]>
Commit | Line | Data |
---|---|---|
29134980 OF |
1 | /* Target dependent code for CRIS, for GDB, the GNU debugger. |
2 | Copyright 2001 Free Software Foundation, Inc. | |
3 | Contributed by Axis Communications AB. | |
4 | Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "symtab.h" | |
25 | #include "inferior.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "gdbcore.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "target.h" | |
30 | #include "value.h" | |
31 | #include "opcode/cris.h" | |
32 | #include "arch-utils.h" | |
33 | #include "regcache.h" | |
34 | ||
35 | /* To get entry_point_address. */ | |
36 | #include "symfile.h" | |
37 | ||
dbbff683 OF |
38 | #include "solib.h" /* Support for shared libraries. */ |
39 | #include "solib-svr4.h" /* For struct link_map_offsets. */ | |
40 | ||
41 | ||
29134980 OF |
42 | enum cris_num_regs |
43 | { | |
44 | /* There are no floating point registers. Used in gdbserver low-linux.c. */ | |
45 | NUM_FREGS = 0, | |
46 | ||
47 | /* There are 16 general registers. */ | |
48 | NUM_GENREGS = 16, | |
49 | ||
50 | /* There are 16 special registers. */ | |
51 | NUM_SPECREGS = 16 | |
52 | }; | |
53 | ||
54 | /* Register numbers of various important registers. | |
55 | FP_REGNUM Contains address of executing stack frame. | |
56 | STR_REGNUM Contains the address of structure return values. | |
57 | RET_REGNUM Contains the return value when shorter than or equal to 32 bits | |
58 | ARG1_REGNUM Contains the first parameter to a function. | |
59 | ARG2_REGNUM Contains the second parameter to a function. | |
60 | ARG3_REGNUM Contains the third parameter to a function. | |
61 | ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack. | |
62 | SP_REGNUM Contains address of top of stack. | |
63 | PC_REGNUM Contains address of next instruction. | |
64 | SRP_REGNUM Subroutine return pointer register. | |
65 | BRP_REGNUM Breakpoint return pointer register. */ | |
66 | ||
67 | /* FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have been incorporated | |
68 | into the multi-arch framework. */ | |
69 | ||
70 | enum cris_regnums | |
71 | { | |
72 | /* Enums with respect to the general registers, valid for all | |
73 | CRIS versions. */ | |
74 | STR_REGNUM = 9, | |
75 | RET_REGNUM = 10, | |
76 | ARG1_REGNUM = 10, | |
77 | ARG2_REGNUM = 11, | |
78 | ARG3_REGNUM = 12, | |
79 | ARG4_REGNUM = 13, | |
80 | ||
81 | /* Enums with respect to the special registers, some of which may not be | |
82 | applicable to all CRIS versions. */ | |
83 | P0_REGNUM = 16, | |
84 | VR_REGNUM = 17, | |
85 | P2_REGNUM = 18, | |
86 | P3_REGNUM = 19, | |
87 | P4_REGNUM = 20, | |
88 | CCR_REGNUM = 21, | |
89 | MOF_REGNUM = 23, | |
90 | P8_REGNUM = 24, | |
91 | IBR_REGNUM = 25, | |
92 | IRP_REGNUM = 26, | |
93 | SRP_REGNUM = 27, | |
94 | BAR_REGNUM = 28, | |
2a9ecef2 | 95 | DCCR_REGNUM = 29, |
29134980 OF |
96 | BRP_REGNUM = 30, |
97 | USP_REGNUM = 31 | |
98 | }; | |
99 | ||
100 | extern const struct cris_spec_reg cris_spec_regs[]; | |
101 | ||
102 | /* CRIS version, set via the user command 'set cris-version'. Affects | |
103 | register names and sizes.*/ | |
104 | static int usr_cmd_cris_version; | |
105 | ||
106 | /* Indicates whether to trust the above variable. */ | |
107 | static int usr_cmd_cris_version_valid = 0; | |
108 | ||
109 | /* CRIS mode, set via the user command 'set cris-mode'. Affects availability | |
110 | of some registers. */ | |
111 | static const char *usr_cmd_cris_mode; | |
112 | ||
113 | /* Indicates whether to trust the above variable. */ | |
114 | static int usr_cmd_cris_mode_valid = 0; | |
115 | ||
116 | static const char CRIS_MODE_USER[] = "CRIS_MODE_USER"; | |
117 | static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR"; | |
118 | static const char *cris_mode_enums[] = | |
119 | { | |
120 | CRIS_MODE_USER, | |
121 | CRIS_MODE_SUPERVISOR, | |
122 | 0 | |
123 | }; | |
124 | ||
125 | /* CRIS ABI, set via the user command 'set cris-abi'. | |
126 | There are two flavours: | |
127 | 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are | |
128 | passed by value. | |
129 | 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by | |
130 | value. */ | |
131 | static const char *usr_cmd_cris_abi; | |
132 | ||
133 | /* Indicates whether to trust the above variable. */ | |
134 | static int usr_cmd_cris_abi_valid = 0; | |
135 | ||
136 | /* These variables are strings instead of enums to make them usable as | |
137 | parameters to add_set_enum_cmd. */ | |
138 | static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL"; | |
139 | static const char CRIS_ABI_V2[] = "CRIS_ABI_V2"; | |
140 | static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2"; | |
141 | static const char *cris_abi_enums[] = | |
142 | { | |
143 | CRIS_ABI_ORIGINAL, | |
144 | CRIS_ABI_V2, | |
145 | 0 | |
146 | }; | |
147 | ||
148 | /* CRIS architecture specific information. */ | |
149 | struct gdbarch_tdep | |
150 | { | |
151 | int cris_version; | |
152 | const char *cris_mode; | |
153 | const char *cris_abi; | |
154 | }; | |
155 | ||
156 | /* Functions for accessing target dependent data. */ | |
157 | ||
158 | static int | |
159 | cris_version (void) | |
160 | { | |
161 | return (gdbarch_tdep (current_gdbarch)->cris_version); | |
162 | } | |
163 | ||
164 | static const char * | |
165 | cris_mode (void) | |
166 | { | |
167 | return (gdbarch_tdep (current_gdbarch)->cris_mode); | |
168 | } | |
169 | ||
170 | static const char * | |
171 | cris_abi (void) | |
172 | { | |
173 | return (gdbarch_tdep (current_gdbarch)->cris_abi); | |
174 | } | |
175 | ||
176 | /* For saving call-clobbered contents in R9 when returning structs. */ | |
177 | static CORE_ADDR struct_return_address; | |
178 | ||
179 | struct frame_extra_info | |
180 | { | |
181 | CORE_ADDR return_pc; | |
182 | int leaf_function; | |
183 | }; | |
184 | ||
185 | /* The instruction environment needed to find single-step breakpoints. */ | |
186 | typedef | |
187 | struct instruction_environment | |
188 | { | |
189 | unsigned long reg[NUM_GENREGS]; | |
190 | unsigned long preg[NUM_SPECREGS]; | |
191 | unsigned long branch_break_address; | |
192 | unsigned long delay_slot_pc; | |
193 | unsigned long prefix_value; | |
194 | int branch_found; | |
195 | int prefix_found; | |
196 | int invalid; | |
197 | int slot_needed; | |
198 | int delay_slot_pc_active; | |
199 | int xflag_found; | |
200 | int disable_interrupt; | |
201 | } inst_env_type; | |
202 | ||
203 | /* Save old breakpoints in order to restore the state before a single_step. | |
204 | At most, two breakpoints will have to be remembered. */ | |
205 | typedef | |
206 | char binsn_quantum[BREAKPOINT_MAX]; | |
207 | static binsn_quantum break_mem[2]; | |
208 | static CORE_ADDR next_pc = 0; | |
209 | static CORE_ADDR branch_target_address = 0; | |
210 | static unsigned char branch_break_inserted = 0; | |
211 | ||
212 | /* Machine-dependencies in CRIS for opcodes. */ | |
213 | ||
214 | /* Instruction sizes. */ | |
215 | enum cris_instruction_sizes | |
216 | { | |
217 | INST_BYTE_SIZE = 0, | |
218 | INST_WORD_SIZE = 1, | |
219 | INST_DWORD_SIZE = 2 | |
220 | }; | |
221 | ||
222 | /* Addressing modes. */ | |
223 | enum cris_addressing_modes | |
224 | { | |
225 | REGISTER_MODE = 1, | |
226 | INDIRECT_MODE = 2, | |
227 | AUTOINC_MODE = 3 | |
228 | }; | |
229 | ||
230 | /* Prefix addressing modes. */ | |
231 | enum cris_prefix_addressing_modes | |
232 | { | |
233 | PREFIX_INDEX_MODE = 2, | |
234 | PREFIX_ASSIGN_MODE = 3, | |
235 | ||
236 | /* Handle immediate byte offset addressing mode prefix format. */ | |
237 | PREFIX_OFFSET_MODE = 2 | |
238 | }; | |
239 | ||
240 | /* Masks for opcodes. */ | |
241 | enum cris_opcode_masks | |
242 | { | |
243 | BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1, | |
244 | SIGNED_EXTEND_BIT_MASK = 0x2, | |
245 | SIGNED_BYTE_MASK = 0x80, | |
246 | SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00, | |
247 | SIGNED_WORD_MASK = 0x8000, | |
248 | SIGNED_WORD_EXTEND_MASK = 0xFFFF0000, | |
249 | SIGNED_DWORD_MASK = 0x80000000, | |
250 | SIGNED_QUICK_VALUE_MASK = 0x20, | |
251 | SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0 | |
252 | }; | |
253 | ||
254 | /* Functions for opcodes. The general form of the ETRAX 16-bit instruction: | |
255 | Bit 15 - 12 Operand2 | |
256 | 11 - 10 Mode | |
257 | 9 - 6 Opcode | |
258 | 5 - 4 Size | |
259 | 3 - 0 Operand1 */ | |
260 | ||
261 | static int | |
262 | cris_get_operand2 (unsigned short insn) | |
263 | { | |
264 | return ((insn & 0xF000) >> 12); | |
265 | } | |
266 | ||
267 | static int | |
268 | cris_get_mode (unsigned short insn) | |
269 | { | |
270 | return ((insn & 0x0C00) >> 10); | |
271 | } | |
272 | ||
273 | static int | |
274 | cris_get_opcode (unsigned short insn) | |
275 | { | |
276 | return ((insn & 0x03C0) >> 6); | |
277 | } | |
278 | ||
279 | static int | |
280 | cris_get_size (unsigned short insn) | |
281 | { | |
282 | return ((insn & 0x0030) >> 4); | |
283 | } | |
284 | ||
285 | static int | |
286 | cris_get_operand1 (unsigned short insn) | |
287 | { | |
288 | return (insn & 0x000F); | |
289 | } | |
290 | ||
291 | /* Additional functions in order to handle opcodes. */ | |
292 | ||
293 | static int | |
294 | cris_get_wide_opcode (unsigned short insn) | |
295 | { | |
296 | return ((insn & 0x03E0) >> 5); | |
297 | } | |
298 | ||
299 | static int | |
300 | cris_get_short_size (unsigned short insn) | |
301 | { | |
302 | return ((insn & 0x0010) >> 4); | |
303 | } | |
304 | ||
305 | static int | |
306 | cris_get_quick_value (unsigned short insn) | |
307 | { | |
308 | return (insn & 0x003F); | |
309 | } | |
310 | ||
311 | static int | |
312 | cris_get_bdap_quick_offset (unsigned short insn) | |
313 | { | |
314 | return (insn & 0x00FF); | |
315 | } | |
316 | ||
317 | static int | |
318 | cris_get_branch_short_offset (unsigned short insn) | |
319 | { | |
320 | return (insn & 0x00FF); | |
321 | } | |
322 | ||
323 | static int | |
324 | cris_get_asr_shift_steps (unsigned long value) | |
325 | { | |
326 | return (value & 0x3F); | |
327 | } | |
328 | ||
329 | static int | |
330 | cris_get_asr_quick_shift_steps (unsigned short insn) | |
331 | { | |
332 | return (insn & 0x1F); | |
333 | } | |
334 | ||
335 | static int | |
336 | cris_get_clear_size (unsigned short insn) | |
337 | { | |
338 | return ((insn) & 0xC000); | |
339 | } | |
340 | ||
341 | static int | |
