]>
Commit | Line | Data |
---|---|---|
5769d3cd | 1 | /* Target-dependent code for GDB, the GNU debugger. |
ca557f44 | 2 | |
9b254dd1 | 3 | Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
469db033 | 4 | Free Software Foundation, Inc. |
ca557f44 | 5 | |
5769d3cd AC |
6 | Contributed by D.J. Barrow ([email protected],[email protected]) |
7 | for IBM Deutschland Entwicklung GmbH, IBM Corporation. | |
8 | ||
9 | This file is part of GDB. | |
10 | ||
11 | This program is free software; you can redistribute it and/or modify | |
12 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 13 | the Free Software Foundation; either version 3 of the License, or |
5769d3cd AC |
14 | (at your option) any later version. |
15 | ||
16 | This program is distributed in the hope that it will be useful, | |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
20 | ||
21 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 22 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
5769d3cd | 23 | |
d0f54f9d | 24 | #include "defs.h" |
5769d3cd AC |
25 | #include "arch-utils.h" |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "symtab.h" | |
29 | #include "target.h" | |
30 | #include "gdbcore.h" | |
31 | #include "gdbcmd.h" | |
5769d3cd | 32 | #include "objfiles.h" |
5769d3cd AC |
33 | #include "floatformat.h" |
34 | #include "regcache.h" | |
a8c99f38 JB |
35 | #include "trad-frame.h" |
36 | #include "frame-base.h" | |
37 | #include "frame-unwind.h" | |
a431654a | 38 | #include "dwarf2-frame.h" |
d0f54f9d JB |
39 | #include "reggroups.h" |
40 | #include "regset.h" | |
fd0407d6 | 41 | #include "value.h" |
78f8b424 | 42 | #include "gdb_assert.h" |
a89aa300 | 43 | #include "dis-asm.h" |
76a9d10f | 44 | #include "solib-svr4.h" |
3fc46200 | 45 | #include "prologue-value.h" |
5769d3cd | 46 | |
d0f54f9d | 47 | #include "s390-tdep.h" |
5769d3cd | 48 | |
60e6cc42 | 49 | |
d0f54f9d JB |
50 | /* The tdep structure. */ |
51 | ||
52 | struct gdbarch_tdep | |
5769d3cd | 53 | { |
b0cf273e JB |
54 | /* ABI version. */ |
55 | enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi; | |
56 | ||
d0f54f9d JB |
57 | /* Core file register sets. */ |
58 | const struct regset *gregset; | |
59 | int sizeof_gregset; | |
60 | ||
61 | const struct regset *fpregset; | |
62 | int sizeof_fpregset; | |
63 | }; | |
64 | ||
65 | ||
d0f54f9d JB |
66 | /* Return the name of register REGNUM. */ |
67 | static const char * | |
d93859e2 | 68 | s390_register_name (struct gdbarch *gdbarch, int regnum) |
d0f54f9d | 69 | { |
6707b003 UW |
70 | static const char *register_names[S390_NUM_TOTAL_REGS] = |
71 | { | |
72 | /* Program Status Word. */ | |
73 | "pswm", "pswa", | |
74 | /* General Purpose Registers. */ | |
75 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
76 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
77 | /* Access Registers. */ | |
78 | "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7", | |
79 | "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15", | |
80 | /* Floating Point Control Word. */ | |
81 | "fpc", | |
82 | /* Floating Point Registers. */ | |
83 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
84 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
85 | /* Pseudo registers. */ | |
86 | "pc", "cc", | |
87 | }; | |
88 | ||
d0f54f9d | 89 | gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS); |
6707b003 | 90 | return register_names[regnum]; |
d0f54f9d JB |
91 | } |
92 | ||
93 | /* Return the GDB type object for the "standard" data type of data in | |
6707b003 | 94 | register REGNUM. */ |
d0f54f9d JB |
95 | static struct type * |
96 | s390_register_type (struct gdbarch *gdbarch, int regnum) | |
97 | { | |
6707b003 UW |
98 | if (regnum == S390_PSWM_REGNUM || regnum == S390_PSWA_REGNUM) |
99 | return builtin_type_long; | |
100 | if (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM) | |
101 | return builtin_type_long; | |
102 | if (regnum >= S390_A0_REGNUM && regnum <= S390_A15_REGNUM) | |
103 | return builtin_type_int; | |
104 | if (regnum == S390_FPC_REGNUM) | |
105 | return builtin_type_int; | |
106 | if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM) | |
107 | return builtin_type_double; | |
108 | if (regnum == S390_PC_REGNUM) | |
109 | return builtin_type_void_func_ptr; | |
110 | if (regnum == S390_CC_REGNUM) | |
111 | return builtin_type_int; | |
112 | ||
113 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
5769d3cd AC |
114 | } |
115 | ||
d0f54f9d JB |
116 | /* DWARF Register Mapping. */ |
117 | ||
118 | static int s390_dwarf_regmap[] = | |
119 | { | |
120 | /* General Purpose Registers. */ | |
121 | S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, | |
122 | S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, | |
123 | S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, | |
124 | S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, | |
125 | ||
126 | /* Floating Point Registers. */ | |
127 | S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM, | |
128 | S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM, | |
129 | S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM, | |
130 | S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM, | |
131 | ||
132 | /* Control Registers (not mapped). */ | |
133 | -1, -1, -1, -1, -1, -1, -1, -1, | |
134 | -1, -1, -1, -1, -1, -1, -1, -1, | |
135 | ||
136 | /* Access Registers. */ | |
137 | S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM, | |
138 | S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM, | |
139 | S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM, | |
140 | S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM, | |
141 | ||
142 | /* Program Status Word. */ | |
143 | S390_PSWM_REGNUM, | |
144 | S390_PSWA_REGNUM | |
145 | }; | |
146 | ||
147 | /* Convert DWARF register number REG to the appropriate register | |
148 | number used by GDB. */ | |
a78f21af | 149 | static int |
d3f73121 | 150 | s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
d0f54f9d JB |
151 | { |
152 | int regnum = -1; | |
153 | ||
16aff9a6 | 154 | if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap)) |
d0f54f9d JB |
155 | regnum = s390_dwarf_regmap[reg]; |
156 | ||
157 | if (regnum == -1) | |
8a3fe4f8 | 158 | warning (_("Unmapped DWARF Register #%d encountered."), reg); |
d0f54f9d JB |
159 | |
160 | return regnum; | |
161 | } | |
162 | ||
163 | /* Pseudo registers - PC and condition code. */ | |
164 | ||
165 | static void | |
166 | s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2e82d168 | 167 | int regnum, gdb_byte *buf) |
d0f54f9d JB |
168 | { |
169 | ULONGEST val; | |
170 | ||
171 | switch (regnum) | |
172 | { | |
173 | case S390_PC_REGNUM: | |
174 | regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val); | |
175 | store_unsigned_integer (buf, 4, val & 0x7fffffff); | |
176 | break; | |
177 | ||
178 | case S390_CC_REGNUM: | |
179 | regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); | |
180 | store_unsigned_integer (buf, 4, (val >> 12) & 3); | |
181 | break; | |
182 | ||
183 | default: | |
e2e0b3e5 | 184 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
d0f54f9d JB |
185 | } |
186 | } | |
187 | ||
188 | static void | |
189 | s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2e82d168 | 190 | int regnum, const gdb_byte *buf) |
5769d3cd | 191 | { |
d0f54f9d JB |
192 | ULONGEST val, psw; |
193 | ||
194 | switch (regnum) | |
195 | { | |
196 | case S390_PC_REGNUM: | |
197 | val = extract_unsigned_integer (buf, 4); | |
198 | regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw); | |
199 | psw = (psw & 0x80000000) | (val & 0x7fffffff); | |
200 | regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw); | |
201 | break; | |
202 | ||
203 | case S390_CC_REGNUM: | |
204 | val = extract_unsigned_integer (buf, 4); | |
205 | regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); | |
206 | psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12); | |
207 | regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw); | |
208 | break; | |
209 | ||
210 | default: | |
e2e0b3e5 | 211 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
d0f54f9d | 212 | } |
5769d3cd AC |
213 | } |
214 | ||
d0f54f9d JB |
215 | static void |
216 | s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2e82d168 | 217 | int regnum, gdb_byte *buf) |
d0f54f9d JB |
218 | { |
219 | ULONGEST val; | |
220 | ||
221 | switch (regnum) | |
222 | { | |
223 | case S390_PC_REGNUM: | |
224 | regcache_raw_read (regcache, S390_PSWA_REGNUM, buf); | |
225 | break; | |
226 | ||
227 | case S390_CC_REGNUM: | |
228 | regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); | |
229 | store_unsigned_integer (buf, 4, (val >> 44) & 3); | |
230 | break; | |
231 | ||
232 | default: | |
e2e0b3e5 | 233 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
d0f54f9d JB |
234 | } |
235 | } | |
236 | ||
237 | static void | |
238 | s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2e82d168 | 239 | int regnum, const gdb_byte *buf) |
d0f54f9d JB |
240 | { |
241 | ULONGEST val, psw; | |
242 | ||
243 | switch (regnum) | |
244 | { | |
245 | case S390_PC_REGNUM: | |
246 | regcache_raw_write (regcache, S390_PSWA_REGNUM, buf); | |
247 | break; | |
248 | ||
249 | case S390_CC_REGNUM: | |
250 | val = extract_unsigned_integer (buf, 4); | |
251 | regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); | |
252 | psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44); | |
253 | regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw); | |
254 | break; | |
255 | ||
256 | default: | |
e2e0b3e5 | 257 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
d0f54f9d JB |
258 | } |
259 | } | |
260 | ||
261 | /* 'float' values are stored in the upper half of floating-point | |
262 | registers, even though we are otherwise a big-endian platform. */ | |
263 | ||
9acbedc0 UW |
264 | static struct value * |
265 | s390_value_from_register (struct type *type, int regnum, | |
266 | struct frame_info *frame) | |
d0f54f9d | 267 | { |
9acbedc0 UW |
268 | struct value *value = default_value_from_register (type, regnum, frame); |
269 | int len = TYPE_LENGTH (type); | |
d0f54f9d | 270 | |
9acbedc0 UW |
271 | if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8) |
272 | set_value_offset (value, 0); | |
d0f54f9d | 273 | |
9acbedc0 | 274 | return value; |
d0f54f9d JB |
275 | } |
276 | ||
277 | /* Register groups. */ | |
278 | ||
a78f21af | 279 | static int |
d0f54f9d JB |
280 | s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
281 | struct reggroup *group) | |
282 | { | |
283 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
284 | ||
285 | /* Registers displayed via 'info regs'. */ | |
286 | if (group == general_reggroup) | |
287 | return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM) | |
288 | || regnum == S390_PC_REGNUM | |
289 | || regnum == S390_CC_REGNUM; | |
290 | ||
291 | /* Registers displayed via 'info float'. */ | |
292 | if (group == float_reggroup) | |
293 | return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM) | |
294 | || regnum == S390_FPC_REGNUM; | |
295 | ||
296 | /* Registers that need to be saved/restored in order to | |
297 | push or pop frames. */ | |
298 | if (group == save_reggroup || group == restore_reggroup) | |
299 | return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM; | |
300 | ||
301 | return default_register_reggroup_p (gdbarch, regnum, group); | |
302 | } | |
303 | ||
304 | ||
305 | /* Core file register sets. */ | |
306 | ||
307 | int s390_regmap_gregset[S390_NUM_REGS] = | |
308 | { | |
309 | /* Program Status Word. */ | |
310 | 0x00, 0x04, | |
311 | /* General Purpose Registers. */ | |
312 | 0x08, 0x0c, 0x10, 0x14, | |
313 | 0x18, 0x1c, 0x20, 0x24, | |
314 | 0x28, 0x2c, 0x30, 0x34, | |
315 | 0x38, 0x3c, 0x40, 0x44, | |
316 | /* Access Registers. */ | |
317 | 0x48, 0x4c, 0x50, 0x54, | |
318 | 0x58, 0x5c, 0x60, 0x64, | |
319 | 0x68, 0x6c, 0x70, 0x74, | |
320 | 0x78, 0x7c, 0x80, 0x84, | |
321 | /* Floating Point Control Word. */ | |
322 | -1, | |
323 | /* Floating Point Registers. */ | |
324 | -1, -1, -1, -1, -1, -1, -1, -1, | |
325 | -1, -1, -1, -1, -1, -1, -1, -1, | |
326 | }; | |
327 | ||
328 | int s390x_regmap_gregset[S390_NUM_REGS] = | |
329 | { | |
330 | 0x00, 0x08, | |
331 | /* General Purpose Registers. */ | |
332 | 0x10, 0x18, 0x20, 0x28, | |
333 | 0x30, 0x38, 0x40, 0x48, | |
334 | 0x50, 0x58, 0x60, 0x68, | |
335 | 0x70, 0x78, 0x80, 0x88, | |
336 | /* Access Registers. */ | |
337 | 0x90, 0x94, 0x98, 0x9c, | |
338 | 0xa0, 0xa4, 0xa8, 0xac, | |
339 | 0xb0, 0xb4, 0xb8, 0xbc, | |
