | return 1; | |
5828 | default: | |
5829 | return 0; | |
5830 | } | |
5831 | } | |
5832 | } | |
5833 | ||
5834 | /* FIXME: Lots of redundancy below. Try to consolidate. */ | |
5835 | ||
5836 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
5837 | ARG_TYPE, extract and return the value of one of its (non-static) | |
5838 | fields. FIELDNO says which field. Differs from value_primitive_field | |
5839 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 5840 | |
4c4b4cd2 | 5841 | static struct value * |
d2e4a39e | 5842 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 5843 | struct type *arg_type) |
14f9c5c9 | 5844 | { |
14f9c5c9 AS |
5845 | struct type *type; |
5846 | ||
61ee279c | 5847 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
5848 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
5849 | ||
4c4b4cd2 | 5850 | /* Handle packed fields. */ |
14f9c5c9 AS |
5851 | |
5852 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
5853 | { | |
5854 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
5855 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 5856 | |
0fd88904 | 5857 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
5858 | offset + bit_pos / 8, |
5859 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
5860 | } |
5861 | else | |
5862 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
5863 | } | |
5864 | ||
52ce6436 PH |
5865 | /* Find field with name NAME in object of type TYPE. If found, |
5866 | set the following for each argument that is non-null: | |
5867 | - *FIELD_TYPE_P to the field's type; | |
5868 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
5869 | an object of that type; | |
5870 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
5871 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
5872 | 0 otherwise; | |
5873 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
5874 | fields up to but not including the desired field, or by the total | |
5875 | number of fields if not found. A NULL value of NAME never | |
5876 | matches; the function just counts visible fields in this case. | |
5877 | ||
5878 | Returns 1 if found, 0 otherwise. */ | |
5879 | ||
4c4b4cd2 | 5880 | static int |
76a01679 JB |
5881 | find_struct_field (char *name, struct type *type, int offset, |
5882 | struct type **field_type_p, | |
52ce6436 PH |
5883 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
5884 | int *index_p) | |
4c4b4cd2 PH |
5885 | { |
5886 | int i; | |
5887 | ||
61ee279c | 5888 | type = ada_check_typedef (type); |
76a01679 | 5889 | |
52ce6436 PH |
5890 | if (field_type_p != NULL) |
5891 | *field_type_p = NULL; | |
5892 | if (byte_offset_p != NULL) | |
d5d6fca5 | 5893 | *byte_offset_p = 0; |
52ce6436 PH |
5894 | if (bit_offset_p != NULL) |
5895 | *bit_offset_p = 0; | |
5896 | if (bit_size_p != NULL) | |
5897 | *bit_size_p = 0; | |
5898 | ||
5899 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
5900 | { |
5901 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
5902 | int fld_offset = offset + bit_pos / 8; | |
5903 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 5904 | |
4c4b4cd2 PH |
5905 | if (t_field_name == NULL) |
5906 | continue; | |
5907 | ||
52ce6436 | 5908 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
5909 | { |
5910 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
52ce6436 PH |
5911 | if (field_type_p != NULL) |
5912 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
5913 | if (byte_offset_p != NULL) | |
5914 | *byte_offset_p = fld_offset; | |
5915 | if (bit_offset_p != NULL) | |
5916 | *bit_offset_p = bit_pos % 8; | |
5917 | if (bit_size_p != NULL) | |
5918 | *bit_size_p = bit_size; | |
76a01679 JB |
5919 | return 1; |
5920 | } | |
4c4b4cd2 PH |
5921 | else if (ada_is_wrapper_field (type, i)) |
5922 | { | |
52ce6436 PH |
5923 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
5924 | field_type_p, byte_offset_p, bit_offset_p, | |
5925 | bit_size_p, index_p)) | |
76a01679 JB |
5926 | return 1; |
5927 | } | |
4c4b4cd2 PH |
5928 | else if (ada_is_variant_part (type, i)) |
5929 | { | |
52ce6436 PH |
5930 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
5931 | fixed type?? */ | |
4c4b4cd2 | 5932 | int j; |
52ce6436 PH |
5933 | struct type *field_type |
5934 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 5935 | |
52ce6436 | 5936 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 5937 | { |
76a01679 JB |
5938 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
5939 | fld_offset | |
5940 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
5941 | field_type_p, byte_offset_p, | |
52ce6436 | 5942 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 5943 | return 1; |
4c4b4cd2 PH |
5944 | } |
5945 | } | |
52ce6436 PH |
5946 | else if (index_p != NULL) |
5947 | *index_p += 1; | |
4c4b4cd2 PH |
5948 | } |
5949 | return 0; | |
5950 | } | |
5951 | ||
52ce6436 | 5952 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 5953 | |
52ce6436 PH |
5954 | static int |
5955 | num_visible_fields (struct type *type) | |
5956 | { | |
5957 | int n; | |
5958 | n = 0; | |
5959 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
5960 | return n; | |
5961 | } | |
14f9c5c9 | 5962 | |
4c4b4cd2 | 5963 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
5964 | and search in it assuming it has (class) type TYPE. |
5965 | If found, return value, else return NULL. | |
5966 | ||
4c4b4cd2 | 5967 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 5968 | |
4c4b4cd2 | 5969 | static struct value * |
d2e4a39e | 5970 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 5971 | struct type *type) |
14f9c5c9 AS |
5972 | { |
5973 | int i; | |
61ee279c | 5974 | type = ada_check_typedef (type); |
14f9c5c9 | 5975 | |
52ce6436 | 5976 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
5977 | { |
5978 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
5979 | ||
5980 | if (t_field_name == NULL) | |
4c4b4cd2 | 5981 | continue; |
14f9c5c9 AS |
5982 | |
5983 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 5984 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
5985 | |
5986 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 5987 | { |
06d5cf63 JB |
5988 | struct value *v = /* Do not let indent join lines here. */ |
5989 | ada_search_struct_field (name, arg, | |
5990 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
5991 | TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 PH |
5992 | if (v != NULL) |
5993 | return v; | |
5994 | } | |
14f9c5c9 AS |
5995 | |
5996 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 5997 | { |
52ce6436 | 5998 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 5999 | int j; |
61ee279c | 6000 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6001 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6002 | ||
52ce6436 | 6003 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6004 | { |
06d5cf63 JB |
6005 | struct value *v = ada_search_struct_field /* Force line break. */ |
6006 | (name, arg, | |
6007 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6008 | TYPE_FIELD_TYPE (field_type, j)); | |
4c4b4cd2 PH |
6009 | if (v != NULL) |
6010 | return v; | |
6011 | } | |
6012 | } | |
14f9c5c9 AS |
6013 | } |
6014 | return NULL; | |
6015 | } | |
d2e4a39e | 6016 | |
52ce6436 PH |
6017 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6018 | int, struct type *); | |
6019 | ||
6020 | ||
6021 | /* Return field #INDEX in ARG, where the index is that returned by | |
6022 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6023 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
6024 | * If found, return value, else return NULL. */ | |
6025 | ||
6026 | static struct value * | |
6027 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6028 | struct type *type) | |
6029 | { | |
6030 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6031 | } | |
6032 | ||
6033 | ||
6034 | /* Auxiliary function for ada_index_struct_field. Like | |
6035 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
6036 | * *INDEX_P. */ | |
6037 | ||
6038 | static struct value * | |
6039 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6040 | struct type *type) | |
6041 | { | |
6042 | int i; | |
6043 | type = ada_check_typedef (type); | |
6044 | ||
6045 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6046 | { | |
6047 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6048 | continue; | |
6049 | else if (ada_is_wrapper_field (type, i)) | |
6050 | { | |
6051 | struct value *v = /* Do not let indent join lines here. */ | |
6052 | ada_index_struct_field_1 (index_p, arg, | |
6053 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6054 | TYPE_FIELD_TYPE (type, i)); | |
6055 | if (v != NULL) | |
6056 | return v; | |
6057 | } | |
6058 | ||
6059 | else if (ada_is_variant_part (type, i)) | |
6060 | { | |
6061 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
6062 | find_struct_field. */ | |
6063 | error (_("Cannot assign this kind of variant record")); | |
6064 | } | |
6065 | else if (*index_p == 0) | |
6066 | return ada_value_primitive_field (arg, offset, i, type); | |
6067 | else | |
6068 | *index_p -= 1; | |
6069 | } | |
6070 | return NULL; | |
6071 | } | |
6072 | ||
4c4b4cd2 PH |
6073 | /* Given ARG, a value of type (pointer or reference to a)* |
6074 | structure/union, extract the component named NAME from the ultimate | |
6075 | target structure/union and return it as a value with its | |
f5938064 | 6076 | appropriate type. |
14f9c5c9 | 6077 | |
4c4b4cd2 PH |
6078 | The routine searches for NAME among all members of the structure itself |
6079 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6080 | (e.g., '_parent'). |
6081 | ||
03ee6b2e PH |
6082 | If NO_ERR, then simply return NULL in case of error, rather than |
6083 | calling error. */ | |
14f9c5c9 | 6084 | |
d2e4a39e | 6085 | struct value * |
03ee6b2e | 6086 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6087 | { |
4c4b4cd2 | 6088 | struct type *t, *t1; |
d2e4a39e | 6089 | struct value *v; |
14f9c5c9 | 6090 | |
4c4b4cd2 | 6091 | v = NULL; |
df407dfe | 6092 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6093 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6094 | { | |
6095 | t1 = TYPE_TARGET_TYPE (t); | |
6096 | if (t1 == NULL) | |
03ee6b2e | 6097 | goto BadValue; |
61ee279c | 6098 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6099 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6100 | { |
994b9211 | 6101 | arg = coerce_ref (arg); |
76a01679 JB |
6102 | t = t1; |
6103 | } | |
4c4b4cd2 | 6104 | } |
14f9c5c9 | 6105 | |
4c4b4cd2 PH |
6106 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6107 | { | |
6108 | t1 = TYPE_TARGET_TYPE (t); | |
6109 | if (t1 == NULL) | |
03ee6b2e | 6110 | goto BadValue; |
61ee279c | 6111 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6112 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6113 | { |
6114 | arg = value_ind (arg); | |
6115 | t = t1; | |
6116 | } | |
4c4b4cd2 | 6117 | else |
76a01679 | 6118 | break; |
4c4b4cd2 | 6119 | } |
14f9c5c9 | 6120 | |
4c4b4cd2 | 6121 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6122 | goto BadValue; |
14f9c5c9 | 6123 | |
4c4b4cd2 PH |
6124 | if (t1 == t) |
6125 | v = ada_search_struct_field (name, arg, 0, t); | |
6126 | else | |
6127 | { | |
6128 | int bit_offset, bit_size, byte_offset; | |
6129 | struct type *field_type; | |
6130 | CORE_ADDR address; | |
6131 | ||
76a01679 JB |
6132 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6133 | address = value_as_address (arg); | |
4c4b4cd2 | 6134 | else |
0fd88904 | 6135 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6136 | |
1ed6ede0 | 6137 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6138 | if (find_struct_field (name, t1, 0, |
6139 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6140 | &bit_size, NULL)) |
76a01679 JB |
6141 | { |
6142 | if (bit_size != 0) | |
6143 | { | |
714e53ab PH |
6144 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6145 | arg = ada_coerce_ref (arg); | |
6146 | else | |
6147 | arg = ada_value_ind (arg); | |
76a01679 JB |
6148 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6149 | bit_offset, bit_size, | |
6150 | field_type); | |
6151 | } | |
6152 | else | |
f5938064 | 6153 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6154 | } |
6155 | } | |
6156 | ||
03ee6b2e PH |
6157 | if (v != NULL || no_err) |
6158 | return v; | |
6159 | else | |
323e0a4a | 6160 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6161 | |
03ee6b2e PH |
6162 | BadValue: |
6163 | if (no_err) | |
6164 | return NULL; | |
6165 | else | |
6166 | error (_("Attempt to extract a component of a value that is not a record.")); | |
14f9c5c9 AS |
6167 | } |
6168 | ||
6169 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6170 | If DISPP is non-null, add its byte displacement from the beginning of a |
6171 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6172 | work for packed fields). |
6173 | ||
6174 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6175 | followed by "___". |
14f9c5c9 | 6176 | |
4c4b4cd2 PH |
6177 | TYPE can be either a struct or union. If REFOK, TYPE may also |
6178 | be a (pointer or reference)+ to a struct or union, and the | |
6179 | ultimate target type will be searched. | |
14f9c5c9 AS |
6180 | |
6181 | Looks recursively into variant clauses and parent types. | |
6182 | ||
4c4b4cd2 PH |
6183 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6184 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6185 | |
4c4b4cd2 | 6186 | static struct type * |
76a01679 JB |
6187 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6188 | int noerr, int *dispp) | |
14f9c5c9 AS |
6189 | { |
6190 | int i; | |
6191 | ||
6192 | if (name == NULL) | |
6193 | goto BadName; | |
6194 | ||
76a01679 | 6195 | if (refok && type != NULL) |
4c4b4cd2 PH |
6196 | while (1) |
6197 | { | |
61ee279c | 6198 | type = ada_check_typedef (type); |
76a01679 JB |
6199 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6200 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6201 | break; | |
6202 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6203 | } |
14f9c5c9 | 6204 | |
76a01679 | 6205 | if (type == NULL |
1265e4aa JB |
6206 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6207 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6208 | { |
4c4b4cd2 | 6209 | if (noerr) |
76a01679 | 6210 | return NULL; |
4c4b4cd2 | 6211 | else |
76a01679 JB |
6212 | { |
6213 | target_terminal_ours (); | |
6214 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6215 | if (type == NULL) |
6216 | error (_("Type (null) is not a structure or union type")); | |
6217 | else | |
6218 | { | |
6219 | /* XXX: type_sprint */ | |
6220 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6221 | type_print (type, "", gdb_stderr, -1); | |
6222 | error (_(" is not a structure or union type")); | |
6223 | } | |
76a01679 | 6224 | } |
14f9c5c9 AS |
6225 | } |
6226 | ||
6227 | type = to_static_fixed_type (type); | |
6228 | ||
6229 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6230 | { | |
6231 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6232 | struct type *t; | |
6233 | int disp; | |
d2e4a39e | 6234 | |
14f9c5c9 | 6235 | if (t_field_name == NULL) |
4c4b4cd2 | 6236 | continue; |
14f9c5c9 AS |
6237 | |
6238 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6239 | { |
6240 | if (dispp != NULL) | |
6241 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6242 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6243 | } |
14f9c5c9 AS |
6244 | |
6245 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6246 | { |
6247 | disp = 0; | |
6248 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6249 | 0, 1, &disp); | |
6250 | if (t != NULL) | |
6251 | { | |
6252 | if (dispp != NULL) | |
6253 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6254 | return t; | |
6255 | } | |
6256 | } | |
14f9c5c9 AS |
6257 | |
6258 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6259 | { |
6260 | int j; | |
61ee279c | 6261 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6262 | |
6263 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6264 | { | |
b1f33ddd JB |
6265 | /* FIXME pnh 2008/01/26: We check for a field that is |
6266 | NOT wrapped in a struct, since the compiler sometimes | |
6267 | generates these for unchecked variant types. Revisit | |
6268 | if the compiler changes this practice. */ | |
6269 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); | |
4c4b4cd2 | 6270 | disp = 0; |
b1f33ddd JB |
6271 | if (v_field_name != NULL |
6272 | && field_name_match (v_field_name, name)) | |
6273 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6274 | else | |
6275 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
6276 | name, 0, 1, &disp); | |
6277 | ||
4c4b4cd2 PH |
6278 | if (t != NULL) |
6279 | { | |
6280 | if (dispp != NULL) | |
6281 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6282 | return t; | |
6283 | } | |
6284 | } | |
6285 | } | |
14f9c5c9 AS |
6286 | |
6287 | } | |
6288 | ||
6289 | BadName: | |
d2e4a39e | 6290 | if (!noerr) |
14f9c5c9 AS |
6291 | { |
6292 | target_terminal_ours (); | |
6293 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6294 | if (name == NULL) |
6295 | { | |
6296 | /* XXX: type_sprint */ | |
6297 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6298 | type_print (type, "", gdb_stderr, -1); | |
6299 | error (_(" has no component named <null>")); | |
6300 | } | |
6301 | else | |
6302 | { | |
6303 | /* XXX: type_sprint */ | |
6304 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6305 | type_print (type, "", gdb_stderr, -1); | |
6306 | error (_(" has no component named %s"), name); | |
6307 | } | |
14f9c5c9 AS |
6308 | } |
6309 | ||
6310 | return NULL; | |
6311 | } | |
6312 | ||
b1f33ddd JB |
6313 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6314 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6315 | represents an unchecked union (that is, the variant part of a | |
6316 | record that is named in an Unchecked_Union pragma). */ | |
6317 | ||
6318 | static int | |
6319 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6320 | { | |
6321 | char *discrim_name = ada_variant_discrim_name (var_type); | |
6322 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) | |
6323 | == NULL); | |
6324 | } | |
6325 | ||
6326 | ||
14f9c5c9 AS |
6327 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6328 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6329 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6330 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6331 | |
d2e4a39e | 6332 | int |
ebf56fd3 | 6333 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6334 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6335 | { |
6336 | int others_clause; | |
6337 | int i; | |
d2e4a39e | 6338 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6339 | struct value *outer; |
6340 | struct value *discrim; | |
14f9c5c9 AS |
6341 | LONGEST discrim_val; |
6342 | ||
0c281816 JB |
6343 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6344 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6345 | if (discrim == NULL) | |
14f9c5c9 | 6346 | return -1; |
0c281816 | 6347 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6348 | |
6349 | others_clause = -1; | |
6350 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6351 | { | |
6352 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6353 | others_clause = i; |
14f9c5c9 | 6354 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6355 | return i; |
14f9c5c9 AS |
6356 | } |
6357 | ||
6358 | return others_clause; | |
6359 | } | |
d2e4a39e | 6360 | \f |
14f9c5c9 AS |
6361 | |
6362 | ||
4c4b4cd2 | 6363 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6364 | |
6365 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6366 | (i.e., a size that is not statically recorded in the debugging | |
6367 | data) does not accurately reflect the size or layout of the value. | |
6368 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6369 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6370 | |
6371 | /* There is a subtle and tricky problem here. In general, we cannot | |
6372 | determine the size of dynamic records without its data. However, | |
6373 | the 'struct value' data structure, which GDB uses to represent | |
6374 | quantities in the inferior process (the target), requires the size | |
6375 | of the type at the time of its allocation in order to reserve space | |
6376 | for GDB's internal copy of the data. That's why the | |
6377 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6378 | rather than struct value*s. |
14f9c5c9 AS |
6379 | |
6380 | However, GDB's internal history variables ($1, $2, etc.) are | |
6381 | struct value*s containing internal copies of the data that are not, in | |
6382 | general, the same as the data at their corresponding addresses in | |
6383 | the target. Fortunately, the types we give to these values are all | |
6384 | conventional, fixed-size types (as per the strategy described | |
6385 | above), so that we don't usually have to perform the | |
6386 | 'to_fixed_xxx_type' conversions to look at their values. | |
6387 | Unfortunately, there is one exception: if one of the internal | |
6388 | history variables is an array whose elements are unconstrained | |
6389 | records, then we will need to create distinct fixed types for each | |
6390 | element selected. */ | |
6391 | ||
6392 | /* The upshot of all of this is that many routines take a (type, host | |
6393 | address, target address) triple as arguments to represent a value. | |
6394 | The host address, if non-null, is supposed to contain an internal | |
6395 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6396 | target at the target address. */ |
14f9c5c9 AS |
6397 | |
6398 | /* Assuming that VAL0 represents a pointer value, the result of | |
6399 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6400 | dynamic-sized types. */ |
14f9c5c9 | 6401 | |
d2e4a39e AS |
6402 | struct value * |
6403 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6404 | { |
d2e4a39e | 6405 | struct value *val = unwrap_value (value_ind (val0)); |
4c4b4cd2 | 6406 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6407 | } |
6408 | ||
6409 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6410 | qualifiers on VAL0. */ |
6411 | ||
d2e4a39e AS |
6412 | static struct value * |
6413 | ada_coerce_ref (struct value *val0) | |
6414 | { | |
df407dfe | 6415 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6416 | { |
6417 | struct value *val = val0; | |
994b9211 | 6418 | val = coerce_ref (val); |
d2e4a39e | 6419 | val = unwrap_value (val); |
4c4b4cd2 | 6420 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6421 | } |
6422 | else | |
14f9c5c9 AS |
6423 | return val0; |
6424 | } | |
6425 | ||
6426 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6427 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6428 | |
6429 | static unsigned int | |
ebf56fd3 | 6430 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6431 | { |
6432 | return (off + alignment - 1) & ~(alignment - 1); | |
6433 | } | |
6434 | ||
4c4b4cd2 | 6435 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6436 | |
6437 | static unsigned int | |
ebf56fd3 | 6438 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6439 | { |
d2e4a39e | 6440 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6441 | int len; |
14f9c5c9 AS |
6442 | int align_offset; |
6443 | ||
64a1bf19 JB |
6444 | /* The field name should never be null, unless the debugging information |
6445 | is somehow malformed. In this case, we assume the field does not | |
6446 | require any alignment. */ | |
6447 | if (name == NULL) | |
6448 | return 1; | |
6449 | ||
6450 | len = strlen (name); | |
6451 | ||
4c4b4cd2 PH |
6452 | if (!isdigit (name[len - 1])) |
6453 | return 1; | |
14f9c5c9 | 6454 | |
d2e4a39e | 6455 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6456 | align_offset = len - 2; |
6457 | else | |
6458 | align_offset = len - 1; | |
6459 | ||
4c4b4cd2 | 6460 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6461 | return TARGET_CHAR_BIT; |
6462 | ||
4c4b4cd2 PH |
6463 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6464 | } | |
6465 | ||
6466 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6467 | ||
6468 | struct symbol * | |
6469 | ada_find_any_symbol (const char *name) | |
6470 | { | |
6471 | struct symbol *sym; | |
6472 | ||
6473 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6474 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6475 | return sym; | |
6476 | ||
6477 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6478 | return sym; | |
14f9c5c9 AS |
6479 | } |
6480 | ||
dddfab26 UW |
6481 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6482 | solely for types defined by debug info, it will not search the GDB | |
6483 | primitive types. */ | |
4c4b4cd2 | 6484 | |
d2e4a39e | 6485 | struct type * |
ebf56fd3 | 6486 | ada_find_any_type (const char *name) |
14f9c5c9 | 6487 | { |
4c4b4cd2 | 6488 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6489 | |
14f9c5c9 | 6490 | if (sym != NULL) |
dddfab26 | 6491 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6492 | |
dddfab26 | 6493 | return NULL; |
14f9c5c9 AS |
6494 | } |
6495 | ||
aeb5907d JB |
6496 | /* Given NAME and an associated BLOCK, search all symbols for |
6497 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6498 | associated to NAME. Return this symbol if found, return |
6499 | NULL otherwise. */ | |
6500 | ||
6501 | struct symbol * | |
6502 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6503 | { |
6504 | struct symbol *sym; | |
6505 | ||
6506 | sym = find_old_style_renaming_symbol (name, block); | |
6507 | ||
6508 | if (sym != NULL) | |
6509 | return sym; | |
6510 | ||
6511 | /* Not right yet. FIXME pnh 7/20/2007. */ | |
6512 | sym = ada_find_any_symbol (name); | |
6513 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6514 | return sym; | |
6515 | else | |
6516 | return NULL; | |
6517 | } | |
6518 | ||
6519 | static struct symbol * | |
6520 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6521 | { |
7f0df278 | 6522 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6523 | char *rename; |
6524 | ||
6525 | if (function_sym != NULL) | |
6526 | { | |
6527 | /* If the symbol is defined inside a function, NAME is not fully | |
6528 | qualified. This means we need to prepend the function name | |
6529 | as well as adding the ``___XR'' suffix to build the name of | |
6530 | the associated renaming symbol. */ | |
6531 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6532 | /* Function names sometimes contain suffixes used |
6533 | for instance to qualify nested subprograms. When building | |
6534 | the XR type name, we need to make sure that this suffix is | |
6535 | not included. So do not include any suffix in the function | |
6536 | name length below. */ | |
6537 | const int function_name_len = ada_name_prefix_len (function_name); | |
76a01679 JB |
6538 | const int rename_len = function_name_len + 2 /* "__" */ |
6539 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6540 | |
529cad9c PH |
6541 | /* Strip the suffix if necessary. */ |
6542 | function_name[function_name_len] = '\0'; | |
6543 | ||
4c4b4cd2 PH |
6544 | /* Library-level functions are a special case, as GNAT adds |
6545 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6546 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6547 | have this prefix, so we need to skip this prefix if present. */ |
6548 | if (function_name_len > 5 /* "_ada_" */ | |