342 | cris_is_signed_extend_bit_on (unsigned short insn) | |
343 | { | |
344 | return (((insn) & 0x20) == 0x20); | |
345 | } | |
346 | ||
347 | static int | |
348 | cris_is_xflag_bit_on (unsigned short insn) | |
349 | { | |
350 | return (((insn) & 0x1000) == 0x1000); | |
351 | } | |
352 | ||
353 | static void | |
354 | cris_set_size_to_dword (unsigned short *insn) | |
355 | { | |
356 | *insn &= 0xFFCF; | |
357 | *insn |= 0x20; | |
358 | } | |
359 | ||
8535cb38 | 360 | static signed char |
29134980 OF |
361 | cris_get_signed_offset (unsigned short insn) |
362 | { | |
8535cb38 | 363 | return ((signed char) (insn & 0x00FF)); |
29134980 OF |
364 | } |
365 | ||
366 | /* Calls an op function given the op-type, working on the insn and the | |
367 | inst_env. */ | |
368 | static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *); | |
369 | ||
370 | static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p); | |
371 | ||
372 | static struct gdbarch *cris_gdbarch_init (struct gdbarch_info, | |
373 | struct gdbarch_list *); | |
374 | ||
375 | static int cris_delayed_get_disassembler (bfd_vma, disassemble_info *); | |
376 | ||
377 | static void cris_dump_tdep (struct gdbarch *, struct ui_file *); | |
378 | ||
379 | static void cris_version_update (char *ignore_args, int from_tty, | |
380 | struct cmd_list_element *c); | |
381 | ||
382 | static void cris_mode_update (char *ignore_args, int from_tty, | |
383 | struct cmd_list_element *c); | |
384 | ||
385 | static void cris_abi_update (char *ignore_args, int from_tty, | |
386 | struct cmd_list_element *c); | |
387 | ||
388 | static CORE_ADDR bfd_lookup_symbol (bfd *, const char *); | |
389 | ||
390 | /* Frames information. The definition of the struct frame_info is | |
391 | ||
392 | CORE_ADDR frame | |
393 | CORE_ADDR pc | |
394 | int signal_handler_caller | |
395 | CORE_ADDR return_pc | |
396 | int leaf_function | |
397 | ||
398 | If the compilation option -fno-omit-frame-pointer is present the | |
399 | variable frame will be set to the content of R8 which is the frame | |
400 | pointer register. | |
401 | ||
402 | The variable pc contains the address where execution is performed | |
403 | in the present frame. The innermost frame contains the current content | |
404 | of the register PC. All other frames contain the content of the | |
405 | register PC in the next frame. | |
406 | ||
407 | The variable signal_handler_caller is non-zero when the frame is | |
408 | associated with the call of a signal handler. | |
409 | ||
410 | The variable return_pc contains the address where execution should be | |
411 | resumed when the present frame has finished, the return address. | |
412 | ||
413 | The variable leaf_function is 1 if the return address is in the register | |
414 | SRP, and 0 if it is on the stack. | |
415 | ||
416 | Prologue instructions C-code. | |
417 | The prologue may consist of (-fno-omit-frame-pointer) | |
418 | 1) 2) | |
419 | push srp | |
420 | push r8 push r8 | |
421 | move.d sp,r8 move.d sp,r8 | |
422 | subq X,sp subq X,sp | |
423 | movem rY,[sp] movem rY,[sp] | |
424 | move.S rZ,[r8-U] move.S rZ,[r8-U] | |
425 | ||
426 | where 1 is a non-terminal function, and 2 is a leaf-function. | |
427 | ||
428 | Note that this assumption is extremely brittle, and will break at the | |
429 | slightest change in GCC's prologue. | |
430 | ||
431 | If local variables are declared or register contents are saved on stack | |
432 | the subq-instruction will be present with X as the number of bytes | |
433 | needed for storage. The reshuffle with respect to r8 may be performed | |
434 | with any size S (b, w, d) and any of the general registers Z={0..13}. | |
435 | The offset U should be representable by a signed 8-bit value in all cases. | |
436 | Thus, the prefix word is assumed to be immediate byte offset mode followed | |
437 | by another word containing the instruction. | |
438 | ||
439 | Degenerate cases: | |
440 | 3) | |
441 | push r8 | |
442 | move.d sp,r8 | |
443 | move.d r8,sp | |
444 | pop r8 | |
445 | ||
446 | Prologue instructions C++-code. | |
447 | Case 1) and 2) in the C-code may be followed by | |
448 | ||
449 | move.d r10,rS ; this | |
450 | move.d r11,rT ; P1 | |
451 | move.d r12,rU ; P2 | |
452 | move.d r13,rV ; P3 | |
453 | move.S [r8+U],rZ ; P4 | |
454 | ||
455 | if any of the call parameters are stored. The host expects these | |
456 | instructions to be executed in order to get the call parameters right. */ | |
457 | ||
458 | /* Examine the prologue of a function. The variable ip is the address of | |
459 | the first instruction of the prologue. The variable limit is the address | |
460 | of the first instruction after the prologue. The variable fi contains the | |
461 | information in struct frame_info. The variable frameless_p controls whether | |
462 | the entire prologue is examined (0) or just enough instructions to | |
463 | determine that it is a prologue (1). */ | |
464 | ||
465 | CORE_ADDR | |
466 | cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi, | |
467 | int frameless_p) | |
468 | { | |
469 | /* Present instruction. */ | |
470 | unsigned short insn; | |
471 | ||
472 | /* Next instruction, lookahead. */ | |
473 | unsigned short insn_next; | |
474 | int regno; | |
475 | ||
476 | /* Is there a push fp? */ | |
477 | int have_fp; | |
478 | ||
479 | /* Number of byte on stack used for local variables and movem. */ | |
480 | int val; | |
481 | ||
482 | /* Highest register number in a movem. */ | |
483 | int regsave; | |
484 | ||
485 | /* move.d r<source_register>,rS */ | |
486 | short source_register; | |
487 | ||
488 | /* This frame is with respect to a leaf until a push srp is found. */ | |
489 | fi->extra_info->leaf_function = 1; | |
490 | ||
491 | /* This frame is without the FP until a push fp is found. */ | |
492 | have_fp = 0; | |
493 | ||
494 | /* Assume nothing on stack. */ | |
495 | val = 0; | |
496 | regsave = -1; | |
497 | ||
498 | /* No information about register contents so far. */ | |
499 | ||
500 | /* We only want to know the end of the prologue when fi->saved_regs == 0. | |
501 | When the saved registers are allocated full information is required. */ | |
502 | if (fi->saved_regs) | |
503 | { | |
504 | for (regno = 0; regno < NUM_REGS; regno++) | |
505 | fi->saved_regs[regno] = 0; | |
506 | } | |
507 | ||
508 | /* Find the prologue instructions. */ | |
509 | do | |
510 | { | |
511 | insn = read_memory_unsigned_integer (ip, sizeof (short)); | |
512 | ip += sizeof (short); | |
513 | if (insn == 0xE1FC) | |
514 | { | |
515 | /* push <reg> 32 bit instruction */ | |
516 | insn_next = read_memory_unsigned_integer (ip, sizeof (short)); | |
517 | ip += sizeof (short); | |
518 | regno = cris_get_operand2 (insn_next); | |
dbbff683 OF |
519 | |
520 | /* This check, meant to recognize srp, used to be regno == | |
521 | (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */ | |
522 | if (insn_next == 0xBE7E) | |
29134980 OF |
523 | { |
524 | if (frameless_p) | |
525 | { | |
526 | return ip; | |
527 | } | |
528 | fi->extra_info->leaf_function = 0; | |
529 | } | |
530 | else if (regno == FP_REGNUM) | |
531 | { | |
532 | have_fp = 1; | |
533 | } | |
534 | } | |
535 | else if (insn == 0x866E) | |
536 | { | |
537 | /* move.d sp,r8 */ | |
538 | if (frameless_p) | |
539 | { | |
540 | return ip; | |
541 | } | |
542 | continue; | |
543 | } | |
544 | else if (cris_get_operand2 (insn) == SP_REGNUM | |
545 | && cris_get_mode (insn) == 0x0000 | |
546 | && cris_get_opcode (insn) == 0x000A) | |
547 | { | |
548 | /* subq <val>,sp */ | |
549 | val = cris_get_quick_value (insn); | |
550 | } | |
551 | else if (cris_get_mode (insn) == 0x0002 | |
552 | && cris_get_opcode (insn) == 0x000F | |
553 | && cris_get_size (insn) == 0x0003 | |
554 | && cris_get_operand1 (insn) == SP_REGNUM) | |
555 | { | |
556 | /* movem r<regsave>,[sp] */ | |
557 | if (frameless_p) | |
558 | { | |
559 | return ip; | |
560 | } | |
561 | regsave = cris_get_operand2 (insn); | |
562 | } | |
563 | else if (cris_get_operand2 (insn) == SP_REGNUM | |
564 | && ((insn & 0x0F00) >> 8) == 0x0001 | |
565 | && (cris_get_signed_offset (insn) < 0)) | |
566 | { | |
567 | /* Immediate byte offset addressing prefix word with sp as base | |
568 | register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val> | |
569 | is between 64 and 128. | |
570 | movem r<regsave>,[sp=sp-<val>] */ | |
571 | val = -cris_get_signed_offset (insn); | |
572 | insn_next = read_memory_unsigned_integer (ip, sizeof (short)); | |
573 | ip += sizeof (short); | |
574 | if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE | |
575 | && cris_get_opcode (insn_next) == 0x000F | |
576 | && cris_get_size (insn_next) == 0x0003 | |
577 | && cris_get_operand1 (insn_next) == SP_REGNUM) | |
578 | { | |
579 | if (frameless_p) | |
580 | { | |
581 | return ip; | |
582 | } | |
583 | regsave = cris_get_operand2 (insn_next); | |
584 | } | |
585 | else | |
586 | { | |
587 | /* The prologue ended before the limit was reached. */ | |
588 | ip -= 2 * sizeof (short); | |
589 | break; | |
590 | } | |
591 | } | |
592 | else if (cris_get_mode (insn) == 0x0001 | |
593 | && cris_get_opcode (insn) == 0x0009 | |
594 | && cris_get_size (insn) == 0x0002) | |
595 | { | |
596 | /* move.d r<10..13>,r<0..15> */ | |
597 | if (frameless_p) | |
598 | { | |
599 | return ip; | |
600 | } | |
601 | source_register = cris_get_operand1 (insn); | |
2a9ecef2 OF |
602 | |
603 | /* FIXME? In the glibc solibs, the prologue might contain something | |
604 | like (this example taken from relocate_doit): | |
605 | move.d $pc,$r0 | |
606 | sub.d 0xfffef426,$r0 | |
607 | which isn't covered by the source_register check below. Question | |
608 | is whether to add a check for this combo, or make better use of | |
609 | the limit variable instead. */ | |
29134980 OF |
610 | if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM) |
611 | { | |
612 | /* The prologue ended before the limit was reached. */ | |
613 | ip -= sizeof (short); | |
614 | break; | |
615 | } | |
616 | } | |
617 | else if (cris_get_operand2 (insn) == FP_REGNUM | |
618 | /* The size is a fixed-size. */ | |
619 | && ((insn & 0x0F00) >> 8) == 0x0001 | |
620 | /* A negative offset. */ | |
621 | && (cris_get_signed_offset (insn) < 0)) | |
622 | { | |
623 | /* move.S rZ,[r8-U] (?) */ | |