340 | 0xc0, 0xc4, 0xc8, 0xcc, | |
341 | /* Floating Point Control Word. */ | |
342 | -1, | |
343 | /* Floating Point Registers. */ | |
344 | -1, -1, -1, -1, -1, -1, -1, -1, | |
345 | -1, -1, -1, -1, -1, -1, -1, -1, | |
346 | }; | |
347 | ||
348 | int s390_regmap_fpregset[S390_NUM_REGS] = | |
349 | { | |
350 | /* Program Status Word. */ | |
351 | -1, -1, | |
352 | /* General Purpose Registers. */ | |
353 | -1, -1, -1, -1, -1, -1, -1, -1, | |
354 | -1, -1, -1, -1, -1, -1, -1, -1, | |
355 | /* Access Registers. */ | |
356 | -1, -1, -1, -1, -1, -1, -1, -1, | |
357 | -1, -1, -1, -1, -1, -1, -1, -1, | |
358 | /* Floating Point Control Word. */ | |
359 | 0x00, | |
360 | /* Floating Point Registers. */ | |
361 | 0x08, 0x10, 0x18, 0x20, | |
362 | 0x28, 0x30, 0x38, 0x40, | |
363 | 0x48, 0x50, 0x58, 0x60, | |
364 | 0x68, 0x70, 0x78, 0x80, | |
365 | }; | |
366 | ||
367 | /* Supply register REGNUM from the register set REGSET to register cache | |
368 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
369 | static void | |
370 | s390_supply_regset (const struct regset *regset, struct regcache *regcache, | |
371 | int regnum, const void *regs, size_t len) | |
372 | { | |
373 | const int *offset = regset->descr; | |
374 | int i; | |
375 | ||
376 | for (i = 0; i < S390_NUM_REGS; i++) | |
377 | { | |
378 | if ((regnum == i || regnum == -1) && offset[i] != -1) | |
379 | regcache_raw_supply (regcache, i, (const char *)regs + offset[i]); | |
380 | } | |
381 | } | |
382 | ||
92f38ec2 UW |
383 | /* Collect register REGNUM from the register cache REGCACHE and store |
384 | it in the buffer specified by REGS and LEN as described by the | |
385 | general-purpose register set REGSET. If REGNUM is -1, do this for | |
386 | all registers in REGSET. */ | |
387 | static void | |
388 | s390_collect_regset (const struct regset *regset, | |
389 | const struct regcache *regcache, | |
390 | int regnum, void *regs, size_t len) | |
391 | { | |
392 | const int *offset = regset->descr; | |
393 | int i; | |
394 | ||
395 | for (i = 0; i < S390_NUM_REGS; i++) | |
396 | { | |
397 | if ((regnum == i || regnum == -1) && offset[i] != -1) | |
398 | regcache_raw_collect (regcache, i, (char *)regs + offset[i]); | |
399 | } | |
400 | } | |
401 | ||
d0f54f9d JB |
402 | static const struct regset s390_gregset = { |
403 | s390_regmap_gregset, | |
92f38ec2 UW |
404 | s390_supply_regset, |
405 | s390_collect_regset | |
d0f54f9d JB |
406 | }; |
407 | ||
408 | static const struct regset s390x_gregset = { | |
409 | s390x_regmap_gregset, | |
92f38ec2 UW |
410 | s390_supply_regset, |
411 | s390_collect_regset | |
d0f54f9d JB |
412 | }; |
413 | ||
414 | static const struct regset s390_fpregset = { | |
415 | s390_regmap_fpregset, | |
92f38ec2 UW |
416 | s390_supply_regset, |
417 | s390_collect_regset | |
d0f54f9d JB |
418 | }; |
419 | ||
420 | /* Return the appropriate register set for the core section identified | |
421 | by SECT_NAME and SECT_SIZE. */ | |
422 | const struct regset * | |
423 | s390_regset_from_core_section (struct gdbarch *gdbarch, | |
424 | const char *sect_name, size_t sect_size) | |
425 | { | |
426 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
427 | ||
e31dcd20 | 428 | if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset) |
d0f54f9d JB |
429 | return tdep->gregset; |
430 | ||
e31dcd20 | 431 | if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset) |
d0f54f9d JB |
432 | return tdep->fpregset; |
433 | ||
434 | return NULL; | |
5769d3cd AC |
435 | } |
436 | ||
d0f54f9d | 437 | |
4bc8c588 JB |
438 | /* Decoding S/390 instructions. */ |
439 | ||
440 | /* Named opcode values for the S/390 instructions we recognize. Some | |
441 | instructions have their opcode split across two fields; those are the | |
442 | op1_* and op2_* enums. */ | |
443 | enum | |
444 | { | |
a8c99f38 JB |
445 | op1_lhi = 0xa7, op2_lhi = 0x08, |
446 | op1_lghi = 0xa7, op2_lghi = 0x09, | |
00ce08ef | 447 | op1_lgfi = 0xc0, op2_lgfi = 0x01, |
4bc8c588 | 448 | op_lr = 0x18, |
a8c99f38 JB |
449 | op_lgr = 0xb904, |
450 | op_l = 0x58, | |
451 | op1_ly = 0xe3, op2_ly = 0x58, | |
452 | op1_lg = 0xe3, op2_lg = 0x04, | |
453 | op_lm = 0x98, | |
454 | op1_lmy = 0xeb, op2_lmy = 0x98, | |
455 | op1_lmg = 0xeb, op2_lmg = 0x04, | |
4bc8c588 | 456 | op_st = 0x50, |
a8c99f38 | 457 | op1_sty = 0xe3, op2_sty = 0x50, |
4bc8c588 | 458 | op1_stg = 0xe3, op2_stg = 0x24, |
a8c99f38 | 459 | op_std = 0x60, |
4bc8c588 | 460 | op_stm = 0x90, |
a8c99f38 | 461 | op1_stmy = 0xeb, op2_stmy = 0x90, |
4bc8c588 | 462 | op1_stmg = 0xeb, op2_stmg = 0x24, |
a8c99f38 JB |
463 | op1_aghi = 0xa7, op2_aghi = 0x0b, |
464 | op1_ahi = 0xa7, op2_ahi = 0x0a, | |
00ce08ef UW |
465 | op1_agfi = 0xc2, op2_agfi = 0x08, |
466 | op1_afi = 0xc2, op2_afi = 0x09, | |
467 | op1_algfi= 0xc2, op2_algfi= 0x0a, | |
468 | op1_alfi = 0xc2, op2_alfi = 0x0b, | |
a8c99f38 JB |
469 | op_ar = 0x1a, |
470 | op_agr = 0xb908, | |
471 | op_a = 0x5a, | |
472 | op1_ay = 0xe3, op2_ay = 0x5a, | |
473 | op1_ag = 0xe3, op2_ag = 0x08, | |
00ce08ef UW |
474 | op1_slgfi= 0xc2, op2_slgfi= 0x04, |
475 | op1_slfi = 0xc2, op2_slfi = 0x05, | |
a8c99f38 JB |
476 | op_sr = 0x1b, |
477 | op_sgr = 0xb909, | |
478 | op_s = 0x5b, | |
479 | op1_sy = 0xe3, op2_sy = 0x5b, | |
480 | op1_sg = 0xe3, op2_sg = 0x09, | |
481 | op_nr = 0x14, | |
482 | op_ngr = 0xb980, | |
483 | op_la = 0x41, | |
484 | op1_lay = 0xe3, op2_lay = 0x71, | |
485 | op1_larl = 0xc0, op2_larl = 0x00, | |
486 | op_basr = 0x0d, | |
487 | op_bas = 0x4d, | |
488 | op_bcr = 0x07, | |
489 | op_bc = 0x0d, | |
490 | op1_bras = 0xa7, op2_bras = 0x05, | |
491 | op1_brasl= 0xc0, op2_brasl= 0x05, | |
492 | op1_brc = 0xa7, op2_brc = 0x04, | |
493 | op1_brcl = 0xc0, op2_brcl = 0x04, | |
4bc8c588 JB |
494 | }; |
495 | ||
496 | ||
a8c99f38 JB |
497 | /* Read a single instruction from address AT. */ |
498 | ||
499 | #define S390_MAX_INSTR_SIZE 6 | |
500 | static int | |
501 | s390_readinstruction (bfd_byte instr[], CORE_ADDR at) | |
502 | { | |
503 | static int s390_instrlen[] = { 2, 4, 4, 6 }; | |
504 | int instrlen; | |
505 | ||
8defab1a | 506 | if (target_read_memory (at, &instr[0], 2)) |
a8c99f38 JB |
507 | return -1; |
508 | instrlen = s390_instrlen[instr[0] >> 6]; | |
509 | if (instrlen > 2) | |
510 | { | |
8defab1a | 511 | if (target_read_memory (at + 2, &instr[2], instrlen - 2)) |
a8c99f38 JB |
512 | return -1; |
513 | } | |
514 | return instrlen; | |
515 | } | |
516 | ||
517 | ||
4bc8c588 JB |
518 | /* The functions below are for recognizing and decoding S/390 |
519 | instructions of various formats. Each of them checks whether INSN | |
520 | is an instruction of the given format, with the specified opcodes. | |
521 | If it is, it sets the remaining arguments to the values of the | |
522 | instruction's fields, and returns a non-zero value; otherwise, it | |
523 | returns zero. | |
524 | ||
525 | These functions' arguments appear in the order they appear in the | |
526 | instruction, not in the machine-language form. So, opcodes always | |
527 | come first, even though they're sometimes scattered around the | |
528 | instructions. And displacements appear before base and extension | |
529 | registers, as they do in the assembly syntax, not at the end, as | |
530 | they do in the machine language. */ | |
a78f21af | 531 | static int |
4bc8c588 JB |
532 | is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2) |
533 | { | |
534 | if (insn[0] == op1 && (insn[1] & 0xf) == op2) | |
535 | { | |
536 | *r1 = (insn[1] >> 4) & 0xf; | |
537 | /* i2 is a 16-bit signed quantity. */ | |
538 | *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; | |
539 | return 1; | |
540 | } | |
541 | else | |
542 | return 0; | |
543 | } | |
8ac0e65a | 544 | |
5769d3cd | 545 | |
4bc8c588 JB |
546 | static int |
547 | is_ril (bfd_byte *insn, int op1, int op2, | |
548 | unsigned int *r1, int *i2) | |
549 | { | |
550 | if (insn[0] == op1 && (insn[1] & 0xf) == op2) | |
551 | { | |
552 | *r1 = (insn[1] >> 4) & 0xf; | |
553 | /* i2 is a signed quantity. If the host 'int' is 32 bits long, | |
554 | no sign extension is necessary, but we don't want to assume | |
555 | that. */ | |
556 | *i2 = (((insn[2] << 24) | |
557 | | (insn[3] << 16) | |
558 | | (insn[4] << 8) | |
559 | | (insn[5])) ^ 0x80000000) - 0x80000000; | |
560 | return 1; | |
561 | } | |
562 | else | |
563 | return 0; | |
564 | } | |
565 | ||
566 | ||
567 | static int | |
568 | is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) | |
569 | { | |
570 | if (insn[0] == op) | |
571 | { | |
572 | *r1 = (insn[1] >> 4) & 0xf; | |
573 | *r2 = insn[1] & 0xf; | |
574 | return 1; | |
575 | } | |
576 | else | |
577 | return 0; | |
578 | } | |
579 | ||
580 | ||
581 | static int | |
582 | is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) | |
583 | { | |
584 | if (((insn[0] << 8) | insn[1]) == op) | |
585 | { | |
586 | /* Yes, insn[3]. insn[2] is unused in RRE format. */ | |
587 | *r1 = (insn[3] >> 4) & 0xf; | |
588 | *r2 = insn[3] & 0xf; | |
589 | return 1; | |
590 | } | |
591 | else | |
592 | return 0; | |
593 | } | |
594 | ||
595 | ||
596 | static int | |
597 | is_rs (bfd_byte *insn, int op, | |
598 | unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) | |
599 | { | |
600 | if (insn[0] == op) | |
601 | { | |
602 | *r1 = (insn[1] >> 4) & 0xf; | |
603 | *r3 = insn[1] & 0xf; | |
604 | *b2 = (insn[2] >> 4) & 0xf; | |
605 | *d2 = ((insn[2] & 0xf) << 8) | insn[3]; | |
606 | return 1; | |
607 | } | |
608 | else | |
609 | return 0; | |
610 | } | |
611 | ||
612 | ||
613 | static int | |
a8c99f38 | 614 | is_rsy (bfd_byte *insn, int op1, int op2, |
4bc8c588 JB |
615 | unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) |
616 | { | |
617 | if (insn[0] == op1 | |
4bc8c588 JB |
618 | && insn[5] == op2) |
619 | { | |
620 | *r1 = (insn[1] >> 4) & 0xf; | |
621 | *r3 = insn[1] & 0xf; | |
622 | *b2 = (insn[2] >> 4) & 0xf; | |
a8c99f38 JB |
623 | /* The 'long displacement' is a 20-bit signed integer. */ |
624 | *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) | |
625 | ^ 0x80000) - 0x80000; | |
4bc8c588 JB |
626 | return 1; |
627 | } | |
628 | else | |
629 | return 0; | |
630 | } | |
631 | ||
632 | ||
633 | static int | |
634 | is_rx (bfd_byte *insn, int op, | |
635 | unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) | |
636 | { | |
637 | if (insn[0] == op) | |
638 | { | |
639 | *r1 = (insn[1] >> 4) & 0xf; | |
640 | *x2 = insn[1] & 0xf; | |
641 | *b2 = (insn[2] >> 4) & 0xf; | |
642 | *d2 = ((insn[2] & 0xf) << 8) | insn[3]; | |
643 | return 1; | |
644 | } | |
645 | else | |
646 | return 0; | |
647 | } | |
648 | ||
649 | ||
650 | static int | |
a8c99f38 | 651 | is_rxy (bfd_byte *insn, int op1, int op2, |
4bc8c588 JB |
652 | unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) |
653 | { | |
654 | if (insn[0] == op1 | |
4bc8c588 JB |
655 | && insn[5] == op2) |
656 | { | |
657 | *r1 = (insn[1] >> 4) & 0xf; | |
658 | *x2 = insn[1] & 0xf; | |
659 | *b2 = (insn[2] >> 4) & 0xf; | |
a8c99f38 JB |
660 | /* The 'long displacement' is a 20-bit signed integer. */ |
661 | *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) | |
662 | ^ 0x80000) - 0x80000; | |
4bc8c588 JB |
663 | return 1; |
664 | } | |
665 | else | |
666 | return 0; | |
667 | } | |
668 | ||
669 | ||
3fc46200 | 670 | /* Prologue analysis. */ |
4bc8c588 | 671 | |
d0f54f9d JB |
672 | #define S390_NUM_GPRS 16 |
673 | #define S390_NUM_FPRS 16 | |
4bc8c588 | 674 | |
a8c99f38 JB |
675 | struct s390_prologue_data { |
676 | ||
ee1b3323 UW |
677 | /* The stack. */ |
678 | struct pv_area *stack; | |
679 | ||
a8c99f38 JB |
680 | /* The size of a GPR or FPR. */ |
681 | int gpr_size; | |
682 | int fpr_size; | |
683 | ||
684 | /* The general-purpose registers. */ | |
3fc46200 | 685 | pv_t gpr[S390_NUM_GPRS]; |
a8c99f38 JB |
686 | |
687 | /* The floating-point registers. */ | |
3fc46200 | 688 | pv_t fpr[S390_NUM_FPRS]; |
a8c99f38 | 689 | |
121d8485 UW |
690 | /* The offset relative to the CFA where the incoming GPR N was saved |
691 | by the function prologue. 0 if not saved or unknown. */ | |
692 | int gpr_slot[S390_NUM_GPRS]; | |
4bc8c588 | 693 | |
121d8485 UW |
694 | /* Likewise for FPRs. */ |
695 | int fpr_slot[S390_NUM_FPRS]; | |
4bc8c588 | 696 | |
121d8485 UW |
697 | /* Nonzero if the backchain was saved. This is assumed to be the |
698 | case when the incoming SP is saved at the current SP location. */ | |
699 | int back_chain_saved_p; | |
700 | }; | |
4bc8c588 | 701 | |
3fc46200 UW |
702 | /* Return the effective address for an X-style instruction, like: |
703 | ||