6549 | && strstr (function_name, "_ada_") == function_name) | |
6550 | function_name = function_name + 5; | |
6551 | ||
6552 | rename = (char *) alloca (rename_len * sizeof (char)); | |
88c15c34 PM |
6553 | xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR", |
6554 | function_name, name); | |
4c4b4cd2 PH |
6555 | } |
6556 | else | |
6557 | { | |
6558 | const int rename_len = strlen (name) + 6; | |
6559 | rename = (char *) alloca (rename_len * sizeof (char)); | |
88c15c34 | 6560 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
6561 | } |
6562 | ||
6563 | return ada_find_any_symbol (rename); | |
6564 | } | |
6565 | ||
14f9c5c9 | 6566 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6567 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6568 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6569 | otherwise return 0. */ |
6570 | ||
14f9c5c9 | 6571 | int |
d2e4a39e | 6572 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6573 | { |
6574 | if (type1 == NULL) | |
6575 | return 1; | |
6576 | else if (type0 == NULL) | |
6577 | return 0; | |
6578 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6579 | return 1; | |
6580 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6581 | return 0; | |
4c4b4cd2 PH |
6582 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6583 | return 1; | |
14f9c5c9 AS |
6584 | else if (ada_is_packed_array_type (type0)) |
6585 | return 1; | |
4c4b4cd2 PH |
6586 | else if (ada_is_array_descriptor_type (type0) |
6587 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6588 | return 1; |
aeb5907d JB |
6589 | else |
6590 | { | |
6591 | const char *type0_name = type_name_no_tag (type0); | |
6592 | const char *type1_name = type_name_no_tag (type1); | |
6593 | ||
6594 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6595 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6596 | return 1; | |
6597 | } | |
14f9c5c9 AS |
6598 | return 0; |
6599 | } | |
6600 | ||
6601 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6602 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6603 | ||
d2e4a39e AS |
6604 | char * |
6605 | ada_type_name (struct type *type) | |
14f9c5c9 | 6606 | { |
d2e4a39e | 6607 | if (type == NULL) |
14f9c5c9 AS |
6608 | return NULL; |
6609 | else if (TYPE_NAME (type) != NULL) | |
6610 | return TYPE_NAME (type); | |
6611 | else | |
6612 | return TYPE_TAG_NAME (type); | |
6613 | } | |
6614 | ||
6615 | /* Find a parallel type to TYPE whose name is formed by appending | |
4c4b4cd2 | 6616 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6617 | |
d2e4a39e | 6618 | struct type * |
ebf56fd3 | 6619 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6620 | { |
d2e4a39e | 6621 | static char *name; |
14f9c5c9 | 6622 | static size_t name_len = 0; |
14f9c5c9 | 6623 | int len; |
d2e4a39e AS |
6624 | char *typename = ada_type_name (type); |
6625 | ||
14f9c5c9 AS |
6626 | if (typename == NULL) |
6627 | return NULL; | |
6628 | ||
6629 | len = strlen (typename); | |
6630 | ||
d2e4a39e | 6631 | GROW_VECT (name, name_len, len + strlen (suffix) + 1); |
14f9c5c9 AS |
6632 | |
6633 | strcpy (name, typename); | |
6634 | strcpy (name + len, suffix); | |
6635 | ||
6636 | return ada_find_any_type (name); | |
6637 | } | |
6638 | ||
6639 | ||
6640 | /* If TYPE is a variable-size record type, return the corresponding template | |
4c4b4cd2 | 6641 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 6642 | |
d2e4a39e AS |
6643 | static struct type * |
6644 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 6645 | { |
61ee279c | 6646 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6647 | |
6648 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 6649 | || ada_type_name (type) == NULL) |
14f9c5c9 | 6650 | return NULL; |
d2e4a39e | 6651 | else |
14f9c5c9 AS |
6652 | { |
6653 | int len = strlen (ada_type_name (type)); | |
4c4b4cd2 PH |
6654 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
6655 | return type; | |
14f9c5c9 | 6656 | else |
4c4b4cd2 | 6657 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
6658 | } |
6659 | } | |
6660 | ||
6661 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 6662 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 6663 | |
d2e4a39e AS |
6664 | static int |
6665 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
6666 | { |
6667 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
d2e4a39e | 6668 | return name != NULL |
14f9c5c9 AS |
6669 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
6670 | && strstr (name, "___XVL") != NULL; | |
6671 | } | |
6672 | ||
4c4b4cd2 PH |
6673 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
6674 | represent a variant record type. */ | |
14f9c5c9 | 6675 | |
d2e4a39e | 6676 | static int |
4c4b4cd2 | 6677 | variant_field_index (struct type *type) |
14f9c5c9 AS |
6678 | { |
6679 | int f; | |
6680 | ||
4c4b4cd2 PH |
6681 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
6682 | return -1; | |
6683 | ||
6684 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
6685 | { | |
6686 | if (ada_is_variant_part (type, f)) | |
6687 | return f; | |
6688 | } | |
6689 | return -1; | |
14f9c5c9 AS |
6690 | } |
6691 | ||
4c4b4cd2 PH |
6692 | /* A record type with no fields. */ |
6693 | ||
d2e4a39e AS |
6694 | static struct type * |
6695 | empty_record (struct objfile *objfile) | |
14f9c5c9 | 6696 | { |
d2e4a39e | 6697 | struct type *type = alloc_type (objfile); |
14f9c5c9 AS |
6698 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
6699 | TYPE_NFIELDS (type) = 0; | |
6700 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 6701 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
6702 | TYPE_NAME (type) = "<empty>"; |
6703 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
6704 | TYPE_LENGTH (type) = 0; |
6705 | return type; | |
6706 | } | |
6707 | ||
6708 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
6709 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
6710 | the beginning of this section) VAL according to GNAT conventions. | |
6711 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 6712 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
6713 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
6714 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 6715 | of the variant. |
14f9c5c9 | 6716 | |
4c4b4cd2 PH |
6717 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
6718 | length are not statically known are discarded. As a consequence, | |
6719 | VALADDR, ADDRESS and DVAL0 are ignored. | |
6720 | ||
6721 | NOTE: Limitations: For now, we assume that dynamic fields and | |
6722 | variants occupy whole numbers of bytes. However, they need not be | |
6723 | byte-aligned. */ | |
6724 | ||
6725 | struct type * | |
10a2c479 | 6726 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 6727 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
6728 | CORE_ADDR address, struct value *dval0, |
6729 | int keep_dynamic_fields) | |
14f9c5c9 | 6730 | { |
d2e4a39e AS |
6731 | struct value *mark = value_mark (); |
6732 | struct value *dval; | |
6733 | struct type *rtype; | |
14f9c5c9 | 6734 | int nfields, bit_len; |
4c4b4cd2 | 6735 | int variant_field; |
14f9c5c9 | 6736 | long off; |
4c4b4cd2 | 6737 | int fld_bit_len, bit_incr; |
14f9c5c9 AS |
6738 | int f; |
6739 | ||
4c4b4cd2 PH |
6740 | /* Compute the number of fields in this record type that are going |
6741 | to be processed: unless keep_dynamic_fields, this includes only | |
6742 | fields whose position and length are static will be processed. */ | |
6743 | if (keep_dynamic_fields) | |
6744 | nfields = TYPE_NFIELDS (type); | |
6745 | else | |
6746 | { | |
6747 | nfields = 0; | |
76a01679 | 6748 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
6749 | && !ada_is_variant_part (type, nfields) |
6750 | && !is_dynamic_field (type, nfields)) | |
6751 | nfields++; | |
6752 | } | |
6753 | ||
14f9c5c9 AS |
6754 | rtype = alloc_type (TYPE_OBJFILE (type)); |
6755 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
6756 | INIT_CPLUS_SPECIFIC (rtype); | |
6757 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 6758 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
6759 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
6760 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6761 | TYPE_NAME (rtype) = ada_type_name (type); | |
6762 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 6763 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 6764 | |
d2e4a39e AS |
6765 | off = 0; |
6766 | bit_len = 0; | |
4c4b4cd2 PH |
6767 | variant_field = -1; |
6768 | ||
14f9c5c9 AS |
6769 | for (f = 0; f < nfields; f += 1) |
6770 | { | |
6c038f32 PH |
6771 | off = align_value (off, field_alignment (type, f)) |
6772 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 6773 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 6774 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 6775 | |
d2e4a39e | 6776 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
6777 | { |
6778 | variant_field = f; | |
6779 | fld_bit_len = bit_incr = 0; | |
6780 | } | |
14f9c5c9 | 6781 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 6782 | { |
284614f0 JB |
6783 | const gdb_byte *field_valaddr = valaddr; |
6784 | CORE_ADDR field_address = address; | |
6785 | struct type *field_type = | |
6786 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
6787 | ||
4c4b4cd2 | 6788 | if (dval0 == NULL) |
b5304971 JG |
6789 | { |
6790 | /* rtype's length is computed based on the run-time | |
6791 | value of discriminants. If the discriminants are not | |
6792 | initialized, the type size may be completely bogus and | |
6793 | GDB may fail to allocate a value for it. So check the | |
6794 | size first before creating the value. */ | |
6795 | check_size (rtype); | |
6796 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6797 | } | |
4c4b4cd2 PH |
6798 | else |
6799 | dval = dval0; | |
6800 | ||
284614f0 JB |
6801 | /* If the type referenced by this field is an aligner type, we need |
6802 | to unwrap that aligner type, because its size might not be set. | |
6803 | Keeping the aligner type would cause us to compute the wrong | |
6804 | size for this field, impacting the offset of the all the fields | |
6805 | that follow this one. */ | |
6806 | if (ada_is_aligner_type (field_type)) | |
6807 | { | |
6808 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
6809 | ||
6810 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
6811 | field_address = cond_offset_target (field_address, field_offset); | |
6812 | field_type = ada_aligned_type (field_type); | |
6813 | } | |
6814 | ||
6815 | field_valaddr = cond_offset_host (field_valaddr, | |
6816 | off / TARGET_CHAR_BIT); | |
6817 | field_address = cond_offset_target (field_address, | |
6818 | off / TARGET_CHAR_BIT); | |
6819 | ||
6820 | /* Get the fixed type of the field. Note that, in this case, | |
6821 | we do not want to get the real type out of the tag: if | |
6822 | the current field is the parent part of a tagged record, | |
6823 | we will get the tag of the object. Clearly wrong: the real | |
6824 | type of the parent is not the real type of the child. We | |
6825 | would end up in an infinite loop. */ | |
6826 | field_type = ada_get_base_type (field_type); | |
6827 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
6828 | field_address, dval, 0); | |
6829 | ||
6830 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 PH |
6831 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
6832 | bit_incr = fld_bit_len = | |
6833 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
6834 | } | |
14f9c5c9 | 6835 | else |
4c4b4cd2 PH |
6836 | { |
6837 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
6838 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
6839 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
6840 | bit_incr = fld_bit_len = | |
6841 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
6842 | else | |
6843 | bit_incr = fld_bit_len = | |
6844 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT; | |
6845 | } | |
14f9c5c9 | 6846 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 6847 | bit_len = off + fld_bit_len; |
14f9c5c9 | 6848 | off += bit_incr; |
4c4b4cd2 PH |
6849 | TYPE_LENGTH (rtype) = |
6850 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 6851 | } |
4c4b4cd2 PH |
6852 | |
6853 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 6854 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
6855 | the record. This can happen in the presence of representation |
6856 | clauses. */ | |
6857 | if (variant_field >= 0) | |
6858 | { | |
6859 | struct type *branch_type; | |
6860 | ||
6861 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
6862 | ||
6863 | if (dval0 == NULL) | |
6864 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6865 | else | |
6866 | dval = dval0; | |
6867 | ||
6868 | branch_type = | |
6869 | to_fixed_variant_branch_type | |
6870 | (TYPE_FIELD_TYPE (type, variant_field), | |
6871 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
6872 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
6873 | if (branch_type == NULL) | |
6874 | { | |
6875 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
6876 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
6877 | TYPE_NFIELDS (rtype) -= 1; | |
6878 | } | |
6879 | else | |
6880 | { | |
6881 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
6882 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
6883 | fld_bit_len = | |
6884 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
6885 | TARGET_CHAR_BIT; | |
6886 | if (off + fld_bit_len > bit_len) | |
6887 | bit_len = off + fld_bit_len; | |
6888 | TYPE_LENGTH (rtype) = | |
6889 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
6890 | } | |
6891 | } | |
6892 | ||
714e53ab PH |
6893 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
6894 | should contain the alignment of that record, which should be a strictly | |
6895 | positive value. If null or negative, then something is wrong, most | |
6896 | probably in the debug info. In that case, we don't round up the size | |
6897 | of the resulting type. If this record is not part of another structure, | |
6898 | the current RTYPE length might be good enough for our purposes. */ | |
6899 | if (TYPE_LENGTH (type) <= 0) | |
6900 | { | |
323e0a4a AC |
6901 | if (TYPE_NAME (rtype)) |
6902 | warning (_("Invalid type size for `%s' detected: %d."), | |
6903 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
6904 | else | |
6905 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
6906 | TYPE_LENGTH (type)); | |
714e53ab PH |
6907 | } |
6908 | else | |
6909 | { | |
6910 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
6911 | TYPE_LENGTH (type)); | |
6912 | } | |
14f9c5c9 AS |
6913 | |
6914 | value_free_to_mark (mark); | |
d2e4a39e | 6915 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 6916 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
6917 | return rtype; |
6918 | } | |
6919 | ||
4c4b4cd2 PH |
6920 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
6921 | of 1. */ | |
14f9c5c9 | 6922 | |
d2e4a39e | 6923 | static struct type * |
fc1a4b47 | 6924 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
6925 | CORE_ADDR address, struct value *dval0) |
6926 | { | |
6927 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
6928 | address, dval0, 1); | |
6929 | } | |
6930 | ||
6931 | /* An ordinary record type in which ___XVL-convention fields and | |
6932 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
6933 | static approximations, containing all possible fields. Uses | |
6934 | no runtime values. Useless for use in values, but that's OK, | |
6935 | since the results are used only for type determinations. Works on both | |
6936 | structs and unions. Representation note: to save space, we memorize | |
6937 | the result of this function in the TYPE_TARGET_TYPE of the | |
6938 | template type. */ | |
6939 | ||
6940 | static struct type * | |
6941 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
6942 | { |
6943 | struct type *type; | |
6944 | int nfields; | |
6945 | int f; | |
6946 | ||
4c4b4cd2 PH |
6947 | if (TYPE_TARGET_TYPE (type0) != NULL) |
6948 | return TYPE_TARGET_TYPE (type0); | |
6949 | ||
6950 | nfields = TYPE_NFIELDS (type0); | |
6951 | type = type0; | |
14f9c5c9 AS |
6952 | |
6953 | for (f = 0; f < nfields; f += 1) | |
6954 | { | |
61ee279c | 6955 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 6956 | struct type *new_type; |
14f9c5c9 | 6957 | |
4c4b4cd2 PH |
6958 | if (is_dynamic_field (type0, f)) |
6959 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 6960 | else |
f192137b | 6961 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
6962 | if (type == type0 && new_type != field_type) |
6963 | { | |
6964 | TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0)); | |
6965 | TYPE_CODE (type) = TYPE_CODE (type0); | |
6966 | INIT_CPLUS_SPECIFIC (type); | |
6967 | TYPE_NFIELDS (type) = nfields; | |
6968 | TYPE_FIELDS (type) = (struct field *) | |
6969 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
6970 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
6971 | sizeof (struct field) * nfields); | |
6972 | TYPE_NAME (type) = ada_type_name (type0); | |
6973 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 6974 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
6975 | TYPE_LENGTH (type) = 0; |
6976 | } | |
6977 | TYPE_FIELD_TYPE (type, f) = new_type; | |
6978 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 6979 | } |
14f9c5c9 AS |
6980 | return type; |
6981 | } | |
6982 | ||
4c4b4cd2 | 6983 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
6984 | whose address in memory is ADDRESS, returns a revision of TYPE, |
6985 | which should be a non-dynamic-sized record, in which the variant | |
6986 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
6987 | for discriminant values in DVAL0, which can be NULL if the record |
6988 | contains the necessary discriminant values. */ | |
6989 | ||
d2e4a39e | 6990 | static struct type * |
fc1a4b47 | 6991 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 6992 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 6993 | { |
d2e4a39e | 6994 | struct value *mark = value_mark (); |
4c4b4cd2 | 6995 | struct value *dval; |
d2e4a39e | 6996 | struct type *rtype; |
14f9c5c9 AS |
6997 | struct type *branch_type; |
6998 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 6999 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7000 | |
4c4b4cd2 | 7001 | if (variant_field == -1) |
14f9c5c9 AS |
7002 | return type; |
7003 | ||
4c4b4cd2 PH |
7004 | if (dval0 == NULL) |
7005 | dval = value_from_contents_and_address (type, valaddr, address); | |
7006 | else | |
7007 | dval = dval0; | |
7008 | ||
14f9c5c9 AS |
7009 | rtype = alloc_type (TYPE_OBJFILE (type)); |
7010 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
4c4b4cd2 PH |
7011 | INIT_CPLUS_SPECIFIC (rtype); |
7012 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7013 | TYPE_FIELDS (rtype) = |
7014 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7015 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7016 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7017 | TYPE_NAME (rtype) = ada_type_name (type); |
7018 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7019 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7020 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7021 | ||
4c4b4cd2 PH |
7022 | branch_type = to_fixed_variant_branch_type |
7023 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7024 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7025 | TYPE_FIELD_BITPOS (type, variant_field) |
7026 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7027 | cond_offset_target (address, |
4c4b4cd2 PH |
7028 | TYPE_FIELD_BITPOS (type, variant_field) |
7029 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7030 | if (branch_type == NULL) |
14f9c5c9 | 7031 | { |
4c4b4cd2 PH |
7032 | int f; |
7033 | for (f = variant_field + 1; f < nfields; f += 1) | |
7034 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7035 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7036 | } |
7037 | else | |
7038 | { | |
4c4b4cd2 PH |
7039 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7040 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7041 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7042 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7043 | } |
4c4b4cd2 | 7044 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7045 | |
4c4b4cd2 | 7046 | value_free_to_mark (mark); |
14f9c5c9 AS |
7047 | return rtype; |
7048 | } | |
7049 | ||
7050 | /* An ordinary record type (with fixed-length fields) that describes | |
7051 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7052 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7053 | should be in DVAL, a record value; it may be NULL if the object |
7054 | at ADDR itself contains any necessary discriminant values. | |
7055 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7056 | values from the record are needed. Except in the case that DVAL, | |
7057 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7058 | unchecked) is replaced by a particular branch of the variant. | |
7059 | ||
7060 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7061 | is questionable and may be removed. It can arise during the | |
7062 | processing of an unconstrained-array-of-record type where all the | |
7063 | variant branches have exactly the same size. This is because in | |
7064 | such cases, the compiler does not bother to use the XVS convention | |
7065 | when encoding the record. I am currently dubious of this | |
7066 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7067 | |
d2e4a39e | 7068 | static struct type * |
fc1a4b47 | 7069 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7070 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7071 | { |
d2e4a39e | 7072 | struct type *templ_type; |
14f9c5c9 | 7073 | |
876cecd0 | 7074 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7075 | return type0; |
7076 | ||
d2e4a39e | 7077 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7078 | |
7079 | if (templ_type != NULL) | |
7080 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7081 | else if (variant_field_index (type0) >= 0) |
7082 | { | |
7083 | if (dval == NULL && valaddr == NULL && address == 0) | |
7084 | return type0; | |
7085 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7086 | dval); | |
7087 | } | |
14f9c5c9 AS |
7088 | else |
7089 | { | |
876cecd0 | 7090 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7091 | return type0; |
7092 | } | |
7093 | ||
7094 | } | |
7095 | ||
7096 | /* An ordinary record type (with fixed-length fields) that describes | |
7097 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7098 | union type. Any necessary discriminants' values should be in DVAL, | |
7099 | a record value. That is, this routine selects the appropriate | |
7100 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd JB |
7101 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
7102 | it represents a variant subject to a pragma Unchecked_Union. */ | |
14f9c5c9 | 7103 | |
d2e4a39e | 7104 | static struct type * |
fc1a4b47 | 7105 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7106 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7107 | { |
7108 | int which; | |
d2e4a39e AS |
7109 | struct type *templ_type; |
7110 | struct type *var_type; | |
14f9c5c9 AS |
7111 | |
7112 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7113 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7114 | else |
14f9c5c9 AS |
7115 | var_type = var_type0; |
7116 | ||
7117 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7118 | ||
7119 | if (templ_type != NULL) | |
7120 | var_type = templ_type; | |
7121 | ||
b1f33ddd JB |
7122 | if (is_unchecked_variant (var_type, value_type (dval))) |
7123 | return var_type0; | |
d2e4a39e AS |
7124 | which = |
7125 | ada_which_variant_applies (var_type, | |
0fd88904 | 7126 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7127 | |
7128 | if (which < 0) | |
7129 | return empty_record (TYPE_OBJFILE (var_type)); | |
7130 | else if (is_dynamic_field (var_type, which)) | |
4c4b4cd2 | 7131 | return to_fixed_record_type |
d2e4a39e AS |
7132 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7133 | valaddr, address, dval); | |
4c4b4cd2 | 7134 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7135 | return |
7136 | to_fixed_record_type | |
7137 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7138 | else |
7139 | return TYPE_FIELD_TYPE (var_type, which); | |
7140 | } | |
7141 | ||
7142 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7143 | at ADDR, and that DVAL describes a record containing any | |
7144 | discriminants used in TYPE0, returns a type for the value that | |
7145 | contains no dynamic components (that is, no components whose sizes | |
7146 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7147 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7148 | varsize_limit. */ |
14f9c5c9 | 7149 | |
d2e4a39e AS |
7150 | static struct type * |
7151 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7152 | int ignore_too_big) |
14f9c5c9 | 7153 | { |
d2e4a39e AS |
7154 | struct type *index_type_desc; |
7155 | struct type *result; | |
284614f0 | 7156 | int packed_array_p; |
14f9c5c9 | 7157 | |
284614f0 | 7158 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7159 | return type0; |
14f9c5c9 | 7160 | |
284614f0 JB |
7161 | packed_array_p = ada_is_packed_array_type (type0); |
7162 | if (packed_array_p) | |
7163 | type0 = decode_packed_array_type (type0); | |
7164 | ||
14f9c5c9 AS |
7165 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
7166 | if (index_type_desc == NULL) | |
7167 | { | |
61ee279c | 7168 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
14f9c5c9 | 7169 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7170 | depend on the contents of the array in properly constructed |
7171 | debugging data. */ | |
529cad9c PH |
7172 | /* Create a fixed version of the array element type. |
7173 | We're not providing the address of an element here, | |
e1d5a0d2 | 7174 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7175 | the conversion. This should not be a problem, since arrays of |
7176 | unconstrained objects are not allowed. In particular, all | |
7177 | the elements of an array of a tagged type should all be of | |
7178 | the same type specified in the debugging info. No need to | |
7179 | consult the object tag. */ | |
1ed6ede0 | 7180 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7181 | |
284614f0 JB |
7182 | /* Make sure we always create a new array type when dealing with |
7183 | packed array types, since we're going to fix-up the array | |
7184 | type length and element bitsize a little further down. */ | |
7185 | if (elt_type0 == elt_type && !packed_array_p) | |
4c4b4cd2 | 7186 | result = type0; |
14f9c5c9 | 7187 | else |
4c4b4cd2 PH |
7188 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), |
7189 | elt_type, TYPE_INDEX_TYPE (type0)); | |
14f9c5c9 AS |
7190 | } |
7191 | else | |
7192 | { | |
7193 | int i; | |
7194 | struct type *elt_type0; | |
7195 | ||
7196 | elt_type0 = type0; | |
7197 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7198 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7199 | |
7200 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7201 | depend on the contents of the array in properly constructed |
7202 | debugging data. */ | |
529cad9c PH |
7203 | /* Create a fixed version of the array element type. |
7204 | We're not providing the address of an element here, | |