624 | insn_next = read_memory_unsigned_integer (ip, sizeof (short)); | |
625 | ip += sizeof (short); | |
626 | regno = cris_get_operand2 (insn_next); | |
627 | if ((regno >= 0 && regno < SP_REGNUM) | |
628 | && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE | |
629 | && cris_get_opcode (insn_next) == 0x000F) | |
630 | { | |
631 | /* move.S rZ,[r8-U] */ | |
632 | continue; | |
633 | } | |
634 | else | |
635 | { | |
636 | /* The prologue ended before the limit was reached. */ | |
637 | ip -= 2 * sizeof (short); | |
638 | break; | |
639 | } | |
640 | } | |
641 | else if (cris_get_operand2 (insn) == FP_REGNUM | |
642 | /* The size is a fixed-size. */ | |
643 | && ((insn & 0x0F00) >> 8) == 0x0001 | |
644 | /* A positive offset. */ | |
645 | && (cris_get_signed_offset (insn) > 0)) | |
646 | { | |
647 | /* move.S [r8+U],rZ (?) */ | |
648 | insn_next = read_memory_unsigned_integer (ip, sizeof (short)); | |
649 | ip += sizeof (short); | |
650 | regno = cris_get_operand2 (insn_next); | |
651 | if ((regno >= 0 && regno < SP_REGNUM) | |
652 | && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE | |
653 | && cris_get_opcode (insn_next) == 0x0009 | |
654 | && cris_get_operand1 (insn_next) == regno) | |
655 | { | |
656 | /* move.S [r8+U],rZ */ | |
657 | continue; | |
658 | } | |
659 | else | |
660 | { | |
661 | /* The prologue ended before the limit was reached. */ | |
662 | ip -= 2 * sizeof (short); | |
663 | break; | |
664 | } | |
665 | } | |
666 | else | |
667 | { | |
668 | /* The prologue ended before the limit was reached. */ | |
669 | ip -= sizeof (short); | |
670 | break; | |
671 | } | |
672 | } | |
673 | while (ip < limit); | |
674 | ||
675 | /* We only want to know the end of the prologue when | |
676 | fi->saved_regs == 0. */ | |
677 | if (!fi->saved_regs) | |
678 | return ip; | |
679 | ||
680 | if (have_fp) | |
681 | { | |
682 | fi->saved_regs[FP_REGNUM] = FRAME_FP (fi); | |
683 | ||
684 | /* Calculate the addresses. */ | |
685 | for (regno = regsave; regno >= 0; regno--) | |
686 | { | |
687 | fi->saved_regs[regno] = FRAME_FP (fi) - val; | |
688 | val -= 4; | |
689 | } | |
690 | if (fi->extra_info->leaf_function) | |
691 | { | |
692 | /* Set the register SP to contain the stack pointer of | |
693 | the caller. */ | |
694 | fi->saved_regs[SP_REGNUM] = FRAME_FP (fi) + 4; | |
695 | } | |
696 | else | |
697 | { | |
698 | /* Set the register SP to contain the stack pointer of | |
699 | the caller. */ | |
700 | fi->saved_regs[SP_REGNUM] = FRAME_FP (fi) + 8; | |
701 | ||
702 | /* Set the register SRP to contain the return address of | |
703 | the caller. */ | |
704 | fi->saved_regs[SRP_REGNUM] = FRAME_FP (fi) + 4; | |
705 | } | |
706 | } | |
707 | return ip; | |
708 | } | |
709 | ||
710 | /* Advance pc beyond any function entry prologue instructions at pc | |
711 | to reach some "real" code. */ | |
712 | ||
713 | CORE_ADDR | |
714 | cris_skip_prologue (CORE_ADDR pc) | |
715 | { | |
716 | return cris_skip_prologue_main (pc, 0); | |
717 | } | |
718 | ||
719 | /* As cris_skip_prologue, but stops as soon as it knows that the function | |
720 | has a frame. Its result is equal to its input pc if the function is | |
721 | frameless, unequal otherwise. */ | |
722 | ||
723 | CORE_ADDR | |
724 | cris_skip_prologue_frameless_p (CORE_ADDR pc) | |
725 | { | |
726 | return cris_skip_prologue_main (pc, 1); | |
727 | } | |
728 | ||
729 | /* Given a PC value corresponding to the start of a function, return the PC | |
730 | of the first instruction after the function prologue. */ | |
731 | ||
732 | CORE_ADDR | |
733 | cris_skip_prologue_main (CORE_ADDR pc, int frameless_p) | |
734 | { | |
735 | struct frame_info fi; | |
736 | static struct frame_extra_info fei; | |
737 | struct symtab_and_line sal = find_pc_line (pc, 0); | |
738 | int best_limit; | |
739 | CORE_ADDR pc_after_prologue; | |
740 | ||
741 | /* frame_info now contains dynamic memory. Since fi is a dummy here, | |
742 | I use static memory for extra_info, and don't bother allocating | |
743 | memory for saved_regs. */ | |
744 | fi.saved_regs = 0; | |
745 | fi.extra_info = &fei; | |
746 | ||
747 | /* If there is no symbol information then sal.end == 0, and we end up | |
748 | examining only the first instruction in the function prologue. | |
749 | Exaggerating the limit seems to be harmless. */ | |
750 | if (sal.end > 0) | |
751 | best_limit = sal.end; | |
752 | else | |
753 | best_limit = pc + 100; | |
754 | ||
755 | pc_after_prologue = cris_examine (pc, best_limit, &fi, frameless_p); | |
756 | return pc_after_prologue; | |
757 | } | |
758 | ||
759 | /* Use the program counter to determine the contents and size of a breakpoint | |
760 | instruction. It returns a pointer to a string of bytes that encode a | |
761 | breakpoint instruction, stores the length of the string to *lenptr, and | |
762 | adjusts pcptr (if necessary) to point to the actual memory location where | |
763 | the breakpoint should be inserted. */ | |
764 | ||
5402eed1 | 765 | const unsigned char * |
29134980 OF |
766 | cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
767 | { | |
768 | static unsigned char break_insn[] = {0x38, 0xe9}; | |
769 | *lenptr = 2; | |
770 | ||
771 | return break_insn; | |
772 | } | |
773 | ||
774 | /* Returns the register SRP (subroutine return pointer) which must contain | |
775 | the content of the register PC after a function call. */ | |
776 | ||
777 | CORE_ADDR | |
778 | cris_saved_pc_after_call () | |
779 | { | |
780 | return read_register (SRP_REGNUM); | |
781 | } | |
782 | ||
783 | /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version, | |
784 | 0 otherwise. */ | |
785 | ||
786 | int | |
787 | cris_spec_reg_applicable (struct cris_spec_reg spec_reg) | |
788 | { | |
789 | int version = cris_version (); | |
790 | ||
791 | switch (spec_reg.applicable_version) | |
792 | { | |
793 | case cris_ver_version_all: | |
794 | return 1; | |
795 | case cris_ver_warning: | |
796 | /* Indeterminate/obsolete. */ | |
797 | return 0; | |
798 | case cris_ver_sim: | |
799 | /* Simulator only. */ | |
800 | return 0; | |
801 | case cris_ver_v0_3: | |
802 | return (version >= 0 && version <= 3); | |
803 | case cris_ver_v3p: | |
804 | return (version >= 3); | |
805 | case cris_ver_v8: | |
806 | return (version == 8 || version == 9); | |
807 | case cris_ver_v8p: | |
808 | return (version >= 8); | |
809 | case cris_ver_v10p: | |
810 | return (version >= 10); | |
811 | default: | |
812 | /* Invalid cris version. */ | |
813 | return 0; | |
814 | } | |
815 | } | |
816 | ||
817 | /* Returns the register size in unit byte. Returns 0 for an unimplemented | |
818 | register, -1 for an invalid register. */ | |
819 | ||
820 | int | |
821 | cris_register_size (int regno) | |
822 | { | |
823 | int i; | |
824 | int spec_regno; | |
825 | ||
826 | if (regno >= 0 && regno < NUM_GENREGS) | |
827 | { | |
828 | /* General registers (R0 - R15) are 32 bits. */ | |
829 | return 4; | |
830 | } | |
831 | else if (regno >= NUM_GENREGS && regno < NUM_REGS) | |
832 | { | |
833 | /* Special register (R16 - R31). cris_spec_regs is zero-based. | |
834 | Adjust regno accordingly. */ | |
835 | spec_regno = regno - NUM_GENREGS; | |
836 | ||
837 | /* The entries in cris_spec_regs are stored in register number order, | |
838 | which means we can shortcut into the array when searching it. */ | |
839 | for (i = spec_regno; cris_spec_regs[i].name != NULL; i++) | |
840 | { | |
841 | if (cris_spec_regs[i].number == spec_regno | |
842 | && cris_spec_reg_applicable (cris_spec_regs[i])) | |
843 | /* Go with the first applicable register. */ | |
844 | return cris_spec_regs[i].reg_size; | |
845 | } | |
846 | /* Special register not applicable to this CRIS version. */ | |
847 | return 0; | |
848 | } | |
849 | else | |
850 | { | |
851 | /* Invalid register. */ | |
852 | return -1; | |
853 | } | |
854 | } | |
855 | ||
856 | /* Nonzero if regno should not be fetched from the target. This is the case | |
857 | for unimplemented (size 0) and non-existant registers. */ | |
858 | ||
859 | int | |
860 | cris_cannot_fetch_register (int regno) | |
861 | { | |
862 | return ((regno < 0 || regno >= NUM_REGS) | |
863 | || (cris_register_size (regno) == 0)); | |
864 | } | |
865 | ||
866 | /* Nonzero if regno should not be written to the target, for various | |
867 | reasons. */ | |
868 | ||
869 | int | |
870 | cris_cannot_store_register (int regno) | |
871 | { | |
872 | /* There are three kinds of registers we refuse to write to. | |
873 | 1. Those that not implemented. | |
874 | 2. Those that are read-only (depends on the processor mode). | |
875 | 3. Those registers to which a write has no effect. | |
876 | */ | |
877 | ||
878 | if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0) | |
879 | /* Not implemented. */ | |
880 | return 1; | |
881 | ||
882 | else if (regno == VR_REGNUM) | |
883 | /* Read-only. */ | |
884 | return 1; | |
885 | ||
886 | else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM) | |
887 | /* Writing has no effect. */ | |
888 | return 1; | |
889 | ||
890 | else if (cris_mode () == CRIS_MODE_USER) | |
891 | { | |
892 | if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM | |
893 | || regno == IRP_REGNUM) | |
894 | /* Read-only in user mode. */ | |
895 | return 1; | |
896 | } | |
897 | ||
898 | return 0; | |
899 | } | |
900 | ||
901 | /* Returns the register offset for the first byte of register regno's space | |
902 | in the saved register state. Returns -1 for an invalid or unimplemented | |
903 | register. */ | |
904 | ||
905 | int | |
906 | cris_register_offset (int regno) | |
907 | { | |
908 | int i; | |
909 | int reg_size; | |
910 | int offset = 0; | |
911 | ||
912 | if (regno >= 0 && regno < NUM_REGS) | |
913 | { | |
914 | /* FIXME: The offsets should be cached and calculated only once, | |
915 | when the architecture being debugged has changed. */ | |
916 | for (i = 0; i < regno; i++) | |
917 | offset += cris_register_size (i); | |
918 | ||
919 | return offset; | |
920 | } | |
921 | else | |
922 | { | |
923 | /* Invalid register. */ | |
924 | return -1; | |
925 | } | |
926 | } | |
927 | ||
928 | /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type | |
929 | of data in register regno. */ | |
930 | ||
931 | struct type * | |
932 | cris_register_virtual_type (int regno) | |
933 | { | |
934 | if (regno == SP_REGNUM || regno == PC_REGNUM | |