704 | L R1, D2(X2, B2) | |
705 | ||
706 | Here, X2 and B2 are registers, and D2 is a signed 20-bit | |
707 | constant; the effective address is the sum of all three. If either | |
708 | X2 or B2 are zero, then it doesn't contribute to the sum --- this | |
709 | means that r0 can't be used as either X2 or B2. */ | |
710 | static pv_t | |
711 | s390_addr (struct s390_prologue_data *data, | |
712 | int d2, unsigned int x2, unsigned int b2) | |
713 | { | |
714 | pv_t result; | |
715 | ||
716 | result = pv_constant (d2); | |
717 | if (x2) | |
718 | result = pv_add (result, data->gpr[x2]); | |
719 | if (b2) | |
720 | result = pv_add (result, data->gpr[b2]); | |
721 | ||
722 | return result; | |
723 | } | |
724 | ||
725 | /* Do a SIZE-byte store of VALUE to D2(X2,B2). */ | |
a8c99f38 | 726 | static void |
3fc46200 UW |
727 | s390_store (struct s390_prologue_data *data, |
728 | int d2, unsigned int x2, unsigned int b2, CORE_ADDR size, | |
729 | pv_t value) | |
4bc8c588 | 730 | { |
3fc46200 | 731 | pv_t addr = s390_addr (data, d2, x2, b2); |
ee1b3323 | 732 | pv_t offset; |
121d8485 UW |
733 | |
734 | /* Check whether we are storing the backchain. */ | |
3fc46200 | 735 | offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr); |
121d8485 | 736 | |
3fc46200 | 737 | if (pv_is_constant (offset) && offset.k == 0) |
121d8485 | 738 | if (size == data->gpr_size |
3fc46200 | 739 | && pv_is_register_k (value, S390_SP_REGNUM, 0)) |
121d8485 UW |
740 | { |
741 | data->back_chain_saved_p = 1; | |
742 | return; | |
743 | } | |
744 | ||
745 | ||
746 | /* Check whether we are storing a register into the stack. */ | |
ee1b3323 UW |
747 | if (!pv_area_store_would_trash (data->stack, addr)) |
748 | pv_area_store (data->stack, addr, size, value); | |
4bc8c588 | 749 | |
a8c99f38 | 750 | |
121d8485 UW |
751 | /* Note: If this is some store we cannot identify, you might think we |
752 | should forget our cached values, as any of those might have been hit. | |
753 | ||
754 | However, we make the assumption that the register save areas are only | |
755 | ever stored to once in any given function, and we do recognize these | |
756 | stores. Thus every store we cannot recognize does not hit our data. */ | |
4bc8c588 | 757 | } |
4bc8c588 | 758 | |
3fc46200 UW |
759 | /* Do a SIZE-byte load from D2(X2,B2). */ |
760 | static pv_t | |
761 | s390_load (struct s390_prologue_data *data, | |
762 | int d2, unsigned int x2, unsigned int b2, CORE_ADDR size) | |
763 | ||
4bc8c588 | 764 | { |
3fc46200 | 765 | pv_t addr = s390_addr (data, d2, x2, b2); |
ee1b3323 | 766 | pv_t offset; |
4bc8c588 | 767 | |
a8c99f38 JB |
768 | /* If it's a load from an in-line constant pool, then we can |
769 | simulate that, under the assumption that the code isn't | |
770 | going to change between the time the processor actually | |
771 | executed it creating the current frame, and the time when | |
772 | we're analyzing the code to unwind past that frame. */ | |
3fc46200 | 773 | if (pv_is_constant (addr)) |
4bc8c588 | 774 | { |
a8c99f38 | 775 | struct section_table *secp; |
3fc46200 | 776 | secp = target_section_by_addr (¤t_target, addr.k); |
a8c99f38 JB |
777 | if (secp != NULL |
778 | && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section) | |
779 | & SEC_READONLY)) | |
3fc46200 | 780 | return pv_constant (read_memory_integer (addr.k, size)); |
a8c99f38 | 781 | } |
7666f43c | 782 | |
121d8485 | 783 | /* Check whether we are accessing one of our save slots. */ |
ee1b3323 UW |
784 | return pv_area_fetch (data->stack, addr, size); |
785 | } | |
121d8485 | 786 | |
ee1b3323 UW |
787 | /* Function for finding saved registers in a 'struct pv_area'; we pass |
788 | this to pv_area_scan. | |
121d8485 | 789 | |
ee1b3323 UW |
790 | If VALUE is a saved register, ADDR says it was saved at a constant |
791 | offset from the frame base, and SIZE indicates that the whole | |
792 | register was saved, record its offset in the reg_offset table in | |
793 | PROLOGUE_UNTYPED. */ | |
794 | static void | |
795 | s390_check_for_saved (void *data_untyped, pv_t addr, CORE_ADDR size, pv_t value) | |
796 | { | |
797 | struct s390_prologue_data *data = data_untyped; | |
798 | int i, offset; | |
799 | ||
800 | if (!pv_is_register (addr, S390_SP_REGNUM)) | |
801 | return; | |
802 | ||
803 | offset = 16 * data->gpr_size + 32 - addr.k; | |
4bc8c588 | 804 | |
ee1b3323 UW |
805 | /* If we are storing the original value of a register, we want to |
806 | record the CFA offset. If the same register is stored multiple | |
807 | times, the stack slot with the highest address counts. */ | |
808 | ||
809 | for (i = 0; i < S390_NUM_GPRS; i++) | |
810 | if (size == data->gpr_size | |
811 | && pv_is_register_k (value, S390_R0_REGNUM + i, 0)) | |
812 | if (data->gpr_slot[i] == 0 | |
813 | || data->gpr_slot[i] > offset) | |
814 | { | |
815 | data->gpr_slot[i] = offset; | |
816 | return; | |
817 | } | |
818 | ||
819 | for (i = 0; i < S390_NUM_FPRS; i++) | |
820 | if (size == data->fpr_size | |
821 | && pv_is_register_k (value, S390_F0_REGNUM + i, 0)) | |
822 | if (data->fpr_slot[i] == 0 | |
823 | || data->fpr_slot[i] > offset) | |
824 | { | |
825 | data->fpr_slot[i] = offset; | |
826 | return; | |
827 | } | |
a8c99f38 | 828 | } |
4bc8c588 | 829 | |
a8c99f38 JB |
830 | /* Analyze the prologue of the function starting at START_PC, |
831 | continuing at most until CURRENT_PC. Initialize DATA to | |
832 | hold all information we find out about the state of the registers | |
833 | and stack slots. Return the address of the instruction after | |
834 | the last one that changed the SP, FP, or back chain; or zero | |
835 | on error. */ | |
836 | static CORE_ADDR | |
837 | s390_analyze_prologue (struct gdbarch *gdbarch, | |
838 | CORE_ADDR start_pc, | |
839 | CORE_ADDR current_pc, | |
840 | struct s390_prologue_data *data) | |
4bc8c588 | 841 | { |
a8c99f38 JB |
842 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
843 | ||
4bc8c588 | 844 | /* Our return value: |
a8c99f38 JB |
845 | The address of the instruction after the last one that changed |
846 | the SP, FP, or back chain; zero if we got an error trying to | |
847 | read memory. */ | |
848 | CORE_ADDR result = start_pc; | |
4bc8c588 | 849 | |
4bc8c588 JB |
850 | /* The current PC for our abstract interpretation. */ |
851 | CORE_ADDR pc; | |
852 | ||
853 | /* The address of the next instruction after that. */ | |
854 | CORE_ADDR next_pc; | |
855 | ||
4bc8c588 JB |
856 | /* Set up everything's initial value. */ |
857 | { | |
858 | int i; | |
859 | ||
ee1b3323 UW |
860 | data->stack = make_pv_area (S390_SP_REGNUM); |
861 | ||
a8c99f38 JB |
862 | /* For the purpose of prologue tracking, we consider the GPR size to |
863 | be equal to the ABI word size, even if it is actually larger | |
864 | (i.e. when running a 32-bit binary under a 64-bit kernel). */ | |
865 | data->gpr_size = word_size; | |
866 | data->fpr_size = 8; | |
867 | ||
4bc8c588 | 868 | for (i = 0; i < S390_NUM_GPRS; i++) |
3fc46200 | 869 | data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0); |
4bc8c588 JB |
870 | |
871 | for (i = 0; i < S390_NUM_FPRS; i++) | |
3fc46200 | 872 | data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0); |
4bc8c588 | 873 | |
121d8485 UW |
874 | for (i = 0; i < S390_NUM_GPRS; i++) |
875 | data->gpr_slot[i] = 0; | |
876 | ||
877 | for (i = 0; i < S390_NUM_FPRS; i++) | |
878 | data->fpr_slot[i] = 0; | |
4bc8c588 | 879 | |
121d8485 | 880 | data->back_chain_saved_p = 0; |
4bc8c588 JB |
881 | } |
882 | ||
a8c99f38 JB |
883 | /* Start interpreting instructions, until we hit the frame's |
884 | current PC or the first branch instruction. */ | |
885 | for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc) | |
5769d3cd | 886 | { |
4bc8c588 | 887 | bfd_byte insn[S390_MAX_INSTR_SIZE]; |
a788de9b | 888 | int insn_len = s390_readinstruction (insn, pc); |
4bc8c588 | 889 | |
3fc46200 UW |
890 | bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 }; |
891 | bfd_byte *insn32 = word_size == 4 ? insn : dummy; | |
892 | bfd_byte *insn64 = word_size == 8 ? insn : dummy; | |
893 | ||
4bc8c588 | 894 | /* Fields for various kinds of instructions. */ |
a8c99f38 JB |
895 | unsigned int b2, r1, r2, x2, r3; |
896 | int i2, d2; | |
4bc8c588 | 897 | |
121d8485 | 898 | /* The values of SP and FP before this instruction, |
4bc8c588 | 899 | for detecting instructions that change them. */ |
3fc46200 | 900 | pv_t pre_insn_sp, pre_insn_fp; |
121d8485 UW |
901 | /* Likewise for the flag whether the back chain was saved. */ |
902 | int pre_insn_back_chain_saved_p; | |
4bc8c588 JB |
903 | |
904 | /* If we got an error trying to read the instruction, report it. */ | |
905 | if (insn_len < 0) | |
8ac0e65a | 906 | { |
a8c99f38 | 907 | result = 0; |
4bc8c588 JB |
908 | break; |
909 | } | |
910 | ||
911 | next_pc = pc + insn_len; | |
912 | ||
a8c99f38 JB |
913 | pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
914 | pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; | |
121d8485 | 915 | pre_insn_back_chain_saved_p = data->back_chain_saved_p; |
4bc8c588 | 916 | |
4bc8c588 | 917 | |
3fc46200 UW |
918 | /* LHI r1, i2 --- load halfword immediate. */ |
919 | /* LGHI r1, i2 --- load halfword immediate (64-bit version). */ | |
920 | /* LGFI r1, i2 --- load fullword immediate. */ | |
921 | if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2) | |
922 | || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2) | |
923 | || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2)) | |
924 | data->gpr[r1] = pv_constant (i2); | |
925 | ||
926 | /* LR r1, r2 --- load from register. */ | |
927 | /* LGR r1, r2 --- load from register (64-bit version). */ | |
928 | else if (is_rr (insn32, op_lr, &r1, &r2) | |
929 | || is_rre (insn64, op_lgr, &r1, &r2)) | |
930 | data->gpr[r1] = data->gpr[r2]; | |
931 | ||
932 | /* L r1, d2(x2, b2) --- load. */ | |
933 | /* LY r1, d2(x2, b2) --- load (long-displacement version). */ | |
934 | /* LG r1, d2(x2, b2) --- load (64-bit version). */ | |
935 | else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2) | |
936 | || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2) | |
937 | || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2)) | |
938 | data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size); | |
939 | ||
940 | /* ST r1, d2(x2, b2) --- store. */ | |
941 | /* STY r1, d2(x2, b2) --- store (long-displacement version). */ | |
942 | /* STG r1, d2(x2, b2) --- store (64-bit version). */ | |
943 | else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2) | |
944 | || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2) | |
945 | || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) | |
946 | s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]); | |
947 | ||
948 | /* STD r1, d2(x2,b2) --- store floating-point register. */ | |
4bc8c588 | 949 | else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) |
3fc46200 UW |
950 | s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]); |
951 | ||
952 | /* STM r1, r3, d2(b2) --- store multiple. */ | |
953 | /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version). */ | |
954 | /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */ | |
955 | else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2) | |
956 | || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2) | |
957 | || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) | |
4bc8c588 | 958 | { |
3fc46200 UW |
959 | for (; r1 <= r3; r1++, d2 += data->gpr_size) |
960 | s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]); | |
4bc8c588 JB |
961 | } |
962 | ||
3fc46200 UW |
963 | /* AHI r1, i2 --- add halfword immediate. */ |
964 | /* AGHI r1, i2 --- add halfword immediate (64-bit version). */ | |
965 | /* AFI r1, i2 --- add fullword immediate. */ | |
966 | /* AGFI r1, i2 --- add fullword immediate (64-bit version). */ | |
967 | else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2) | |
968 | || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2) | |
969 | || is_ril (insn32, op1_afi, op2_afi, &r1, &i2) | |
970 | || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2)) | |
971 | data->gpr[r1] = pv_add_constant (data->gpr[r1], i2); | |
972 | ||
973 | /* ALFI r1, i2 --- add logical immediate. */ | |
974 | /* ALGFI r1, i2 --- add logical immediate (64-bit version). */ | |
975 | else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2) | |
976 | || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2)) | |
977 | data->gpr[r1] = pv_add_constant (data->gpr[r1], | |
978 | (CORE_ADDR)i2 & 0xffffffff); | |