e1d5a0d2 | 7205 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7206 | the conversion. This should not be a problem, since arrays of |
7207 | unconstrained objects are not allowed. In particular, all | |
7208 | the elements of an array of a tagged type should all be of | |
7209 | the same type specified in the debugging info. No need to | |
7210 | consult the object tag. */ | |
1ed6ede0 JB |
7211 | result = |
7212 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
14f9c5c9 | 7213 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7214 | { |
7215 | struct type *range_type = | |
7216 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), | |
7217 | dval, TYPE_OBJFILE (type0)); | |
7218 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), | |
7219 | result, range_type); | |
7220 | } | |
d2e4a39e | 7221 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7222 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7223 | } |
7224 | ||
284614f0 JB |
7225 | if (packed_array_p) |
7226 | { | |
7227 | /* So far, the resulting type has been created as if the original | |
7228 | type was a regular (non-packed) array type. As a result, the | |
7229 | bitsize of the array elements needs to be set again, and the array | |
7230 | length needs to be recomputed based on that bitsize. */ | |
7231 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7232 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7233 | ||
7234 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7235 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7236 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7237 | TYPE_LENGTH (result)++; | |
7238 | } | |
7239 | ||
876cecd0 | 7240 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7241 | return result; |
d2e4a39e | 7242 | } |
14f9c5c9 AS |
7243 | |
7244 | ||
7245 | /* A standard type (containing no dynamically sized components) | |
7246 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7247 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7248 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7249 | ADDRESS or in VALADDR contains these discriminants. |
7250 | ||
1ed6ede0 JB |
7251 | If CHECK_TAG is not null, in the case of tagged types, this function |
7252 | attempts to locate the object's tag and use it to compute the actual | |
7253 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7254 | location of the tag, and therefore compute the tagged type's actual type. | |
7255 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7256 | |
f192137b JB |
7257 | static struct type * |
7258 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7259 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7260 | { |
61ee279c | 7261 | type = ada_check_typedef (type); |
d2e4a39e AS |
7262 | switch (TYPE_CODE (type)) |
7263 | { | |
7264 | default: | |
14f9c5c9 | 7265 | return type; |
d2e4a39e | 7266 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7267 | { |
76a01679 | 7268 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7269 | struct type *fixed_record_type = |
7270 | to_fixed_record_type (type, valaddr, address, NULL); | |
529cad9c PH |
7271 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7272 | then we can determine its tag, and compute the object's actual | |
1ed6ede0 JB |
7273 | type from there. Note that we have to use the fixed record |
7274 | type (the parent part of the record may have dynamic fields | |
7275 | and the way the location of _tag is expressed may depend on | |
7276 | them). */ | |
529cad9c | 7277 | |
1ed6ede0 | 7278 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7279 | { |
7280 | struct type *real_type = | |
1ed6ede0 JB |
7281 | type_from_tag (value_tag_from_contents_and_address |
7282 | (fixed_record_type, | |
7283 | valaddr, | |
7284 | address)); | |
76a01679 | 7285 | if (real_type != NULL) |
1ed6ede0 | 7286 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7287 | } |
4af88198 JB |
7288 | |
7289 | /* Check to see if there is a parallel ___XVZ variable. | |
7290 | If there is, then it provides the actual size of our type. */ | |
7291 | else if (ada_type_name (fixed_record_type) != NULL) | |
7292 | { | |
7293 | char *name = ada_type_name (fixed_record_type); | |
7294 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7295 | int xvz_found = 0; | |
7296 | LONGEST size; | |
7297 | ||
88c15c34 | 7298 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7299 | size = get_int_var_value (xvz_name, &xvz_found); |
7300 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7301 | { | |
7302 | fixed_record_type = copy_type (fixed_record_type); | |
7303 | TYPE_LENGTH (fixed_record_type) = size; | |
7304 | ||
7305 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7306 | observed this when the debugging info is STABS, and | |
7307 | apparently it is something that is hard to fix. | |
7308 | ||
7309 | In practice, we don't need the actual type definition | |
7310 | at all, because the presence of the XVZ variable allows us | |
7311 | to assume that there must be a XVS type as well, which we | |
7312 | should be able to use later, when we need the actual type | |
7313 | definition. | |
7314 | ||
7315 | In the meantime, pretend that the "fixed" type we are | |
7316 | returning is NOT a stub, because this can cause trouble | |
7317 | when using this type to create new types targeting it. | |
7318 | Indeed, the associated creation routines often check | |
7319 | whether the target type is a stub and will try to replace | |
7320 | it, thus using a type with the wrong size. This, in turn, | |
7321 | might cause the new type to have the wrong size too. | |
7322 | Consider the case of an array, for instance, where the size | |
7323 | of the array is computed from the number of elements in | |
7324 | our array multiplied by the size of its element. */ | |
7325 | TYPE_STUB (fixed_record_type) = 0; | |
7326 | } | |
7327 | } | |
1ed6ede0 | 7328 | return fixed_record_type; |
4c4b4cd2 | 7329 | } |
d2e4a39e | 7330 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7331 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7332 | case TYPE_CODE_UNION: |
7333 | if (dval == NULL) | |
4c4b4cd2 | 7334 | return type; |
d2e4a39e | 7335 | else |
4c4b4cd2 | 7336 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7337 | } |
14f9c5c9 AS |
7338 | } |
7339 | ||
f192137b JB |
7340 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7341 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
7342 | ada_to_fixed_type_1 would return the type referenced by TYPE. */ | |
7343 | ||
7344 | struct type * | |
7345 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7346 | CORE_ADDR address, struct value *dval, int check_tag) | |
7347 | ||
7348 | { | |
7349 | struct type *fixed_type = | |
7350 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7351 | ||
7352 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7353 | && TYPE_TARGET_TYPE (type) == fixed_type) | |
7354 | return type; | |
7355 | ||
7356 | return fixed_type; | |
7357 | } | |
7358 | ||
14f9c5c9 | 7359 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7360 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7361 | |
d2e4a39e AS |
7362 | static struct type * |
7363 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7364 | { |
d2e4a39e | 7365 | struct type *type; |
14f9c5c9 AS |
7366 | |
7367 | if (type0 == NULL) | |
7368 | return NULL; | |
7369 | ||
876cecd0 | 7370 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7371 | return type0; |
7372 | ||
61ee279c | 7373 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7374 | |
14f9c5c9 AS |
7375 | switch (TYPE_CODE (type0)) |
7376 | { | |
7377 | default: | |
7378 | return type0; | |
7379 | case TYPE_CODE_STRUCT: | |
7380 | type = dynamic_template_type (type0); | |
d2e4a39e | 7381 | if (type != NULL) |
4c4b4cd2 PH |
7382 | return template_to_static_fixed_type (type); |
7383 | else | |
7384 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7385 | case TYPE_CODE_UNION: |
7386 | type = ada_find_parallel_type (type0, "___XVU"); | |
7387 | if (type != NULL) | |
4c4b4cd2 PH |
7388 | return template_to_static_fixed_type (type); |
7389 | else | |
7390 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7391 | } |
7392 | } | |
7393 | ||
4c4b4cd2 PH |
7394 | /* A static approximation of TYPE with all type wrappers removed. */ |
7395 | ||
d2e4a39e AS |
7396 | static struct type * |
7397 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7398 | { |
7399 | if (ada_is_aligner_type (type)) | |
7400 | { | |
61ee279c | 7401 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7402 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7403 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7404 | |
7405 | return static_unwrap_type (type1); | |
7406 | } | |
d2e4a39e | 7407 | else |
14f9c5c9 | 7408 | { |
d2e4a39e AS |
7409 | struct type *raw_real_type = ada_get_base_type (type); |
7410 | if (raw_real_type == type) | |
4c4b4cd2 | 7411 | return type; |
14f9c5c9 | 7412 | else |
4c4b4cd2 | 7413 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7414 | } |
7415 | } | |
7416 | ||
7417 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7418 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7419 | type Foo; |
7420 | type FooP is access Foo; | |
7421 | V: FooP; | |
7422 | type Foo is array ...; | |
4c4b4cd2 | 7423 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7424 | cross-references to such types, we instead substitute for FooP a |
7425 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7426 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7427 | |
7428 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7429 | exists, otherwise TYPE. */ |
7430 | ||
d2e4a39e | 7431 | struct type * |
61ee279c | 7432 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7433 | { |
727e3d2e JB |
7434 | if (type == NULL) |
7435 | return NULL; | |
7436 | ||
14f9c5c9 AS |
7437 | CHECK_TYPEDEF (type); |
7438 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7439 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7440 | || TYPE_TAG_NAME (type) == NULL) |
7441 | return type; | |
d2e4a39e | 7442 | else |
14f9c5c9 | 7443 | { |
d2e4a39e AS |
7444 | char *name = TYPE_TAG_NAME (type); |
7445 | struct type *type1 = ada_find_any_type (name); | |
14f9c5c9 AS |
7446 | return (type1 == NULL) ? type : type1; |
7447 | } | |
7448 | } | |
7449 | ||
7450 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7451 | type TYPE0, but with a standard (static-sized) type that correctly | |
7452 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7453 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7454 | creation of struct values]. */ |
14f9c5c9 | 7455 | |
4c4b4cd2 PH |
7456 | static struct value * |
7457 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7458 | struct value *val0) | |
14f9c5c9 | 7459 | { |
1ed6ede0 | 7460 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
14f9c5c9 AS |
7461 | if (type == type0 && val0 != NULL) |
7462 | return val0; | |
d2e4a39e | 7463 | else |
4c4b4cd2 PH |
7464 | return value_from_contents_and_address (type, 0, address); |
7465 | } | |
7466 | ||
7467 | /* A value representing VAL, but with a standard (static-sized) type | |
7468 | that correctly describes it. Does not necessarily create a new | |
7469 | value. */ | |
7470 | ||
7471 | static struct value * | |
7472 | ada_to_fixed_value (struct value *val) | |
7473 | { | |
df407dfe | 7474 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 7475 | value_address (val), |
4c4b4cd2 | 7476 | val); |
14f9c5c9 AS |
7477 | } |
7478 | ||
4c4b4cd2 | 7479 | /* A value representing VAL, but with a standard (static-sized) type |
14f9c5c9 AS |
7480 | chosen to approximate the real type of VAL as well as possible, but |
7481 | without consulting any runtime values. For Ada dynamic-sized | |
4c4b4cd2 | 7482 | types, therefore, the type of the result is likely to be inaccurate. */ |
14f9c5c9 | 7483 | |
2c0b251b | 7484 | static struct value * |
d2e4a39e | 7485 | ada_to_static_fixed_value (struct value *val) |
14f9c5c9 | 7486 | { |
d2e4a39e | 7487 | struct type *type = |
df407dfe AC |
7488 | to_static_fixed_type (static_unwrap_type (value_type (val))); |
7489 | if (type == value_type (val)) | |
14f9c5c9 AS |
7490 | return val; |
7491 | else | |
4c4b4cd2 | 7492 | return coerce_unspec_val_to_type (val, type); |
14f9c5c9 | 7493 | } |
d2e4a39e | 7494 | \f |
14f9c5c9 | 7495 | |
14f9c5c9 AS |
7496 | /* Attributes */ |
7497 | ||
4c4b4cd2 PH |
7498 | /* Table mapping attribute numbers to names. |
7499 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7500 | |
d2e4a39e | 7501 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7502 | "<?>", |
7503 | ||
d2e4a39e | 7504 | "first", |
14f9c5c9 AS |
7505 | "last", |
7506 | "length", | |
7507 | "image", | |
14f9c5c9 AS |
7508 | "max", |
7509 | "min", | |
4c4b4cd2 PH |
7510 | "modulus", |
7511 | "pos", | |
7512 | "size", | |
7513 | "tag", | |
14f9c5c9 | 7514 | "val", |
14f9c5c9 AS |
7515 | 0 |
7516 | }; | |
7517 | ||
d2e4a39e | 7518 | const char * |
4c4b4cd2 | 7519 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7520 | { |
4c4b4cd2 PH |
7521 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7522 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7523 | else |
7524 | return attribute_names[0]; | |
7525 | } | |
7526 | ||
4c4b4cd2 | 7527 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7528 | |
4c4b4cd2 PH |
7529 | static LONGEST |
7530 | pos_atr (struct value *arg) | |
14f9c5c9 | 7531 | { |
24209737 PH |
7532 | struct value *val = coerce_ref (arg); |
7533 | struct type *type = value_type (val); | |
14f9c5c9 | 7534 | |
d2e4a39e | 7535 | if (!discrete_type_p (type)) |
323e0a4a | 7536 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7537 | |
7538 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7539 | { | |
7540 | int i; | |
24209737 | 7541 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7542 | |
d2e4a39e | 7543 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7544 | { |
7545 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7546 | return i; | |
7547 | } | |
323e0a4a | 7548 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7549 | } |
7550 | else | |
24209737 | 7551 | return value_as_long (val); |
4c4b4cd2 PH |
7552 | } |
7553 | ||
7554 | static struct value * | |
3cb382c9 | 7555 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 7556 | { |
3cb382c9 | 7557 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
7558 | } |
7559 | ||
4c4b4cd2 | 7560 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 7561 | |
d2e4a39e AS |
7562 | static struct value * |
7563 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 7564 | { |
d2e4a39e | 7565 | if (!discrete_type_p (type)) |
323e0a4a | 7566 | error (_("'VAL only defined on discrete types")); |
df407dfe | 7567 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 7568 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
7569 | |
7570 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7571 | { | |
7572 | long pos = value_as_long (arg); | |
7573 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) | |
323e0a4a | 7574 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 7575 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
7576 | } |
7577 | else | |
7578 | return value_from_longest (type, value_as_long (arg)); | |
7579 | } | |
14f9c5c9 | 7580 | \f |
d2e4a39e | 7581 | |
4c4b4cd2 | 7582 | /* Evaluation */ |
14f9c5c9 | 7583 | |
4c4b4cd2 PH |
7584 | /* True if TYPE appears to be an Ada character type. |
7585 | [At the moment, this is true only for Character and Wide_Character; | |
7586 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 7587 | |
d2e4a39e AS |
7588 | int |
7589 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 7590 | { |
7b9f71f2 JB |
7591 | const char *name; |
7592 | ||
7593 | /* If the type code says it's a character, then assume it really is, | |
7594 | and don't check any further. */ | |
7595 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
7596 | return 1; | |
7597 | ||
7598 | /* Otherwise, assume it's a character type iff it is a discrete type | |
7599 | with a known character type name. */ | |
7600 | name = ada_type_name (type); | |
7601 | return (name != NULL | |
7602 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7603 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
7604 | && (strcmp (name, "character") == 0 | |
7605 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 7606 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 7607 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
7608 | } |
7609 | ||
4c4b4cd2 | 7610 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
7611 | |
7612 | int | |
ebf56fd3 | 7613 | ada_is_string_type (struct type *type) |
14f9c5c9 | 7614 | { |
61ee279c | 7615 | type = ada_check_typedef (type); |
d2e4a39e | 7616 | if (type != NULL |
14f9c5c9 | 7617 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
7618 | && (ada_is_simple_array_type (type) |
7619 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
7620 | && ada_array_arity (type) == 1) |
7621 | { | |
7622 | struct type *elttype = ada_array_element_type (type, 1); | |
7623 | ||
7624 | return ada_is_character_type (elttype); | |
7625 | } | |
d2e4a39e | 7626 | else |
14f9c5c9 AS |
7627 | return 0; |
7628 | } | |
7629 | ||
7630 | ||
7631 | /* True if TYPE is a struct type introduced by the compiler to force the | |
7632 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 7633 | distinctive name. */ |
14f9c5c9 AS |
7634 | |
7635 | int | |
ebf56fd3 | 7636 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 7637 | { |
61ee279c | 7638 | type = ada_check_typedef (type); |
714e53ab PH |
7639 | |
7640 | /* If we can find a parallel XVS type, then the XVS type should | |
7641 | be used instead of this type. And hence, this is not an aligner | |
7642 | type. */ | |
7643 | if (ada_find_parallel_type (type, "___XVS") != NULL) | |
7644 | return 0; | |
7645 | ||
14f9c5c9 | 7646 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
7647 | && TYPE_NFIELDS (type) == 1 |
7648 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
7649 | } |
7650 | ||
7651 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 7652 | the parallel type. */ |
14f9c5c9 | 7653 | |
d2e4a39e AS |
7654 | struct type * |
7655 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 7656 | { |
d2e4a39e AS |
7657 | struct type *real_type_namer; |
7658 | struct type *raw_real_type; | |
14f9c5c9 AS |
7659 | |
7660 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
7661 | return raw_type; | |
7662 | ||
284614f0 JB |
7663 | if (ada_is_aligner_type (raw_type)) |
7664 | /* The encoding specifies that we should always use the aligner type. | |
7665 | So, even if this aligner type has an associated XVS type, we should | |
7666 | simply ignore it. | |
7667 | ||
7668 | According to the compiler gurus, an XVS type parallel to an aligner | |
7669 | type may exist because of a stabs limitation. In stabs, aligner | |
7670 | types are empty because the field has a variable-sized type, and | |
7671 | thus cannot actually be used as an aligner type. As a result, | |
7672 | we need the associated parallel XVS type to decode the type. | |
7673 | Since the policy in the compiler is to not change the internal | |
7674 | representation based on the debugging info format, we sometimes | |
7675 | end up having a redundant XVS type parallel to the aligner type. */ | |
7676 | return raw_type; | |
7677 | ||
14f9c5c9 | 7678 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 7679 | if (real_type_namer == NULL |
14f9c5c9 AS |
7680 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
7681 | || TYPE_NFIELDS (real_type_namer) != 1) | |
7682 | return raw_type; | |
7683 | ||
7684 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
d2e4a39e | 7685 | if (raw_real_type == NULL) |
14f9c5c9 AS |
7686 | return raw_type; |
7687 | else | |
7688 | return raw_real_type; | |
d2e4a39e | 7689 | } |
14f9c5c9 | 7690 | |
4c4b4cd2 | 7691 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 7692 | |
d2e4a39e AS |
7693 | struct type * |
7694 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
7695 | { |
7696 | if (ada_is_aligner_type (type)) | |
7697 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
7698 | else | |
7699 | return ada_get_base_type (type); | |
7700 | } | |
7701 | ||
7702 | ||
7703 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 7704 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 7705 | |
fc1a4b47 AC |
7706 | const gdb_byte * |
7707 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 7708 | { |
d2e4a39e | 7709 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 7710 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
7711 | valaddr + |
7712 | TYPE_FIELD_BITPOS (type, | |
7713 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
7714 | else |
7715 | return valaddr; | |
7716 | } | |
7717 | ||
4c4b4cd2 PH |
7718 | |
7719 | ||
14f9c5c9 | 7720 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 7721 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
7722 | const char * |
7723 | ada_enum_name (const char *name) | |
14f9c5c9 | 7724 | { |
4c4b4cd2 PH |
7725 | static char *result; |
7726 | static size_t result_len = 0; | |
d2e4a39e | 7727 | char *tmp; |
14f9c5c9 | 7728 | |
4c4b4cd2 PH |
7729 | /* First, unqualify the enumeration name: |
7730 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
7731 | all the preceeding characters, the unqualified name starts |
7732 | right after that dot. | |
4c4b4cd2 | 7733 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
7734 | translates dots into "__". Search forward for double underscores, |
7735 | but stop searching when we hit an overloading suffix, which is | |
7736 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 7737 | |
c3e5cd34 PH |
7738 | tmp = strrchr (name, '.'); |
7739 | if (tmp != NULL) | |
4c4b4cd2 PH |
7740 | name = tmp + 1; |
7741 | else | |
14f9c5c9 | 7742 | { |
4c4b4cd2 PH |
7743 | while ((tmp = strstr (name, "__")) != NULL) |
7744 | { | |
7745 | if (isdigit (tmp[2])) | |
7746 | break; | |
7747 | else | |
7748 | name = tmp + 2; | |
7749 | } | |
14f9c5c9 AS |
7750 | } |
7751 | ||
7752 | if (name[0] == 'Q') | |
7753 | { | |
14f9c5c9 AS |
7754 | int v; |
7755 | if (name[1] == 'U' || name[1] == 'W') | |
4c4b4cd2 PH |
7756 | { |
7757 | if (sscanf (name + 2, "%x", &v) != 1) | |
7758 | return name; | |
7759 | } | |
14f9c5c9 | 7760 | else |
4c4b4cd2 | 7761 | return name; |
14f9c5c9 | 7762 | |
4c4b4cd2 | 7763 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 7764 | if (isascii (v) && isprint (v)) |
88c15c34 | 7765 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 7766 | else if (name[1] == 'U') |
88c15c34 | 7767 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 7768 | else |
88c15c34 | 7769 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
7770 | |
7771 | return result; | |
7772 | } | |
d2e4a39e | 7773 | else |
4c4b4cd2 | 7774 | { |
c3e5cd34 PH |
7775 | tmp = strstr (name, "__"); |
7776 | if (tmp == NULL) | |
7777 | tmp = strstr (name, "$"); | |
7778 | if (tmp != NULL) | |
4c4b4cd2 PH |
7779 | { |
7780 | GROW_VECT (result, result_len, tmp - name + 1); | |
7781 | strncpy (result, name, tmp - name); | |
7782 | result[tmp - name] = '\0'; | |
7783 | return result; | |
7784 | } | |
7785 | ||
7786 | return name; | |
7787 | } | |
14f9c5c9 AS |
7788 | } |
7789 | ||
14f9c5c9 AS |
7790 | /* Evaluate the subexpression of EXP starting at *POS as for |
7791 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 7792 | expression. */ |
14f9c5c9 | 7793 | |
d2e4a39e AS |
7794 | static struct value * |
7795 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 7796 | { |
4b27a620 | 7797 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
7798 | } |
7799 | ||
7800 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 7801 | value it wraps. */ |
14f9c5c9 | 7802 | |
d2e4a39e AS |
7803 | static struct value * |
7804 | unwrap_value (struct value *val) | |
14f9c5c9 | 7805 | { |
df407dfe | 7806 | struct type *type = ada_check_typedef (value_type (val)); |
14f9c5c9 AS |
7807 | if (ada_is_aligner_type (type)) |
7808 | { | |
de4d072f | 7809 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 7810 | struct type *val_type = ada_check_typedef (value_type (v)); |
14f9c5c9 | 7811 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 7812 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
7813 | |
7814 | return unwrap_value (v); | |
7815 | } | |
d2e4a39e | 7816 | else |
14f9c5c9 | 7817 | { |
d2e4a39e | 7818 | struct type *raw_real_type = |
61ee279c | 7819 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 7820 | |
14f9c5c9 | 7821 | if (type == raw_real_type) |
4c4b4cd2 | 7822 | return val; |
14f9c5c9 | 7823 | |
d2e4a39e | 7824 | return |
4c4b4cd2 PH |
7825 | coerce_unspec_val_to_type |
7826 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 7827 | value_address (val), |
1ed6ede0 | 7828 | NULL, 1)); |
14f9c5c9 AS |
7829 | } |
7830 | } | |
d2e4a39e AS |
7831 | |
7832 | static struct value * | |
7833 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
7834 | { |
7835 | LONGEST val; | |
7836 | ||
df407dfe | 7837 | if (type == value_type (arg)) |
14f9c5c9 | 7838 | return arg; |
df407dfe | 7839 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 7840 | val = ada_float_to_fixed (type, |
df407dfe | 7841 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7842 | value_as_long (arg))); |
d2e4a39e | 7843 | else |
14f9c5c9 | 7844 | { |
a53b7a21 | 7845 | DOUBLEST argd = value_as_double (arg); |
14f9c5c9 AS |
7846 | val = ada_float_to_fixed (type, argd); |
7847 | } | |
7848 | ||
7849 | return value_from_longest (type, val); | |
7850 | } | |
7851 | ||
d2e4a39e | 7852 | static struct value * |
a53b7a21 | 7853 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 7854 | { |
df407dfe | 7855 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7856 | value_as_long (arg)); |
a53b7a21 | 7857 | return value_from_double (type, val); |
14f9c5c9 AS |
7858 | } |
7859 | ||
4c4b4cd2 PH |
7860 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
7861 | return the converted value. */ | |
7862 | ||
d2e4a39e AS |
7863 | static struct value * |
7864 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 7865 | { |
df407dfe | 7866 | struct type *type2 = value_type (val); |
14f9c5c9 AS |
7867 | if (type == type2) |
7868 | return val; | |
7869 | ||
61ee279c PH |
7870 | type2 = ada_check_typedef (type2); |
7871 | type = ada_check_typedef (type); | |
14f9c5c9 | 7872 | |
d2e4a39e AS |
7873 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
7874 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
7875 | { |
7876 | val = ada_value_ind (val); | |
df407dfe | 7877 | type2 = value_type (val); |
14f9c5c9 AS |
7878 | } |
7879 | ||
d2e4a39e | 7880 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
7881 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
7882 | { | |
7883 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
7884 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
7885 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 7886 | error (_("Incompatible types in assignment")); |
04624583 | 7887 | deprecated_set_value_type (val, type); |
14f9c5c9 | 7888 | } |
d2e4a39e | 7889 | return val; |
14f9c5c9 AS |
7890 | } |
7891 | ||
4c4b4cd2 PH |
7892 | static struct value * |
7893 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
7894 | { | |
7895 | struct value *val; | |
7896 | struct type *type1, *type2; | |
7897 | LONGEST v, v1, v2; | |
7898 | ||
994b9211 AC |
7899 | arg1 = coerce_ref (arg1); |