935 | || (regno > P8_REGNUM && regno < USP_REGNUM)) | |
936 | { | |
937 | /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */ | |
938 | return lookup_pointer_type (builtin_type_void); | |
939 | } | |
940 | else if (regno == P8_REGNUM || regno == USP_REGNUM | |
941 | || (regno >= 0 && regno < SP_REGNUM)) | |
942 | { | |
943 | /* R0 - R13, P8, P15 */ | |
944 | return builtin_type_unsigned_long; | |
945 | } | |
946 | else if (regno > P3_REGNUM && regno < P8_REGNUM) | |
947 | { | |
948 | /* P4, CCR, DCR0, DCR1 */ | |
949 | return builtin_type_unsigned_short; | |
950 | } | |
951 | else if (regno > PC_REGNUM && regno < P4_REGNUM) | |
952 | { | |
953 | /* P0, P1, P2, P3 */ | |
954 | return builtin_type_unsigned_char; | |
955 | } | |
956 | else | |
957 | { | |
958 | /* Invalid register. */ | |
959 | return builtin_type_void; | |
960 | } | |
961 | } | |
962 | ||
963 | /* Stores a function return value of type type, where valbuf is the address | |
964 | of the value to be stored. */ | |
965 | ||
966 | /* In the original CRIS ABI, R10 is used to store return values. */ | |
967 | ||
968 | void | |
969 | cris_abi_original_store_return_value (struct type *type, char *valbuf) | |
970 | { | |
971 | int len = TYPE_LENGTH (type); | |
972 | ||
973 | if (len <= REGISTER_SIZE) | |
974 | write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len); | |
975 | else | |
976 | internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large."); | |
977 | } | |
978 | ||
979 | /* In the CRIS ABI V2, R10 and R11 are used to store return values. */ | |
980 | ||
981 | void | |
982 | cris_abi_v2_store_return_value (struct type *type, char *valbuf) | |
983 | { | |
984 | int len = TYPE_LENGTH (type); | |
985 | ||
986 | if (len <= 2 * REGISTER_SIZE) | |
987 | { | |
988 | /* Note that this works since R10 and R11 are consecutive registers. */ | |
989 | write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len); | |
990 | } | |
991 | else | |
992 | internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large."); | |
993 | } | |
994 | ||
995 | /* Return the name of register regno as a string. Return NULL for an invalid or | |
996 | unimplemented register. */ | |
997 | ||
5402eed1 | 998 | const char * |
29134980 OF |
999 | cris_register_name (int regno) |
1000 | { | |
1001 | static char *cris_genreg_names[] = | |
1002 | { "r0", "r1", "r2", "r3", \ | |
1003 | "r4", "r5", "r6", "r7", \ | |
1004 | "r8", "r9", "r10", "r11", \ | |
1005 | "r12", "r13", "sp", "pc" }; | |
1006 | ||
1007 | int i; | |
1008 | int spec_regno; | |
1009 | ||
1010 | if (regno >= 0 && regno < NUM_GENREGS) | |
1011 | { | |
1012 | /* General register. */ | |
1013 | return cris_genreg_names[regno]; | |
1014 | } | |
1015 | else if (regno >= NUM_GENREGS && regno < NUM_REGS) | |
1016 | { | |
1017 | /* Special register (R16 - R31). cris_spec_regs is zero-based. | |
1018 | Adjust regno accordingly. */ | |
1019 | spec_regno = regno - NUM_GENREGS; | |
1020 | ||
1021 | /* The entries in cris_spec_regs are stored in register number order, | |
1022 | which means we can shortcut into the array when searching it. */ | |
1023 | for (i = spec_regno; cris_spec_regs[i].name != NULL; i++) | |
1024 | { | |
1025 | if (cris_spec_regs[i].number == spec_regno | |
1026 | && cris_spec_reg_applicable (cris_spec_regs[i])) | |
1027 | /* Go with the first applicable register. */ | |
1028 | return cris_spec_regs[i].name; | |
1029 | } | |
1030 | /* Special register not applicable to this CRIS version. */ | |
1031 | return NULL; | |
1032 | } | |
1033 | else | |
1034 | { | |
1035 | /* Invalid register. */ | |
1036 | return NULL; | |
1037 | } | |
1038 | } | |
1039 | ||
1040 | int | |
1041 | cris_register_bytes_ok (long bytes) | |
1042 | { | |
1043 | return (bytes == REGISTER_BYTES); | |
1044 | } | |
1045 | ||
1046 | /* Extract from an array regbuf containing the raw register state a function | |
1047 | return value of type type, and copy that, in virtual format, into | |
1048 | valbuf. */ | |
1049 | ||
1050 | /* In the original CRIS ABI, R10 is used to return values. */ | |
1051 | ||
1052 | void | |
1053 | cris_abi_original_extract_return_value (struct type *type, char *regbuf, | |
1054 | char *valbuf) | |
1055 | { | |
1056 | int len = TYPE_LENGTH (type); | |
1057 | ||
1058 | if (len <= REGISTER_SIZE) | |
1059 | memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len); | |
1060 | else | |
1061 | internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large"); | |
1062 | } | |
1063 | ||
1064 | /* In the CRIS ABI V2, R10 and R11 are used to store return values. */ | |
1065 | ||
1066 | void | |
1067 | cris_abi_v2_extract_return_value (struct type *type, char *regbuf, | |
1068 | char *valbuf) | |
1069 | { | |
1070 | int len = TYPE_LENGTH (type); | |
1071 | ||
1072 | if (len <= 2 * REGISTER_SIZE) | |
1073 | memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len); | |
1074 | else | |
1075 | internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large"); | |
1076 | } | |
1077 | ||
1078 | /* Store the address of the place in which to copy the structure the | |
1079 | subroutine will return. In the CRIS ABI, R9 is used in order to pass | |
1080 | the address of the allocated area where a structure return value must | |
1081 | be stored. R9 is call-clobbered, which means we must save it here for | |
1082 | later use. */ | |
1083 | ||
1084 | void | |
1085 | cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1086 | { | |
1087 | write_register (STR_REGNUM, addr); | |
1088 | struct_return_address = addr; | |
1089 | } | |
1090 | ||
1091 | /* Extract from regbuf the address where a function should return a | |
1092 | structure value. It's not there in the CRIS ABI, so we must do it another | |
1093 | way. */ | |
1094 | ||
1095 | CORE_ADDR | |
1096 | cris_extract_struct_value_address (char *regbuf) | |
1097 | { | |
1098 | return struct_return_address; | |
1099 | } | |
1100 | ||
1101 | /* Returns 1 if a value of the given type being returned from a function | |
1102 | must have space allocated for it on the stack. gcc_p is true if the | |
1103 | function being considered is known to have been compiled by GCC. | |
1104 | In the CRIS ABI, structure return values are passed to the called | |
1105 | function by reference in register R9 to a caller-allocated area, so | |
1106 | this is always true. */ | |
1107 | ||
1108 | int | |
1109 | cris_use_struct_convention (int gcc_p, struct type *type) | |
1110 | { | |
1111 | return 1; | |
1112 | } | |
1113 | ||
1114 | /* Returns 1 if the given type will be passed by pointer rather than | |
1115 | directly. */ | |
1116 | ||
1117 | /* In the original CRIS ABI, arguments shorter than or equal to 32 bits are | |
1118 | passed by value. */ | |
1119 | ||
1120 | int | |
1121 | cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type) | |
1122 | { | |
1123 | return (TYPE_LENGTH (type) > 4); | |
1124 | } | |
1125 | ||
1126 | /* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed | |
1127 | by value. */ | |
1128 | ||
1129 | int | |
1130 | cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type) | |
1131 | { | |
1132 | return (TYPE_LENGTH (type) > 8); | |
1133 | } | |
1134 | ||
1135 | /* Returns 1 if the function invocation represented by fi does not have a | |
1136 | stack frame associated with it. Otherwise return 0. */ | |
1137 | ||
1138 | int | |
1139 | cris_frameless_function_invocation (struct frame_info *fi) | |
1140 | { | |
1141 | if (fi->signal_handler_caller) | |
1142 | return 0; | |
1143 | else | |
1144 | return frameless_look_for_prologue (fi); | |
1145 | } | |
1146 | ||
1147 | /* See frame.h. Determines the address of all registers in the current stack | |
1148 | frame storing each in frame->saved_regs. Space for frame->saved_regs shall | |
1149 | be allocated by FRAME_INIT_SAVED_REGS using either frame_saved_regs_zalloc | |
1150 | or frame_obstack_alloc. */ | |
1151 | ||
1152 | void | |
1153 | cris_frame_init_saved_regs (struct frame_info *fi) | |
1154 | { | |
1155 | CORE_ADDR ip; | |
1156 | struct symtab_and_line sal; | |
1157 | int best_limit; | |
da130f98 | 1158 | char *dummy_regs = deprecated_generic_find_dummy_frame (fi->pc, fi->frame); |
29134980 OF |
1159 | |
1160 | /* Examine the entire prologue. */ | |
1161 | register int frameless_p = 0; | |
1162 | ||
1163 | /* Has this frame's registers already been initialized? */ | |
1164 | if (fi->saved_regs) | |
1165 | return; | |
1166 | ||
1167 | frame_saved_regs_zalloc (fi); | |
1168 | ||
1169 | if (dummy_regs) | |
1170 | { | |
1171 | /* I don't see this ever happening, considering the context in which | |
1172 | cris_frame_init_saved_regs is called (always when we're not in | |
1173 | a dummy frame). */ | |
1174 | memcpy (&fi->saved_regs, dummy_regs, sizeof (fi->saved_regs)); | |
1175 | } | |
1176 | else | |
1177 | { | |
1178 | ip = get_pc_function_start (fi->pc); | |
1179 | sal = find_pc_line (ip, 0); | |
1180 | ||
1181 | /* If there is no symbol information then sal.end == 0, and we end up | |
1182 | examining only the first instruction in the function prologue. | |
1183 | Exaggerating the limit seems to be harmless. */ | |
1184 | if (sal.end > 0) | |
1185 | best_limit = sal.end; | |
1186 | else | |
1187 | best_limit = ip + 100; | |
1188 | ||
1189 | cris_examine (ip, best_limit, fi, frameless_p); | |
1190 | } | |
1191 | } | |
1192 | ||
1193 | /* Initialises the extra frame information at the creation of a new frame. | |
1194 | The inparameter fromleaf is 0 when the call is from create_new_frame. | |
1195 | When the call is from get_prev_frame_info, fromleaf is determined by | |
1196 | cris_frameless_function_invocation. */ | |
1197 | ||
1198 | void | |
1199 | cris_init_extra_frame_info (int fromleaf, struct frame_info *fi) | |
1200 | { | |
1201 | if (fi->next) | |
1202 | { | |
1203 | /* Called from get_prev_frame. */ | |
1204 | fi->pc = FRAME_SAVED_PC (fi->next); | |
1205 | } | |
1206 | ||
1207 | fi->extra_info = (struct frame_extra_info *) | |
1208 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
1209 | ||
1210 | fi->extra_info->return_pc = 0; | |
1211 | fi->extra_info->leaf_function = 0; | |
1212 | ||
1213 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
1214 | { | |
1215 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
1216 | by assuming it's always FP. */ | |
1217 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); | |