979 | ||
980 | /* AR r1, r2 -- add register. */ | |
981 | /* AGR r1, r2 -- add register (64-bit version). */ | |
982 | else if (is_rr (insn32, op_ar, &r1, &r2) | |
983 | || is_rre (insn64, op_agr, &r1, &r2)) | |
984 | data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]); | |
985 | ||
986 | /* A r1, d2(x2, b2) -- add. */ | |
987 | /* AY r1, d2(x2, b2) -- add (long-displacement version). */ | |
988 | /* AG r1, d2(x2, b2) -- add (64-bit version). */ | |
989 | else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2) | |
990 | || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2) | |
991 | || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2)) | |
992 | data->gpr[r1] = pv_add (data->gpr[r1], | |
993 | s390_load (data, d2, x2, b2, data->gpr_size)); | |
994 | ||
995 | /* SLFI r1, i2 --- subtract logical immediate. */ | |
996 | /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */ | |
997 | else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2) | |
998 | || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2)) | |
999 | data->gpr[r1] = pv_add_constant (data->gpr[r1], | |
1000 | -((CORE_ADDR)i2 & 0xffffffff)); | |
1001 | ||
1002 | /* SR r1, r2 -- subtract register. */ | |
1003 | /* SGR r1, r2 -- subtract register (64-bit version). */ | |
1004 | else if (is_rr (insn32, op_sr, &r1, &r2) | |
1005 | || is_rre (insn64, op_sgr, &r1, &r2)) | |
1006 | data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]); | |
1007 | ||
1008 | /* S r1, d2(x2, b2) -- subtract. */ | |
1009 | /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */ | |
1010 | /* SG r1, d2(x2, b2) -- subtract (64-bit version). */ | |
1011 | else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2) | |
1012 | || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2) | |
1013 | || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2)) | |
1014 | data->gpr[r1] = pv_subtract (data->gpr[r1], | |
1015 | s390_load (data, d2, x2, b2, data->gpr_size)); | |
1016 | ||
1017 | /* LA r1, d2(x2, b2) --- load address. */ | |
1018 | /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */ | |
1019 | else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2) | |
1020 | || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2)) | |
1021 | data->gpr[r1] = s390_addr (data, d2, x2, b2); | |
1022 | ||
1023 | /* LARL r1, i2 --- load address relative long. */ | |
a8c99f38 | 1024 | else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) |
3fc46200 | 1025 | data->gpr[r1] = pv_constant (pc + i2 * 2); |
a8c99f38 | 1026 | |
3fc46200 | 1027 | /* BASR r1, 0 --- branch and save. |
a8c99f38 JB |
1028 | Since r2 is zero, this saves the PC in r1, but doesn't branch. */ |
1029 | else if (is_rr (insn, op_basr, &r1, &r2) | |
1030 | && r2 == 0) | |
3fc46200 | 1031 | data->gpr[r1] = pv_constant (next_pc); |
a8c99f38 | 1032 | |
3fc46200 | 1033 | /* BRAS r1, i2 --- branch relative and save. */ |
a8c99f38 JB |
1034 | else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)) |
1035 | { | |
3fc46200 | 1036 | data->gpr[r1] = pv_constant (next_pc); |
a8c99f38 | 1037 | next_pc = pc + i2 * 2; |
4bc8c588 | 1038 | |
a8c99f38 JB |
1039 | /* We'd better not interpret any backward branches. We'll |
1040 | never terminate. */ | |
1041 | if (next_pc <= pc) | |
4bc8c588 JB |
1042 | break; |
1043 | } | |
1044 | ||
a8c99f38 JB |
1045 | /* Terminate search when hitting any other branch instruction. */ |
1046 | else if (is_rr (insn, op_basr, &r1, &r2) | |
1047 | || is_rx (insn, op_bas, &r1, &d2, &x2, &b2) | |
1048 | || is_rr (insn, op_bcr, &r1, &r2) | |
1049 | || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) | |
1050 | || is_ri (insn, op1_brc, op2_brc, &r1, &i2) | |
1051 | || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2) | |
1052 | || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2)) | |
1053 | break; | |
1054 | ||
4bc8c588 JB |
1055 | else |
1056 | /* An instruction we don't know how to simulate. The only | |
1057 | safe thing to do would be to set every value we're tracking | |
a8c99f38 JB |
1058 | to 'unknown'. Instead, we'll be optimistic: we assume that |
1059 | we *can* interpret every instruction that the compiler uses | |
1060 | to manipulate any of the data we're interested in here -- | |
1061 | then we can just ignore anything else. */ | |
1062 | ; | |
4bc8c588 JB |
1063 | |
1064 | /* Record the address after the last instruction that changed | |
1065 | the FP, SP, or backlink. Ignore instructions that changed | |
1066 | them back to their original values --- those are probably | |
1067 | restore instructions. (The back chain is never restored, | |
1068 | just popped.) */ | |
1069 | { | |
3fc46200 UW |
1070 | pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
1071 | pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; | |
4bc8c588 | 1072 | |
3fc46200 UW |
1073 | if ((! pv_is_identical (pre_insn_sp, sp) |
1074 | && ! pv_is_register_k (sp, S390_SP_REGNUM, 0) | |
1075 | && sp.kind != pvk_unknown) | |
1076 | || (! pv_is_identical (pre_insn_fp, fp) | |
1077 | && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0) | |
1078 | && fp.kind != pvk_unknown) | |
121d8485 | 1079 | || pre_insn_back_chain_saved_p != data->back_chain_saved_p) |
a8c99f38 | 1080 | result = next_pc; |
4bc8c588 | 1081 | } |
5769d3cd | 1082 | } |
4bc8c588 | 1083 | |
ee1b3323 UW |
1084 | /* Record where all the registers were saved. */ |
1085 | pv_area_scan (data->stack, s390_check_for_saved, data); | |
1086 | ||
1087 | free_pv_area (data->stack); | |
1088 | data->stack = NULL; | |
1089 | ||
4bc8c588 | 1090 | return result; |
5769d3cd AC |
1091 | } |
1092 | ||
a8c99f38 JB |
1093 | /* Advance PC across any function entry prologue instructions to reach |
1094 | some "real" code. */ | |
1095 | static CORE_ADDR | |
6093d2eb | 1096 | s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
a8c99f38 JB |
1097 | { |
1098 | struct s390_prologue_data data; | |
1099 | CORE_ADDR skip_pc; | |
6093d2eb | 1100 | skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); |
a8c99f38 JB |
1101 | return skip_pc ? skip_pc : pc; |
1102 | } | |
1103 | ||
d0f54f9d JB |
1104 | /* Return true if we are in the functin's epilogue, i.e. after the |
1105 | instruction that destroyed the function's stack frame. */ | |
1106 | static int | |
1107 | s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1108 | { | |
1109 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
1110 | ||
1111 | /* In frameless functions, there's not frame to destroy and thus | |
1112 | we don't care about the epilogue. | |
1113 | ||
1114 | In functions with frame, the epilogue sequence is a pair of | |
1115 | a LM-type instruction that restores (amongst others) the | |
1116 | return register %r14 and the stack pointer %r15, followed | |
1117 | by a branch 'br %r14' --or equivalent-- that effects the | |
1118 | actual return. | |
1119 | ||
1120 | In that situation, this function needs to return 'true' in | |
1121 | exactly one case: when pc points to that branch instruction. | |
1122 | ||
1123 | Thus we try to disassemble the one instructions immediately | |
1124 | preceeding pc and check whether it is an LM-type instruction | |
1125 | modifying the stack pointer. | |
1126 | ||
1127 | Note that disassembling backwards is not reliable, so there | |
1128 | is a slight chance of false positives here ... */ | |
1129 | ||
1130 | bfd_byte insn[6]; | |
1131 | unsigned int r1, r3, b2; | |
1132 | int d2; | |
1133 | ||
1134 | if (word_size == 4 | |
8defab1a | 1135 | && !target_read_memory (pc - 4, insn, 4) |
d0f54f9d JB |
1136 | && is_rs (insn, op_lm, &r1, &r3, &d2, &b2) |
1137 | && r3 == S390_SP_REGNUM - S390_R0_REGNUM) | |
1138 | return 1; | |
1139 | ||
a8c99f38 | 1140 | if (word_size == 4 |
8defab1a | 1141 | && !target_read_memory (pc - 6, insn, 6) |
a8c99f38 JB |
1142 | && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2) |
1143 | && r3 == S390_SP_REGNUM - S390_R0_REGNUM) | |
1144 | return 1; | |
1145 | ||
d0f54f9d | 1146 | if (word_size == 8 |
8defab1a | 1147 | && !target_read_memory (pc - 6, insn, 6) |
a8c99f38 | 1148 | && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2) |
d0f54f9d JB |
1149 | && r3 == S390_SP_REGNUM - S390_R0_REGNUM) |
1150 | return 1; | |
1151 | ||
1152 | return 0; | |
1153 | } | |
5769d3cd | 1154 | |
a8c99f38 JB |
1155 | |
1156 | /* Normal stack frames. */ | |
1157 | ||
1158 | struct s390_unwind_cache { | |
1159 | ||
1160 | CORE_ADDR func; | |
1161 | CORE_ADDR frame_base; | |
1162 | CORE_ADDR local_base; | |
1163 | ||
1164 | struct trad_frame_saved_reg *saved_regs; | |
1165 | }; | |
1166 | ||
a78f21af | 1167 | static int |
f089c433 | 1168 | s390_prologue_frame_unwind_cache (struct frame_info *this_frame, |
a8c99f38 | 1169 | struct s390_unwind_cache *info) |
5769d3cd | 1170 | { |
f089c433 | 1171 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
121d8485 | 1172 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
a8c99f38 JB |
1173 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
1174 | struct s390_prologue_data data; | |
3fc46200 UW |
1175 | pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; |
1176 | pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; | |
121d8485 UW |
1177 | int i; |
1178 | CORE_ADDR cfa; | |
a8c99f38 JB |
1179 | CORE_ADDR func; |
1180 | CORE_ADDR result; | |
1181 | ULONGEST reg; | |
1182 | CORE_ADDR prev_sp; | |
1183 | int frame_pointer; | |
1184 | int size; | |
1185 | ||
1186 | /* Try to find the function start address. If we can't find it, we don't | |
1187 | bother searching for it -- with modern compilers this would be mostly | |
1188 | pointless anyway. Trust that we'll either have valid DWARF-2 CFI data | |
1189 | or else a valid backchain ... */ | |
f089c433 | 1190 | func = get_frame_func (this_frame); |
a8c99f38 JB |
1191 | if (!func) |
1192 | return 0; | |
5769d3cd | 1193 | |
a8c99f38 JB |
1194 | /* Try to analyze the prologue. */ |
1195 | result = s390_analyze_prologue (gdbarch, func, | |
f089c433 | 1196 | get_frame_pc (this_frame), &data); |
a8c99f38 | 1197 | if (!result) |
5769d3cd | 1198 | return 0; |
5769d3cd | 1199 | |
a8c99f38 JB |
1200 | /* If this was successful, we should have found the instruction that |
1201 | sets the stack pointer register to the previous value of the stack | |
1202 | pointer minus the frame size. */ | |
3fc46200 | 1203 | if (!pv_is_register (*sp, S390_SP_REGNUM)) |
5769d3cd | 1204 | return 0; |
a8c99f38 JB |
1205 | |
1206 | /* A frame size of zero at this point can mean either a real | |
1207 | frameless function, or else a failure to find the prologue. | |
1208 | Perform some sanity checks to verify we really have a | |
1209 | frameless function. */ | |
1210 | if (sp->k == 0) | |
5769d3cd | 1211 | { |
a8c99f38 JB |
1212 | /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame |
1213 | size zero. This is only possible if the next frame is a sentinel | |
1214 | frame, a dummy frame, or a signal trampoline frame. */ | |
0e100dab AC |
1215 | /* FIXME: cagney/2004-05-01: This sanity check shouldn't be |
1216 | needed, instead the code should simpliy rely on its | |
1217 | analysis. */ | |
f089c433 UW |
1218 | if (get_next_frame (this_frame) |
1219 | && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) | |
5769d3cd | 1220 | return 0; |
5769d3cd | 1221 | |
a8c99f38 JB |
1222 | /* If we really have a frameless function, %r14 must be valid |
1223 | -- in particular, it must point to a different function. */ | |
f089c433 | 1224 | reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM); |
a8c99f38 JB |
1225 | reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1; |
1226 | if (get_pc_function_start (reg) == func) | |
5769d3cd | 1227 | { |
a8c99f38 JB |
1228 | /* However, there is one case where it *is* valid for %r14 |
1229 | to point to the same function -- if this is a recursive | |
1230 | call, and we have stopped in the prologue *before* the | |
1231 | stack frame was allocated. | |
1232 | ||
1233 | Recognize this case by looking ahead a bit ... */ | |
5769d3cd | 1234 | |
a8c99f38 | 1235 | struct s390_prologue_data data2; |
3fc46200 | 1236 | pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
a8c99f38 JB |
1237 | |
1238 | if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2) | |
3fc46200 | 1239 | && pv_is_register (*sp, S390_SP_REGNUM) |
a8c99f38 JB |
1240 | && sp->k != 0)) |
1241 | return 0; | |
5769d3cd | 1242 | } |
5769d3cd | 1243 | } |
5769d3cd AC |
1244 | |
1245 | ||
a8c99f38 JB |
1246 | /* OK, we've found valid prologue data. */ |
1247 | size = -sp->k; | |
5769d3cd | 1248 | |