7900 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
7901 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
7902 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 7903 | |
76a01679 JB |
7904 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
7905 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
7906 | return value_binop (arg1, arg2, op); |
7907 | ||
76a01679 | 7908 | switch (op) |
4c4b4cd2 PH |
7909 | { |
7910 | case BINOP_MOD: | |
7911 | case BINOP_DIV: | |
7912 | case BINOP_REM: | |
7913 | break; | |
7914 | default: | |
7915 | return value_binop (arg1, arg2, op); | |
7916 | } | |
7917 | ||
7918 | v2 = value_as_long (arg2); | |
7919 | if (v2 == 0) | |
323e0a4a | 7920 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
7921 | |
7922 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
7923 | return value_binop (arg1, arg2, op); | |
7924 | ||
7925 | v1 = value_as_long (arg1); | |
7926 | switch (op) | |
7927 | { | |
7928 | case BINOP_DIV: | |
7929 | v = v1 / v2; | |
76a01679 JB |
7930 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
7931 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
7932 | break; |
7933 | case BINOP_REM: | |
7934 | v = v1 % v2; | |
76a01679 JB |
7935 | if (v * v1 < 0) |
7936 | v -= v2; | |
4c4b4cd2 PH |
7937 | break; |
7938 | default: | |
7939 | /* Should not reach this point. */ | |
7940 | v = 0; | |
7941 | } | |
7942 | ||
7943 | val = allocate_value (type1); | |
990a07ab | 7944 | store_unsigned_integer (value_contents_raw (val), |
df407dfe | 7945 | TYPE_LENGTH (value_type (val)), v); |
4c4b4cd2 PH |
7946 | return val; |
7947 | } | |
7948 | ||
7949 | static int | |
7950 | ada_value_equal (struct value *arg1, struct value *arg2) | |
7951 | { | |
df407dfe AC |
7952 | if (ada_is_direct_array_type (value_type (arg1)) |
7953 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 7954 | { |
f58b38bf JB |
7955 | /* Automatically dereference any array reference before |
7956 | we attempt to perform the comparison. */ | |
7957 | arg1 = ada_coerce_ref (arg1); | |
7958 | arg2 = ada_coerce_ref (arg2); | |
7959 | ||
4c4b4cd2 PH |
7960 | arg1 = ada_coerce_to_simple_array (arg1); |
7961 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
7962 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
7963 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 7964 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 7965 | /* FIXME: The following works only for types whose |
76a01679 JB |
7966 | representations use all bits (no padding or undefined bits) |
7967 | and do not have user-defined equality. */ | |
7968 | return | |
df407dfe | 7969 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 7970 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 7971 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
7972 | } |
7973 | return value_equal (arg1, arg2); | |
7974 | } | |
7975 | ||
52ce6436 PH |
7976 | /* Total number of component associations in the aggregate starting at |
7977 | index PC in EXP. Assumes that index PC is the start of an | |
7978 | OP_AGGREGATE. */ | |
7979 | ||
7980 | static int | |
7981 | num_component_specs (struct expression *exp, int pc) | |
7982 | { | |
7983 | int n, m, i; | |
7984 | m = exp->elts[pc + 1].longconst; | |
7985 | pc += 3; | |
7986 | n = 0; | |
7987 | for (i = 0; i < m; i += 1) | |
7988 | { | |
7989 | switch (exp->elts[pc].opcode) | |
7990 | { | |
7991 | default: | |
7992 | n += 1; | |
7993 | break; | |
7994 | case OP_CHOICES: | |
7995 | n += exp->elts[pc + 1].longconst; | |
7996 | break; | |
7997 | } | |
7998 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
7999 | } | |
8000 | return n; | |
8001 | } | |
8002 | ||
8003 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8004 | component of LHS (a simple array or a record), updating *POS past | |
8005 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8006 | not modify the inferior's memory, nor does it modify LHS (unless | |
8007 | LHS == CONTAINER). */ | |
8008 | ||
8009 | static void | |
8010 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8011 | struct expression *exp, int *pos) | |
8012 | { | |
8013 | struct value *mark = value_mark (); | |
8014 | struct value *elt; | |
8015 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) | |
8016 | { | |
6d84d3d8 | 8017 | struct value *index_val = value_from_longest (builtin_type_int32, index); |
52ce6436 PH |
8018 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8019 | } | |
8020 | else | |
8021 | { | |
8022 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8023 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8024 | } | |
8025 | ||
8026 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8027 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8028 | else | |
8029 | value_assign_to_component (container, elt, | |
8030 | ada_evaluate_subexp (NULL, exp, pos, | |
8031 | EVAL_NORMAL)); | |
8032 | ||
8033 | value_free_to_mark (mark); | |
8034 | } | |
8035 | ||
8036 | /* Assuming that LHS represents an lvalue having a record or array | |
8037 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8038 | of that aggregate's value to LHS, advancing *POS past the | |
8039 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8040 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8041 | the inferior's memory, nor does it modify the contents of | |
8042 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ | |
8043 | ||
8044 | static struct value * | |
8045 | assign_aggregate (struct value *container, | |
8046 | struct value *lhs, struct expression *exp, | |
8047 | int *pos, enum noside noside) | |
8048 | { | |
8049 | struct type *lhs_type; | |
8050 | int n = exp->elts[*pos+1].longconst; | |
8051 | LONGEST low_index, high_index; | |
8052 | int num_specs; | |
8053 | LONGEST *indices; | |
8054 | int max_indices, num_indices; | |
8055 | int is_array_aggregate; | |
8056 | int i; | |
8057 | struct value *mark = value_mark (); | |
8058 | ||
8059 | *pos += 3; | |
8060 | if (noside != EVAL_NORMAL) | |
8061 | { | |
8062 | int i; | |
8063 | for (i = 0; i < n; i += 1) | |
8064 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8065 | return container; | |
8066 | } | |
8067 | ||
8068 | container = ada_coerce_ref (container); | |
8069 | if (ada_is_direct_array_type (value_type (container))) | |
8070 | container = ada_coerce_to_simple_array (container); | |
8071 | lhs = ada_coerce_ref (lhs); | |
8072 | if (!deprecated_value_modifiable (lhs)) | |
8073 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8074 | ||
8075 | lhs_type = value_type (lhs); | |
8076 | if (ada_is_direct_array_type (lhs_type)) | |
8077 | { | |
8078 | lhs = ada_coerce_to_simple_array (lhs); | |
8079 | lhs_type = value_type (lhs); | |
8080 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8081 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8082 | is_array_aggregate = 1; | |
8083 | } | |
8084 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8085 | { | |
8086 | low_index = 0; | |
8087 | high_index = num_visible_fields (lhs_type) - 1; | |
8088 | is_array_aggregate = 0; | |
8089 | } | |
8090 | else | |
8091 | error (_("Left-hand side must be array or record.")); | |
8092 | ||
8093 | num_specs = num_component_specs (exp, *pos - 3); | |
8094 | max_indices = 4 * num_specs + 4; | |
8095 | indices = alloca (max_indices * sizeof (indices[0])); | |
8096 | indices[0] = indices[1] = low_index - 1; | |
8097 | indices[2] = indices[3] = high_index + 1; | |
8098 | num_indices = 4; | |
8099 | ||
8100 | for (i = 0; i < n; i += 1) | |
8101 | { | |
8102 | switch (exp->elts[*pos].opcode) | |
8103 | { | |
8104 | case OP_CHOICES: | |
8105 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8106 | &num_indices, max_indices, | |
8107 | low_index, high_index); | |
8108 | break; | |
8109 | case OP_POSITIONAL: | |
8110 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8111 | &num_indices, max_indices, | |
8112 | low_index, high_index); | |
8113 | break; | |
8114 | case OP_OTHERS: | |
8115 | if (i != n-1) | |
8116 | error (_("Misplaced 'others' clause")); | |
8117 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8118 | num_indices, low_index, high_index); | |
8119 | break; | |
8120 | default: | |
8121 | error (_("Internal error: bad aggregate clause")); | |
8122 | } | |
8123 | } | |
8124 | ||
8125 | return container; | |
8126 | } | |
8127 | ||
8128 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8129 | construct at *POS, updating *POS past the construct, given that | |
8130 | the positions are relative to lower bound LOW, where HIGH is the | |
8131 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8132 | updating *NUM_INDICES as needed. CONTAINER is as for | |
8133 | assign_aggregate. */ | |
8134 | static void | |
8135 | aggregate_assign_positional (struct value *container, | |
8136 | struct value *lhs, struct expression *exp, | |
8137 | int *pos, LONGEST *indices, int *num_indices, | |
8138 | int max_indices, LONGEST low, LONGEST high) | |
8139 | { | |
8140 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8141 | ||
8142 | if (ind - 1 == high) | |
e1d5a0d2 | 8143 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8144 | if (ind <= high) |
8145 | { | |
8146 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8147 | *pos += 3; | |
8148 | assign_component (container, lhs, ind, exp, pos); | |
8149 | } | |
8150 | else | |
8151 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8152 | } | |
8153 | ||
8154 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8155 | construct at *POS, updating *POS past the construct, given that | |
8156 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8157 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
8158 | needed. CONTAINER is as for assign_aggregate. */ | |
8159 | static void | |
8160 | aggregate_assign_from_choices (struct value *container, | |
8161 | struct value *lhs, struct expression *exp, | |
8162 | int *pos, LONGEST *indices, int *num_indices, | |
8163 | int max_indices, LONGEST low, LONGEST high) | |
8164 | { | |
8165 | int j; | |
8166 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8167 | int choice_pos, expr_pc; | |
8168 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8169 | ||
8170 | choice_pos = *pos += 3; | |
8171 | ||
8172 | for (j = 0; j < n_choices; j += 1) | |
8173 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8174 | expr_pc = *pos; | |
8175 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8176 | ||
8177 | for (j = 0; j < n_choices; j += 1) | |
8178 | { | |
8179 | LONGEST lower, upper; | |
8180 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
8181 | if (op == OP_DISCRETE_RANGE) | |
8182 | { | |
8183 | choice_pos += 1; | |
8184 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8185 | EVAL_NORMAL)); | |
8186 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8187 | EVAL_NORMAL)); | |
8188 | } | |
8189 | else if (is_array) | |
8190 | { | |
8191 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8192 | EVAL_NORMAL)); | |
8193 | upper = lower; | |
8194 | } | |
8195 | else | |
8196 | { | |
8197 | int ind; | |
8198 | char *name; | |
8199 | switch (op) | |
8200 | { | |
8201 | case OP_NAME: | |
8202 | name = &exp->elts[choice_pos + 2].string; | |
8203 | break; | |
8204 | case OP_VAR_VALUE: | |
8205 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8206 | break; | |
8207 | default: | |
8208 | error (_("Invalid record component association.")); | |
8209 | } | |
8210 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8211 | ind = 0; | |
8212 | if (! find_struct_field (name, value_type (lhs), 0, | |
8213 | NULL, NULL, NULL, NULL, &ind)) | |
8214 | error (_("Unknown component name: %s."), name); | |
8215 | lower = upper = ind; | |
8216 | } | |
8217 | ||
8218 | if (lower <= upper && (lower < low || upper > high)) | |
8219 | error (_("Index in component association out of bounds.")); | |
8220 | ||
8221 | add_component_interval (lower, upper, indices, num_indices, | |
8222 | max_indices); | |
8223 | while (lower <= upper) | |
8224 | { | |
8225 | int pos1; | |
8226 | pos1 = expr_pc; | |
8227 | assign_component (container, lhs, lower, exp, &pos1); | |
8228 | lower += 1; | |
8229 | } | |
8230 | } | |
8231 | } | |
8232 | ||
8233 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8234 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8235 | have not been previously assigned. The index intervals already assigned | |
8236 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
8237 | OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ | |
8238 | static void | |
8239 | aggregate_assign_others (struct value *container, | |
8240 | struct value *lhs, struct expression *exp, | |
8241 | int *pos, LONGEST *indices, int num_indices, | |
8242 | LONGEST low, LONGEST high) | |
8243 | { | |
8244 | int i; | |
8245 | int expr_pc = *pos+1; | |
8246 | ||
8247 | for (i = 0; i < num_indices - 2; i += 2) | |
8248 | { | |
8249 | LONGEST ind; | |
8250 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) | |
8251 | { | |
8252 | int pos; | |
8253 | pos = expr_pc; | |
8254 | assign_component (container, lhs, ind, exp, &pos); | |
8255 | } | |
8256 | } | |
8257 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8258 | } | |
8259 | ||
8260 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8261 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8262 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8263 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8264 | static void | |
8265 | add_component_interval (LONGEST low, LONGEST high, | |
8266 | LONGEST* indices, int *size, int max_size) | |
8267 | { | |
8268 | int i, j; | |
8269 | for (i = 0; i < *size; i += 2) { | |
8270 | if (high >= indices[i] && low <= indices[i + 1]) | |
8271 | { | |
8272 | int kh; | |
8273 | for (kh = i + 2; kh < *size; kh += 2) | |
8274 | if (high < indices[kh]) | |
8275 | break; | |
8276 | if (low < indices[i]) | |
8277 | indices[i] = low; | |
8278 | indices[i + 1] = indices[kh - 1]; | |
8279 | if (high > indices[i + 1]) | |
8280 | indices[i + 1] = high; | |
8281 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8282 | *size -= kh - i - 2; | |
8283 | return; | |
8284 | } | |
8285 | else if (high < indices[i]) | |
8286 | break; | |
8287 | } | |
8288 | ||
8289 | if (*size == max_size) | |
8290 | error (_("Internal error: miscounted aggregate components.")); | |
8291 | *size += 2; | |
8292 | for (j = *size-1; j >= i+2; j -= 1) | |
8293 | indices[j] = indices[j - 2]; | |
8294 | indices[i] = low; | |
8295 | indices[i + 1] = high; | |
8296 | } | |
8297 | ||
6e48bd2c JB |
8298 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8299 | is different. */ | |
8300 | ||
8301 | static struct value * | |
8302 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8303 | { | |
8304 | if (type == ada_check_typedef (value_type (arg2))) | |
8305 | return arg2; | |
8306 | ||
8307 | if (ada_is_fixed_point_type (type)) | |
8308 | return (cast_to_fixed (type, arg2)); | |
8309 | ||
8310 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8311 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8312 | |
8313 | return value_cast (type, arg2); | |
8314 | } | |
8315 | ||
284614f0 JB |
8316 | /* Evaluating Ada expressions, and printing their result. |
8317 | ------------------------------------------------------ | |
8318 | ||
8319 | We usually evaluate an Ada expression in order to print its value. | |
8320 | We also evaluate an expression in order to print its type, which | |
8321 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8322 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8323 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8324 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8325 | similar. | |
8326 | ||
8327 | Evaluating expressions is a little more complicated for Ada entities | |
8328 | than it is for entities in languages such as C. The main reason for | |
8329 | this is that Ada provides types whose definition might be dynamic. | |
8330 | One example of such types is variant records. Or another example | |
8331 | would be an array whose bounds can only be known at run time. | |
8332 | ||
8333 | The following description is a general guide as to what should be | |
8334 | done (and what should NOT be done) in order to evaluate an expression | |
8335 | involving such types, and when. This does not cover how the semantic | |
8336 | information is encoded by GNAT as this is covered separatly. For the | |
8337 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8338 | in the GNAT sources. | |
8339 | ||
8340 | Ideally, we should embed each part of this description next to its | |
8341 | associated code. Unfortunately, the amount of code is so vast right | |
8342 | now that it's hard to see whether the code handling a particular | |
8343 | situation might be duplicated or not. One day, when the code is | |
8344 | cleaned up, this guide might become redundant with the comments | |
8345 | inserted in the code, and we might want to remove it. | |
8346 | ||
8347 | When evaluating Ada expressions, the tricky issue is that they may | |
8348 | reference entities whose type contents and size are not statically | |
8349 | known. Consider for instance a variant record: | |
8350 | ||
8351 | type Rec (Empty : Boolean := True) is record | |
8352 | case Empty is | |
8353 | when True => null; | |
8354 | when False => Value : Integer; | |
8355 | end case; | |
8356 | end record; | |
8357 | Yes : Rec := (Empty => False, Value => 1); | |
8358 | No : Rec := (empty => True); | |
8359 | ||
8360 | The size and contents of that record depends on the value of the | |
8361 | descriminant (Rec.Empty). At this point, neither the debugging | |
8362 | information nor the associated type structure in GDB are able to | |
8363 | express such dynamic types. So what the debugger does is to create | |
8364 | "fixed" versions of the type that applies to the specific object. | |
8365 | We also informally refer to this opperation as "fixing" an object, | |
8366 | which means creating its associated fixed type. | |
8367 | ||
8368 | Example: when printing the value of variable "Yes" above, its fixed | |
8369 | type would look like this: | |
8370 | ||
8371 | type Rec is record | |
8372 | Empty : Boolean; | |
8373 | Value : Integer; | |
8374 | end record; | |
8375 | ||
8376 | On the other hand, if we printed the value of "No", its fixed type | |
8377 | would become: | |
8378 | ||
8379 | type Rec is record | |
8380 | Empty : Boolean; | |
8381 | end record; | |
8382 | ||
8383 | Things become a little more complicated when trying to fix an entity | |
8384 | with a dynamic type that directly contains another dynamic type, | |
8385 | such as an array of variant records, for instance. There are | |
8386 | two possible cases: Arrays, and records. | |
8387 | ||
8388 | Arrays are a little simpler to handle, because the same amount of | |
8389 | memory is allocated for each element of the array, even if the amount | |
8390 | of space used by each element changes from element to element. | |
8391 | Consider for instance the following array of type Rec: | |
8392 | ||
8393 | type Rec_Array is array (1 .. 2) of Rec; | |
8394 | ||
8395 | The type structure in GDB describes an array in terms of its | |
8396 | bounds, and the type of its elements. By design, all elements | |
8397 | in the array have the same type. So we cannot use a fixed type | |
8398 | for the array elements in this case, since the fixed type depends | |
8399 | on the actual value of each element. | |
8400 | ||
8401 | Fortunately, what happens in practice is that each element of | |
8402 | the array has the same size, which is the maximum size that | |
8403 | might be needed in order to hold an object of the element type. | |
8404 | And the compiler shows it in the debugging information by wrapping | |
8405 | the array element inside a private PAD type. This type should not | |
8406 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
8407 | that we also use the adjective "aligner" in our code to designate | |
8408 | these wrapper types. | |
8409 | ||
8410 | These wrapper types should have a constant size, which is the size | |
8411 | of each element of the array. In the case when the size is statically | |
8412 | known, the PAD type will already have the right size, and the array | |
8413 | element type should remain unfixed. But there are cases when | |
8414 | this size is not statically known. For instance, assuming that | |
8415 | "Five" is an integer variable: | |
8416 | ||
8417 | type Dynamic is array (1 .. Five) of Integer; | |
8418 | type Wrapper (Has_Length : Boolean := False) is record | |
8419 | Data : Dynamic; | |
8420 | case Has_Length is | |
8421 | when True => Length : Integer; | |
8422 | when False => null; | |
8423 | end case; | |
8424 | end record; | |
8425 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
8426 | ||
8427 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
8428 | Data => (others => 17), | |
8429 | Length => 1)); | |
8430 | ||
8431 | ||
8432 | The debugging info would describe variable Hello as being an | |
8433 | array of a PAD type. The size of that PAD type is not statically | |
8434 | known, but can be determined using a parallel XVZ variable. | |
8435 | In that case, a copy of the PAD type with the correct size should | |
8436 | be used for the fixed array. | |
8437 | ||
8438 | However, things are slightly different in the case of dynamic | |
8439 | record types. In this case, in order to compute the associated | |
8440 | fixed type, we need to determine the size and offset of each of | |
8441 | its components. This, in turn, requires us to compute the fixed | |
8442 | type of each of these components. | |
8443 | ||
8444 | Consider for instance the example: | |
8445 | ||
8446 | type Bounded_String (Max_Size : Natural) is record | |
8447 | Str : String (1 .. Max_Size); | |
8448 | Length : Natural; | |
8449 | end record; | |
8450 | My_String : Bounded_String (Max_Size => 10); | |
8451 | ||
8452 | In that case, the position of field "Length" depends on the size | |
8453 | of field Str, which itself depends on the value of the Max_Size | |
8454 | discriminant. In order to fix the type of variable My_String, | |
8455 | we need to fix the type of field Str. Therefore, fixing a variant | |
8456 | record requires us to fix each of its components. | |
8457 | ||
8458 | However, if a component does not have a dynamic size, the component | |
8459 | should not be fixed. In particular, fields that use a PAD type | |
8460 | should not fixed. Here is an example where this might happen | |
8461 | (assuming type Rec above): | |
8462 | ||
8463 | type Container (Big : Boolean) is record | |
8464 | First : Rec; | |
8465 | After : Integer; | |
8466 | case Big is | |
8467 | when True => Another : Integer; | |
8468 | when False => null; | |
8469 | end case; | |
8470 | end record; | |
8471 | My_Container : Container := (Big => False, | |
8472 | First => (Empty => True), | |
8473 | After => 42); | |
8474 | ||
8475 | In that example, the compiler creates a PAD type for component First, | |
8476 | whose size is constant, and then positions the component After just | |
8477 | right after it. The offset of component After is therefore constant | |
8478 | in this case. | |
8479 | ||
8480 | The debugger computes the position of each field based on an algorithm | |
8481 | that uses, among other things, the actual position and size of the field | |
8482 | preceding it. Let's now imagine that the user is trying to print the | |
8483 | value of My_Container. If the type fixing was recursive, we would | |
8484 | end up computing the offset of field After based on the size of the | |
8485 | fixed version of field First. And since in our example First has | |
8486 | only one actual field, the size of the fixed type is actually smaller | |
8487 | than the amount of space allocated to that field, and thus we would | |
8488 | compute the wrong offset of field After. | |
8489 | ||
8490 | Unfortunately, we need to watch out for dynamic components of variant | |
8491 | records (identified by the ___XVL suffix in the component name). | |
8492 | Even if the target type is a PAD type, the size of that type might | |
8493 | not be statically known. So the PAD type needs to be unwrapped and | |
8494 | the resulting type needs to be fixed. Otherwise, we might end up | |
8495 | with the wrong size for our component. This can be observed with | |
8496 | the following type declarations: | |
8497 | ||
8498 | type Octal is new Integer range 0 .. 7; | |
8499 | type Octal_Array is array (Positive range <>) of Octal; | |
8500 | pragma Pack (Octal_Array); | |
8501 | ||
8502 | type Octal_Buffer (Size : Positive) is record | |
8503 | Buffer : Octal_Array (1 .. Size); | |
8504 | Length : Integer; | |
8505 | end record; | |
8506 | ||
8507 | In that case, Buffer is a PAD type whose size is unset and needs | |
8508 | to be computed by fixing the unwrapped type. | |
8509 | ||
8510 | Lastly, when should the sub-elements of a type that remained unfixed | |
8511 | thus far, be actually fixed? | |
8512 | ||
8513 | The answer is: Only when referencing that element. For instance | |
8514 | when selecting one component of a record, this specific component | |
8515 | should be fixed at that point in time. Or when printing the value | |
8516 | of a record, each component should be fixed before its value gets | |
8517 | printed. Similarly for arrays, the element of the array should be | |
8518 | fixed when printing each element of the array, or when extracting | |
8519 | one element out of that array. On the other hand, fixing should | |
8520 | not be performed on the elements when taking a slice of an array! | |
8521 | ||
8522 | Note that one of the side-effects of miscomputing the offset and | |
8523 | size of each field is that we end up also miscomputing the size | |
8524 | of the containing type. This can have adverse results when computing | |
8525 | the value of an entity. GDB fetches the value of an entity based | |
8526 | on the size of its type, and thus a wrong size causes GDB to fetch | |
8527 | the wrong amount of memory. In the case where the computed size is | |
8528 | too small, GDB fetches too little data to print the value of our | |
8529 | entiry. Results in this case as unpredicatble, as we usually read | |
8530 | past the buffer containing the data =:-o. */ | |
8531 | ||
8532 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
8533 | for the Ada language. */ | |
8534 | ||
52ce6436 | 8535 | static struct value * |
ebf56fd3 | 8536 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 8537 | int *pos, enum noside noside) |
14f9c5c9 AS |
8538 | { |
8539 | enum exp_opcode op; | |
14f9c5c9 AS |
8540 | int tem, tem2, tem3; |
8541 | int pc; | |
8542 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
8543 | struct type *type; | |
52ce6436 | 8544 | int nargs, oplen; |
d2e4a39e | 8545 | struct value **argvec; |
14f9c5c9 | 8546 | |
d2e4a39e AS |
8547 | pc = *pos; |
8548 | *pos += 1; | |
14f9c5c9 AS |
8549 | op = exp->elts[pc].opcode; |
8550 | ||
d2e4a39e | 8551 | switch (op) |
14f9c5c9 AS |
8552 | { |
8553 | default: | |
8554 | *pos -= 1; | |
6e48bd2c JB |
8555 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8556 | arg1 = unwrap_value (arg1); | |
8557 | ||
8558 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
8559 | then we need to perform the conversion manually, because | |
8560 | evaluate_subexp_standard doesn't do it. This conversion is | |
8561 | necessary in Ada because the different kinds of float/fixed | |