1218 | fi->extra_info->return_pc = | |
1219 | generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
1220 | ||
1221 | /* FIXME: Is this necessarily true? */ | |
1222 | fi->extra_info->leaf_function = 0; | |
1223 | } | |
1224 | else | |
1225 | { | |
1226 | cris_frame_init_saved_regs (fi); | |
1227 | ||
1228 | /* Check fromleaf/frameless_function_invocation. (FIXME) */ | |
1229 | ||
1230 | if (fi->saved_regs[SRP_REGNUM] != 0) | |
1231 | { | |
1232 | /* SRP was saved on the stack; non-leaf function. */ | |
1233 | fi->extra_info->return_pc = | |
1234 | read_memory_integer (fi->saved_regs[SRP_REGNUM], | |
1235 | REGISTER_RAW_SIZE (SRP_REGNUM)); | |
1236 | } | |
1237 | else | |
1238 | { | |
1239 | /* SRP is still in a register; leaf function. */ | |
1240 | fi->extra_info->return_pc = read_register (SRP_REGNUM); | |
1241 | /* FIXME: Should leaf_function be set to 1 here? */ | |
1242 | fi->extra_info->leaf_function = 1; | |
1243 | } | |
1244 | } | |
1245 | } | |
1246 | ||
1247 | /* Return the content of the frame pointer in the present frame. In other | |
1248 | words, determine the address of the calling function's frame. */ | |
1249 | ||
1250 | CORE_ADDR | |
1251 | cris_frame_chain (struct frame_info *fi) | |
1252 | { | |
1253 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
1254 | { | |
1255 | return fi->frame; | |
1256 | } | |
1257 | else if (!inside_entry_file (fi->pc)) | |
1258 | { | |
1259 | return read_memory_unsigned_integer (FRAME_FP (fi), 4); | |
1260 | } | |
1261 | else | |
1262 | { | |
1263 | return 0; | |
1264 | } | |
1265 | } | |
1266 | ||
1267 | /* Return the saved PC (which equals the return address) of this frame. */ | |
1268 | ||
1269 | CORE_ADDR | |
1270 | cris_frame_saved_pc (struct frame_info *fi) | |
1271 | { | |
1272 | return fi->extra_info->return_pc; | |
1273 | } | |
1274 | ||
1275 | /* Return the address of the argument block for the frame described | |
1276 | by struct frame_info. */ | |
1277 | ||
1278 | CORE_ADDR | |
1279 | cris_frame_args_address (struct frame_info *fi) | |
1280 | { | |
1281 | return FRAME_FP (fi); | |
1282 | } | |
1283 | ||
1284 | /* Return the address of the locals block for the frame | |
1285 | described by struct frame_info. */ | |
1286 | ||
1287 | CORE_ADDR | |
1288 | cris_frame_locals_address (struct frame_info *fi) | |
1289 | { | |
1290 | return FRAME_FP (fi); | |
1291 | } | |
1292 | ||
1293 | /* Setup the function arguments for calling a function in the inferior. */ | |
1294 | ||
1295 | CORE_ADDR | |
1296 | cris_abi_original_push_arguments (int nargs, struct value **args, | |
1297 | CORE_ADDR sp, int struct_return, | |
1298 | CORE_ADDR struct_addr) | |
1299 | { | |
1300 | int stack_alloc; | |
1301 | int stack_offset; | |
1302 | int argreg; | |
1303 | int argnum; | |
1304 | struct type *type; | |
1305 | int len; | |
1306 | CORE_ADDR regval; | |
1307 | char *val; | |
1308 | ||
1309 | /* Data and parameters reside in different areas on the stack. | |
1310 | Both frame pointers grow toward higher addresses. */ | |
1311 | CORE_ADDR fp_params; | |
1312 | CORE_ADDR fp_data; | |
1313 | ||
1314 | /* Are we returning a value using a structure return or a normal value | |
1315 | return? struct_addr is the address of the reserved space for the return | |
1316 | structure to be written on the stack. */ | |
1317 | if (struct_return) | |
1318 | { | |
1319 | write_register (STR_REGNUM, struct_addr); | |
1320 | } | |
1321 | ||
1322 | /* Make sure there's space on the stack. Allocate space for data and a | |
1323 | parameter to refer to that data. */ | |
1324 | for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) | |
1325 | stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + REGISTER_SIZE); | |
1326 | sp -= stack_alloc; | |
1327 | /* We may over-allocate a little here, but that won't hurt anything. */ | |
1328 | ||
1329 | /* Initialize stack frame pointers. */ | |
1330 | fp_params = sp; | |
1331 | fp_data = sp + (nargs * REGISTER_SIZE); | |
1332 | ||
1333 | /* Now load as many as possible of the first arguments into | |
1334 | registers, and push the rest onto the stack. */ | |
1335 | argreg = ARG1_REGNUM; | |
1336 | stack_offset = 0; | |
1337 | ||
1338 | for (argnum = 0; argnum < nargs; argnum++) | |
1339 | { | |
1340 | type = VALUE_TYPE (args[argnum]); | |
1341 | len = TYPE_LENGTH (type); | |
1342 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1343 | ||
1344 | if (len <= REGISTER_SIZE && argreg <= ARG4_REGNUM) | |
1345 | { | |
1346 | /* Data fits in a register; put it in the first available | |
1347 | register. */ | |
1348 | write_register (argreg, *(unsigned long *) val); | |
1349 | argreg++; | |
1350 | } | |
1351 | else if (len > REGISTER_SIZE && argreg <= ARG4_REGNUM) | |
1352 | { | |
1353 | /* Data does not fit in register; pass it on the stack and | |
1354 | put its address in the first available register. */ | |
1355 | write_memory (fp_data, val, len); | |
1356 | write_register (argreg, fp_data); | |
1357 | fp_data += len; | |
1358 | argreg++; | |
1359 | } | |
1360 | else if (len > REGISTER_SIZE) | |
1361 | { | |
1362 | /* Data does not fit in register; put both data and | |
1363 | parameter on the stack. */ | |
1364 | write_memory (fp_data, val, len); | |
1365 | write_memory (fp_params, (char *) (&fp_data), REGISTER_SIZE); | |
1366 | fp_data += len; | |
1367 | fp_params += REGISTER_SIZE; | |
1368 | } | |
1369 | else | |
1370 | { | |
1371 | /* Data fits in a register, but we are out of registers; | |
1372 | put the parameter on the stack. */ | |
1373 | write_memory (fp_params, val, REGISTER_SIZE); | |
1374 | fp_params += REGISTER_SIZE; | |
1375 | } | |
1376 | } | |
1377 | ||
1378 | return sp; | |
1379 | } | |
1380 | ||
1381 | CORE_ADDR | |
1382 | cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
1383 | int struct_return, CORE_ADDR struct_addr) | |
1384 | { | |
1385 | int stack_alloc; | |
1386 | int stack_offset; | |
1387 | int argreg; | |
1388 | int argnum; | |
1389 | ||
1390 | CORE_ADDR regval; | |
1391 | ||
1392 | /* The function's arguments and memory allocated by gdb for the arguments to | |
1393 | point at reside in separate areas on the stack. | |
1394 | Both frame pointers grow toward higher addresses. */ | |
1395 | CORE_ADDR fp_arg; | |
1396 | CORE_ADDR fp_mem; | |
1397 | ||
1398 | /* Are we returning a value using a structure return or a normal value | |
1399 | return? struct_addr is the address of the reserved space for the return | |
1400 | structure to be written on the stack. */ | |
1401 | if (struct_return) | |
1402 | { | |
1403 | write_register (STR_REGNUM, struct_addr); | |
1404 | } | |
1405 | ||
1406 | /* Allocate enough to keep things word-aligned on both parts of the | |
1407 | stack. */ | |
1408 | stack_alloc = 0; | |
1409 | for (argnum = 0; argnum < nargs; argnum++) | |
1410 | { | |
1411 | int len; | |
1412 | int reg_demand; | |
1413 | ||
1414 | len = TYPE_LENGTH (VALUE_TYPE (args[argnum])); | |
1415 | reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0); | |
1416 | ||
1417 | /* reg_demand * REGISTER_SIZE is the amount of memory we might need to | |
1418 | allocate for this argument. 2 * REGISTER_SIZE is the amount of stack | |
1419 | space we might need to pass the argument itself (either by value or by | |
1420 | reference). */ | |
1421 | stack_alloc += (reg_demand * REGISTER_SIZE + 2 * REGISTER_SIZE); | |
1422 | } | |
1423 | sp -= stack_alloc; | |
1424 | /* We may over-allocate a little here, but that won't hurt anything. */ | |
1425 | ||
1426 | /* Initialize frame pointers. */ | |
1427 | fp_arg = sp; | |
1428 | fp_mem = sp + (nargs * (2 * REGISTER_SIZE)); | |
1429 | ||
1430 | /* Now load as many as possible of the first arguments into registers, | |
1431 | and push the rest onto the stack. */ | |
1432 | argreg = ARG1_REGNUM; | |
1433 | stack_offset = 0; | |
1434 | ||
1435 | for (argnum = 0; argnum < nargs; argnum++) | |
1436 | { | |
1437 | int len; | |
1438 | char *val; | |
1439 | int reg_demand; | |
1440 | int i; | |
1441 | ||
1442 | len = TYPE_LENGTH (VALUE_TYPE (args[argnum])); | |
1443 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1444 | ||
1445 | /* How may registers worth of storage do we need for this argument? */ | |
1446 | reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0); | |
1447 | ||
1448 | if (len <= (2 * REGISTER_SIZE) | |
1449 | && (argreg + reg_demand - 1 <= ARG4_REGNUM)) | |
1450 | { | |
1451 | /* Data passed by value. Fits in available register(s). */ | |
1452 | for (i = 0; i < reg_demand; i++) | |
1453 | { | |
1454 | write_register (argreg, *(unsigned long *) val); | |
1455 | argreg++; | |
1456 | val += REGISTER_SIZE; | |
1457 | } | |
1458 | } | |
1459 | else if (len <= (2 * REGISTER_SIZE) && argreg <= ARG4_REGNUM) | |
1460 | { | |
1461 | /* Data passed by value. Does not fit in available register(s). | |
1462 | Use the register(s) first, then the stack. */ | |
1463 | for (i = 0; i < reg_demand; i++) | |
1464 | { | |
1465 | if (argreg <= ARG4_REGNUM) | |
1466 | { | |
1467 | write_register (argreg, *(unsigned long *) val); | |
1468 | argreg++; | |
1469 | val += REGISTER_SIZE; | |
1470 | } | |
1471 | else | |
1472 | { | |
1473 | /* I guess this memory write could write the remaining data | |
1474 | all at once instead of in REGISTER_SIZE chunks. */ | |
1475 | write_memory (fp_arg, val, REGISTER_SIZE); | |
1476 | fp_arg += REGISTER_SIZE; | |
1477 | val += REGISTER_SIZE; | |
1478 | } | |
1479 | } | |
1480 | } | |
1481 | else if (len > (2 * REGISTER_SIZE)) | |
1482 | { | |
1483 | /* Data passed by reference. Put it on the stack. */ | |
1484 | write_memory (fp_mem, val, len); | |
1485 | write_memory (fp_arg, (char *) (&fp_mem), REGISTER_SIZE); | |
1486 | ||
1487 | /* fp_mem need not be word-aligned since it's just a chunk of | |
1488 | memory being pointed at. That is, += len would do. */ | |
1489 | fp_mem += reg_demand * REGISTER_SIZE; | |
1490 | fp_arg += REGISTER_SIZE; | |
1491 | } | |
1492 | else | |
1493 | { | |
1494 | /* Data passed by value. No available registers. Put it on | |
1495 | the stack. */ | |
1496 | write_memory (fp_arg, val, len); | |
1497 | ||
1498 | /* fp_arg must be word-aligned (i.e., don't += len) to match | |
1499 | the function prologue. */ | |
1500 | fp_arg += reg_demand * REGISTER_SIZE; | |
1501 | } | |
1502 | } | |
1503 | ||
1504 | return sp; | |
1505 | } | |
1506 | ||