a8c99f38 JB |
1249 | /* If the frame pointer originally also holds the same value |
1250 | as the stack pointer, we're probably using it. If it holds | |
1251 | some other value -- even a constant offset -- it is most | |
1252 | likely used as temp register. */ | |
3fc46200 | 1253 | if (pv_is_identical (*sp, *fp)) |
a8c99f38 JB |
1254 | frame_pointer = S390_FRAME_REGNUM; |
1255 | else | |
1256 | frame_pointer = S390_SP_REGNUM; | |
1257 | ||
1258 | /* If we've detected a function with stack frame, we'll still have to | |
1259 | treat it as frameless if we're currently within the function epilog | |
1260 | code at a point where the frame pointer has already been restored. | |
1261 | This can only happen in an innermost frame. */ | |
0e100dab AC |
1262 | /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed, |
1263 | instead the code should simpliy rely on its analysis. */ | |
f089c433 UW |
1264 | if (size > 0 |
1265 | && (!get_next_frame (this_frame) | |
1266 | || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME)) | |
5769d3cd | 1267 | { |
a8c99f38 JB |
1268 | /* See the comment in s390_in_function_epilogue_p on why this is |
1269 | not completely reliable ... */ | |
f089c433 | 1270 | if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame))) |
5769d3cd | 1271 | { |
a8c99f38 JB |
1272 | memset (&data, 0, sizeof (data)); |
1273 | size = 0; | |
1274 | frame_pointer = S390_SP_REGNUM; | |
5769d3cd | 1275 | } |
5769d3cd | 1276 | } |
5769d3cd | 1277 | |
a8c99f38 JB |
1278 | /* Once we know the frame register and the frame size, we can unwind |
1279 | the current value of the frame register from the next frame, and | |
1280 | add back the frame size to arrive that the previous frame's | |
1281 | stack pointer value. */ | |
f089c433 | 1282 | prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size; |
121d8485 | 1283 | cfa = prev_sp + 16*word_size + 32; |
5769d3cd | 1284 | |
121d8485 UW |
1285 | /* Record the addresses of all register spill slots the prologue parser |
1286 | has recognized. Consider only registers defined as call-saved by the | |
1287 | ABI; for call-clobbered registers the parser may have recognized | |
1288 | spurious stores. */ | |
5769d3cd | 1289 | |
121d8485 UW |
1290 | for (i = 6; i <= 15; i++) |
1291 | if (data.gpr_slot[i] != 0) | |
1292 | info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i]; | |
a8c99f38 | 1293 | |
121d8485 | 1294 | switch (tdep->abi) |
5769d3cd | 1295 | { |
121d8485 UW |
1296 | case ABI_LINUX_S390: |
1297 | if (data.fpr_slot[4] != 0) | |
1298 | info->saved_regs[S390_F4_REGNUM].addr = cfa - data.fpr_slot[4]; | |
1299 | if (data.fpr_slot[6] != 0) | |
1300 | info->saved_regs[S390_F6_REGNUM].addr = cfa - data.fpr_slot[6]; | |
1301 | break; | |
a8c99f38 | 1302 | |
121d8485 UW |
1303 | case ABI_LINUX_ZSERIES: |
1304 | for (i = 8; i <= 15; i++) | |
1305 | if (data.fpr_slot[i] != 0) | |
1306 | info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i]; | |
1307 | break; | |
a8c99f38 JB |
1308 | } |
1309 | ||
1310 | /* Function return will set PC to %r14. */ | |
1311 | info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; | |
1312 | ||
1313 | /* In frameless functions, we unwind simply by moving the return | |
1314 | address to the PC. However, if we actually stored to the | |
1315 | save area, use that -- we might only think the function frameless | |
1316 | because we're in the middle of the prologue ... */ | |
1317 | if (size == 0 | |
1318 | && !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM)) | |
1319 | { | |
1320 | info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM; | |
5769d3cd | 1321 | } |
a8c99f38 JB |
1322 | |
1323 | /* Another sanity check: unless this is a frameless function, | |
1324 | we should have found spill slots for SP and PC. | |
1325 | If not, we cannot unwind further -- this happens e.g. in | |
1326 | libc's thread_start routine. */ | |
1327 | if (size > 0) | |
5769d3cd | 1328 | { |
a8c99f38 JB |
1329 | if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM) |
1330 | || !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM)) | |
1331 | prev_sp = -1; | |
5769d3cd | 1332 | } |
a8c99f38 JB |
1333 | |
1334 | /* We use the current value of the frame register as local_base, | |
1335 | and the top of the register save area as frame_base. */ | |
1336 | if (prev_sp != -1) | |
1337 | { | |
1338 | info->frame_base = prev_sp + 16*word_size + 32; | |
1339 | info->local_base = prev_sp - size; | |
1340 | } | |
1341 | ||
1342 | info->func = func; | |
1343 | return 1; | |
5769d3cd AC |
1344 | } |
1345 | ||
a78f21af | 1346 | static void |
f089c433 | 1347 | s390_backchain_frame_unwind_cache (struct frame_info *this_frame, |
a8c99f38 | 1348 | struct s390_unwind_cache *info) |
5769d3cd | 1349 | { |
f089c433 | 1350 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
a8c99f38 JB |
1351 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
1352 | CORE_ADDR backchain; | |
1353 | ULONGEST reg; | |
1354 | LONGEST sp; | |
1355 | ||
1356 | /* Get the backchain. */ | |
f089c433 | 1357 | reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
a8c99f38 JB |
1358 | backchain = read_memory_unsigned_integer (reg, word_size); |
1359 | ||
1360 | /* A zero backchain terminates the frame chain. As additional | |
1361 | sanity check, let's verify that the spill slot for SP in the | |
1362 | save area pointed to by the backchain in fact links back to | |
1363 | the save area. */ | |
1364 | if (backchain != 0 | |
1365 | && safe_read_memory_integer (backchain + 15*word_size, word_size, &sp) | |
1366 | && (CORE_ADDR)sp == backchain) | |
1367 | { | |
1368 | /* We don't know which registers were saved, but it will have | |
1369 | to be at least %r14 and %r15. This will allow us to continue | |
1370 | unwinding, but other prev-frame registers may be incorrect ... */ | |
1371 | info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size; | |
1372 | info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size; | |
1373 | ||
1374 | /* Function return will set PC to %r14. */ | |
1375 | info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; | |
1376 | ||
1377 | /* We use the current value of the frame register as local_base, | |
1378 | and the top of the register save area as frame_base. */ | |
1379 | info->frame_base = backchain + 16*word_size + 32; | |
1380 | info->local_base = reg; | |
1381 | } | |
1382 | ||
f089c433 | 1383 | info->func = get_frame_pc (this_frame); |
5769d3cd AC |
1384 | } |
1385 | ||
a8c99f38 | 1386 | static struct s390_unwind_cache * |
f089c433 | 1387 | s390_frame_unwind_cache (struct frame_info *this_frame, |
a8c99f38 JB |
1388 | void **this_prologue_cache) |
1389 | { | |
1390 | struct s390_unwind_cache *info; | |
1391 | if (*this_prologue_cache) | |
1392 | return *this_prologue_cache; | |
1393 | ||
1394 | info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache); | |
1395 | *this_prologue_cache = info; | |
f089c433 | 1396 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
a8c99f38 JB |
1397 | info->func = -1; |
1398 | info->frame_base = -1; | |
1399 | info->local_base = -1; | |
1400 | ||
1401 | /* Try to use prologue analysis to fill the unwind cache. | |
1402 | If this fails, fall back to reading the stack backchain. */ | |
f089c433 UW |
1403 | if (!s390_prologue_frame_unwind_cache (this_frame, info)) |
1404 | s390_backchain_frame_unwind_cache (this_frame, info); | |
a8c99f38 JB |
1405 | |
1406 | return info; | |
1407 | } | |
5769d3cd | 1408 | |
a78f21af | 1409 | static void |
f089c433 | 1410 | s390_frame_this_id (struct frame_info *this_frame, |
a8c99f38 JB |
1411 | void **this_prologue_cache, |
1412 | struct frame_id *this_id) | |
5769d3cd | 1413 | { |
a8c99f38 | 1414 | struct s390_unwind_cache *info |
f089c433 | 1415 | = s390_frame_unwind_cache (this_frame, this_prologue_cache); |
5769d3cd | 1416 | |
a8c99f38 JB |
1417 | if (info->frame_base == -1) |
1418 | return; | |
5769d3cd | 1419 | |
a8c99f38 | 1420 | *this_id = frame_id_build (info->frame_base, info->func); |
5769d3cd AC |
1421 | } |
1422 | ||
f089c433 UW |
1423 | static struct value * |
1424 | s390_frame_prev_register (struct frame_info *this_frame, | |
1425 | void **this_prologue_cache, int regnum) | |
a8c99f38 JB |
1426 | { |
1427 | struct s390_unwind_cache *info | |
f089c433 UW |
1428 | = s390_frame_unwind_cache (this_frame, this_prologue_cache); |
1429 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
a8c99f38 JB |
1430 | } |
1431 | ||
1432 | static const struct frame_unwind s390_frame_unwind = { | |
1433 | NORMAL_FRAME, | |
1434 | s390_frame_this_id, | |
f089c433 UW |
1435 | s390_frame_prev_register, |
1436 | NULL, | |
1437 | default_frame_sniffer | |
a8c99f38 JB |
1438 | }; |
1439 | ||
5769d3cd | 1440 | |
8e645ae7 AC |
1441 | /* Code stubs and their stack frames. For things like PLTs and NULL |
1442 | function calls (where there is no true frame and the return address | |
1443 | is in the RETADDR register). */ | |
a8c99f38 | 1444 | |
8e645ae7 AC |
1445 | struct s390_stub_unwind_cache |
1446 | { | |
a8c99f38 JB |
1447 | CORE_ADDR frame_base; |
1448 | struct trad_frame_saved_reg *saved_regs; | |
1449 | }; | |
1450 | ||
8e645ae7 | 1451 | static struct s390_stub_unwind_cache * |
f089c433 | 1452 | s390_stub_frame_unwind_cache (struct frame_info *this_frame, |
8e645ae7 | 1453 | void **this_prologue_cache) |
5769d3cd | 1454 | { |
f089c433 | 1455 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
a8c99f38 | 1456 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
8e645ae7 | 1457 | struct s390_stub_unwind_cache *info; |
a8c99f38 | 1458 | ULONGEST reg; |
5c3cf190 | 1459 | |
a8c99f38 JB |
1460 | if (*this_prologue_cache) |
1461 | return *this_prologue_cache; | |
5c3cf190 | 1462 | |
8e645ae7 | 1463 | info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache); |
a8c99f38 | 1464 | *this_prologue_cache = info; |
f089c433 | 1465 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
a8c99f38 JB |
1466 | |
1467 | /* The return address is in register %r14. */ | |
1468 | info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM; | |
1469 | ||
1470 | /* Retrieve stack pointer and determine our frame base. */ | |
f089c433 | 1471 | reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
a8c99f38 JB |
1472 | info->frame_base = reg + 16*word_size + 32; |
1473 | ||
1474 | return info; | |
5769d3cd AC |
1475 | } |
1476 | ||
a8c99f38 | 1477 | static void |
f089c433 | 1478 | s390_stub_frame_this_id (struct frame_info *this_frame, |
8e645ae7 AC |
1479 | void **this_prologue_cache, |
1480 | struct frame_id *this_id) | |
5769d3cd | 1481 | { |
8e645ae7 | 1482 | struct s390_stub_unwind_cache *info |
f089c433 UW |
1483 | = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
1484 | *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame)); | |
a8c99f38 | 1485 | } |
5769d3cd | 1486 | |
f089c433 UW |
1487 | static struct value * |
1488 | s390_stub_frame_prev_register (struct frame_info *this_frame, | |
1489 | void **this_prologue_cache, int regnum) | |
8e645ae7 AC |
1490 | { |
1491 | struct s390_stub_unwind_cache *info | |
f089c433 UW |
1492 | = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
1493 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
a8c99f38 JB |
1494 | } |
1495 | ||
f089c433 UW |
1496 | static int |
1497 | s390_stub_frame_sniffer (const struct frame_unwind *self, | |
1498 | struct frame_info *this_frame, | |
1499 | void **this_prologue_cache) | |
a8c99f38 | 1500 | { |
93d42b30 | 1501 | CORE_ADDR addr_in_block; |
8e645ae7 AC |
1502 | bfd_byte insn[S390_MAX_INSTR_SIZE]; |
1503 | ||
1504 | /* If the current PC points to non-readable memory, we assume we | |
1505 | have trapped due to an invalid function pointer call. We handle | |
1506 | the non-existing current function like a PLT stub. */ | |
f089c433 | 1507 | addr_in_block = get_frame_address_in_block (this_frame); |
93d42b30 | 1508 | if (in_plt_section (addr_in_block, NULL) |
f089c433 UW |
1509 | || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0) |
1510 | return 1; | |
1511 | return 0; | |
a8c99f38 | 1512 | } |
5769d3cd | 1513 | |
f089c433 UW |
1514 | static const struct frame_unwind s390_stub_frame_unwind = { |
1515 | NORMAL_FRAME, | |
1516 | s390_stub_frame_this_id, | |
1517 | s390_stub_frame_prev_register, | |
1518 | NULL, | |
1519 | s390_stub_frame_sniffer | |
1520 | }; | |
1521 | ||
5769d3cd | 1522 | |
a8c99f38 | 1523 | /* Signal trampoline stack frames. */ |
5769d3cd | 1524 | |
a8c99f38 JB |
1525 | struct s390_sigtramp_unwind_cache { |
1526 | CORE_ADDR frame_base; | |