8562 | types in Ada have different representations. | |
8563 | ||
8564 | Similarly, we need to perform the conversion from OP_LONG | |
8565 | ourselves. */ | |
8566 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
8567 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
8568 | ||
8569 | return arg1; | |
4c4b4cd2 PH |
8570 | |
8571 | case OP_STRING: | |
8572 | { | |
76a01679 JB |
8573 | struct value *result; |
8574 | *pos -= 1; | |
8575 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8576 | /* The result type will have code OP_STRING, bashed there from | |
8577 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
8578 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
8579 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 8580 | return result; |
4c4b4cd2 | 8581 | } |
14f9c5c9 AS |
8582 | |
8583 | case UNOP_CAST: | |
8584 | (*pos) += 2; | |
8585 | type = exp->elts[pc + 1].type; | |
8586 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
8587 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8588 | goto nosideret; |
6e48bd2c | 8589 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
8590 | return arg1; |
8591 | ||
4c4b4cd2 PH |
8592 | case UNOP_QUAL: |
8593 | (*pos) += 2; | |
8594 | type = exp->elts[pc + 1].type; | |
8595 | return ada_evaluate_subexp (type, exp, pos, noside); | |
8596 | ||
14f9c5c9 AS |
8597 | case BINOP_ASSIGN: |
8598 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
8599 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
8600 | { | |
8601 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
8602 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
8603 | return arg1; | |
8604 | return ada_value_assign (arg1, arg1); | |
8605 | } | |
003f3813 JB |
8606 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
8607 | except if the lhs of our assignment is a convenience variable. | |
8608 | In the case of assigning to a convenience variable, the lhs | |
8609 | should be exactly the result of the evaluation of the rhs. */ | |
8610 | type = value_type (arg1); | |
8611 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
8612 | type = NULL; | |
8613 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 8614 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8615 | return arg1; |
df407dfe AC |
8616 | if (ada_is_fixed_point_type (value_type (arg1))) |
8617 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
8618 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 8619 | error |
323e0a4a | 8620 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 8621 | else |
df407dfe | 8622 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 8623 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
8624 | |
8625 | case BINOP_ADD: | |
8626 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8627 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8628 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8629 | goto nosideret; |
2ac8a782 JB |
8630 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8631 | return (value_from_longest | |
8632 | (value_type (arg1), | |
8633 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
8634 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8635 | || ada_is_fixed_point_type (value_type (arg2))) | |
8636 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8637 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
8638 | /* Do the addition, and cast the result to the type of the first |
8639 | argument. We cannot cast the result to a reference type, so if | |
8640 | ARG1 is a reference type, find its underlying type. */ | |
8641 | type = value_type (arg1); | |
8642 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8643 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8644 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8645 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
8646 | |
8647 | case BINOP_SUB: | |
8648 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8649 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8650 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8651 | goto nosideret; |
2ac8a782 JB |
8652 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8653 | return (value_from_longest | |
8654 | (value_type (arg1), | |
8655 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
8656 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8657 | || ada_is_fixed_point_type (value_type (arg2))) | |
8658 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8659 | error (_("Operands of fixed-point subtraction must have the same type")); |
b7789565 JB |
8660 | /* Do the substraction, and cast the result to the type of the first |
8661 | argument. We cannot cast the result to a reference type, so if | |
8662 | ARG1 is a reference type, find its underlying type. */ | |
8663 | type = value_type (arg1); | |
8664 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8665 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8666 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8667 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
8668 | |
8669 | case BINOP_MUL: | |
8670 | case BINOP_DIV: | |
e1578042 JB |
8671 | case BINOP_REM: |
8672 | case BINOP_MOD: | |
14f9c5c9 AS |
8673 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
8674 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8675 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8676 | goto nosideret; |
e1578042 | 8677 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
8678 | { |
8679 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8680 | return value_zero (value_type (arg1), not_lval); | |
8681 | } | |
14f9c5c9 | 8682 | else |
4c4b4cd2 | 8683 | { |
a53b7a21 | 8684 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 8685 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 8686 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 8687 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 8688 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 8689 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
8690 | return ada_value_binop (arg1, arg2, op); |
8691 | } | |
8692 | ||
4c4b4cd2 PH |
8693 | case BINOP_EQUAL: |
8694 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 8695 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 8696 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 8697 | if (noside == EVAL_SKIP) |
76a01679 | 8698 | goto nosideret; |
4c4b4cd2 | 8699 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 8700 | tem = 0; |
4c4b4cd2 | 8701 | else |
f44316fa UW |
8702 | { |
8703 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8704 | tem = ada_value_equal (arg1, arg2); | |
8705 | } | |
4c4b4cd2 | 8706 | if (op == BINOP_NOTEQUAL) |
76a01679 | 8707 | tem = !tem; |
fbb06eb1 UW |
8708 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8709 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
8710 | |
8711 | case UNOP_NEG: | |
8712 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8713 | if (noside == EVAL_SKIP) | |
8714 | goto nosideret; | |
df407dfe AC |
8715 | else if (ada_is_fixed_point_type (value_type (arg1))) |
8716 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 8717 | else |
f44316fa UW |
8718 | { |
8719 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
8720 | return value_neg (arg1); | |
8721 | } | |
4c4b4cd2 | 8722 | |
2330c6c6 JB |
8723 | case BINOP_LOGICAL_AND: |
8724 | case BINOP_LOGICAL_OR: | |
8725 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
8726 | { |
8727 | struct value *val; | |
8728 | ||
8729 | *pos -= 1; | |
8730 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
8731 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8732 | return value_cast (type, val); | |
000d5124 | 8733 | } |
2330c6c6 JB |
8734 | |
8735 | case BINOP_BITWISE_AND: | |
8736 | case BINOP_BITWISE_IOR: | |
8737 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
8738 | { |
8739 | struct value *val; | |
8740 | ||
8741 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
8742 | *pos = pc; | |
8743 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8744 | ||
8745 | return value_cast (value_type (arg1), val); | |
8746 | } | |
2330c6c6 | 8747 | |
14f9c5c9 AS |
8748 | case OP_VAR_VALUE: |
8749 | *pos -= 1; | |
6799def4 | 8750 | |
14f9c5c9 | 8751 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
8752 | { |
8753 | *pos += 4; | |
8754 | goto nosideret; | |
8755 | } | |
8756 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
8757 | /* Only encountered when an unresolved symbol occurs in a |
8758 | context other than a function call, in which case, it is | |
52ce6436 | 8759 | invalid. */ |
323e0a4a | 8760 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 8761 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 8762 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8763 | { |
0c1f74cf JB |
8764 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
8765 | if (ada_is_tagged_type (type, 0)) | |
8766 | { | |
8767 | /* Tagged types are a little special in the fact that the real | |
8768 | type is dynamic and can only be determined by inspecting the | |
8769 | object's tag. This means that we need to get the object's | |
8770 | value first (EVAL_NORMAL) and then extract the actual object | |
8771 | type from its tag. | |
8772 | ||
8773 | Note that we cannot skip the final step where we extract | |
8774 | the object type from its tag, because the EVAL_NORMAL phase | |
8775 | results in dynamic components being resolved into fixed ones. | |
8776 | This can cause problems when trying to print the type | |
8777 | description of tagged types whose parent has a dynamic size: | |
8778 | We use the type name of the "_parent" component in order | |
8779 | to print the name of the ancestor type in the type description. | |
8780 | If that component had a dynamic size, the resolution into | |
8781 | a fixed type would result in the loss of that type name, | |
8782 | thus preventing us from printing the name of the ancestor | |
8783 | type in the type description. */ | |
b79819ba JB |
8784 | struct type *actual_type; |
8785 | ||
0c1f74cf | 8786 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
8787 | actual_type = type_from_tag (ada_value_tag (arg1)); |
8788 | if (actual_type == NULL) | |
8789 | /* If, for some reason, we were unable to determine | |
8790 | the actual type from the tag, then use the static | |
8791 | approximation that we just computed as a fallback. | |
8792 | This can happen if the debugging information is | |
8793 | incomplete, for instance. */ | |
8794 | actual_type = type; | |
8795 | ||
8796 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
8797 | } |
8798 | ||
4c4b4cd2 PH |
8799 | *pos += 4; |
8800 | return value_zero | |
8801 | (to_static_fixed_type | |
8802 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
8803 | not_lval); | |
8804 | } | |
d2e4a39e | 8805 | else |
4c4b4cd2 | 8806 | { |
284614f0 JB |
8807 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8808 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
8809 | return ada_to_fixed_value (arg1); |
8810 | } | |
8811 | ||
8812 | case OP_FUNCALL: | |
8813 | (*pos) += 2; | |
8814 | ||
8815 | /* Allocate arg vector, including space for the function to be | |
8816 | called in argvec[0] and a terminating NULL. */ | |
8817 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8818 | argvec = | |
8819 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
8820 | ||
8821 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 8822 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 8823 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
8824 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
8825 | else | |
8826 | { | |
8827 | for (tem = 0; tem <= nargs; tem += 1) | |
8828 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8829 | argvec[tem] = 0; | |
8830 | ||
8831 | if (noside == EVAL_SKIP) | |
8832 | goto nosideret; | |
8833 | } | |
8834 | ||
df407dfe | 8835 | if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0])))) |
4c4b4cd2 | 8836 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
8837 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
8838 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
8839 | /* This is a packed array that has already been fixed, and | |
8840 | therefore already coerced to a simple array. Nothing further | |
8841 | to do. */ | |
8842 | ; | |
df407dfe AC |
8843 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
8844 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 8845 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
8846 | argvec[0] = value_addr (argvec[0]); |
8847 | ||
df407dfe | 8848 | type = ada_check_typedef (value_type (argvec[0])); |
4c4b4cd2 PH |
8849 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
8850 | { | |
61ee279c | 8851 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
8852 | { |
8853 | case TYPE_CODE_FUNC: | |
61ee279c | 8854 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8855 | break; |
8856 | case TYPE_CODE_ARRAY: | |
8857 | break; | |
8858 | case TYPE_CODE_STRUCT: | |
8859 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
8860 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 8861 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8862 | break; |
8863 | default: | |
323e0a4a | 8864 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 8865 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
8866 | break; |
8867 | } | |
8868 | } | |
8869 | ||
8870 | switch (TYPE_CODE (type)) | |
8871 | { | |
8872 | case TYPE_CODE_FUNC: | |
8873 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8874 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
8875 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
8876 | case TYPE_CODE_STRUCT: | |
8877 | { | |
8878 | int arity; | |
8879 | ||
4c4b4cd2 PH |
8880 | arity = ada_array_arity (type); |
8881 | type = ada_array_element_type (type, nargs); | |
8882 | if (type == NULL) | |
323e0a4a | 8883 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 8884 | if (arity != nargs) |
323e0a4a | 8885 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 8886 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 8887 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8888 | return |
8889 | unwrap_value (ada_value_subscript | |
8890 | (argvec[0], nargs, argvec + 1)); | |
8891 | } | |
8892 | case TYPE_CODE_ARRAY: | |
8893 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8894 | { | |
8895 | type = ada_array_element_type (type, nargs); | |
8896 | if (type == NULL) | |
323e0a4a | 8897 | error (_("element type of array unknown")); |
4c4b4cd2 | 8898 | else |
0a07e705 | 8899 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8900 | } |
8901 | return | |
8902 | unwrap_value (ada_value_subscript | |
8903 | (ada_coerce_to_simple_array (argvec[0]), | |
8904 | nargs, argvec + 1)); | |
8905 | case TYPE_CODE_PTR: /* Pointer to array */ | |
8906 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
8907 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8908 | { | |
8909 | type = ada_array_element_type (type, nargs); | |
8910 | if (type == NULL) | |
323e0a4a | 8911 | error (_("element type of array unknown")); |
4c4b4cd2 | 8912 | else |
0a07e705 | 8913 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8914 | } |
8915 | return | |
8916 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
8917 | nargs, argvec + 1)); | |
8918 | ||
8919 | default: | |
e1d5a0d2 PH |
8920 | error (_("Attempt to index or call something other than an " |
8921 | "array or function")); | |
4c4b4cd2 PH |
8922 | } |
8923 | ||
8924 | case TERNOP_SLICE: | |
8925 | { | |
8926 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8927 | struct value *low_bound_val = | |
8928 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
8929 | struct value *high_bound_val = |
8930 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8931 | LONGEST low_bound; | |
8932 | LONGEST high_bound; | |
994b9211 AC |
8933 | low_bound_val = coerce_ref (low_bound_val); |
8934 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
8935 | low_bound = pos_atr (low_bound_val); |
8936 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 8937 | |
4c4b4cd2 PH |
8938 | if (noside == EVAL_SKIP) |
8939 | goto nosideret; | |
8940 | ||
4c4b4cd2 PH |
8941 | /* If this is a reference to an aligner type, then remove all |
8942 | the aligners. */ | |
df407dfe AC |
8943 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8944 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
8945 | TYPE_TARGET_TYPE (value_type (array)) = | |
8946 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 8947 | |
df407dfe | 8948 | if (ada_is_packed_array_type (value_type (array))) |
323e0a4a | 8949 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
8950 | |
8951 | /* If this is a reference to an array or an array lvalue, | |
8952 | convert to a pointer. */ | |
df407dfe AC |
8953 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8954 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
8955 | && VALUE_LVAL (array) == lval_memory)) |
8956 | array = value_addr (array); | |
8957 | ||
1265e4aa | 8958 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 8959 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 8960 | (value_type (array)))) |
0b5d8877 | 8961 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
8962 | |
8963 | array = ada_coerce_to_simple_array_ptr (array); | |
8964 | ||
714e53ab PH |
8965 | /* If we have more than one level of pointer indirection, |
8966 | dereference the value until we get only one level. */ | |
df407dfe AC |
8967 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
8968 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
8969 | == TYPE_CODE_PTR)) |
8970 | array = value_ind (array); | |
8971 | ||
8972 | /* Make sure we really do have an array type before going further, | |
8973 | to avoid a SEGV when trying to get the index type or the target | |
8974 | type later down the road if the debug info generated by | |
8975 | the compiler is incorrect or incomplete. */ | |
df407dfe | 8976 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 8977 | error (_("cannot take slice of non-array")); |
714e53ab | 8978 | |
df407dfe | 8979 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 8980 | { |
0b5d8877 | 8981 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 8982 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
8983 | low_bound); |
8984 | else | |
8985 | { | |
8986 | struct type *arr_type0 = | |
df407dfe | 8987 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 8988 | NULL, 1); |
f5938064 JG |
8989 | return ada_value_slice_from_ptr (array, arr_type0, |
8990 | longest_to_int (low_bound), | |
8991 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
8992 | } |
8993 | } | |
8994 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8995 | return array; | |
8996 | else if (high_bound < low_bound) | |
df407dfe | 8997 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 8998 | else |
529cad9c PH |
8999 | return ada_value_slice (array, longest_to_int (low_bound), |
9000 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9001 | } |
14f9c5c9 | 9002 | |
4c4b4cd2 PH |
9003 | case UNOP_IN_RANGE: |
9004 | (*pos) += 2; | |
9005 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9006 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9007 | |
14f9c5c9 | 9008 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9009 | goto nosideret; |
14f9c5c9 | 9010 | |
4c4b4cd2 PH |
9011 | switch (TYPE_CODE (type)) |
9012 | { | |
9013 | default: | |
e1d5a0d2 PH |
9014 | lim_warning (_("Membership test incompletely implemented; " |
9015 | "always returns true")); | |
fbb06eb1 UW |
9016 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9017 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9018 | |
9019 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9020 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9021 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9022 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9023 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9024 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9025 | return | |
9026 | value_from_longest (type, | |
4c4b4cd2 PH |
9027 | (value_less (arg1, arg3) |
9028 | || value_equal (arg1, arg3)) | |
9029 | && (value_less (arg2, arg1) | |
9030 | || value_equal (arg2, arg1))); | |
9031 | } | |
9032 | ||
9033 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9034 | (*pos) += 2; |
4c4b4cd2 PH |
9035 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9036 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9037 | |
4c4b4cd2 PH |
9038 | if (noside == EVAL_SKIP) |
9039 | goto nosideret; | |
14f9c5c9 | 9040 | |
4c4b4cd2 | 9041 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9042 | { |
9043 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9044 | return value_zero (type, not_lval); | |
9045 | } | |
14f9c5c9 | 9046 | |
4c4b4cd2 | 9047 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9048 | |
df407dfe | 9049 | if (tem < 1 || tem > ada_array_arity (value_type (arg2))) |
323e0a4a | 9050 | error (_("invalid dimension number to 'range")); |
14f9c5c9 | 9051 | |
4c4b4cd2 PH |
9052 | arg3 = ada_array_bound (arg2, tem, 1); |
9053 | arg2 = ada_array_bound (arg2, tem, 0); | |
d2e4a39e | 9054 | |
f44316fa UW |
9055 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9056 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9057 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9058 | return |
fbb06eb1 | 9059 | value_from_longest (type, |
4c4b4cd2 PH |
9060 | (value_less (arg1, arg3) |
9061 | || value_equal (arg1, arg3)) | |
9062 | && (value_less (arg2, arg1) | |
9063 | || value_equal (arg2, arg1))); | |
9064 | ||
9065 | case TERNOP_IN_RANGE: | |
9066 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9067 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9068 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9069 | ||
9070 | if (noside == EVAL_SKIP) | |
9071 | goto nosideret; | |
9072 | ||
f44316fa UW |
9073 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9074 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9075 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9076 | return |
fbb06eb1 | 9077 | value_from_longest (type, |
4c4b4cd2 PH |
9078 | (value_less (arg1, arg3) |
9079 | || value_equal (arg1, arg3)) | |
9080 | && (value_less (arg2, arg1) | |
9081 | || value_equal (arg2, arg1))); | |
9082 | ||
9083 | case OP_ATR_FIRST: | |
9084 | case OP_ATR_LAST: | |
9085 | case OP_ATR_LENGTH: | |
9086 | { | |
76a01679 JB |
9087 | struct type *type_arg; |
9088 | if (exp->elts[*pos].opcode == OP_TYPE) | |
9089 | { | |
9090 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9091 | arg1 = NULL; | |
5bc23cb3 | 9092 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9093 | } |
9094 | else | |
9095 | { | |
9096 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9097 | type_arg = NULL; | |
9098 | } | |
9099 | ||
9100 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9101 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9102 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9103 | *pos += 4; | |
9104 | ||
9105 | if (noside == EVAL_SKIP) | |
9106 | goto nosideret; | |
9107 | ||
9108 | if (type_arg == NULL) | |
9109 | { | |
9110 | arg1 = ada_coerce_ref (arg1); | |
9111 | ||
df407dfe | 9112 | if (ada_is_packed_array_type (value_type (arg1))) |
76a01679 JB |
9113 | arg1 = ada_coerce_to_simple_array (arg1); |
9114 | ||
df407dfe | 9115 | if (tem < 1 || tem > ada_array_arity (value_type (arg1))) |
323e0a4a | 9116 | error (_("invalid dimension number to '%s"), |
76a01679 JB |
9117 | ada_attribute_name (op)); |
9118 | ||
9119 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9120 | { | |
df407dfe | 9121 | type = ada_index_type (value_type (arg1), tem); |
76a01679 JB |
9122 | if (type == NULL) |
9123 | error | |
323e0a4a | 9124 | (_("attempt to take bound of something that is not an array")); |
76a01679 JB |
9125 | return allocate_value (type); |
9126 | } | |
9127 | ||
9128 | switch (op) | |
9129 | { | |
9130 | default: /* Should never happen. */ | |
323e0a4a | 9131 | error (_("unexpected attribute encountered")); |
76a01679 JB |
9132 | case OP_ATR_FIRST: |
9133 | return ada_array_bound (arg1, tem, 0); | |
9134 | case OP_ATR_LAST: | |
9135 | return ada_array_bound (arg1, tem, 1); | |
9136 | case OP_ATR_LENGTH: | |
9137 | return ada_array_length (arg1, tem); | |
9138 | } | |
9139 | } | |
9140 | else if (discrete_type_p (type_arg)) | |
9141 | { | |
9142 | struct type *range_type; | |
9143 | char *name = ada_type_name (type_arg); | |
9144 | range_type = NULL; | |
9145 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
9146 | range_type = | |
9147 | to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg)); | |
9148 | if (range_type == NULL) | |
9149 | range_type = type_arg; | |
9150 | switch (op) | |
9151 | { | |
9152 | default: | |
323e0a4a | 9153 | error (_("unexpected attribute encountered")); |
76a01679 | 9154 | case OP_ATR_FIRST: |
690cc4eb PH |
9155 | return value_from_longest |
9156 | (range_type, discrete_type_low_bound (range_type)); | |
76a01679 | 9157 | case OP_ATR_LAST: |
690cc4eb PH |
9158 | return value_from_longest |
9159 | (range_type, discrete_type_high_bound (range_type)); | |
76a01679 | 9160 | case OP_ATR_LENGTH: |
323e0a4a | 9161 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9162 | } |
9163 | } | |
9164 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9165 | error (_("unimplemented type attribute")); |
76a01679 JB |
9166 | else |
9167 | { | |
9168 | LONGEST low, high; | |
9169 | ||
9170 | if (ada_is_packed_array_type (type_arg)) | |
9171 | type_arg = decode_packed_array_type (type_arg); | |
9172 | ||
9173 | if (tem < 1 || tem > ada_array_arity (type_arg)) | |
323e0a4a | 9174 | error (_("invalid dimension number to '%s"), |
76a01679 JB |
9175 | ada_attribute_name (op)); |
9176 | ||
9177 | type = ada_index_type (type_arg, tem); | |
9178 | if (type == NULL) | |
9179 | error | |
323e0a4a | 9180 | (_("attempt to take bound of something that is not an array")); |
76a01679 JB |
9181 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9182 | return allocate_value (type); | |
9183 | ||
9184 | switch (op) | |
9185 | { | |
9186 | default: | |
323e0a4a | 9187 | error (_("unexpected attribute encountered")); |
76a01679 JB |
9188 | case OP_ATR_FIRST: |
9189 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
9190 | return value_from_longest (type, low); | |
9191 | case OP_ATR_LAST: | |
9192 | high = ada_array_bound_from_type (type_arg, tem, 1, &type); | |
9193 | return value_from_longest (type, high); | |
9194 | case OP_ATR_LENGTH: | |
9195 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
9196 | high = ada_array_bound_from_type (type_arg, tem, 1, NULL); | |
9197 | return value_from_longest (type, high - low + 1); | |
9198 | } | |
9199 | } | |
14f9c5c9 AS |
9200 | } |
9201 | ||
4c4b4cd2 PH |
9202 | case OP_ATR_TAG: |
9203 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9204 | if (noside == EVAL_SKIP) | |
76a01679 | 9205 | goto nosideret; |
4c4b4cd2 PH |
9206 | |
9207 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9208 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9209 | |
9210 | return ada_value_tag (arg1); | |
9211 | ||
9212 | case OP_ATR_MIN: | |
9213 | case OP_ATR_MAX: | |
9214 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9215 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9216 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9217 | if (noside == EVAL_SKIP) | |