1507 | /* Never put the return address on the stack. The register SRP is pushed | |
1508 | by the called function unless it is a leaf-function. Due to the BRP | |
1509 | register the PC will change when continue is sent. */ | |
1510 | ||
1511 | CORE_ADDR | |
1512 | cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
1513 | { | |
1514 | write_register (SRP_REGNUM, CALL_DUMMY_ADDRESS ()); | |
1515 | return sp; | |
1516 | } | |
1517 | ||
1518 | /* Restore the machine to the state it had before the current frame | |
1519 | was created. Discard the innermost frame from the stack and restore | |
1520 | all saved registers. */ | |
1521 | ||
1522 | void | |
1523 | cris_pop_frame () | |
1524 | { | |
1525 | register struct frame_info *fi = get_current_frame (); | |
1526 | register int regno; | |
1527 | register int stack_offset = 0; | |
1528 | ||
1529 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
1530 | { | |
1531 | /* This happens when we hit a breakpoint set at the entry point, | |
1532 | when returning from a dummy frame. */ | |
1533 | generic_pop_dummy_frame (); | |
1534 | } | |
1535 | else | |
1536 | { | |
1537 | cris_frame_init_saved_regs (fi); | |
1538 | ||
1539 | /* For each register, the address of where it was saved on entry to | |
1540 | the frame now lies in fi->saved_regs[regno], or zero if it was not | |
1541 | saved. This includes special registers such as PC and FP saved in | |
1542 | special ways in the stack frame. The SP_REGNUM is even more | |
1543 | special, the address here is the SP for the next frame, not the | |
1544 | address where the SP was saved. */ | |
1545 | ||
1546 | /* Restore general registers R0 - R7. They were pushed on the stack | |
1547 | after SP was saved. */ | |
1548 | for (regno = 0; regno < FP_REGNUM; regno++) | |
1549 | { | |
1550 | if (fi->saved_regs[regno]) | |
1551 | { | |
1552 | write_register (regno, | |
1553 | read_memory_integer (fi->saved_regs[regno], 4)); | |
1554 | } | |
1555 | } | |
1556 | ||
1557 | if (fi->saved_regs[FP_REGNUM]) | |
1558 | { | |
1559 | /* Pop the frame pointer (R8). It was pushed before SP | |
1560 | was saved. */ | |
1561 | write_register (FP_REGNUM, | |
1562 | read_memory_integer (fi->saved_regs[FP_REGNUM], 4)); | |
1563 | stack_offset += 4; | |
1564 | ||
1565 | /* Not a leaf function. */ | |
1566 | if (fi->saved_regs[SRP_REGNUM]) | |
1567 | { | |
1568 | /* SRP was pushed before SP was saved. */ | |
1569 | stack_offset += 4; | |
1570 | } | |
1571 | ||
1572 | /* Restore the SP and adjust for R8 and (possibly) SRP. */ | |
1573 | write_register (SP_REGNUM, fi->saved_regs[FP_REGNUM] + stack_offset); | |
1574 | } | |
1575 | else | |
1576 | { | |
1577 | /* Currently, we can't get the correct info into fi->saved_regs | |
1578 | without a frame pointer. */ | |
1579 | } | |
1580 | ||
1581 | /* Restore the PC. */ | |
1582 | write_register (PC_REGNUM, fi->extra_info->return_pc); | |
1583 | } | |
1584 | flush_cached_frames (); | |
1585 | } | |
1586 | ||
1587 | /* Calculates a value that measures how good inst_args constraints an | |
1588 | instruction. It stems from cris_constraint, found in cris-dis.c. */ | |
1589 | ||
1590 | static int | |
1591 | constraint (unsigned int insn, const signed char *inst_args, | |
1592 | inst_env_type *inst_env) | |
1593 | { | |
1594 | int retval = 0; | |
1595 | int tmp, i; | |
1596 | ||
1597 | const char *s = inst_args; | |
1598 | ||
1599 | for (; *s; s++) | |
1600 | switch (*s) | |
1601 | { | |
1602 | case 'm': | |
1603 | if ((insn & 0x30) == 0x30) | |
1604 | return -1; | |
1605 | break; | |
1606 | ||
1607 | case 'S': | |
1608 | /* A prefix operand. */ | |
1609 | if (inst_env->prefix_found) | |
1610 | break; | |
1611 | else | |
1612 | return -1; | |
1613 | ||
1614 | case 'B': | |
1615 | /* A "push" prefix. (This check was REMOVED by san 970921.) Check for | |
1616 | valid "push" size. In case of special register, it may be != 4. */ | |
1617 | if (inst_env->prefix_found) | |
1618 | break; | |
1619 | else | |
1620 | return -1; | |
1621 | ||
1622 | case 'D': | |
1623 | retval = (((insn >> 0xC) & 0xF) == (insn & 0xF)); | |
1624 | if (!retval) | |
1625 | return -1; | |
1626 | else | |
1627 | retval += 4; | |
1628 | break; | |
1629 | ||
1630 | case 'P': | |
1631 | tmp = (insn >> 0xC) & 0xF; | |
fa4e4598 OF |
1632 | |
1633 | for (i = 0; cris_spec_regs[i].name != NULL; i++) | |
1634 | { | |
1635 | /* Since we match four bits, we will give a value of | |
1636 | 4 - 1 = 3 in a match. If there is a corresponding | |
1637 | exact match of a special register in another pattern, it | |
1638 | will get a value of 4, which will be higher. This should | |
1639 | be correct in that an exact pattern would match better that | |
1640 | a general pattern. | |
1641 | Note that there is a reason for not returning zero; the | |
1642 | pattern for "clear" is partly matched in the bit-pattern | |
1643 | (the two lower bits must be zero), while the bit-pattern | |
1644 | for a move from a special register is matched in the | |
1645 | register constraint. | |
1646 | This also means we will will have a race condition if | |
1647 | there is a partly match in three bits in the bit pattern. */ | |
1648 | if (tmp == cris_spec_regs[i].number) | |
1649 | { | |
1650 | retval += 3; | |
1651 | break; | |
1652 | } | |
1653 | } | |
1654 | ||
1655 | if (cris_spec_regs[i].name == NULL) | |
29134980 OF |
1656 | return -1; |
1657 | break; | |
1658 | } | |
1659 | return retval; | |
1660 | } | |
1661 | ||
1662 | /* Returns the number of bits set in the variable value. */ | |
1663 | ||
1664 | static int | |
1665 | number_of_bits (unsigned int value) | |
1666 | { | |
1667 | int number_of_bits = 0; | |
1668 | ||
1669 | while (value != 0) | |
1670 | { | |
1671 | number_of_bits += 1; | |
1672 | value &= (value - 1); | |
1673 | } | |
1674 | return number_of_bits; | |
1675 | } | |
1676 | ||
1677 | /* Finds the address that should contain the single step breakpoint(s). | |
1678 | It stems from code in cris-dis.c. */ | |
1679 | ||
1680 | static int | |
1681 | find_cris_op (unsigned short insn, inst_env_type *inst_env) | |
1682 | { | |
1683 | int i; | |
1684 | int max_level_of_match = -1; | |
1685 | int max_matched = -1; | |
1686 | int level_of_match; | |
1687 | ||
1688 | for (i = 0; cris_opcodes[i].name != NULL; i++) | |
1689 | { | |
1690 | if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match) | |
1691 | && ((cris_opcodes[i].lose & insn) == 0)) | |
1692 | { | |
1693 | level_of_match = constraint (insn, cris_opcodes[i].args, inst_env); | |
1694 | if (level_of_match >= 0) | |
1695 | { | |
1696 | level_of_match += | |
1697 | number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose); | |
1698 | if (level_of_match > max_level_of_match) | |
1699 | { | |
1700 | max_matched = i; | |
1701 | max_level_of_match = level_of_match; | |
1702 | if (level_of_match == 16) | |
1703 | { | |
1704 | /* All bits matched, cannot find better. */ | |
1705 | break; | |
1706 | } | |
1707 | } | |
1708 | } | |
1709 | } | |
1710 | } | |
1711 | return max_matched; | |
1712 | } | |
1713 | ||
1714 | /* Attempts to find single-step breakpoints. Returns -1 on failure which is | |
1715 | actually an internal error. */ | |
1716 | ||
1717 | static int | |
1718 | find_step_target (inst_env_type *inst_env) | |
1719 | { | |
1720 | int i; | |
1721 | int offset; | |
1722 | unsigned short insn; | |
1723 | ||
1724 | /* Create a local register image and set the initial state. */ | |
1725 | for (i = 0; i < NUM_GENREGS; i++) | |
1726 | { | |
1727 | inst_env->reg[i] = (unsigned long) read_register (i); | |
1728 | } | |
1729 | offset = NUM_GENREGS; | |
1730 | for (i = 0; i < NUM_SPECREGS; i++) | |
1731 | { | |
1732 | inst_env->preg[i] = (unsigned long) read_register (offset + i); | |
1733 | } | |
1734 | inst_env->branch_found = 0; | |
1735 | inst_env->slot_needed = 0; | |
1736 | inst_env->delay_slot_pc_active = 0; | |
1737 | inst_env->prefix_found = 0; | |
1738 | inst_env->invalid = 0; | |
1739 | inst_env->xflag_found = 0; | |
1740 | inst_env->disable_interrupt = 0; | |
1741 | ||
1742 | /* Look for a step target. */ | |
1743 | do | |
1744 | { | |
1745 | /* Read an instruction from the client. */ | |
1746 | insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2); | |
1747 | ||
1748 | /* If the instruction is not in a delay slot the new content of the | |
1749 | PC is [PC] + 2. If the instruction is in a delay slot it is not | |
1750 | that simple. Since a instruction in a delay slot cannot change | |
1751 | the content of the PC, it does not matter what value PC will have. | |
1752 | Just make sure it is a valid instruction. */ | |
1753 | if (!inst_env->delay_slot_pc_active) | |
1754 | { | |
1755 | inst_env->reg[PC_REGNUM] += 2; | |
1756 | } | |
1757 | else | |
1758 | { | |
1759 | inst_env->delay_slot_pc_active = 0; | |
1760 | inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc; | |
1761 | } | |
1762 | /* Analyse the present instruction. */ | |
1763 | i = find_cris_op (insn, inst_env); | |
1764 | if (i == -1) | |
1765 | { | |
1766 | inst_env->invalid = 1; | |
1767 | } | |
1768 | else | |
1769 | { | |
1770 | cris_gdb_func (cris_opcodes[i].op, insn, inst_env); | |
1771 | } | |
1772 | } while (!inst_env->invalid | |
1773 | && (inst_env->prefix_found || inst_env->xflag_found | |
1774 | || inst_env->slot_needed)); | |
1775 | return i; | |
1776 | } | |
1777 | ||
1778 | /* There is no hardware single-step support. The function find_step_target | |
1779 | digs through the opcodes in order to find all possible targets. | |
1780 | Either one ordinary target or two targets for branches may be found. */ | |
1781 | ||
1782 | void | |
1783 | cris_software_single_step (enum target_signal ignore, int insert_breakpoints) | |
1784 | { | |
1785 | inst_env_type inst_env; | |
1786 | ||
1787 | if (insert_breakpoints) | |
1788 | { | |
1789 | /* Analyse the present instruction environment and insert | |
1790 | breakpoints. */ | |
1791 | int status = find_step_target (&inst_env); | |
1792 | if (status == -1) | |
1793 | { | |
1794 | /* Could not find a target. FIXME: Should do something. */ | |
1795 | } | |
1796 | else | |
1797 | { | |
1798 | /* Insert at most two breakpoints. One for the next PC content | |
1799 | and possibly another one for a branch, jump, etc. */ | |
1800 | next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM]; | |