1527 | struct trad_frame_saved_reg *saved_regs; | |
1528 | }; | |
5769d3cd | 1529 | |
a8c99f38 | 1530 | static struct s390_sigtramp_unwind_cache * |
f089c433 | 1531 | s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame, |
a8c99f38 | 1532 | void **this_prologue_cache) |
5769d3cd | 1533 | { |
f089c433 | 1534 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
a8c99f38 JB |
1535 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
1536 | struct s390_sigtramp_unwind_cache *info; | |
1537 | ULONGEST this_sp, prev_sp; | |
1538 | CORE_ADDR next_ra, next_cfa, sigreg_ptr; | |
1539 | int i; | |
1540 | ||
1541 | if (*this_prologue_cache) | |
1542 | return *this_prologue_cache; | |
5769d3cd | 1543 | |
a8c99f38 JB |
1544 | info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache); |
1545 | *this_prologue_cache = info; | |
f089c433 | 1546 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
a8c99f38 | 1547 | |
f089c433 UW |
1548 | this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
1549 | next_ra = get_frame_pc (this_frame); | |
a8c99f38 JB |
1550 | next_cfa = this_sp + 16*word_size + 32; |
1551 | ||
1552 | /* New-style RT frame: | |
1553 | retcode + alignment (8 bytes) | |
1554 | siginfo (128 bytes) | |
1555 | ucontext (contains sigregs at offset 5 words) */ | |
1556 | if (next_ra == next_cfa) | |
1557 | { | |
f0f63663 | 1558 | sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8); |
a8c99f38 JB |
1559 | } |
1560 | ||
1561 | /* Old-style RT frame and all non-RT frames: | |
1562 | old signal mask (8 bytes) | |
1563 | pointer to sigregs */ | |
5769d3cd AC |
1564 | else |
1565 | { | |
a8c99f38 JB |
1566 | sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size); |
1567 | } | |
5769d3cd | 1568 | |
a8c99f38 JB |
1569 | /* The sigregs structure looks like this: |
1570 | long psw_mask; | |
1571 | long psw_addr; | |
1572 | long gprs[16]; | |
1573 | int acrs[16]; | |
1574 | int fpc; | |
1575 | int __pad; | |
1576 | double fprs[16]; */ | |
5769d3cd | 1577 | |
a8c99f38 JB |
1578 | /* Let's ignore the PSW mask, it will not be restored anyway. */ |
1579 | sigreg_ptr += word_size; | |
1580 | ||
1581 | /* Next comes the PSW address. */ | |
1582 | info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr; | |
1583 | sigreg_ptr += word_size; | |
1584 | ||
1585 | /* Then the GPRs. */ | |
1586 | for (i = 0; i < 16; i++) | |
1587 | { | |
1588 | info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr; | |
1589 | sigreg_ptr += word_size; | |
1590 | } | |
1591 | ||
1592 | /* Then the ACRs. */ | |
1593 | for (i = 0; i < 16; i++) | |
1594 | { | |
1595 | info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr; | |
1596 | sigreg_ptr += 4; | |
5769d3cd | 1597 | } |
5769d3cd | 1598 | |
a8c99f38 JB |
1599 | /* The floating-point control word. */ |
1600 | info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr; | |
1601 | sigreg_ptr += 8; | |
5769d3cd | 1602 | |
a8c99f38 JB |
1603 | /* And finally the FPRs. */ |
1604 | for (i = 0; i < 16; i++) | |
1605 | { | |
1606 | info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr; | |
1607 | sigreg_ptr += 8; | |
1608 | } | |
1609 | ||
1610 | /* Restore the previous frame's SP. */ | |
1611 | prev_sp = read_memory_unsigned_integer ( | |
1612 | info->saved_regs[S390_SP_REGNUM].addr, | |
1613 | word_size); | |
5769d3cd | 1614 | |
a8c99f38 JB |
1615 | /* Determine our frame base. */ |
1616 | info->frame_base = prev_sp + 16*word_size + 32; | |
5769d3cd | 1617 | |
a8c99f38 | 1618 | return info; |
5769d3cd AC |
1619 | } |
1620 | ||
a8c99f38 | 1621 | static void |
f089c433 | 1622 | s390_sigtramp_frame_this_id (struct frame_info *this_frame, |
a8c99f38 JB |
1623 | void **this_prologue_cache, |
1624 | struct frame_id *this_id) | |
5769d3cd | 1625 | { |
a8c99f38 | 1626 | struct s390_sigtramp_unwind_cache *info |
f089c433 UW |
1627 | = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
1628 | *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame)); | |
5769d3cd AC |
1629 | } |
1630 | ||
f089c433 UW |
1631 | static struct value * |
1632 | s390_sigtramp_frame_prev_register (struct frame_info *this_frame, | |
1633 | void **this_prologue_cache, int regnum) | |
a8c99f38 JB |
1634 | { |
1635 | struct s390_sigtramp_unwind_cache *info | |
f089c433 UW |
1636 | = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
1637 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
a8c99f38 JB |
1638 | } |
1639 | ||
f089c433 UW |
1640 | static int |
1641 | s390_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
1642 | struct frame_info *this_frame, | |
1643 | void **this_prologue_cache) | |
5769d3cd | 1644 | { |
f089c433 | 1645 | CORE_ADDR pc = get_frame_pc (this_frame); |
a8c99f38 | 1646 | bfd_byte sigreturn[2]; |
4c8287ac | 1647 | |
8defab1a | 1648 | if (target_read_memory (pc, sigreturn, 2)) |
f089c433 | 1649 | return 0; |
4c8287ac | 1650 | |
a8c99f38 | 1651 | if (sigreturn[0] != 0x0a /* svc */) |
f089c433 | 1652 | return 0; |
5769d3cd | 1653 | |
a8c99f38 JB |
1654 | if (sigreturn[1] != 119 /* sigreturn */ |
1655 | && sigreturn[1] != 173 /* rt_sigreturn */) | |
f089c433 | 1656 | return 0; |
a8c99f38 | 1657 | |
f089c433 | 1658 | return 1; |
5769d3cd AC |
1659 | } |
1660 | ||
f089c433 UW |
1661 | static const struct frame_unwind s390_sigtramp_frame_unwind = { |
1662 | SIGTRAMP_FRAME, | |
1663 | s390_sigtramp_frame_this_id, | |
1664 | s390_sigtramp_frame_prev_register, | |
1665 | NULL, | |
1666 | s390_sigtramp_frame_sniffer | |
1667 | }; | |
1668 | ||
4c8287ac | 1669 | |
a8c99f38 JB |
1670 | /* Frame base handling. */ |
1671 | ||
1672 | static CORE_ADDR | |
f089c433 | 1673 | s390_frame_base_address (struct frame_info *this_frame, void **this_cache) |
4c8287ac | 1674 | { |
a8c99f38 | 1675 | struct s390_unwind_cache *info |
f089c433 | 1676 | = s390_frame_unwind_cache (this_frame, this_cache); |
a8c99f38 JB |
1677 | return info->frame_base; |
1678 | } | |
1679 | ||
1680 | static CORE_ADDR | |
f089c433 | 1681 | s390_local_base_address (struct frame_info *this_frame, void **this_cache) |
a8c99f38 JB |
1682 | { |
1683 | struct s390_unwind_cache *info | |
f089c433 | 1684 | = s390_frame_unwind_cache (this_frame, this_cache); |
a8c99f38 JB |
1685 | return info->local_base; |
1686 | } | |
1687 | ||
1688 | static const struct frame_base s390_frame_base = { | |
1689 | &s390_frame_unwind, | |
1690 | s390_frame_base_address, | |
1691 | s390_local_base_address, | |
1692 | s390_local_base_address | |
1693 | }; | |
1694 | ||
1695 | static CORE_ADDR | |
1696 | s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1697 | { | |
1698 | ULONGEST pc; | |
1699 | pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM); | |
1700 | return gdbarch_addr_bits_remove (gdbarch, pc); | |
1701 | } | |
1702 | ||
1703 | static CORE_ADDR | |
1704 | s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1705 | { | |
1706 | ULONGEST sp; | |
1707 | sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); | |
1708 | return gdbarch_addr_bits_remove (gdbarch, sp); | |
4c8287ac JB |
1709 | } |
1710 | ||
1711 | ||
a431654a AC |
1712 | /* DWARF-2 frame support. */ |
1713 | ||
1714 | static void | |
1715 | s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
aff37fc1 | 1716 | struct dwarf2_frame_state_reg *reg, |
4a4e5149 | 1717 | struct frame_info *this_frame) |
a431654a AC |
1718 | { |
1719 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1720 | ||
1721 | switch (tdep->abi) | |
1722 | { | |
1723 | case ABI_LINUX_S390: | |
1724 | /* Call-saved registers. */ | |
1725 | if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) | |
1726 | || regnum == S390_F4_REGNUM | |
1727 | || regnum == S390_F6_REGNUM) | |
1728 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
1729 | ||
1730 | /* Call-clobbered registers. */ | |
1731 | else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM) | |
1732 | || (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM | |
1733 | && regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM)) | |
1734 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
1735 | ||
1736 | /* The return address column. */ | |
1737 | else if (regnum == S390_PC_REGNUM) | |
1738 | reg->how = DWARF2_FRAME_REG_RA; | |
1739 | break; | |
1740 | ||
1741 | case ABI_LINUX_ZSERIES: | |
1742 | /* Call-saved registers. */ | |
1743 | if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) | |
1744 | || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)) | |
1745 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
1746 | ||
1747 | /* Call-clobbered registers. */ | |
1748 | else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM) | |
1749 | || (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM)) | |
1750 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
1751 | ||
1752 | /* The return address column. */ | |
1753 | else if (regnum == S390_PC_REGNUM) | |
1754 | reg->how = DWARF2_FRAME_REG_RA; | |
1755 | break; | |
1756 | } | |
1757 | } | |
1758 | ||
1759 | ||
b0cf273e JB |
1760 | /* Dummy function calls. */ |
1761 | ||
78f8b424 JB |
1762 | /* Return non-zero if TYPE is an integer-like type, zero otherwise. |
1763 | "Integer-like" types are those that should be passed the way | |
1764 | integers are: integers, enums, ranges, characters, and booleans. */ | |
1765 | static int | |
1766 | is_integer_like (struct type *type) | |
1767 | { | |
1768 | enum type_code code = TYPE_CODE (type); | |
1769 | ||
1770 | return (code == TYPE_CODE_INT | |
1771 | || code == TYPE_CODE_ENUM | |
1772 | || code == TYPE_CODE_RANGE | |
1773 | || code == TYPE_CODE_CHAR | |
1774 | || code == TYPE_CODE_BOOL); | |
1775 | } | |
1776 | ||
78f8b424 JB |
1777 | /* Return non-zero if TYPE is a pointer-like type, zero otherwise. |
1778 | "Pointer-like" types are those that should be passed the way | |
1779 | pointers are: pointers and references. */ | |
1780 | static int | |
1781 | is_pointer_like (struct type *type) | |
1782 | { | |
1783 | enum type_code code = TYPE_CODE (type); | |
1784 | ||
1785 | return (code == TYPE_CODE_PTR | |
1786 | || code == TYPE_CODE_REF); | |
1787 | } | |
1788 | ||
1789 | ||
20a940cc JB |
1790 | /* Return non-zero if TYPE is a `float singleton' or `double |
1791 | singleton', zero otherwise. | |
1792 | ||
1793 | A `T singleton' is a struct type with one member, whose type is | |
1794 | either T or a `T singleton'. So, the following are all float | |
1795 | singletons: | |
1796 | ||
1797 | struct { float x }; | |
1798 | struct { struct { float x; } x; }; | |
1799 | struct { struct { struct { float x; } x; } x; }; | |
1800 | ||
1801 | ... and so on. | |
1802 | ||
b0cf273e JB |
1803 | All such structures are passed as if they were floats or doubles, |
1804 | as the (revised) ABI says. */ | |
20a940cc JB |
1805 | static int |
1806 | is_float_singleton (struct type *type) | |
1807 | { | |
b0cf273e JB |
1808 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1) |
1809 | { | |
1810 | struct type *singleton_type = TYPE_FIELD_TYPE (type, 0); | |
1811 | CHECK_TYPEDEF (singleton_type); | |
1812 | ||
1813 | return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT | |
a16b8bcd | 1814 | || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT |
b0cf273e JB |
1815 | || is_float_singleton (singleton_type)); |
1816 | } | |
1817 | ||
1818 | return 0; | |
20a940cc JB |
1819 | } |
1820 | ||
1821 | ||
1822 | /* Return non-zero if TYPE is a struct-like type, zero otherwise. | |
1823 | "Struct-like" types are those that should be passed as structs are: | |
1824 | structs and unions. | |
1825 | ||
1826 | As an odd quirk, not mentioned in the ABI, GCC passes float and | |
1827 | double singletons as if they were a plain float, double, etc. (The | |
1828 | corresponding union types are handled normally.) So we exclude | |
1829 | those types here. *shrug* */ | |
1830 | static int | |
1831 | is_struct_like (struct type *type) | |
1832 | { | |
1833 | enum type_code code = TYPE_CODE (type); | |
1834 | ||
1835 | return (code == TYPE_CODE_UNION | |
1836 | || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type))); | |
1837 | } | |
1838 | ||
1839 | ||
1840 | /* Return non-zero if TYPE is a float-like type, zero otherwise. | |
1841 | "Float-like" types are those that should be passed as | |
1842 | floating-point values are. | |
1843 | ||
1844 | You'd think this would just be floats, doubles, long doubles, etc. | |
1845 | But as an odd quirk, not mentioned in the ABI, GCC passes float and | |
1846 | double singletons as if they were a plain float, double, etc. (The | |
4d819d0e | 1847 | corresponding union types are handled normally.) So we include |