76a01679 | 9218 | goto nosideret; |
d2e4a39e | 9219 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9220 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9221 | else |
f44316fa UW |
9222 | { |
9223 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9224 | return value_binop (arg1, arg2, | |
9225 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9226 | } | |
14f9c5c9 | 9227 | |
4c4b4cd2 PH |
9228 | case OP_ATR_MODULUS: |
9229 | { | |
31dedfee | 9230 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 | 9231 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
4c4b4cd2 | 9232 | |
76a01679 JB |
9233 | if (noside == EVAL_SKIP) |
9234 | goto nosideret; | |
4c4b4cd2 | 9235 | |
76a01679 | 9236 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9237 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9238 | |
76a01679 JB |
9239 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9240 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9241 | } |
9242 | ||
9243 | ||
9244 | case OP_ATR_POS: | |
9245 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9246 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9247 | if (noside == EVAL_SKIP) | |
76a01679 | 9248 | goto nosideret; |
3cb382c9 UW |
9249 | type = builtin_type (exp->gdbarch)->builtin_int; |
9250 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9251 | return value_zero (type, not_lval); | |
14f9c5c9 | 9252 | else |
3cb382c9 | 9253 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9254 | |
4c4b4cd2 PH |
9255 | case OP_ATR_SIZE: |
9256 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9257 | type = value_type (arg1); |
9258 | ||
9259 | /* If the argument is a reference, then dereference its type, since | |
9260 | the user is really asking for the size of the actual object, | |
9261 | not the size of the pointer. */ | |
9262 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9263 | type = TYPE_TARGET_TYPE (type); | |
9264 | ||
4c4b4cd2 | 9265 | if (noside == EVAL_SKIP) |
76a01679 | 9266 | goto nosideret; |
4c4b4cd2 | 9267 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
6d2e05aa | 9268 | return value_zero (builtin_type_int32, not_lval); |
4c4b4cd2 | 9269 | else |
6d2e05aa | 9270 | return value_from_longest (builtin_type_int32, |
8c1c099f | 9271 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9272 | |
9273 | case OP_ATR_VAL: | |
9274 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9275 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9276 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9277 | if (noside == EVAL_SKIP) |
76a01679 | 9278 | goto nosideret; |
4c4b4cd2 | 9279 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9280 | return value_zero (type, not_lval); |
4c4b4cd2 | 9281 | else |
76a01679 | 9282 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9283 | |
9284 | case BINOP_EXP: | |
9285 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9286 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9287 | if (noside == EVAL_SKIP) | |
9288 | goto nosideret; | |
9289 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9290 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9291 | else |
f44316fa UW |
9292 | { |
9293 | /* For integer exponentiation operations, | |
9294 | only promote the first argument. */ | |
9295 | if (is_integral_type (value_type (arg2))) | |
9296 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9297 | else | |
9298 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9299 | ||
9300 | return value_binop (arg1, arg2, op); | |
9301 | } | |
4c4b4cd2 PH |
9302 | |
9303 | case UNOP_PLUS: | |
9304 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9305 | if (noside == EVAL_SKIP) | |
9306 | goto nosideret; | |
9307 | else | |
9308 | return arg1; | |
9309 | ||
9310 | case UNOP_ABS: | |
9311 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9312 | if (noside == EVAL_SKIP) | |
9313 | goto nosideret; | |
f44316fa | 9314 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9315 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9316 | return value_neg (arg1); |
14f9c5c9 | 9317 | else |
4c4b4cd2 | 9318 | return arg1; |
14f9c5c9 AS |
9319 | |
9320 | case UNOP_IND: | |
6b0d7253 | 9321 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9322 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9323 | goto nosideret; |
df407dfe | 9324 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9325 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9326 | { |
9327 | if (ada_is_array_descriptor_type (type)) | |
9328 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9329 | { | |
9330 | struct type *arrType = ada_type_of_array (arg1, 0); | |
9331 | if (arrType == NULL) | |
323e0a4a | 9332 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9333 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9334 | } |
9335 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9336 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9337 | /* In C you can dereference an array to get the 1st elt. */ | |
9338 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9339 | { |
9340 | type = to_static_fixed_type | |
9341 | (ada_aligned_type | |
9342 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9343 | check_size (type); | |
9344 | return value_zero (type, lval_memory); | |
9345 | } | |
4c4b4cd2 | 9346 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
9347 | { |
9348 | /* GDB allows dereferencing an int. */ | |
9349 | if (expect_type == NULL) | |
9350 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9351 | lval_memory); | |
9352 | else | |
9353 | { | |
9354 | expect_type = | |
9355 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
9356 | return value_zero (expect_type, lval_memory); | |
9357 | } | |
9358 | } | |
4c4b4cd2 | 9359 | else |
323e0a4a | 9360 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9361 | } |
76a01679 | 9362 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9363 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9364 | |
96967637 JB |
9365 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
9366 | /* GDB allows dereferencing an int. If we were given | |
9367 | the expect_type, then use that as the target type. | |
9368 | Otherwise, assume that the target type is an int. */ | |
9369 | { | |
9370 | if (expect_type != NULL) | |
9371 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
9372 | arg1)); | |
9373 | else | |
9374 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9375 | (CORE_ADDR) value_as_address (arg1)); | |
9376 | } | |
6b0d7253 | 9377 | |
4c4b4cd2 PH |
9378 | if (ada_is_array_descriptor_type (type)) |
9379 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9380 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9381 | else |
4c4b4cd2 | 9382 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9383 | |
9384 | case STRUCTOP_STRUCT: | |
9385 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9386 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9387 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9388 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9389 | goto nosideret; |
14f9c5c9 | 9390 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9391 | { |
df407dfe | 9392 | struct type *type1 = value_type (arg1); |
76a01679 JB |
9393 | if (ada_is_tagged_type (type1, 1)) |
9394 | { | |
9395 | type = ada_lookup_struct_elt_type (type1, | |
9396 | &exp->elts[pc + 2].string, | |
9397 | 1, 1, NULL); | |
9398 | if (type == NULL) | |
9399 | /* In this case, we assume that the field COULD exist | |
9400 | in some extension of the type. Return an object of | |
9401 | "type" void, which will match any formal | |
9402 | (see ada_type_match). */ | |
9403 | return value_zero (builtin_type_void, lval_memory); | |
9404 | } | |
9405 | else | |
9406 | type = | |
9407 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9408 | 0, NULL); | |
9409 | ||
9410 | return value_zero (ada_aligned_type (type), lval_memory); | |
9411 | } | |
14f9c5c9 | 9412 | else |
284614f0 JB |
9413 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
9414 | arg1 = unwrap_value (arg1); | |
9415 | return ada_to_fixed_value (arg1); | |
9416 | ||
14f9c5c9 | 9417 | case OP_TYPE: |
4c4b4cd2 PH |
9418 | /* The value is not supposed to be used. This is here to make it |
9419 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9420 | (*pos) += 2; |
9421 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9422 | goto nosideret; |
14f9c5c9 | 9423 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9424 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9425 | else |
323e0a4a | 9426 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9427 | |
9428 | case OP_AGGREGATE: | |
9429 | case OP_CHOICES: | |
9430 | case OP_OTHERS: | |
9431 | case OP_DISCRETE_RANGE: | |
9432 | case OP_POSITIONAL: | |
9433 | case OP_NAME: | |
9434 | if (noside == EVAL_NORMAL) | |
9435 | switch (op) | |
9436 | { | |
9437 | case OP_NAME: | |
9438 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9439 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9440 | case OP_AGGREGATE: |
9441 | error (_("Aggregates only allowed on the right of an assignment")); | |
9442 | default: | |
e1d5a0d2 | 9443 | internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); |
52ce6436 PH |
9444 | } |
9445 | ||
9446 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9447 | *pos += oplen - 1; | |
9448 | for (tem = 0; tem < nargs; tem += 1) | |
9449 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9450 | goto nosideret; | |
14f9c5c9 AS |
9451 | } |
9452 | ||
9453 | nosideret: | |
cb18ec49 | 9454 | return value_from_longest (builtin_type_int8, (LONGEST) 1); |
14f9c5c9 | 9455 | } |
14f9c5c9 | 9456 | \f |
d2e4a39e | 9457 | |
4c4b4cd2 | 9458 | /* Fixed point */ |
14f9c5c9 AS |
9459 | |
9460 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9461 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9462 | Otherwise, return NULL. */ |
14f9c5c9 | 9463 | |
d2e4a39e | 9464 | static const char * |
ebf56fd3 | 9465 | fixed_type_info (struct type *type) |
14f9c5c9 | 9466 | { |
d2e4a39e | 9467 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
9468 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
9469 | ||
d2e4a39e AS |
9470 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
9471 | { | |
14f9c5c9 AS |
9472 | const char *tail = strstr (name, "___XF_"); |
9473 | if (tail == NULL) | |
4c4b4cd2 | 9474 | return NULL; |
d2e4a39e | 9475 | else |
4c4b4cd2 | 9476 | return tail + 5; |
14f9c5c9 AS |
9477 | } |
9478 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
9479 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
9480 | else | |
9481 | return NULL; | |
9482 | } | |
9483 | ||
4c4b4cd2 | 9484 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
9485 | |
9486 | int | |
ebf56fd3 | 9487 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
9488 | { |
9489 | return fixed_type_info (type) != NULL; | |
9490 | } | |
9491 | ||
4c4b4cd2 PH |
9492 | /* Return non-zero iff TYPE represents a System.Address type. */ |
9493 | ||
9494 | int | |
9495 | ada_is_system_address_type (struct type *type) | |
9496 | { | |
9497 | return (TYPE_NAME (type) | |
9498 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
9499 | } | |
9500 | ||
14f9c5c9 AS |
9501 | /* Assuming that TYPE is the representation of an Ada fixed-point |
9502 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 9503 | delta cannot be determined. */ |
14f9c5c9 AS |
9504 | |
9505 | DOUBLEST | |
ebf56fd3 | 9506 | ada_delta (struct type *type) |
14f9c5c9 AS |
9507 | { |
9508 | const char *encoding = fixed_type_info (type); | |
facc390f | 9509 | DOUBLEST num, den; |
14f9c5c9 | 9510 | |
facc390f JB |
9511 | /* Strictly speaking, num and den are encoded as integer. However, |
9512 | they may not fit into a long, and they will have to be converted | |
9513 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9514 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9515 | &num, &den) < 2) | |
14f9c5c9 | 9516 | return -1.0; |
d2e4a39e | 9517 | else |
facc390f | 9518 | return num / den; |
14f9c5c9 AS |
9519 | } |
9520 | ||
9521 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 9522 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
9523 | |
9524 | static DOUBLEST | |
ebf56fd3 | 9525 | scaling_factor (struct type *type) |
14f9c5c9 AS |
9526 | { |
9527 | const char *encoding = fixed_type_info (type); | |
facc390f | 9528 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 9529 | int n; |
d2e4a39e | 9530 | |
facc390f JB |
9531 | /* Strictly speaking, num's and den's are encoded as integer. However, |
9532 | they may not fit into a long, and they will have to be converted | |
9533 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9534 | n = sscanf (encoding, | |
9535 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
9536 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9537 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
9538 | |
9539 | if (n < 2) | |
9540 | return 1.0; | |
9541 | else if (n == 4) | |
facc390f | 9542 | return num1 / den1; |
d2e4a39e | 9543 | else |
facc390f | 9544 | return num0 / den0; |
14f9c5c9 AS |
9545 | } |
9546 | ||
9547 | ||
9548 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 9549 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
9550 | |
9551 | DOUBLEST | |
ebf56fd3 | 9552 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 9553 | { |
d2e4a39e | 9554 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
9555 | } |
9556 | ||
4c4b4cd2 PH |
9557 | /* The representation of a fixed-point value of type TYPE |
9558 | corresponding to the value X. */ | |
14f9c5c9 AS |
9559 | |
9560 | LONGEST | |
ebf56fd3 | 9561 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
9562 | { |
9563 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
9564 | } | |
9565 | ||
9566 | ||
4c4b4cd2 | 9567 | /* VAX floating formats */ |
14f9c5c9 AS |
9568 | |
9569 | /* Non-zero iff TYPE represents one of the special VAX floating-point | |
4c4b4cd2 PH |
9570 | types. */ |
9571 | ||
14f9c5c9 | 9572 | int |
d2e4a39e | 9573 | ada_is_vax_floating_type (struct type *type) |
14f9c5c9 | 9574 | { |
d2e4a39e | 9575 | int name_len = |
14f9c5c9 | 9576 | (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type)); |
d2e4a39e | 9577 | return |
14f9c5c9 | 9578 | name_len > 6 |
d2e4a39e | 9579 | && (TYPE_CODE (type) == TYPE_CODE_INT |
4c4b4cd2 PH |
9580 | || TYPE_CODE (type) == TYPE_CODE_RANGE) |
9581 | && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0; | |
14f9c5c9 AS |
9582 | } |
9583 | ||
9584 | /* The type of special VAX floating-point type this is, assuming | |
4c4b4cd2 PH |
9585 | ada_is_vax_floating_point. */ |
9586 | ||
14f9c5c9 | 9587 | int |
d2e4a39e | 9588 | ada_vax_float_type_suffix (struct type *type) |
14f9c5c9 | 9589 | { |
d2e4a39e | 9590 | return ada_type_name (type)[strlen (ada_type_name (type)) - 1]; |
14f9c5c9 AS |
9591 | } |
9592 | ||
4c4b4cd2 | 9593 | /* A value representing the special debugging function that outputs |
14f9c5c9 | 9594 | VAX floating-point values of the type represented by TYPE. Assumes |
4c4b4cd2 PH |
9595 | ada_is_vax_floating_type (TYPE). */ |
9596 | ||
d2e4a39e AS |
9597 | struct value * |
9598 | ada_vax_float_print_function (struct type *type) | |
9599 | { | |
9600 | switch (ada_vax_float_type_suffix (type)) | |
9601 | { | |
9602 | case 'F': | |
9603 | return get_var_value ("DEBUG_STRING_F", 0); | |
9604 | case 'D': | |
9605 | return get_var_value ("DEBUG_STRING_D", 0); | |
9606 | case 'G': | |
9607 | return get_var_value ("DEBUG_STRING_G", 0); | |
9608 | default: | |
323e0a4a | 9609 | error (_("invalid VAX floating-point type")); |
d2e4a39e | 9610 | } |
14f9c5c9 | 9611 | } |
14f9c5c9 | 9612 | \f |
d2e4a39e | 9613 | |
4c4b4cd2 | 9614 | /* Range types */ |
14f9c5c9 AS |
9615 | |
9616 | /* Scan STR beginning at position K for a discriminant name, and | |
9617 | return the value of that discriminant field of DVAL in *PX. If | |
9618 | PNEW_K is not null, put the position of the character beyond the | |
9619 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 9620 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
9621 | |
9622 | static int | |
07d8f827 | 9623 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 9624 | int *pnew_k) |
14f9c5c9 AS |
9625 | { |
9626 | static char *bound_buffer = NULL; | |
9627 | static size_t bound_buffer_len = 0; | |
9628 | char *bound; | |
9629 | char *pend; | |
d2e4a39e | 9630 | struct value *bound_val; |
14f9c5c9 AS |
9631 | |
9632 | if (dval == NULL || str == NULL || str[k] == '\0') | |
9633 | return 0; | |
9634 | ||
d2e4a39e | 9635 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
9636 | if (pend == NULL) |
9637 | { | |
d2e4a39e | 9638 | bound = str + k; |
14f9c5c9 AS |
9639 | k += strlen (bound); |
9640 | } | |
d2e4a39e | 9641 | else |
14f9c5c9 | 9642 | { |
d2e4a39e | 9643 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 9644 | bound = bound_buffer; |
d2e4a39e AS |
9645 | strncpy (bound_buffer, str + k, pend - (str + k)); |
9646 | bound[pend - (str + k)] = '\0'; | |
9647 | k = pend - str; | |
14f9c5c9 | 9648 | } |
d2e4a39e | 9649 | |
df407dfe | 9650 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
9651 | if (bound_val == NULL) |
9652 | return 0; | |
9653 | ||
9654 | *px = value_as_long (bound_val); | |
9655 | if (pnew_k != NULL) | |
9656 | *pnew_k = k; | |
9657 | return 1; | |
9658 | } | |
9659 | ||
9660 | /* Value of variable named NAME in the current environment. If | |
9661 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
9662 | otherwise causes an error with message ERR_MSG. */ |
9663 | ||
d2e4a39e AS |
9664 | static struct value * |
9665 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 9666 | { |
4c4b4cd2 | 9667 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
9668 | int nsyms; |
9669 | ||
4c4b4cd2 PH |
9670 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
9671 | &syms); | |
14f9c5c9 AS |
9672 | |
9673 | if (nsyms != 1) | |
9674 | { | |
9675 | if (err_msg == NULL) | |
4c4b4cd2 | 9676 | return 0; |
14f9c5c9 | 9677 | else |
8a3fe4f8 | 9678 | error (("%s"), err_msg); |
14f9c5c9 AS |
9679 | } |
9680 | ||
4c4b4cd2 | 9681 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 9682 | } |
d2e4a39e | 9683 | |
14f9c5c9 | 9684 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
9685 | no such variable found, returns 0, and sets *FLAG to 0. If |
9686 | successful, sets *FLAG to 1. */ | |
9687 | ||
14f9c5c9 | 9688 | LONGEST |
4c4b4cd2 | 9689 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 9690 | { |
4c4b4cd2 | 9691 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 9692 | |
14f9c5c9 AS |
9693 | if (var_val == 0) |
9694 | { | |
9695 | if (flag != NULL) | |
4c4b4cd2 | 9696 | *flag = 0; |
14f9c5c9 AS |
9697 | return 0; |
9698 | } | |
9699 | else | |
9700 | { | |
9701 | if (flag != NULL) | |
4c4b4cd2 | 9702 | *flag = 1; |
14f9c5c9 AS |
9703 | return value_as_long (var_val); |
9704 | } | |
9705 | } | |
d2e4a39e | 9706 | |
14f9c5c9 AS |
9707 | |
9708 | /* Return a range type whose base type is that of the range type named | |
9709 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 9710 | from NAME according to the GNAT range encoding conventions. |
14f9c5c9 AS |
9711 | Extract discriminant values, if needed, from DVAL. If a new type |
9712 | must be created, allocate in OBJFILE's space. The bounds | |
9713 | information, in general, is encoded in NAME, the base type given in | |
4c4b4cd2 | 9714 | the named range type. */ |
14f9c5c9 | 9715 | |
d2e4a39e | 9716 | static struct type * |
ebf56fd3 | 9717 | to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile) |
14f9c5c9 AS |
9718 | { |
9719 | struct type *raw_type = ada_find_any_type (name); | |
9720 | struct type *base_type; | |
d2e4a39e | 9721 | char *subtype_info; |
14f9c5c9 | 9722 | |
dddfab26 UW |
9723 | /* Also search primitive types if type symbol could not be found. */ |
9724 | if (raw_type == NULL) | |
9725 | raw_type = language_lookup_primitive_type_by_name | |
9726 | (language_def (language_ada), current_gdbarch, name); | |
9727 | ||
14f9c5c9 | 9728 | if (raw_type == NULL) |
6d84d3d8 | 9729 | base_type = builtin_type_int32; |
14f9c5c9 AS |
9730 | else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
9731 | base_type = TYPE_TARGET_TYPE (raw_type); | |
9732 | else | |
9733 | base_type = raw_type; | |
9734 | ||
9735 | subtype_info = strstr (name, "___XD"); | |
9736 | if (subtype_info == NULL) | |
690cc4eb PH |
9737 | { |
9738 | LONGEST L = discrete_type_low_bound (raw_type); | |
9739 | LONGEST U = discrete_type_high_bound (raw_type); | |
9740 | if (L < INT_MIN || U > INT_MAX) | |
9741 | return raw_type; | |
9742 | else | |
9743 | return create_range_type (alloc_type (objfile), raw_type, | |
9744 | discrete_type_low_bound (raw_type), | |
9745 | discrete_type_high_bound (raw_type)); | |
9746 | } | |
14f9c5c9 AS |
9747 | else |
9748 | { | |
9749 | static char *name_buf = NULL; | |
9750 | static size_t name_len = 0; | |
9751 | int prefix_len = subtype_info - name; | |
9752 | LONGEST L, U; | |
9753 | struct type *type; | |
9754 | char *bounds_str; | |
9755 | int n; | |
9756 | ||
9757 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
9758 | strncpy (name_buf, name, prefix_len); | |
9759 | name_buf[prefix_len] = '\0'; | |
9760 | ||
9761 | subtype_info += 5; | |
9762 | bounds_str = strchr (subtype_info, '_'); | |
9763 | n = 1; | |
9764 | ||
d2e4a39e | 9765 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
9766 | { |
9767 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
9768 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
9769 | return raw_type; | |
9770 | if (bounds_str[n] == '_') | |
9771 | n += 2; | |
9772 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
9773 | n += 1; | |
9774 | subtype_info += 1; | |
9775 | } | |
d2e4a39e | 9776 | else |
4c4b4cd2 PH |
9777 | { |
9778 | int ok; | |
9779 | strcpy (name_buf + prefix_len, "___L"); | |
9780 | L = get_int_var_value (name_buf, &ok); | |
9781 | if (!ok) | |
9782 | { | |
323e0a4a | 9783 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
9784 | L = 1; |
9785 | } | |
9786 | } | |
14f9c5c9 | 9787 | |
d2e4a39e | 9788 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
9789 | { |
9790 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
9791 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
9792 | return raw_type; | |
9793 | } | |
d2e4a39e | 9794 | else |
4c4b4cd2 PH |
9795 | { |
9796 | int ok; | |
9797 | strcpy (name_buf + prefix_len, "___U"); | |
9798 | U = get_int_var_value (name_buf, &ok); | |
9799 | if (!ok) | |
9800 | { | |
323e0a4a | 9801 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
9802 | U = L; |
9803 | } | |
9804 | } | |
14f9c5c9 | 9805 | |
d2e4a39e | 9806 | if (objfile == NULL) |
4c4b4cd2 | 9807 | objfile = TYPE_OBJFILE (base_type); |
14f9c5c9 | 9808 | type = create_range_type (alloc_type (objfile), base_type, L, U); |
d2e4a39e | 9809 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
9810 | return type; |
9811 | } | |
9812 | } | |
9813 | ||
4c4b4cd2 PH |
9814 | /* True iff NAME is the name of a range type. */ |
9815 | ||
14f9c5c9 | 9816 | int |
d2e4a39e | 9817 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
9818 | { |
9819 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 9820 | } |
14f9c5c9 | 9821 | \f |
d2e4a39e | 9822 | |
4c4b4cd2 PH |
9823 | /* Modular types */ |
9824 | ||
9825 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 9826 | |
14f9c5c9 | 9827 | int |
d2e4a39e | 9828 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 9829 | { |
4c4b4cd2 | 9830 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
9831 | |
9832 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 9833 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 9834 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
9835 | } |
9836 | ||
0056e4d5 JB |
9837 | /* Try to determine the lower and upper bounds of the given modular type |
9838 | using the type name only. Return non-zero and set L and U as the lower | |
9839 | and upper bounds (respectively) if successful. */ | |
9840 | ||
9841 | int | |
9842 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
9843 | { | |
9844 | char *name = ada_type_name (type); | |
9845 | char *suffix; | |
9846 | int k; | |
9847 | LONGEST U; | |
9848 | ||
9849 | if (name == NULL) | |
9850 | return 0; | |
9851 | ||
9852 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
9853 | we are looking for static bounds, which means an __XDLU suffix. | |
9854 | Moreover, we know that the lower bound of modular types is always | |
9855 | zero, so the actual suffix should start with "__XDLU_0__", and | |
9856 | then be followed by the upper bound value. */ | |
9857 | suffix = strstr (name, "__XDLU_0__"); | |
9858 | if (suffix == NULL) | |
9859 | return 0; | |
9860 | k = 10; | |
9861 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
9862 | return 0; | |
9863 | ||
9864 | *modulus = (ULONGEST) U + 1; | |
9865 | return 1; | |
9866 | } | |
9867 | ||
4c4b4cd2 PH |
9868 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
9869 | ||
61ee279c | 9870 | ULONGEST |
0056e4d5 | 9871 | ada_modulus (struct type *type) |
14f9c5c9 | 9872 | { |
0056e4d5 JB |
9873 | ULONGEST modulus; |
9874 | ||
9875 | /* Normally, the modulus of a modular type is equal to the value of | |
9876 | its upper bound + 1. However, the upper bound is currently stored | |
9877 | as an int, which is not always big enough to hold the actual bound | |
9878 | value. To workaround this, try to take advantage of the encoding | |
9879 | that GNAT uses with with discrete types. To avoid some unnecessary | |
9880 | parsing, we do this only when the size of TYPE is greater than | |
9881 | the size of the field holding the bound. */ | |
9882 | if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type)) | |
9883 | && ada_modulus_from_name (type, &modulus)) | |
9884 | return modulus; | |
9885 | ||
d37209fd | 9886 | return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 9887 | } |
d2e4a39e | 9888 | \f |
f7f9143b JB |
9889 | |
9890 | /* Ada exception catchpoint support: | |
9891 | --------------------------------- | |
9892 | ||
9893 | We support 3 kinds of exception catchpoints: | |
9894 | . catchpoints on Ada exceptions | |
9895 | . catchpoints on unhandled Ada exceptions | |
9896 | . catchpoints on failed assertions | |
9897 | ||
9898 | Exceptions raised during failed assertions, or unhandled exceptions | |
9899 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
9900 | However, we can easily differentiate these two special cases, and having | |
9901 | the option to distinguish these two cases from the rest can be useful | |
9902 | to zero-in on certain situations. | |
9903 | ||
9904 | Exception catchpoints are a specialized form of breakpoint, | |
9905 | since they rely on inserting breakpoints inside known routines | |
9906 | of the GNAT runtime. The implementation therefore uses a standard | |
9907 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
9908 | of breakpoint_ops. | |
9909 | ||
0259addd JB |
9910 | Support in the runtime for exception catchpoints have been changed |
9911 | a few times already, and these changes affect the implementation | |
9912 | of these catchpoints. In order to be able to support several | |
9913 | variants of the runtime, we use a sniffer that will determine | |
9914 | the runtime variant used by the program being debugged. | |
9915 | ||
f7f9143b JB |
9916 | At this time, we do not support the use of conditions on Ada exception |
9917 | catchpoints. The COND and COND_STRING fields are therefore set | |