1801 | target_insert_breakpoint (next_pc, break_mem[0]); | |
1802 | if (inst_env.branch_found | |
1803 | && (CORE_ADDR) inst_env.branch_break_address != next_pc) | |
1804 | { | |
1805 | branch_target_address = | |
1806 | (CORE_ADDR) inst_env.branch_break_address; | |
1807 | target_insert_breakpoint (branch_target_address, break_mem[1]); | |
1808 | branch_break_inserted = 1; | |
1809 | } | |
1810 | } | |
1811 | } | |
1812 | else | |
1813 | { | |
1814 | /* Remove breakpoints. */ | |
1815 | target_remove_breakpoint (next_pc, break_mem[0]); | |
1816 | if (branch_break_inserted) | |
1817 | { | |
1818 | target_remove_breakpoint (branch_target_address, break_mem[1]); | |
1819 | branch_break_inserted = 0; | |
1820 | } | |
1821 | } | |
1822 | } | |
1823 | ||
1824 | /* Calculates the prefix value for quick offset addressing mode. */ | |
1825 | ||
1826 | void | |
1827 | quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env) | |
1828 | { | |
1829 | /* It's invalid to be in a delay slot. You can't have a prefix to this | |
1830 | instruction (not 100% sure). */ | |
1831 | if (inst_env->slot_needed || inst_env->prefix_found) | |
1832 | { | |
1833 | inst_env->invalid = 1; | |
1834 | return; | |
1835 | } | |
1836 | ||
1837 | inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)]; | |
1838 | inst_env->prefix_value += cris_get_bdap_quick_offset (inst); | |
1839 | ||
1840 | /* A prefix doesn't change the xflag_found. But the rest of the flags | |
1841 | need updating. */ | |
1842 | inst_env->slot_needed = 0; | |
1843 | inst_env->prefix_found = 1; | |
1844 | } | |
1845 | ||
1846 | /* Updates the autoincrement register. The size of the increment is derived | |
1847 | from the size of the operation. The PC is always kept aligned on even | |
1848 | word addresses. */ | |
1849 | ||
1850 | void | |
1851 | process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env) | |
1852 | { | |
1853 | if (size == INST_BYTE_SIZE) | |
1854 | { | |
1855 | inst_env->reg[cris_get_operand1 (inst)] += 1; | |
1856 | ||
1857 | /* The PC must be word aligned, so increase the PC with one | |
1858 | word even if the size is byte. */ | |
1859 | if (cris_get_operand1 (inst) == REG_PC) | |
1860 | { | |
1861 | inst_env->reg[REG_PC] += 1; | |
1862 | } | |
1863 | } | |
1864 | else if (size == INST_WORD_SIZE) | |
1865 | { | |
1866 | inst_env->reg[cris_get_operand1 (inst)] += 2; | |
1867 | } | |
1868 | else if (size == INST_DWORD_SIZE) | |
1869 | { | |
1870 | inst_env->reg[cris_get_operand1 (inst)] += 4; | |
1871 | } | |
1872 | else | |
1873 | { | |
1874 | /* Invalid size. */ | |
1875 | inst_env->invalid = 1; | |
1876 | } | |
1877 | } | |
1878 | ||
2a9ecef2 OF |
1879 | /* Just a forward declaration. */ |
1880 | ||
1881 | unsigned long | |
1882 | get_data_from_address (unsigned short *inst, CORE_ADDR address); | |
1883 | ||
29134980 OF |
1884 | /* Calculates the prefix value for the general case of offset addressing |
1885 | mode. */ | |
1886 | ||
1887 | void | |
1888 | bdap_prefix (unsigned short inst, inst_env_type *inst_env) | |
1889 | { | |
1890 | ||
1891 | long offset; | |
1892 | ||
1893 | /* It's invalid to be in a delay slot. */ | |
1894 | if (inst_env->slot_needed || inst_env->prefix_found) | |
1895 | { | |
1896 | inst_env->invalid = 1; | |
1897 | return; | |
1898 | } | |
1899 | ||
fa4e4598 OF |
1900 | /* The calculation of prefix_value used to be after process_autoincrement, |
1901 | but that fails for an instruction such as jsr [$r0+12] which is encoded | |
1902 | as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it | |
1903 | mustn't be incremented until we have read it and what it points at. */ | |
29134980 OF |
1904 | inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)]; |
1905 | ||
1906 | /* The offset is an indirection of the contents of the operand1 register. */ | |
1907 | inst_env->prefix_value += | |
2a9ecef2 OF |
1908 | get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]); |
1909 | ||
fa4e4598 OF |
1910 | if (cris_get_mode (inst) == AUTOINC_MODE) |
1911 | { | |
1912 | process_autoincrement (cris_get_size (inst), inst, inst_env); | |
1913 | } | |
1914 | ||
29134980 OF |
1915 | /* A prefix doesn't change the xflag_found. But the rest of the flags |
1916 | need updating. */ | |
1917 | inst_env->slot_needed = 0; | |
1918 | inst_env->prefix_found = 1; | |
1919 | } | |
1920 | ||
1921 | /* Calculates the prefix value for the index addressing mode. */ | |
1922 | ||
1923 | void | |
1924 | biap_prefix (unsigned short inst, inst_env_type *inst_env) | |
1925 | { | |
1926 | /* It's invalid to be in a delay slot. I can't see that it's possible to | |
1927 | have a prefix to this instruction. So I will treat this as invalid. */ | |
1928 | if (inst_env->slot_needed || inst_env->prefix_found) | |
1929 | { | |
1930 | inst_env->invalid = 1; | |
1931 | return; | |
1932 | } | |
1933 | ||
1934 | inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)]; | |
1935 | ||
1936 | /* The offset is the operand2 value shifted the size of the instruction | |
1937 | to the left. */ | |
1938 | inst_env->prefix_value += | |
1939 | inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst); | |
1940 | ||
1941 | /* If the PC is operand1 (base) the address used is the address after | |
1942 | the main instruction, i.e. address + 2 (the PC is already compensated | |
1943 | for the prefix operation). */ | |
1944 | if (cris_get_operand1 (inst) == REG_PC) | |
1945 | { | |
1946 | inst_env->prefix_value += 2; | |
1947 | } | |
1948 | ||
1949 | /* A prefix doesn't change the xflag_found. But the rest of the flags | |
1950 | need updating. */ | |
1951 | inst_env->slot_needed = 0; | |
1952 | inst_env->xflag_found = 0; | |
1953 | inst_env->prefix_found = 1; | |
1954 | } | |
1955 | ||
1956 | /* Calculates the prefix value for the double indirect addressing mode. */ | |
1957 | ||
1958 | void | |
1959 | dip_prefix (unsigned short inst, inst_env_type *inst_env) | |
1960 | { | |
1961 | ||
1962 | CORE_ADDR address; | |
1963 | ||
1964 | /* It's invalid to be in a delay slot. */ | |
1965 | if (inst_env->slot_needed || inst_env->prefix_found) | |
1966 | { | |
1967 | inst_env->invalid = 1; | |
1968 | return; | |
1969 | } | |
1970 | ||
1971 | /* The prefix value is one dereference of the contents of the operand1 | |
1972 | register. */ | |
1973 | address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)]; | |
1974 | inst_env->prefix_value = read_memory_unsigned_integer (address, 4); | |
1975 | ||
1976 | /* Check if the mode is autoincrement. */ | |
1977 | if (cris_get_mode (inst) == AUTOINC_MODE) | |
1978 | { | |
1979 | inst_env->reg[cris_get_operand1 (inst)] += 4; | |
1980 | } | |
1981 | ||
1982 | /* A prefix doesn't change the xflag_found. But the rest of the flags | |
1983 | need updating. */ | |
1984 | inst_env->slot_needed = 0; | |
1985 | inst_env->xflag_found = 0; | |
1986 | inst_env->prefix_found = 1; | |
1987 | } | |
1988 | ||
1989 | /* Finds the destination for a branch with 8-bits offset. */ | |
1990 | ||
1991 | void | |
1992 | eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env) | |
1993 | { | |
1994 | ||
1995 | short offset; | |
1996 | ||
1997 | /* If we have a prefix or are in a delay slot it's bad. */ | |
1998 | if (inst_env->slot_needed || inst_env->prefix_found) | |
1999 | { | |
2000 | inst_env->invalid = 1; | |
2001 | return; | |
2002 | } | |
2003 | ||
2004 | /* We have a branch, find out where the branch will land. */ | |
2005 | offset = cris_get_branch_short_offset (inst); | |
2006 | ||
2007 | /* Check if the offset is signed. */ | |
2008 | if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK) | |
2009 | { | |
2010 | offset |= 0xFF00; | |
2011 | } | |
2012 | ||
2013 | /* The offset ends with the sign bit, set it to zero. The address | |
2014 | should always be word aligned. */ | |
2015 | offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK; | |
2016 | ||
2017 | inst_env->branch_found = 1; | |
2018 | inst_env->branch_break_address = inst_env->reg[REG_PC] + offset; | |
2019 | ||
2020 | inst_env->slot_needed = 1; | |
2021 | inst_env->prefix_found = 0; | |
2022 | inst_env->xflag_found = 0; | |
2023 | inst_env->disable_interrupt = 1; | |
2024 | } | |
2025 | ||
2026 | /* Finds the destination for a branch with 16-bits offset. */ | |
2027 | ||
2028 | void | |
2029 | sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env) | |
2030 | { | |
2031 | short offset; | |
2032 | ||
2033 | /* If we have a prefix or is in a delay slot it's bad. */ | |
2034 | if (inst_env->slot_needed || inst_env->prefix_found) | |
2035 | { | |
2036 | inst_env->invalid = 1; | |
2037 | return; | |
2038 | } | |
2039 | ||
2040 | /* We have a branch, find out the offset for the branch. */ | |
2041 | offset = read_memory_integer (inst_env->reg[REG_PC], 2); | |
2042 | ||
2043 | /* The instruction is one word longer than normal, so add one word | |
2044 | to the PC. */ | |
2045 | inst_env->reg[REG_PC] += 2; | |
2046 | ||
2047 | inst_env->branch_found = 1; | |
2048 | inst_env->branch_break_address = inst_env->reg[REG_PC] + offset; | |
2049 | ||
2050 | ||
2051 | inst_env->slot_needed = 1; | |
2052 | inst_env->prefix_found = 0; | |
2053 | inst_env->xflag_found = 0; | |
2054 | inst_env->disable_interrupt = 1; | |
2055 | } | |
2056 | ||
2057 | /* Handles the ABS instruction. */ | |
2058 | ||
2059 | void | |
2060 | abs_op (unsigned short inst, inst_env_type *inst_env) | |
2061 | { | |
2062 | ||
2063 | long value; | |
2064 | ||
2065 | /* ABS can't have a prefix, so it's bad if it does. */ | |
2066 | if (inst_env->prefix_found) | |
2067 | { | |
2068 | inst_env->invalid = 1; | |
2069 | return; | |
2070 | } | |
2071 | ||
2072 | /* Check if the operation affects the PC. */ | |
2073 | if (cris_get_operand2 (inst) == REG_PC) | |
2074 | { | |
2075 | ||
2076 | /* It's invalid to change to the PC if we are in a delay slot. */ | |
2077 | if (inst_env->slot_needed) | |
2078 | { | |
2079 | inst_env->invalid = 1; | |
2080 | return; | |
2081 | } | |
2082 | ||
2083 | value = (long) inst_env->reg[REG_PC]; | |
2084 | ||
2085 | /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */ | |
2086 | if (value != SIGNED_DWORD_MASK) | |
2087 | { | |
2088 | value = -value; | |
2089 | inst_env->reg[REG_PC] = (long) value; | |
2090 | } | |
2091 | } | |
2092 | ||
2093 | inst_env->slot_needed = 0; | |
2094 | inst_env->prefix_found = 0; | |
2095 | inst_env->xflag_found = 0; | |