20a940cc JB |
1848 | those types here. *shrug* */ |
1849 | static int | |
1850 | is_float_like (struct type *type) | |
1851 | { | |
1852 | return (TYPE_CODE (type) == TYPE_CODE_FLT | |
a16b8bcd | 1853 | || TYPE_CODE (type) == TYPE_CODE_DECFLOAT |
20a940cc JB |
1854 | || is_float_singleton (type)); |
1855 | } | |
1856 | ||
1857 | ||
78f8b424 | 1858 | static int |
b0cf273e | 1859 | is_power_of_two (unsigned int n) |
78f8b424 | 1860 | { |
b0cf273e | 1861 | return ((n & (n - 1)) == 0); |
78f8b424 JB |
1862 | } |
1863 | ||
b0cf273e JB |
1864 | /* Return non-zero if TYPE should be passed as a pointer to a copy, |
1865 | zero otherwise. */ | |
4d819d0e | 1866 | static int |
b0cf273e | 1867 | s390_function_arg_pass_by_reference (struct type *type) |
4d819d0e JB |
1868 | { |
1869 | unsigned length = TYPE_LENGTH (type); | |
b0cf273e JB |
1870 | if (length > 8) |
1871 | return 1; | |
4d819d0e | 1872 | |
b0cf273e JB |
1873 | /* FIXME: All complex and vector types are also returned by reference. */ |
1874 | return is_struct_like (type) && !is_power_of_two (length); | |
4d819d0e JB |
1875 | } |
1876 | ||
b0cf273e JB |
1877 | /* Return non-zero if TYPE should be passed in a float register |
1878 | if possible. */ | |
78f8b424 | 1879 | static int |
b0cf273e | 1880 | s390_function_arg_float (struct type *type) |
78f8b424 | 1881 | { |
78f8b424 | 1882 | unsigned length = TYPE_LENGTH (type); |
b0cf273e JB |
1883 | if (length > 8) |
1884 | return 0; | |
78f8b424 | 1885 | |
b0cf273e | 1886 | return is_float_like (type); |
4d819d0e JB |
1887 | } |
1888 | ||
b0cf273e JB |
1889 | /* Return non-zero if TYPE should be passed in an integer register |
1890 | (or a pair of integer registers) if possible. */ | |
78f8b424 | 1891 | static int |
b0cf273e | 1892 | s390_function_arg_integer (struct type *type) |
78f8b424 | 1893 | { |
78f8b424 | 1894 | unsigned length = TYPE_LENGTH (type); |
b0cf273e JB |
1895 | if (length > 8) |
1896 | return 0; | |
78f8b424 | 1897 | |
b0cf273e JB |
1898 | return is_integer_like (type) |
1899 | || is_pointer_like (type) | |
1900 | || (is_struct_like (type) && is_power_of_two (length)); | |
78f8b424 JB |
1901 | } |
1902 | ||
78f8b424 JB |
1903 | /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full |
1904 | word as required for the ABI. */ | |
1905 | static LONGEST | |
1906 | extend_simple_arg (struct value *arg) | |
1907 | { | |
4991999e | 1908 | struct type *type = value_type (arg); |
78f8b424 JB |
1909 | |
1910 | /* Even structs get passed in the least significant bits of the | |
1911 | register / memory word. It's not really right to extract them as | |
1912 | an integer, but it does take care of the extension. */ | |
1913 | if (TYPE_UNSIGNED (type)) | |
0fd88904 | 1914 | return extract_unsigned_integer (value_contents (arg), |
78f8b424 JB |
1915 | TYPE_LENGTH (type)); |
1916 | else | |
0fd88904 | 1917 | return extract_signed_integer (value_contents (arg), |
78f8b424 JB |
1918 | TYPE_LENGTH (type)); |
1919 | } | |
1920 | ||
1921 | ||
78f8b424 JB |
1922 | /* Return the alignment required by TYPE. */ |
1923 | static int | |
1924 | alignment_of (struct type *type) | |
1925 | { | |
1926 | int alignment; | |
1927 | ||
1928 | if (is_integer_like (type) | |
1929 | || is_pointer_like (type) | |
a16b8bcd UW |
1930 | || TYPE_CODE (type) == TYPE_CODE_FLT |
1931 | || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) | |
78f8b424 JB |
1932 | alignment = TYPE_LENGTH (type); |
1933 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1934 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
1935 | { | |
1936 | int i; | |
1937 | ||
1938 | alignment = 1; | |
1939 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
1940 | { | |
1941 | int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i)); | |
1942 | ||
1943 | if (field_alignment > alignment) | |
1944 | alignment = field_alignment; | |
1945 | } | |
1946 | } | |
1947 | else | |
1948 | alignment = 1; | |
1949 | ||
1950 | /* Check that everything we ever return is a power of two. Lots of | |
1951 | code doesn't want to deal with aligning things to arbitrary | |
1952 | boundaries. */ | |
1953 | gdb_assert ((alignment & (alignment - 1)) == 0); | |
1954 | ||
1955 | return alignment; | |
1956 | } | |
1957 | ||
1958 | ||
1959 | /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in | |
ca557f44 AC |
1960 | place to be passed to a function, as specified by the "GNU/Linux |
1961 | for S/390 ELF Application Binary Interface Supplement". | |
78f8b424 JB |
1962 | |
1963 | SP is the current stack pointer. We must put arguments, links, | |
1964 | padding, etc. whereever they belong, and return the new stack | |
1965 | pointer value. | |
1966 | ||
1967 | If STRUCT_RETURN is non-zero, then the function we're calling is | |
1968 | going to return a structure by value; STRUCT_ADDR is the address of | |
1969 | a block we've allocated for it on the stack. | |
1970 | ||
1971 | Our caller has taken care of any type promotions needed to satisfy | |
1972 | prototypes or the old K&R argument-passing rules. */ | |
a78f21af | 1973 | static CORE_ADDR |
7d9b040b | 1974 | s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
b0cf273e JB |
1975 | struct regcache *regcache, CORE_ADDR bp_addr, |
1976 | int nargs, struct value **args, CORE_ADDR sp, | |
1977 | int struct_return, CORE_ADDR struct_addr) | |
5769d3cd | 1978 | { |
b0cf273e JB |
1979 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1980 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
1981 | ULONGEST orig_sp; | |
78f8b424 | 1982 | int i; |
5769d3cd | 1983 | |
78f8b424 JB |
1984 | /* If the i'th argument is passed as a reference to a copy, then |
1985 | copy_addr[i] is the address of the copy we made. */ | |
1986 | CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR)); | |
5769d3cd | 1987 | |
78f8b424 | 1988 | /* Build the reference-to-copy area. */ |
78f8b424 JB |
1989 | for (i = 0; i < nargs; i++) |
1990 | { | |
1991 | struct value *arg = args[i]; | |
4991999e | 1992 | struct type *type = value_type (arg); |
78f8b424 | 1993 | unsigned length = TYPE_LENGTH (type); |
5769d3cd | 1994 | |
b0cf273e | 1995 | if (s390_function_arg_pass_by_reference (type)) |
01c464e9 | 1996 | { |
78f8b424 | 1997 | sp -= length; |
5b03f266 | 1998 | sp = align_down (sp, alignment_of (type)); |
0fd88904 | 1999 | write_memory (sp, value_contents (arg), length); |
78f8b424 | 2000 | copy_addr[i] = sp; |
01c464e9 | 2001 | } |
5769d3cd | 2002 | } |
5769d3cd | 2003 | |
78f8b424 JB |
2004 | /* Reserve space for the parameter area. As a conservative |
2005 | simplification, we assume that everything will be passed on the | |
b0cf273e JB |
2006 | stack. Since every argument larger than 8 bytes will be |
2007 | passed by reference, we use this simple upper bound. */ | |
2008 | sp -= nargs * 8; | |
78f8b424 | 2009 | |
78f8b424 JB |
2010 | /* After all that, make sure it's still aligned on an eight-byte |
2011 | boundary. */ | |
5b03f266 | 2012 | sp = align_down (sp, 8); |
78f8b424 JB |
2013 | |
2014 | /* Finally, place the actual parameters, working from SP towards | |
2015 | higher addresses. The code above is supposed to reserve enough | |
2016 | space for this. */ | |
2017 | { | |
2018 | int fr = 0; | |
2019 | int gr = 2; | |
2020 | CORE_ADDR starg = sp; | |
2021 | ||
b0cf273e | 2022 | /* A struct is returned using general register 2. */ |
4d819d0e | 2023 | if (struct_return) |
b0cf273e JB |
2024 | { |
2025 | regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr, | |
2026 | struct_addr); | |
2027 | gr++; | |
2028 | } | |
4d819d0e | 2029 | |
78f8b424 JB |
2030 | for (i = 0; i < nargs; i++) |
2031 | { | |
2032 | struct value *arg = args[i]; | |
4991999e | 2033 | struct type *type = value_type (arg); |
b0cf273e JB |
2034 | unsigned length = TYPE_LENGTH (type); |
2035 | ||
2036 | if (s390_function_arg_pass_by_reference (type)) | |
2037 | { | |
2038 | if (gr <= 6) | |
2039 | { | |
2040 | regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr, | |
2041 | copy_addr[i]); | |
2042 | gr++; | |
2043 | } | |
2044 | else | |
2045 | { | |
2046 | write_memory_unsigned_integer (starg, word_size, copy_addr[i]); | |
2047 | starg += word_size; | |
2048 | } | |
2049 | } | |
2050 | else if (s390_function_arg_float (type)) | |
2051 | { | |
2052 | /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments, | |
2053 | the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */ | |
2054 | if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6)) | |
2055 | { | |
2056 | /* When we store a single-precision value in an FP register, | |
2057 | it occupies the leftmost bits. */ | |
2058 | regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr, | |
0fd88904 | 2059 | 0, length, value_contents (arg)); |
b0cf273e JB |
2060 | fr += 2; |
2061 | } | |
2062 | else | |
2063 | { | |
2064 | /* When we store a single-precision value in a stack slot, | |
2065 | it occupies the rightmost bits. */ | |
2066 | starg = align_up (starg + length, word_size); | |
0fd88904 | 2067 | write_memory (starg - length, value_contents (arg), length); |
b0cf273e JB |
2068 | } |
2069 | } | |
2070 | else if (s390_function_arg_integer (type) && length <= word_size) | |
2071 | { | |
2072 | if (gr <= 6) | |
2073 | { | |
2074 | /* Integer arguments are always extended to word size. */ | |
2075 | regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr, | |
2076 | extend_simple_arg (arg)); | |
2077 | gr++; | |
2078 | } | |
2079 | else | |
2080 | { | |
2081 | /* Integer arguments are always extended to word size. */ | |
2082 | write_memory_signed_integer (starg, word_size, | |
2083 | extend_simple_arg (arg)); | |
2084 | starg += word_size; | |
2085 | } | |
2086 | } | |
2087 | else if (s390_function_arg_integer (type) && length == 2*word_size) | |
2088 | { | |
2089 | if (gr <= 5) | |
2090 | { | |
2091 | regcache_cooked_write (regcache, S390_R0_REGNUM + gr, | |
0fd88904 | 2092 | value_contents (arg)); |
b0cf273e | 2093 | regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1, |
0fd88904 | 2094 | value_contents (arg) + word_size); |
b0cf273e JB |
2095 | gr += 2; |
2096 | } | |
2097 | else | |
2098 | { | |
2099 | /* If we skipped r6 because we couldn't fit a DOUBLE_ARG | |
2100 | in it, then don't go back and use it again later. */ | |
2101 | gr = 7; | |
2102 | ||
0fd88904 | 2103 | write_memory (starg, value_contents (arg), length); |
b0cf273e JB |
2104 | starg += length; |
2105 | } | |
2106 | } | |
2107 | else | |
e2e0b3e5 | 2108 | internal_error (__FILE__, __LINE__, _("unknown argument type")); |
78f8b424 JB |
2109 | } |
2110 | } | |
2111 | ||
2112 | /* Allocate the standard frame areas: the register save area, the | |
2113 | word reserved for the compiler (which seems kind of meaningless), | |
2114 | and the back chain pointer. */ | |
b0cf273e | 2115 | sp -= 16*word_size + 32; |
78f8b424 | 2116 | |
b0cf273e JB |
2117 | /* Store return address. */ |
2118 | regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr); | |
2119 | ||
2120 | /* Store updated stack pointer. */ | |
2121 | regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp); | |
78f8b424 | 2122 | |
a8c99f38 | 2123 | /* We need to return the 'stack part' of the frame ID, |
121d8485 UW |
2124 | which is actually the top of the register save area. */ |
2125 | return sp + 16*word_size + 32; | |
5769d3cd AC |
2126 | } |
2127 | ||
f089c433 | 2128 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
b0cf273e JB |
2129 | dummy frame. The frame ID's base needs to match the TOS value |
2130 | returned by push_dummy_call, and the PC match the dummy frame's | |
2131 | breakpoint. */ | |
2132 | static struct frame_id | |
f089c433 | 2133 | s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
b0cf273e | 2134 | { |
a8c99f38 | 2135 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
f089c433 UW |
2136 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
2137 | sp = gdbarch_addr_bits_remove (gdbarch, sp); | |
a8c99f38 | 2138 | |
121d8485 | 2139 | return frame_id_build (sp + 16*word_size + 32, |
f089c433 | 2140 | get_frame_pc (this_frame)); |
b0cf273e | 2141 | } |
c8f9d51c | 2142 | |
4074e13c JB |
2143 | static CORE_ADDR |
2144 | s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2145 | { | |
2146 | /* Both the 32- and 64-bit ABI's say that the stack pointer should | |
2147 | always be aligned on an eight-byte boundary. */ | |
2148 | return (addr & -8); | |
2149 | } | |
2150 | ||
2151 | ||
b0cf273e JB |
2152 | /* Function return value access. */ |
2153 | ||