9918 | to NULL (most of the time, see below). | |
9919 | ||
9920 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
9921 | ||
9922 | When a user specifies the name of a specific exception in the case | |
9923 | of catchpoints on Ada exceptions, we store the name of that exception | |
9924 | in the EXP_STRING. We then translate this request into an actual | |
9925 | condition stored in COND_STRING, and then parse it into an expression | |
9926 | stored in COND. */ | |
9927 | ||
9928 | /* The different types of catchpoints that we introduced for catching | |
9929 | Ada exceptions. */ | |
9930 | ||
9931 | enum exception_catchpoint_kind | |
9932 | { | |
9933 | ex_catch_exception, | |
9934 | ex_catch_exception_unhandled, | |
9935 | ex_catch_assert | |
9936 | }; | |
9937 | ||
3d0b0fa3 JB |
9938 | /* Ada's standard exceptions. */ |
9939 | ||
9940 | static char *standard_exc[] = { | |
9941 | "constraint_error", | |
9942 | "program_error", | |
9943 | "storage_error", | |
9944 | "tasking_error" | |
9945 | }; | |
9946 | ||
0259addd JB |
9947 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
9948 | ||
9949 | /* A structure that describes how to support exception catchpoints | |
9950 | for a given executable. */ | |
9951 | ||
9952 | struct exception_support_info | |
9953 | { | |
9954 | /* The name of the symbol to break on in order to insert | |
9955 | a catchpoint on exceptions. */ | |
9956 | const char *catch_exception_sym; | |
9957 | ||
9958 | /* The name of the symbol to break on in order to insert | |
9959 | a catchpoint on unhandled exceptions. */ | |
9960 | const char *catch_exception_unhandled_sym; | |
9961 | ||
9962 | /* The name of the symbol to break on in order to insert | |
9963 | a catchpoint on failed assertions. */ | |
9964 | const char *catch_assert_sym; | |
9965 | ||
9966 | /* Assuming that the inferior just triggered an unhandled exception | |
9967 | catchpoint, this function is responsible for returning the address | |
9968 | in inferior memory where the name of that exception is stored. | |
9969 | Return zero if the address could not be computed. */ | |
9970 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
9971 | }; | |
9972 | ||
9973 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
9974 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
9975 | ||
9976 | /* The following exception support info structure describes how to | |
9977 | implement exception catchpoints with the latest version of the | |
9978 | Ada runtime (as of 2007-03-06). */ | |
9979 | ||
9980 | static const struct exception_support_info default_exception_support_info = | |
9981 | { | |
9982 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
9983 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9984 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9985 | ada_unhandled_exception_name_addr | |
9986 | }; | |
9987 | ||
9988 | /* The following exception support info structure describes how to | |
9989 | implement exception catchpoints with a slightly older version | |
9990 | of the Ada runtime. */ | |
9991 | ||
9992 | static const struct exception_support_info exception_support_info_fallback = | |
9993 | { | |
9994 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
9995 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9996 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9997 | ada_unhandled_exception_name_addr_from_raise | |
9998 | }; | |
9999 | ||
10000 | /* For each executable, we sniff which exception info structure to use | |
10001 | and cache it in the following global variable. */ | |
10002 | ||
10003 | static const struct exception_support_info *exception_info = NULL; | |
10004 | ||
10005 | /* Inspect the Ada runtime and determine which exception info structure | |
10006 | should be used to provide support for exception catchpoints. | |
10007 | ||
10008 | This function will always set exception_info, or raise an error. */ | |
10009 | ||
10010 | static void | |
10011 | ada_exception_support_info_sniffer (void) | |
10012 | { | |
10013 | struct symbol *sym; | |
10014 | ||
10015 | /* If the exception info is already known, then no need to recompute it. */ | |
10016 | if (exception_info != NULL) | |
10017 | return; | |
10018 | ||
10019 | /* Check the latest (default) exception support info. */ | |
10020 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
10021 | NULL, VAR_DOMAIN); | |
10022 | if (sym != NULL) | |
10023 | { | |
10024 | exception_info = &default_exception_support_info; | |
10025 | return; | |
10026 | } | |
10027 | ||
10028 | /* Try our fallback exception suport info. */ | |
10029 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
10030 | NULL, VAR_DOMAIN); | |
10031 | if (sym != NULL) | |
10032 | { | |
10033 | exception_info = &exception_support_info_fallback; | |
10034 | return; | |
10035 | } | |
10036 | ||
10037 | /* Sometimes, it is normal for us to not be able to find the routine | |
10038 | we are looking for. This happens when the program is linked with | |
10039 | the shared version of the GNAT runtime, and the program has not been | |
10040 | started yet. Inform the user of these two possible causes if | |
10041 | applicable. */ | |
10042 | ||
10043 | if (ada_update_initial_language (language_unknown, NULL) != language_ada) | |
10044 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); | |
10045 | ||
10046 | /* If the symbol does not exist, then check that the program is | |
10047 | already started, to make sure that shared libraries have been | |
10048 | loaded. If it is not started, this may mean that the symbol is | |
10049 | in a shared library. */ | |
10050 | ||
10051 | if (ptid_get_pid (inferior_ptid) == 0) | |
10052 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10053 | ||
10054 | /* At this point, we know that we are debugging an Ada program and | |
10055 | that the inferior has been started, but we still are not able to | |
10056 | find the run-time symbols. That can mean that we are in | |
10057 | configurable run time mode, or that a-except as been optimized | |
10058 | out by the linker... In any case, at this point it is not worth | |
10059 | supporting this feature. */ | |
10060 | ||
10061 | error (_("Cannot insert catchpoints in this configuration.")); | |
10062 | } | |
10063 | ||
10064 | /* An observer of "executable_changed" events. | |
10065 | Its role is to clear certain cached values that need to be recomputed | |
10066 | each time a new executable is loaded by GDB. */ | |
10067 | ||
10068 | static void | |
781b42b0 | 10069 | ada_executable_changed_observer (void) |
0259addd JB |
10070 | { |
10071 | /* If the executable changed, then it is possible that the Ada runtime | |
10072 | is different. So we need to invalidate the exception support info | |
10073 | cache. */ | |
10074 | exception_info = NULL; | |
10075 | } | |
10076 | ||
f7f9143b JB |
10077 | /* Return the name of the function at PC, NULL if could not find it. |
10078 | This function only checks the debugging information, not the symbol | |
10079 | table. */ | |
10080 | ||
10081 | static char * | |
10082 | function_name_from_pc (CORE_ADDR pc) | |
10083 | { | |
10084 | char *func_name; | |
10085 | ||
10086 | if (!find_pc_partial_function (pc, &func_name, NULL, NULL)) | |
10087 | return NULL; | |
10088 | ||
10089 | return func_name; | |
10090 | } | |
10091 | ||
10092 | /* True iff FRAME is very likely to be that of a function that is | |
10093 | part of the runtime system. This is all very heuristic, but is | |
10094 | intended to be used as advice as to what frames are uninteresting | |
10095 | to most users. */ | |
10096 | ||
10097 | static int | |
10098 | is_known_support_routine (struct frame_info *frame) | |
10099 | { | |
4ed6b5be | 10100 | struct symtab_and_line sal; |
f7f9143b JB |
10101 | char *func_name; |
10102 | int i; | |
f7f9143b | 10103 | |
4ed6b5be JB |
10104 | /* If this code does not have any debugging information (no symtab), |
10105 | This cannot be any user code. */ | |
f7f9143b | 10106 | |
4ed6b5be | 10107 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10108 | if (sal.symtab == NULL) |
10109 | return 1; | |
10110 | ||
4ed6b5be JB |
10111 | /* If there is a symtab, but the associated source file cannot be |
10112 | located, then assume this is not user code: Selecting a frame | |
10113 | for which we cannot display the code would not be very helpful | |
10114 | for the user. This should also take care of case such as VxWorks | |
10115 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10116 | |
9bbc9174 | 10117 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10118 | return 1; |
10119 | ||
4ed6b5be JB |
10120 | /* Check the unit filename againt the Ada runtime file naming. |
10121 | We also check the name of the objfile against the name of some | |
10122 | known system libraries that sometimes come with debugging info | |
10123 | too. */ | |
10124 | ||
f7f9143b JB |
10125 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10126 | { | |
10127 | re_comp (known_runtime_file_name_patterns[i]); | |
10128 | if (re_exec (sal.symtab->filename)) | |
10129 | return 1; | |
4ed6b5be JB |
10130 | if (sal.symtab->objfile != NULL |
10131 | && re_exec (sal.symtab->objfile->name)) | |
10132 | return 1; | |
f7f9143b JB |
10133 | } |
10134 | ||
4ed6b5be | 10135 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10136 | |
4ed6b5be | 10137 | func_name = function_name_from_pc (get_frame_address_in_block (frame)); |
f7f9143b JB |
10138 | if (func_name == NULL) |
10139 | return 1; | |
10140 | ||
10141 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10142 | { | |
10143 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10144 | if (re_exec (func_name)) | |
10145 | return 1; | |
10146 | } | |
10147 | ||
10148 | return 0; | |
10149 | } | |
10150 | ||
10151 | /* Find the first frame that contains debugging information and that is not | |
10152 | part of the Ada run-time, starting from FI and moving upward. */ | |
10153 | ||
0ef643c8 | 10154 | void |
f7f9143b JB |
10155 | ada_find_printable_frame (struct frame_info *fi) |
10156 | { | |
10157 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10158 | { | |
10159 | if (!is_known_support_routine (fi)) | |
10160 | { | |
10161 | select_frame (fi); | |
10162 | break; | |
10163 | } | |
10164 | } | |
10165 | ||
10166 | } | |
10167 | ||
10168 | /* Assuming that the inferior just triggered an unhandled exception | |
10169 | catchpoint, return the address in inferior memory where the name | |
10170 | of the exception is stored. | |
10171 | ||
10172 | Return zero if the address could not be computed. */ | |
10173 | ||
10174 | static CORE_ADDR | |
10175 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10176 | { |
10177 | return parse_and_eval_address ("e.full_name"); | |
10178 | } | |
10179 | ||
10180 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10181 | should be used when the inferior uses an older version of the runtime, | |
10182 | where the exception name needs to be extracted from a specific frame | |
10183 | several frames up in the callstack. */ | |
10184 | ||
10185 | static CORE_ADDR | |
10186 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10187 | { |
10188 | int frame_level; | |
10189 | struct frame_info *fi; | |
10190 | ||
10191 | /* To determine the name of this exception, we need to select | |
10192 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10193 | at least 3 levels up, so we simply skip the first 3 frames | |
10194 | without checking the name of their associated function. */ | |
10195 | fi = get_current_frame (); | |
10196 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10197 | if (fi != NULL) | |
10198 | fi = get_prev_frame (fi); | |
10199 | ||
10200 | while (fi != NULL) | |
10201 | { | |
10202 | const char *func_name = | |
10203 | function_name_from_pc (get_frame_address_in_block (fi)); | |
10204 | if (func_name != NULL | |
0259addd | 10205 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10206 | break; /* We found the frame we were looking for... */ |
10207 | fi = get_prev_frame (fi); | |
10208 | } | |
10209 | ||
10210 | if (fi == NULL) | |
10211 | return 0; | |
10212 | ||
10213 | select_frame (fi); | |
10214 | return parse_and_eval_address ("id.full_name"); | |
10215 | } | |
10216 | ||
10217 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10218 | (of any type), return the address in inferior memory where the name | |
10219 | of the exception is stored, if applicable. | |
10220 | ||
10221 | Return zero if the address could not be computed, or if not relevant. */ | |
10222 | ||
10223 | static CORE_ADDR | |
10224 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10225 | struct breakpoint *b) | |
10226 | { | |
10227 | switch (ex) | |
10228 | { | |
10229 | case ex_catch_exception: | |
10230 | return (parse_and_eval_address ("e.full_name")); | |
10231 | break; | |
10232 | ||
10233 | case ex_catch_exception_unhandled: | |
0259addd | 10234 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10235 | break; |
10236 | ||
10237 | case ex_catch_assert: | |
10238 | return 0; /* Exception name is not relevant in this case. */ | |
10239 | break; | |
10240 | ||
10241 | default: | |
10242 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10243 | break; | |
10244 | } | |
10245 | ||
10246 | return 0; /* Should never be reached. */ | |
10247 | } | |
10248 | ||
10249 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10250 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10251 | When an error is intercepted, a warning with the error message is printed, | |
10252 | and zero is returned. */ | |
10253 | ||
10254 | static CORE_ADDR | |
10255 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10256 | struct breakpoint *b) | |
10257 | { | |
10258 | struct gdb_exception e; | |
10259 | CORE_ADDR result = 0; | |
10260 | ||
10261 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10262 | { | |
10263 | result = ada_exception_name_addr_1 (ex, b); | |
10264 | } | |
10265 | ||
10266 | if (e.reason < 0) | |
10267 | { | |
10268 | warning (_("failed to get exception name: %s"), e.message); | |
10269 | return 0; | |
10270 | } | |
10271 | ||
10272 | return result; | |
10273 | } | |
10274 | ||
10275 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
10276 | for all exception catchpoint kinds. */ | |
10277 | ||
10278 | static enum print_stop_action | |
10279 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10280 | { | |
10281 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10282 | char exception_name[256]; | |
10283 | ||
10284 | if (addr != 0) | |
10285 | { | |
10286 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10287 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10288 | } | |
10289 | ||
10290 | ada_find_printable_frame (get_current_frame ()); | |
10291 | ||
10292 | annotate_catchpoint (b->number); | |
10293 | switch (ex) | |
10294 | { | |
10295 | case ex_catch_exception: | |
10296 | if (addr != 0) | |
10297 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10298 | b->number, exception_name); | |
10299 | else | |
10300 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10301 | break; | |
10302 | case ex_catch_exception_unhandled: | |
10303 | if (addr != 0) | |
10304 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10305 | b->number, exception_name); | |
10306 | else | |
10307 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10308 | b->number); | |
10309 | break; | |
10310 | case ex_catch_assert: | |
10311 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10312 | b->number); | |
10313 | break; | |
10314 | } | |
10315 | ||
10316 | return PRINT_SRC_AND_LOC; | |
10317 | } | |
10318 | ||
10319 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10320 | for all exception catchpoint kinds. */ | |
10321 | ||
10322 | static void | |
10323 | print_one_exception (enum exception_catchpoint_kind ex, | |
10324 | struct breakpoint *b, CORE_ADDR *last_addr) | |
10325 | { | |
79a45b7d TT |
10326 | struct value_print_options opts; |
10327 | ||
10328 | get_user_print_options (&opts); | |
10329 | if (opts.addressprint) | |
f7f9143b JB |
10330 | { |
10331 | annotate_field (4); | |
10332 | ui_out_field_core_addr (uiout, "addr", b->loc->address); | |
10333 | } | |
10334 | ||
10335 | annotate_field (5); | |
10336 | *last_addr = b->loc->address; | |
10337 | switch (ex) | |
10338 | { | |
10339 | case ex_catch_exception: | |
10340 | if (b->exp_string != NULL) | |
10341 | { | |
10342 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10343 | ||
10344 | ui_out_field_string (uiout, "what", msg); | |
10345 | xfree (msg); | |
10346 | } | |
10347 | else | |
10348 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10349 | ||
10350 | break; | |
10351 | ||
10352 | case ex_catch_exception_unhandled: | |
10353 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10354 | break; | |
10355 | ||
10356 | case ex_catch_assert: | |
10357 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10358 | break; | |
10359 | ||
10360 | default: | |
10361 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10362 | break; | |
10363 | } | |
10364 | } | |
10365 | ||
10366 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10367 | for all exception catchpoint kinds. */ | |
10368 | ||
10369 | static void | |
10370 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10371 | struct breakpoint *b) | |
10372 | { | |
10373 | switch (ex) | |
10374 | { | |
10375 | case ex_catch_exception: | |
10376 | if (b->exp_string != NULL) | |
10377 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10378 | b->number, b->exp_string); | |
10379 | else | |
10380 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10381 | ||
10382 | break; | |
10383 | ||
10384 | case ex_catch_exception_unhandled: | |
10385 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10386 | b->number); | |
10387 | break; | |
10388 | ||
10389 | case ex_catch_assert: | |
10390 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10391 | break; | |
10392 | ||
10393 | default: | |
10394 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10395 | break; | |
10396 | } | |
10397 | } | |
10398 | ||
10399 | /* Virtual table for "catch exception" breakpoints. */ | |
10400 | ||
10401 | static enum print_stop_action | |
10402 | print_it_catch_exception (struct breakpoint *b) | |
10403 | { | |
10404 | return print_it_exception (ex_catch_exception, b); | |
10405 | } | |
10406 | ||
10407 | static void | |
10408 | print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr) | |
10409 | { | |
10410 | print_one_exception (ex_catch_exception, b, last_addr); | |
10411 | } | |
10412 | ||
10413 | static void | |
10414 | print_mention_catch_exception (struct breakpoint *b) | |
10415 | { | |
10416 | print_mention_exception (ex_catch_exception, b); | |
10417 | } | |
10418 | ||
10419 | static struct breakpoint_ops catch_exception_breakpoint_ops = | |
10420 | { | |
ce78b96d JB |
10421 | NULL, /* insert */ |
10422 | NULL, /* remove */ | |
10423 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10424 | print_it_catch_exception, |
10425 | print_one_catch_exception, | |
10426 | print_mention_catch_exception | |
10427 | }; | |
10428 | ||
10429 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10430 | ||
10431 | static enum print_stop_action | |
10432 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10433 | { | |
10434 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10435 | } | |
10436 | ||
10437 | static void | |
10438 | print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr) | |
10439 | { | |
10440 | print_one_exception (ex_catch_exception_unhandled, b, last_addr); | |
10441 | } | |
10442 | ||
10443 | static void | |
10444 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10445 | { | |
10446 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10447 | } | |
10448 | ||
10449 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { | |
ce78b96d JB |
10450 | NULL, /* insert */ |
10451 | NULL, /* remove */ | |
10452 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10453 | print_it_catch_exception_unhandled, |
10454 | print_one_catch_exception_unhandled, | |
10455 | print_mention_catch_exception_unhandled | |
10456 | }; | |
10457 | ||
10458 | /* Virtual table for "catch assert" breakpoints. */ | |
10459 | ||
10460 | static enum print_stop_action | |
10461 | print_it_catch_assert (struct breakpoint *b) | |
10462 | { | |
10463 | return print_it_exception (ex_catch_assert, b); | |
10464 | } | |
10465 | ||
10466 | static void | |
10467 | print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr) | |
10468 | { | |
10469 | print_one_exception (ex_catch_assert, b, last_addr); | |
10470 | } | |
10471 | ||
10472 | static void | |
10473 | print_mention_catch_assert (struct breakpoint *b) | |
10474 | { | |
10475 | print_mention_exception (ex_catch_assert, b); | |
10476 | } | |
10477 | ||
10478 | static struct breakpoint_ops catch_assert_breakpoint_ops = { | |
ce78b96d JB |
10479 | NULL, /* insert */ |
10480 | NULL, /* remove */ | |
10481 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10482 | print_it_catch_assert, |
10483 | print_one_catch_assert, | |
10484 | print_mention_catch_assert | |
10485 | }; | |
10486 | ||
10487 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
10488 | ||
10489 | int | |
10490 | ada_exception_catchpoint_p (struct breakpoint *b) | |
10491 | { | |
10492 | return (b->ops == &catch_exception_breakpoint_ops | |
10493 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
10494 | || b->ops == &catch_assert_breakpoint_ops); | |
10495 | } | |
10496 | ||
f7f9143b JB |
10497 | /* Return a newly allocated copy of the first space-separated token |
10498 | in ARGSP, and then adjust ARGSP to point immediately after that | |
10499 | token. | |
10500 | ||
10501 | Return NULL if ARGPS does not contain any more tokens. */ | |
10502 | ||
10503 | static char * | |
10504 | ada_get_next_arg (char **argsp) | |
10505 | { | |
10506 | char *args = *argsp; | |
10507 | char *end; | |
10508 | char *result; | |
10509 | ||
10510 | /* Skip any leading white space. */ | |
10511 | ||
10512 | while (isspace (*args)) | |
10513 | args++; | |
10514 | ||
10515 | if (args[0] == '\0') | |
10516 | return NULL; /* No more arguments. */ | |
10517 | ||
10518 | /* Find the end of the current argument. */ | |
10519 | ||
10520 | end = args; | |
10521 | while (*end != '\0' && !isspace (*end)) | |
10522 | end++; | |
10523 | ||
10524 | /* Adjust ARGSP to point to the start of the next argument. */ | |
10525 | ||
10526 | *argsp = end; | |
10527 | ||
10528 | /* Make a copy of the current argument and return it. */ | |
10529 | ||
10530 | result = xmalloc (end - args + 1); | |
10531 | strncpy (result, args, end - args); | |
10532 | result[end - args] = '\0'; | |
10533 | ||
10534 | return result; | |
10535 | } | |
10536 | ||
10537 | /* Split the arguments specified in a "catch exception" command. | |
10538 | Set EX to the appropriate catchpoint type. | |
10539 | Set EXP_STRING to the name of the specific exception if | |
10540 | specified by the user. */ | |
10541 | ||
10542 | static void | |
10543 | catch_ada_exception_command_split (char *args, | |
10544 | enum exception_catchpoint_kind *ex, | |
10545 | char **exp_string) | |
10546 | { | |
10547 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
10548 | char *exception_name; | |
10549 | ||
10550 | exception_name = ada_get_next_arg (&args); | |
10551 | make_cleanup (xfree, exception_name); | |
10552 | ||
10553 | /* Check that we do not have any more arguments. Anything else | |
10554 | is unexpected. */ | |
10555 | ||
10556 | while (isspace (*args)) | |
10557 | args++; | |
10558 | ||
10559 | if (args[0] != '\0') | |
10560 | error (_("Junk at end of expression")); | |
10561 | ||
10562 | discard_cleanups (old_chain); | |
10563 | ||
10564 | if (exception_name == NULL) | |
10565 | { | |
10566 | /* Catch all exceptions. */ | |
10567 | *ex = ex_catch_exception; | |
10568 | *exp_string = NULL; | |
10569 | } | |
10570 | else if (strcmp (exception_name, "unhandled") == 0) | |
10571 | { | |
10572 | /* Catch unhandled exceptions. */ | |
10573 | *ex = ex_catch_exception_unhandled; | |
10574 | *exp_string = NULL; | |
10575 | } | |
10576 | else | |
10577 | { | |
10578 | /* Catch a specific exception. */ | |
10579 | *ex = ex_catch_exception; | |
10580 | *exp_string = exception_name; | |
10581 | } | |
10582 | } | |
10583 | ||
10584 | /* Return the name of the symbol on which we should break in order to | |
10585 | implement a catchpoint of the EX kind. */ | |
10586 | ||
10587 | static const char * | |
10588 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
10589 | { | |
0259addd JB |
10590 | gdb_assert (exception_info != NULL); |
10591 | ||
f7f9143b JB |
10592 | switch (ex) |
10593 | { | |
10594 | case ex_catch_exception: | |
0259addd | 10595 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
10596 | break; |
10597 | case ex_catch_exception_unhandled: | |
0259addd | 10598 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
10599 | break; |
10600 | case ex_catch_assert: | |
0259addd | 10601 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
10602 | break; |
10603 | default: | |
10604 | internal_error (__FILE__, __LINE__, | |
10605 | _("unexpected catchpoint kind (%d)"), ex); | |
10606 | } | |
10607 | } | |
10608 | ||
10609 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
10610 | of the EX kind. */ | |
10611 | ||
10612 | static struct breakpoint_ops * | |
4b9eee8c | 10613 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
10614 | { |
10615 | switch (ex) | |
10616 | { | |
10617 | case ex_catch_exception: | |
10618 | return (&catch_exception_breakpoint_ops); | |
10619 | break; | |
10620 | case ex_catch_exception_unhandled: | |
10621 | return (&catch_exception_unhandled_breakpoint_ops); | |
10622 | break; | |
10623 | case ex_catch_assert: | |
10624 | return (&catch_assert_breakpoint_ops); | |
10625 | break; | |
10626 | default: | |
10627 | internal_error (__FILE__, __LINE__, | |
10628 | _("unexpected catchpoint kind (%d)"), ex); | |
10629 | } | |
10630 | } | |
10631 | ||
10632 | /* Return the condition that will be used to match the current exception | |
10633 | being raised with the exception that the user wants to catch. This | |
10634 | assumes that this condition is used when the inferior just triggered | |
10635 | an exception catchpoint. | |
10636 | ||
10637 | The string returned is a newly allocated string that needs to be | |
10638 | deallocated later. */ | |
10639 | ||
10640 | static char * | |
10641 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
10642 | { | |
3d0b0fa3 JB |
10643 | int i; |
10644 | ||
10645 | /* The standard exceptions are a special case. They are defined in | |
10646 | runtime units that have been compiled without debugging info; if | |
10647 | EXP_STRING is the not-fully-qualified name of a standard | |
10648 | exception (e.g. "constraint_error") then, during the evaluation | |
10649 | of the condition expression, the symbol lookup on this name would | |
10650 | *not* return this standard exception. The catchpoint condition | |
10651 | may then be set only on user-defined exceptions which have the | |
10652 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
10653 | ||
10654 | To avoid this unexcepted behavior, these standard exceptions are | |
10655 | systematically prefixed by "standard". This means that "catch | |
10656 | exception constraint_error" is rewritten into "catch exception | |
10657 | standard.constraint_error". | |
10658 | ||
10659 | If an exception named contraint_error is defined in another package of | |