2154 | static enum return_value_convention | |
2155 | s390_return_value_convention (struct gdbarch *gdbarch, struct type *type) | |
c8f9d51c | 2156 | { |
b0cf273e JB |
2157 | int length = TYPE_LENGTH (type); |
2158 | if (length > 8) | |
2159 | return RETURN_VALUE_STRUCT_CONVENTION; | |
2160 | ||
2161 | switch (TYPE_CODE (type)) | |
2162 | { | |
2163 | case TYPE_CODE_STRUCT: | |
2164 | case TYPE_CODE_UNION: | |
2165 | case TYPE_CODE_ARRAY: | |
2166 | return RETURN_VALUE_STRUCT_CONVENTION; | |
c8f9d51c | 2167 | |
b0cf273e JB |
2168 | default: |
2169 | return RETURN_VALUE_REGISTER_CONVENTION; | |
2170 | } | |
c8f9d51c JB |
2171 | } |
2172 | ||
b0cf273e | 2173 | static enum return_value_convention |
c055b101 CV |
2174 | s390_return_value (struct gdbarch *gdbarch, struct type *func_type, |
2175 | struct type *type, struct regcache *regcache, | |
2176 | gdb_byte *out, const gdb_byte *in) | |
5769d3cd | 2177 | { |
b0cf273e JB |
2178 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
2179 | int length = TYPE_LENGTH (type); | |
2180 | enum return_value_convention rvc = | |
2181 | s390_return_value_convention (gdbarch, type); | |
2182 | if (in) | |
2183 | { | |
2184 | switch (rvc) | |
2185 | { | |
2186 | case RETURN_VALUE_REGISTER_CONVENTION: | |
a16b8bcd UW |
2187 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
2188 | || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) | |
b0cf273e JB |
2189 | { |
2190 | /* When we store a single-precision value in an FP register, | |
2191 | it occupies the leftmost bits. */ | |
2192 | regcache_cooked_write_part (regcache, S390_F0_REGNUM, | |
2193 | 0, length, in); | |
2194 | } | |
2195 | else if (length <= word_size) | |
2196 | { | |
2197 | /* Integer arguments are always extended to word size. */ | |
2198 | if (TYPE_UNSIGNED (type)) | |
2199 | regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, | |
2200 | extract_unsigned_integer (in, length)); | |
2201 | else | |
2202 | regcache_cooked_write_signed (regcache, S390_R2_REGNUM, | |
2203 | extract_signed_integer (in, length)); | |
2204 | } | |
2205 | else if (length == 2*word_size) | |
2206 | { | |
2207 | regcache_cooked_write (regcache, S390_R2_REGNUM, in); | |
43af2100 | 2208 | regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size); |
b0cf273e JB |
2209 | } |
2210 | else | |
e2e0b3e5 | 2211 | internal_error (__FILE__, __LINE__, _("invalid return type")); |
b0cf273e JB |
2212 | break; |
2213 | ||
2214 | case RETURN_VALUE_STRUCT_CONVENTION: | |
8a3fe4f8 | 2215 | error (_("Cannot set function return value.")); |
b0cf273e JB |
2216 | break; |
2217 | } | |
2218 | } | |
2219 | else if (out) | |
2220 | { | |
2221 | switch (rvc) | |
2222 | { | |
2223 | case RETURN_VALUE_REGISTER_CONVENTION: | |
a16b8bcd UW |
2224 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
2225 | || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) | |
b0cf273e JB |
2226 | { |
2227 | /* When we store a single-precision value in an FP register, | |
2228 | it occupies the leftmost bits. */ | |
2229 | regcache_cooked_read_part (regcache, S390_F0_REGNUM, | |
2230 | 0, length, out); | |
2231 | } | |
2232 | else if (length <= word_size) | |
2233 | { | |
2234 | /* Integer arguments occupy the rightmost bits. */ | |
2235 | regcache_cooked_read_part (regcache, S390_R2_REGNUM, | |
2236 | word_size - length, length, out); | |
2237 | } | |
2238 | else if (length == 2*word_size) | |
2239 | { | |
2240 | regcache_cooked_read (regcache, S390_R2_REGNUM, out); | |
43af2100 | 2241 | regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size); |
b0cf273e JB |
2242 | } |
2243 | else | |
e2e0b3e5 | 2244 | internal_error (__FILE__, __LINE__, _("invalid return type")); |
b0cf273e | 2245 | break; |
5769d3cd | 2246 | |
b0cf273e | 2247 | case RETURN_VALUE_STRUCT_CONVENTION: |
8a3fe4f8 | 2248 | error (_("Function return value unknown.")); |
b0cf273e JB |
2249 | break; |
2250 | } | |
2251 | } | |
2252 | ||
2253 | return rvc; | |
2254 | } | |
5769d3cd AC |
2255 | |
2256 | ||
a8c99f38 JB |
2257 | /* Breakpoints. */ |
2258 | ||
43af2100 | 2259 | static const gdb_byte * |
67d57894 | 2260 | s390_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) |
5769d3cd | 2261 | { |
43af2100 | 2262 | static const gdb_byte breakpoint[] = { 0x0, 0x1 }; |
5769d3cd AC |
2263 | |
2264 | *lenptr = sizeof (breakpoint); | |
2265 | return breakpoint; | |
2266 | } | |
2267 | ||
5769d3cd | 2268 | |
a8c99f38 | 2269 | /* Address handling. */ |
5769d3cd AC |
2270 | |
2271 | static CORE_ADDR | |
24568a2c | 2272 | s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) |
5769d3cd | 2273 | { |
a8c99f38 | 2274 | return addr & 0x7fffffff; |
5769d3cd AC |
2275 | } |
2276 | ||
ffc65945 KB |
2277 | static int |
2278 | s390_address_class_type_flags (int byte_size, int dwarf2_addr_class) | |
2279 | { | |
2280 | if (byte_size == 4) | |
119ac181 | 2281 | return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; |
ffc65945 KB |
2282 | else |
2283 | return 0; | |
2284 | } | |
2285 | ||
2286 | static const char * | |
2287 | s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) | |
2288 | { | |
119ac181 | 2289 | if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) |
ffc65945 KB |
2290 | return "mode32"; |
2291 | else | |
2292 | return NULL; | |
2293 | } | |
2294 | ||
a78f21af | 2295 | static int |
ffc65945 KB |
2296 | s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name, |
2297 | int *type_flags_ptr) | |
2298 | { | |
2299 | if (strcmp (name, "mode32") == 0) | |
2300 | { | |
119ac181 | 2301 | *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; |
ffc65945 KB |
2302 | return 1; |
2303 | } | |
2304 | else | |
2305 | return 0; | |
2306 | } | |
2307 | ||
a8c99f38 JB |
2308 | /* Set up gdbarch struct. */ |
2309 | ||
a78f21af | 2310 | static struct gdbarch * |
5769d3cd AC |
2311 | s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
2312 | { | |
5769d3cd AC |
2313 | struct gdbarch *gdbarch; |
2314 | struct gdbarch_tdep *tdep; | |
5769d3cd AC |
2315 | |
2316 | /* First see if there is already a gdbarch that can satisfy the request. */ | |
2317 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2318 | if (arches != NULL) | |
2319 | return arches->gdbarch; | |
2320 | ||
2321 | /* None found: is the request for a s390 architecture? */ | |
2322 | if (info.bfd_arch_info->arch != bfd_arch_s390) | |
2323 | return NULL; /* No; then it's not for us. */ | |
2324 | ||
2325 | /* Yes: create a new gdbarch for the specified machine type. */ | |
d0f54f9d JB |
2326 | tdep = XCALLOC (1, struct gdbarch_tdep); |
2327 | gdbarch = gdbarch_alloc (&info, tdep); | |
5769d3cd AC |
2328 | |
2329 | set_gdbarch_believe_pcc_promotion (gdbarch, 0); | |
4e409299 | 2330 | set_gdbarch_char_signed (gdbarch, 0); |
5769d3cd | 2331 | |
1de90795 UW |
2332 | /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles. |
2333 | We can safely let them default to 128-bit, since the debug info | |
2334 | will give the size of type actually used in each case. */ | |
2335 | set_gdbarch_long_double_bit (gdbarch, 128); | |
2336 | set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); | |
2337 | ||
aaab4dba | 2338 | /* Amount PC must be decremented by after a breakpoint. This is |
3b3b875c | 2339 | often the number of bytes returned by gdbarch_breakpoint_from_pc but not |
aaab4dba | 2340 | always. */ |
5769d3cd | 2341 | set_gdbarch_decr_pc_after_break (gdbarch, 2); |
5769d3cd AC |
2342 | /* Stack grows downward. */ |
2343 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
5769d3cd AC |
2344 | set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc); |
2345 | set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue); | |
d0f54f9d | 2346 | set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p); |
a8c99f38 | 2347 | |
5769d3cd AC |
2348 | set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM); |
2349 | set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM); | |
d0f54f9d | 2350 | set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM); |
5769d3cd | 2351 | set_gdbarch_num_regs (gdbarch, S390_NUM_REGS); |
d0f54f9d | 2352 | set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS); |
5769d3cd | 2353 | set_gdbarch_register_name (gdbarch, s390_register_name); |
d0f54f9d JB |
2354 | set_gdbarch_register_type (gdbarch, s390_register_type); |
2355 | set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); | |
d0f54f9d | 2356 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); |
9acbedc0 | 2357 | set_gdbarch_value_from_register (gdbarch, s390_value_from_register); |
d0f54f9d JB |
2358 | set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p); |
2359 | set_gdbarch_regset_from_core_section (gdbarch, | |
2360 | s390_regset_from_core_section); | |
5769d3cd | 2361 | |
b0cf273e JB |
2362 | /* Inferior function calls. */ |
2363 | set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call); | |
f089c433 | 2364 | set_gdbarch_dummy_id (gdbarch, s390_dummy_id); |
4074e13c | 2365 | set_gdbarch_frame_align (gdbarch, s390_frame_align); |
b0cf273e | 2366 | set_gdbarch_return_value (gdbarch, s390_return_value); |
5769d3cd | 2367 | |
a8c99f38 | 2368 | /* Frame handling. */ |
a431654a | 2369 | dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg); |
f089c433 | 2370 | dwarf2_append_unwinders (gdbarch); |
a431654a | 2371 | frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); |
f089c433 UW |
2372 | frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind); |
2373 | frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind); | |
2374 | frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind); | |
a8c99f38 JB |
2375 | frame_base_set_default (gdbarch, &s390_frame_base); |
2376 | set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc); | |
2377 | set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp); | |
2378 | ||
5769d3cd AC |
2379 | switch (info.bfd_arch_info->mach) |
2380 | { | |
b8b8b047 | 2381 | case bfd_mach_s390_31: |
b0cf273e JB |
2382 | tdep->abi = ABI_LINUX_S390; |
2383 | ||
d0f54f9d JB |
2384 | tdep->gregset = &s390_gregset; |
2385 | tdep->sizeof_gregset = s390_sizeof_gregset; | |
2386 | tdep->fpregset = &s390_fpregset; | |
2387 | tdep->sizeof_fpregset = s390_sizeof_fpregset; | |
5769d3cd AC |
2388 | |
2389 | set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove); | |
d0f54f9d JB |
2390 | set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read); |
2391 | set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write); | |
76a9d10f MK |
2392 | set_solib_svr4_fetch_link_map_offsets |
2393 | (gdbarch, svr4_ilp32_fetch_link_map_offsets); | |
9cbd5950 | 2394 | |
5769d3cd | 2395 | break; |
b8b8b047 | 2396 | case bfd_mach_s390_64: |
b0cf273e JB |
2397 | tdep->abi = ABI_LINUX_ZSERIES; |
2398 | ||
d0f54f9d JB |
2399 | tdep->gregset = &s390x_gregset; |
2400 | tdep->sizeof_gregset = s390x_sizeof_gregset; | |
2401 | tdep->fpregset = &s390_fpregset; | |
2402 | tdep->sizeof_fpregset = s390_sizeof_fpregset; | |
5769d3cd AC |
2403 | |
2404 | set_gdbarch_long_bit (gdbarch, 64); | |
2405 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2406 | set_gdbarch_ptr_bit (gdbarch, 64); | |
d0f54f9d JB |
2407 | set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read); |
2408 | set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write); | |
76a9d10f MK |
2409 | set_solib_svr4_fetch_link_map_offsets |
2410 | (gdbarch, svr4_lp64_fetch_link_map_offsets); | |
ffc65945 KB |
2411 | set_gdbarch_address_class_type_flags (gdbarch, |
2412 | s390_address_class_type_flags); | |
2413 | set_gdbarch_address_class_type_flags_to_name (gdbarch, | |
2414 | s390_address_class_type_flags_to_name); | |
2415 | set_gdbarch_address_class_name_to_type_flags (gdbarch, | |
2416 | s390_address_class_name_to_type_flags); | |
5769d3cd AC |
2417 | break; |
2418 | } | |
2419 | ||
36482093 AC |
2420 | set_gdbarch_print_insn (gdbarch, print_insn_s390); |
2421 | ||
982e9687 UW |
2422 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); |
2423 | ||
b2756930 KB |
2424 | /* Enable TLS support. */ |
2425 | set_gdbarch_fetch_tls_load_module_address (gdbarch, | |
2426 | svr4_fetch_objfile_link_map); | |
2427 | ||
5769d3cd AC |
2428 | return gdbarch; |
2429 | } | |
2430 | ||
2431 | ||
2432 | ||
a78f21af AC |
2433 | extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */ |
2434 | ||
5769d3cd | 2435 | void |
5ae5f592 | 2436 | _initialize_s390_tdep (void) |
5769d3cd AC |
2437 | { |
2438 | ||
2439 | /* Hook us into the gdbarch mechanism. */ | |
2440 | register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init); | |
5769d3cd | 2441 | } |