10660 | the inferior program, then the only way to specify this exception as a | |
10661 | breakpoint condition is to use its fully-qualified named: | |
10662 | e.g. my_package.constraint_error. */ | |
10663 | ||
10664 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
10665 | { | |
10666 | if (strcmp (standard_exc [i], exp_string) == 0) | |
10667 | { | |
10668 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
10669 | exp_string); | |
10670 | } | |
10671 | } | |
f7f9143b JB |
10672 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); |
10673 | } | |
10674 | ||
10675 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
10676 | ||
10677 | static struct expression * | |
10678 | ada_parse_catchpoint_condition (char *cond_string, | |
10679 | struct symtab_and_line sal) | |
10680 | { | |
10681 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
10682 | } | |
10683 | ||
10684 | /* Return the symtab_and_line that should be used to insert an exception | |
10685 | catchpoint of the TYPE kind. | |
10686 | ||
10687 | EX_STRING should contain the name of a specific exception | |
10688 | that the catchpoint should catch, or NULL otherwise. | |
10689 | ||
10690 | The idea behind all the remaining parameters is that their names match | |
10691 | the name of certain fields in the breakpoint structure that are used to | |
10692 | handle exception catchpoints. This function returns the value to which | |
10693 | these fields should be set, depending on the type of catchpoint we need | |
10694 | to create. | |
10695 | ||
10696 | If COND and COND_STRING are both non-NULL, any value they might | |
10697 | hold will be free'ed, and then replaced by newly allocated ones. | |
10698 | These parameters are left untouched otherwise. */ | |
10699 | ||
10700 | static struct symtab_and_line | |
10701 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
10702 | char **addr_string, char **cond_string, | |
10703 | struct expression **cond, struct breakpoint_ops **ops) | |
10704 | { | |
10705 | const char *sym_name; | |
10706 | struct symbol *sym; | |
10707 | struct symtab_and_line sal; | |
10708 | ||
0259addd JB |
10709 | /* First, find out which exception support info to use. */ |
10710 | ada_exception_support_info_sniffer (); | |
10711 | ||
10712 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
10713 | the Ada exceptions requested by the user. */ |
10714 | ||
10715 | sym_name = ada_exception_sym_name (ex); | |
10716 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
10717 | ||
10718 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10719 | that should be compiled with debugging information. As a result, we | |
10720 | expect to find that symbol in the symtabs. If we don't find it, then | |
10721 | the target most likely does not support Ada exceptions, or we cannot | |
10722 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
10723 | loaded yet. */ | |
10724 | ||
10725 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
10726 | in such a way that no debugging information is produced for the symbol | |
10727 | we are looking for. In this case, we could search the minimal symbols | |
10728 | as a fall-back mechanism. This would still be operating in degraded | |
10729 | mode, however, as we would still be missing the debugging information | |
10730 | that is needed in order to extract the name of the exception being | |
10731 | raised (this name is printed in the catchpoint message, and is also | |
10732 | used when trying to catch a specific exception). We do not handle | |
10733 | this case for now. */ | |
10734 | ||
10735 | if (sym == NULL) | |
0259addd | 10736 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
10737 | |
10738 | /* Make sure that the symbol we found corresponds to a function. */ | |
10739 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10740 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10741 | sym_name, SYMBOL_CLASS (sym)); | |
10742 | ||
10743 | sal = find_function_start_sal (sym, 1); | |
10744 | ||
10745 | /* Set ADDR_STRING. */ | |
10746 | ||
10747 | *addr_string = xstrdup (sym_name); | |
10748 | ||
10749 | /* Set the COND and COND_STRING (if not NULL). */ | |
10750 | ||
10751 | if (cond_string != NULL && cond != NULL) | |
10752 | { | |
10753 | if (*cond_string != NULL) | |
10754 | { | |
10755 | xfree (*cond_string); | |
10756 | *cond_string = NULL; | |
10757 | } | |
10758 | if (*cond != NULL) | |
10759 | { | |
10760 | xfree (*cond); | |
10761 | *cond = NULL; | |
10762 | } | |
10763 | if (exp_string != NULL) | |
10764 | { | |
10765 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
10766 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
10767 | } | |
10768 | } | |
10769 | ||
10770 | /* Set OPS. */ | |
4b9eee8c | 10771 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
10772 | |
10773 | return sal; | |
10774 | } | |
10775 | ||
10776 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
10777 | ||
10778 | Set TYPE to the appropriate exception catchpoint type. | |
10779 | If the user asked the catchpoint to catch only a specific | |
10780 | exception, then save the exception name in ADDR_STRING. | |
10781 | ||
10782 | See ada_exception_sal for a description of all the remaining | |
10783 | function arguments of this function. */ | |
10784 | ||
10785 | struct symtab_and_line | |
10786 | ada_decode_exception_location (char *args, char **addr_string, | |
10787 | char **exp_string, char **cond_string, | |
10788 | struct expression **cond, | |
10789 | struct breakpoint_ops **ops) | |
10790 | { | |
10791 | enum exception_catchpoint_kind ex; | |
10792 | ||
10793 | catch_ada_exception_command_split (args, &ex, exp_string); | |
10794 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
10795 | cond, ops); | |
10796 | } | |
10797 | ||
10798 | struct symtab_and_line | |
10799 | ada_decode_assert_location (char *args, char **addr_string, | |
10800 | struct breakpoint_ops **ops) | |
10801 | { | |
10802 | /* Check that no argument where provided at the end of the command. */ | |
10803 | ||
10804 | if (args != NULL) | |
10805 | { | |
10806 | while (isspace (*args)) | |
10807 | args++; | |
10808 | if (*args != '\0') | |
10809 | error (_("Junk at end of arguments.")); | |
10810 | } | |
10811 | ||
10812 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
10813 | ops); | |
10814 | } | |
10815 | ||
4c4b4cd2 PH |
10816 | /* Operators */ |
10817 | /* Information about operators given special treatment in functions | |
10818 | below. */ | |
10819 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
10820 | ||
10821 | #define ADA_OPERATORS \ | |
10822 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
10823 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
10824 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
10825 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
10826 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
10827 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
10828 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
10829 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
10830 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
10831 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
10832 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
10833 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
10834 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
10835 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
10836 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
10837 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
10838 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
10839 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
10840 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
10841 | |
10842 | static void | |
10843 | ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp) | |
10844 | { | |
10845 | switch (exp->elts[pc - 1].opcode) | |
10846 | { | |
76a01679 | 10847 | default: |
4c4b4cd2 PH |
10848 | operator_length_standard (exp, pc, oplenp, argsp); |
10849 | break; | |
10850 | ||
10851 | #define OP_DEFN(op, len, args, binop) \ | |
10852 | case op: *oplenp = len; *argsp = args; break; | |
10853 | ADA_OPERATORS; | |
10854 | #undef OP_DEFN | |
52ce6436 PH |
10855 | |
10856 | case OP_AGGREGATE: | |
10857 | *oplenp = 3; | |
10858 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
10859 | break; | |
10860 | ||
10861 | case OP_CHOICES: | |
10862 | *oplenp = 3; | |
10863 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
10864 | break; | |
4c4b4cd2 PH |
10865 | } |
10866 | } | |
10867 | ||
10868 | static char * | |
10869 | ada_op_name (enum exp_opcode opcode) | |
10870 | { | |
10871 | switch (opcode) | |
10872 | { | |
76a01679 | 10873 | default: |
4c4b4cd2 | 10874 | return op_name_standard (opcode); |
52ce6436 | 10875 | |
4c4b4cd2 PH |
10876 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
10877 | ADA_OPERATORS; | |
10878 | #undef OP_DEFN | |
52ce6436 PH |
10879 | |
10880 | case OP_AGGREGATE: | |
10881 | return "OP_AGGREGATE"; | |
10882 | case OP_CHOICES: | |
10883 | return "OP_CHOICES"; | |
10884 | case OP_NAME: | |
10885 | return "OP_NAME"; | |
4c4b4cd2 PH |
10886 | } |
10887 | } | |
10888 | ||
10889 | /* As for operator_length, but assumes PC is pointing at the first | |
10890 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 10891 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
10892 | |
10893 | static void | |
76a01679 JB |
10894 | ada_forward_operator_length (struct expression *exp, int pc, |
10895 | int *oplenp, int *argsp) | |
4c4b4cd2 | 10896 | { |
76a01679 | 10897 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
10898 | { |
10899 | default: | |
10900 | *oplenp = *argsp = 0; | |
10901 | break; | |
52ce6436 | 10902 | |
4c4b4cd2 PH |
10903 | #define OP_DEFN(op, len, args, binop) \ |
10904 | case op: *oplenp = len; *argsp = args; break; | |
10905 | ADA_OPERATORS; | |
10906 | #undef OP_DEFN | |
52ce6436 PH |
10907 | |
10908 | case OP_AGGREGATE: | |
10909 | *oplenp = 3; | |
10910 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
10911 | break; | |
10912 | ||
10913 | case OP_CHOICES: | |
10914 | *oplenp = 3; | |
10915 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
10916 | break; | |
10917 | ||
10918 | case OP_STRING: | |
10919 | case OP_NAME: | |
10920 | { | |
10921 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
10922 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); | |
10923 | *argsp = 0; | |
10924 | break; | |
10925 | } | |
4c4b4cd2 PH |
10926 | } |
10927 | } | |
10928 | ||
10929 | static int | |
10930 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
10931 | { | |
10932 | enum exp_opcode op = exp->elts[elt].opcode; | |
10933 | int oplen, nargs; | |
10934 | int pc = elt; | |
10935 | int i; | |
76a01679 | 10936 | |
4c4b4cd2 PH |
10937 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
10938 | ||
76a01679 | 10939 | switch (op) |
4c4b4cd2 | 10940 | { |
76a01679 | 10941 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
10942 | case OP_ATR_FIRST: |
10943 | case OP_ATR_LAST: | |
10944 | case OP_ATR_LENGTH: | |
10945 | case OP_ATR_IMAGE: | |
10946 | case OP_ATR_MAX: | |
10947 | case OP_ATR_MIN: | |
10948 | case OP_ATR_MODULUS: | |
10949 | case OP_ATR_POS: | |
10950 | case OP_ATR_SIZE: | |
10951 | case OP_ATR_TAG: | |
10952 | case OP_ATR_VAL: | |
10953 | break; | |
10954 | ||
10955 | case UNOP_IN_RANGE: | |
10956 | case UNOP_QUAL: | |
323e0a4a AC |
10957 | /* XXX: gdb_sprint_host_address, type_sprint */ |
10958 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
10959 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
10960 | fprintf_filtered (stream, " ("); | |
10961 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
10962 | fprintf_filtered (stream, ")"); | |
10963 | break; | |
10964 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
10965 | fprintf_filtered (stream, " (%d)", |
10966 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
10967 | break; |
10968 | case TERNOP_IN_RANGE: | |
10969 | break; | |
10970 | ||
52ce6436 PH |
10971 | case OP_AGGREGATE: |
10972 | case OP_OTHERS: | |
10973 | case OP_DISCRETE_RANGE: | |
10974 | case OP_POSITIONAL: | |
10975 | case OP_CHOICES: | |
10976 | break; | |
10977 | ||
10978 | case OP_NAME: | |
10979 | case OP_STRING: | |
10980 | { | |
10981 | char *name = &exp->elts[elt + 2].string; | |
10982 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
10983 | fprintf_filtered (stream, "Text: `%.*s'", len, name); | |
10984 | break; | |
10985 | } | |
10986 | ||
4c4b4cd2 PH |
10987 | default: |
10988 | return dump_subexp_body_standard (exp, stream, elt); | |
10989 | } | |
10990 | ||
10991 | elt += oplen; | |
10992 | for (i = 0; i < nargs; i += 1) | |
10993 | elt = dump_subexp (exp, stream, elt); | |
10994 | ||
10995 | return elt; | |
10996 | } | |
10997 | ||
10998 | /* The Ada extension of print_subexp (q.v.). */ | |
10999 | ||
76a01679 JB |
11000 | static void |
11001 | ada_print_subexp (struct expression *exp, int *pos, | |
11002 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 11003 | { |
52ce6436 | 11004 | int oplen, nargs, i; |
4c4b4cd2 PH |
11005 | int pc = *pos; |
11006 | enum exp_opcode op = exp->elts[pc].opcode; | |
11007 | ||
11008 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11009 | ||
52ce6436 | 11010 | *pos += oplen; |
4c4b4cd2 PH |
11011 | switch (op) |
11012 | { | |
11013 | default: | |
52ce6436 | 11014 | *pos -= oplen; |
4c4b4cd2 PH |
11015 | print_subexp_standard (exp, pos, stream, prec); |
11016 | return; | |
11017 | ||
11018 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
11019 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
11020 | return; | |
11021 | ||
11022 | case BINOP_IN_BOUNDS: | |
323e0a4a | 11023 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11024 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11025 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 11026 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11027 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 11028 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
11029 | fprintf_filtered (stream, "(%ld)", |
11030 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
11031 | return; |
11032 | ||
11033 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 11034 | if (prec >= PREC_EQUAL) |
76a01679 | 11035 | fputs_filtered ("(", stream); |
323e0a4a | 11036 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11037 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11038 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11039 | print_subexp (exp, pos, stream, PREC_EQUAL); |
11040 | fputs_filtered (" .. ", stream); | |
11041 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
11042 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
11043 | fputs_filtered (")", stream); |
11044 | return; | |
4c4b4cd2 PH |
11045 | |
11046 | case OP_ATR_FIRST: | |
11047 | case OP_ATR_LAST: | |
11048 | case OP_ATR_LENGTH: | |
11049 | case OP_ATR_IMAGE: | |
11050 | case OP_ATR_MAX: | |
11051 | case OP_ATR_MIN: | |
11052 | case OP_ATR_MODULUS: | |
11053 | case OP_ATR_POS: | |
11054 | case OP_ATR_SIZE: | |
11055 | case OP_ATR_TAG: | |
11056 | case OP_ATR_VAL: | |
4c4b4cd2 | 11057 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
11058 | { |
11059 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
11060 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
11061 | *pos += 3; | |
11062 | } | |
4c4b4cd2 | 11063 | else |
76a01679 | 11064 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
11065 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
11066 | if (nargs > 1) | |
76a01679 JB |
11067 | { |
11068 | int tem; | |
11069 | for (tem = 1; tem < nargs; tem += 1) | |
11070 | { | |
11071 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
11072 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
11073 | } | |
11074 | fputs_filtered (")", stream); | |
11075 | } | |
4c4b4cd2 | 11076 | return; |
14f9c5c9 | 11077 | |
4c4b4cd2 | 11078 | case UNOP_QUAL: |
4c4b4cd2 PH |
11079 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
11080 | fputs_filtered ("'(", stream); | |
11081 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
11082 | fputs_filtered (")", stream); | |
11083 | return; | |
14f9c5c9 | 11084 | |
4c4b4cd2 | 11085 | case UNOP_IN_RANGE: |
323e0a4a | 11086 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11087 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11088 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11089 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
11090 | return; | |
52ce6436 PH |
11091 | |
11092 | case OP_DISCRETE_RANGE: | |
11093 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11094 | fputs_filtered ("..", stream); | |
11095 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11096 | return; | |
11097 | ||
11098 | case OP_OTHERS: | |
11099 | fputs_filtered ("others => ", stream); | |
11100 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11101 | return; | |
11102 | ||
11103 | case OP_CHOICES: | |
11104 | for (i = 0; i < nargs-1; i += 1) | |
11105 | { | |
11106 | if (i > 0) | |
11107 | fputs_filtered ("|", stream); | |
11108 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11109 | } | |
11110 | fputs_filtered (" => ", stream); | |
11111 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11112 | return; | |
11113 | ||
11114 | case OP_POSITIONAL: | |
11115 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11116 | return; | |
11117 | ||
11118 | case OP_AGGREGATE: | |
11119 | fputs_filtered ("(", stream); | |
11120 | for (i = 0; i < nargs; i += 1) | |
11121 | { | |
11122 | if (i > 0) | |
11123 | fputs_filtered (", ", stream); | |
11124 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11125 | } | |
11126 | fputs_filtered (")", stream); | |
11127 | return; | |
4c4b4cd2 PH |
11128 | } |
11129 | } | |
14f9c5c9 AS |
11130 | |
11131 | /* Table mapping opcodes into strings for printing operators | |
11132 | and precedences of the operators. */ | |
11133 | ||
d2e4a39e AS |
11134 | static const struct op_print ada_op_print_tab[] = { |
11135 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
11136 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
11137 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
11138 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
11139 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
11140 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
11141 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
11142 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
11143 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
11144 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
11145 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
11146 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
11147 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
11148 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
11149 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
11150 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
11151 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
11152 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
11153 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
11154 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
11155 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
11156 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
11157 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
11158 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
11159 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
11160 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
11161 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
11162 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
11163 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
11164 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
11165 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 11166 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
11167 | }; |
11168 | \f | |
72d5681a PH |
11169 | enum ada_primitive_types { |
11170 | ada_primitive_type_int, | |
11171 | ada_primitive_type_long, | |
11172 | ada_primitive_type_short, | |
11173 | ada_primitive_type_char, | |
11174 | ada_primitive_type_float, | |
11175 | ada_primitive_type_double, | |
11176 | ada_primitive_type_void, | |
11177 | ada_primitive_type_long_long, | |
11178 | ada_primitive_type_long_double, | |
11179 | ada_primitive_type_natural, | |
11180 | ada_primitive_type_positive, | |
11181 | ada_primitive_type_system_address, | |
11182 | nr_ada_primitive_types | |
11183 | }; | |
6c038f32 PH |
11184 | |
11185 | static void | |
d4a9a881 | 11186 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
11187 | struct language_arch_info *lai) |
11188 | { | |
d4a9a881 | 11189 | const struct builtin_type *builtin = builtin_type (gdbarch); |
72d5681a | 11190 | lai->primitive_type_vector |
d4a9a881 | 11191 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a PH |
11192 | struct type *); |
11193 | lai->primitive_type_vector [ada_primitive_type_int] = | |
9a76efb6 | 11194 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11195 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11196 | 0, "integer", (struct objfile *) NULL); |
72d5681a | 11197 | lai->primitive_type_vector [ada_primitive_type_long] = |
9a76efb6 | 11198 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11199 | gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11200 | 0, "long_integer", (struct objfile *) NULL); |
72d5681a | 11201 | lai->primitive_type_vector [ada_primitive_type_short] = |
9a76efb6 | 11202 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11203 | gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11204 | 0, "short_integer", (struct objfile *) NULL); |
61ee279c PH |
11205 | lai->string_char_type = |
11206 | lai->primitive_type_vector [ada_primitive_type_char] = | |
6c038f32 PH |
11207 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, |
11208 | 0, "character", (struct objfile *) NULL); | |
72d5681a | 11209 | lai->primitive_type_vector [ada_primitive_type_float] = |
ea06eb3d | 11210 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11211 | gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT, |
6c038f32 | 11212 | 0, "float", (struct objfile *) NULL); |
72d5681a | 11213 | lai->primitive_type_vector [ada_primitive_type_double] = |
ea06eb3d | 11214 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11215 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11216 | 0, "long_float", (struct objfile *) NULL); |
72d5681a | 11217 | lai->primitive_type_vector [ada_primitive_type_long_long] = |
9a76efb6 | 11218 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11219 | gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11220 | 0, "long_long_integer", (struct objfile *) NULL); |
72d5681a | 11221 | lai->primitive_type_vector [ada_primitive_type_long_double] = |
ea06eb3d | 11222 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11223 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11224 | 0, "long_long_float", (struct objfile *) NULL); |
72d5681a | 11225 | lai->primitive_type_vector [ada_primitive_type_natural] = |
9a76efb6 | 11226 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11227 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11228 | 0, "natural", (struct objfile *) NULL); |
72d5681a | 11229 | lai->primitive_type_vector [ada_primitive_type_positive] = |
9a76efb6 | 11230 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11231 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11232 | 0, "positive", (struct objfile *) NULL); |
72d5681a | 11233 | lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void; |
6c038f32 | 11234 | |
72d5681a | 11235 | lai->primitive_type_vector [ada_primitive_type_system_address] = |
6c038f32 PH |
11236 | lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void", |
11237 | (struct objfile *) NULL)); | |
72d5681a PH |
11238 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
11239 | = "system__address"; | |
fbb06eb1 | 11240 | |
47e729a8 | 11241 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 11242 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 11243 | } |
6c038f32 PH |
11244 | \f |
11245 | /* Language vector */ | |
11246 | ||
11247 | /* Not really used, but needed in the ada_language_defn. */ | |
11248 | ||
11249 | static void | |
6c7a06a3 | 11250 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 11251 | { |
6c7a06a3 | 11252 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
11253 | } |
11254 | ||
11255 | static int | |
11256 | parse (void) | |
11257 | { | |
11258 | warnings_issued = 0; | |
11259 | return ada_parse (); | |
11260 | } | |
11261 | ||
11262 | static const struct exp_descriptor ada_exp_descriptor = { | |
11263 | ada_print_subexp, | |
11264 | ada_operator_length, | |
11265 | ada_op_name, | |
11266 | ada_dump_subexp_body, | |
11267 | ada_evaluate_subexp | |
11268 | }; | |
11269 | ||
11270 | const struct language_defn ada_language_defn = { | |
11271 | "ada", /* Language name */ | |
11272 | language_ada, | |
6c038f32 PH |
11273 | range_check_off, |
11274 | type_check_off, | |
11275 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
11276 | that's not quite what this means. */ | |
6c038f32 | 11277 | array_row_major, |
9a044a89 | 11278 | macro_expansion_no, |
6c038f32 PH |
11279 | &ada_exp_descriptor, |
11280 | parse, | |
11281 | ada_error, | |
11282 | resolve, | |
11283 | ada_printchar, /* Print a character constant */ | |
11284 | ada_printstr, /* Function to print string constant */ | |
11285 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 11286 | ada_print_type, /* Print a type using appropriate syntax */ |
5c6ce71d | 11287 | default_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
11288 | ada_val_print, /* Print a value using appropriate syntax */ |
11289 | ada_value_print, /* Print a top-level value */ | |
11290 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 11291 | NULL, /* name_of_this */ |
6c038f32 PH |
11292 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
11293 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
11294 | ada_la_decode, /* Language specific symbol demangler */ | |
11295 | NULL, /* Language specific class_name_from_physname */ | |
11296 | ada_op_print_tab, /* expression operators for printing */ | |
11297 | 0, /* c-style arrays */ | |
11298 | 1, /* String lower bound */ | |
6c038f32 | 11299 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 11300 | ada_make_symbol_completion_list, |
72d5681a | 11301 | ada_language_arch_info, |
e79af960 | 11302 | ada_print_array_index, |
41f1b697 | 11303 | default_pass_by_reference, |
ae6a3a4c | 11304 | c_get_string, |
6c038f32 PH |
11305 | LANG_MAGIC |
11306 | }; | |
11307 | ||
2c0b251b PA |
11308 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
11309 | extern initialize_file_ftype _initialize_ada_language; | |
11310 | ||
d2e4a39e | 11311 | void |
6c038f32 | 11312 | _initialize_ada_language (void) |
14f9c5c9 | 11313 | { |
6c038f32 PH |
11314 | add_language (&ada_language_defn); |
11315 | ||
11316 | varsize_limit = 65536; | |
6c038f32 PH |
11317 | |
11318 | obstack_init (&symbol_list_obstack); | |
11319 | ||
11320 | decoded_names_store = htab_create_alloc | |
11321 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
11322 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
11323 | |
11324 | observer_attach_executable_changed (ada_executable_changed_observer); | |
14f9c5c9 | 11325 | } |