2096 | inst_env->disable_interrupt = 0; | |
2097 | } | |
2098 | ||
2099 | /* Handles the ADDI instruction. */ | |
2100 | ||
2101 | void | |
2102 | addi_op (unsigned short inst, inst_env_type *inst_env) | |
2103 | { | |
2104 | /* It's invalid to have the PC as base register. And ADDI can't have | |
2105 | a prefix. */ | |
2106 | if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC)) | |
2107 | { | |
2108 | inst_env->invalid = 1; | |
2109 | return; | |
2110 | } | |
2111 | ||
2112 | inst_env->slot_needed = 0; | |
2113 | inst_env->prefix_found = 0; | |
2114 | inst_env->xflag_found = 0; | |
2115 | inst_env->disable_interrupt = 0; | |
2116 | } | |
2117 | ||
2118 | /* Handles the ASR instruction. */ | |
2119 | ||
2120 | void | |
2121 | asr_op (unsigned short inst, inst_env_type *inst_env) | |
2122 | { | |
2123 | int shift_steps; | |
2124 | unsigned long value; | |
2125 | unsigned long signed_extend_mask = 0; | |
2126 | ||
2127 | /* ASR can't have a prefix, so check that it doesn't. */ | |
2128 | if (inst_env->prefix_found) | |
2129 | { | |
2130 | inst_env->invalid = 1; | |
2131 | return; | |
2132 | } | |
2133 | ||
2134 | /* Check if the PC is the target register. */ | |
2135 | if (cris_get_operand2 (inst) == REG_PC) | |
2136 | { | |
2137 | /* It's invalid to change the PC in a delay slot. */ | |
2138 | if (inst_env->slot_needed) | |
2139 | { | |
2140 | inst_env->invalid = 1; | |
2141 | return; | |
2142 | } | |
2143 | /* Get the number of bits to shift. */ | |
2144 | shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]); | |
2145 | value = inst_env->reg[REG_PC]; | |
2146 | ||
2147 | /* Find out how many bits the operation should apply to. */ | |
2148 | if (cris_get_size (inst) == INST_BYTE_SIZE) | |
2149 | { | |
2150 | if (value & SIGNED_BYTE_MASK) | |
2151 | { | |
2152 | signed_extend_mask = 0xFF; | |
2153 | signed_extend_mask = signed_extend_mask >> shift_steps; | |
2154 | signed_extend_mask = ~signed_extend_mask; | |
2155 | } | |
2156 | value = value >> shift_steps; | |
2157 | value |= signed_extend_mask; | |
2158 | value &= 0xFF; | |
2159 | inst_env->reg[REG_PC] &= 0xFFFFFF00; | |
2160 | inst_env->reg[REG_PC] |= value; | |
2161 | } | |
2162 | else if (cris_get_size (inst) == INST_WORD_SIZE) | |
2163 | { | |
2164 | if (value & SIGNED_WORD_MASK) | |
2165 | { | |
2166 | signed_extend_mask = 0xFFFF; | |
2167 | signed_extend_mask = signed_extend_mask >> shift_steps; | |
2168 | signed_extend_mask = ~signed_extend_mask; | |
2169 | } | |
2170 | value = value >> shift_steps; | |
2171 | value |= signed_extend_mask; | |
2172 | value &= 0xFFFF; | |
2173 | inst_env->reg[REG_PC] &= 0xFFFF0000; | |
2174 | inst_env->reg[REG_PC] |= value; | |
2175 | } | |
2176 | else if (cris_get_size (inst) == INST_DWORD_SIZE) | |
2177 | { | |
2178 | if (value & SIGNED_DWORD_MASK) | |
2179 | { | |
2180 | signed_extend_mask = 0xFFFFFFFF; | |
2181 | signed_extend_mask = signed_extend_mask >> shift_steps; | |
2182 | signed_extend_mask = ~signed_extend_mask; | |
2183 | } | |
2184 | value = value >> shift_steps; | |
2185 | value |= signed_extend_mask; | |
2186 | inst_env->reg[REG_PC] = value; | |
2187 | } | |
2188 | } | |
2189 | inst_env->slot_needed = 0; | |
2190 | inst_env->prefix_found = 0; | |
2191 | inst_env->xflag_found = 0; | |
2192 | inst_env->disable_interrupt = 0; | |
2193 | } | |
2194 | ||
2195 | /* Handles the ASRQ instruction. */ | |
2196 | ||
2197 | void | |
2198 | asrq_op (unsigned short inst, inst_env_type *inst_env) | |
2199 | { | |
2200 | ||
2201 | int shift_steps; | |
2202 | unsigned long value; | |
2203 | unsigned long signed_extend_mask = 0; | |
2204 | ||
2205 | /* ASRQ can't have a prefix, so check that it doesn't. */ | |
2206 | if (inst_env->prefix_found) | |
2207 | { | |
2208 | inst_env->invalid = 1; | |
2209 | return; | |
2210 | } | |
2211 | ||
2212 | /* Check if the PC is the target register. */ | |
2213 | if (cris_get_operand2 (inst) == REG_PC) | |
2214 | { | |
2215 | ||
2216 | /* It's invalid to change the PC in a delay slot. */ | |
2217 | if (inst_env->slot_needed) | |
2218 | { | |
2219 | inst_env->invalid = 1; | |
2220 | return; | |
2221 | } | |
2222 | /* The shift size is given as a 5 bit quick value, i.e. we don't | |
2223 | want the the sign bit of the quick value. */ | |
2224 | shift_steps = cris_get_asr_shift_steps (inst); | |
2225 | value = inst_env->reg[REG_PC]; | |
2226 | if (value & SIGNED_DWORD_MASK) | |
2227 | { | |
2228 | signed_extend_mask = 0xFFFFFFFF; | |
2229 | signed_extend_mask = signed_extend_mask >> shift_steps; | |
2230 | signed_extend_mask = ~signed_extend_mask; | |
2231 | } | |
2232 | value = value >> shift_steps; | |
2233 | value |= signed_extend_mask; | |
2234 | inst_env->reg[REG_PC] = value; | |
2235 | } | |
2236 | inst_env->slot_needed = 0; | |
2237 | inst_env->prefix_found = 0; | |
2238 | inst_env->xflag_found = 0; | |
2239 | inst_env->disable_interrupt = 0; | |
2240 | } | |
2241 | ||
2242 | /* Handles the AX, EI and SETF instruction. */ | |
2243 | ||
2244 | void | |
2245 | ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env) | |
2246 | { | |
2247 | if (inst_env->prefix_found) | |
2248 | { | |
2249 | inst_env->invalid = 1; | |
2250 | return; | |
2251 | } | |
2252 | /* Check if the instruction is setting the X flag. */ | |
2253 | if (cris_is_xflag_bit_on (inst)) | |
2254 | { | |
2255 | inst_env->xflag_found = 1; | |
2256 | } | |
2257 | else | |
2258 | { | |
2259 | inst_env->xflag_found = 0; | |
2260 | } | |
2261 | inst_env->slot_needed = 0; | |
2262 | inst_env->prefix_found = 0; | |
2263 | inst_env->disable_interrupt = 1; | |
2264 | } | |
2265 | ||
2266 | /* Checks if the instruction is in assign mode. If so, it updates the assign | |
2267 | register. Note that check_assign assumes that the caller has checked that | |
2268 | there is a prefix to this instruction. The mode check depends on this. */ | |
2269 | ||
2270 | void | |
2271 | check_assign (unsigned short inst, inst_env_type *inst_env) | |
2272 | { | |
2273 | /* Check if it's an assign addressing mode. */ | |
2274 | if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) | |
2275 | { | |
2276 | /* Assign the prefix value to operand 1. */ | |
2277 | inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value; | |
2278 | } | |
2279 | } | |
2280 | ||
2281 | /* Handles the 2-operand BOUND instruction. */ | |
2282 | ||
2283 | void | |
2284 | two_operand_bound_op (unsigned short inst, inst_env_type *inst_env) | |
2285 | { | |
2286 | /* It's invalid to have the PC as the index operand. */ | |
2287 | if (cris_get_operand2 (inst) == REG_PC) | |
2288 | { | |
2289 | inst_env->invalid = 1; | |
2290 | return; | |
2291 | } | |
2292 | /* Check if we have a prefix. */ | |
2293 | if (inst_env->prefix_found) | |
2294 | { | |
2295 | check_assign (inst, inst_env); | |
2296 | } | |
2297 | /* Check if this is an autoincrement mode. */ | |
2298 | else if (cris_get_mode (inst) == AUTOINC_MODE) | |
2299 | { | |
2300 | /* It's invalid to change the PC in a delay slot. */ | |
2301 | if (inst_env->slot_needed) | |
2302 | { | |
2303 | inst_env->invalid = 1; | |
2304 | return; | |
2305 | } | |
2306 | process_autoincrement (cris_get_size (inst), inst, inst_env); | |
2307 | } | |
2308 | inst_env->slot_needed = 0; | |
2309 | inst_env->prefix_found = 0; | |
2310 | inst_env->xflag_found = 0; | |
2311 | inst_env->disable_interrupt = 0; | |
2312 | } | |
2313 | ||
2314 | /* Handles the 3-operand BOUND instruction. */ | |
2315 | ||
2316 | void | |
2317 | three_operand_bound_op (unsigned short inst, inst_env_type *inst_env) | |
2318 | { | |
2319 | /* It's an error if we haven't got a prefix. And it's also an error | |
2320 | if the PC is the destination register. */ | |
2321 | if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC)) | |
2322 | { | |
2323 | inst_env->invalid = 1; | |
2324 | return; | |
2325 | } | |
2326 | inst_env->slot_needed = 0; | |
2327 | inst_env->prefix_found = 0; | |
2328 | inst_env->xflag_found = 0; | |
2329 | inst_env->disable_interrupt = 0; | |
2330 | } | |
2331 | ||
2332 | /* Clears the status flags in inst_env. */ | |
2333 | ||
2334 | void | |
2335 | btst_nop_op (unsigned short inst, inst_env_type *inst_env) | |
2336 | { | |
2337 | /* It's an error if we have got a prefix. */ | |
2338 | if (inst_env->prefix_found) | |
2339 | { | |
2340 | inst_env->invalid = 1; | |
2341 | return; | |
2342 | } | |
2343 | ||
2344 | inst_env->slot_needed = 0; | |
2345 | inst_env->prefix_found = 0; | |
2346 | inst_env->xflag_found = 0; | |
2347 | inst_env->disable_interrupt = 0; | |
2348 | } | |
2349 | ||
2350 | /* Clears the status flags in inst_env. */ | |
2351 | ||
2352 | void | |
2353 | clearf_di_op (unsigned short inst, inst_env_type *inst_env) | |
2354 | { | |
2355 | /* It's an error if we have got a prefix. */ | |
2356 | if (inst_env->prefix_found) | |
2357 | { | |
2358 | inst_env->invalid = 1; | |
2359 | return; | |
2360 | } | |
2361 | ||
2362 | inst_env->slot_needed = 0; | |
2363 | inst_env->prefix_found = 0; | |
2364 | inst_env->xflag_found = 0; | |
2365 | inst_env->disable_interrupt = 1; | |
2366 | } | |
2367 | ||
2368 | /* Handles the CLEAR instruction if it's in register mode. */ | |
2369 | ||
2370 | void | |
2371 | reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env) | |
2372 | { | |
2373 | /* Check if the target is the PC. */ | |
2374 | if (cris_get_operand2 (inst) == REG_PC) | |
2375 | { | |
2376 | /* The instruction will clear the instruction's size bits. */ | |
2377 | int clear_size = cris_get_clear_size (inst); | |
2378 | if (clear_size == INST_BYTE_SIZE) | |
2379 | { | |
2380 | inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00; | |
2381 | } | |
2382 | if (clear_size == INST_WORD_SIZE) | |
2383 | { | |
2384 | inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000; | |
2385 | } | |
2386 | if (clear_size == INST_DWORD_SIZE) | |
2387 | { | |
2388 | inst_env->delay_slot_pc = 0x0; | |
2389 | } | |
2390 | /* The jump will be delayed with one delay slot. So we need a delay | |
2391 | slot. */ | |
2392 | inst_env->slot_needed = 1; | |
2393 | inst_env->delay_slot_pc_active = 1; | |
2394 | } | |
2395 | else | |
2396 | { | |
2397 | /* The PC will not change => no delay slot. */ | |
2398 | inst_env->slot_needed = 0; | |
2399 | } | |
2400 | inst_env->prefix_found = 0; | |
2401 | inst_env->xflag_found = 0; | |
2402 | inst_env->disable_interrupt = 0; | |
2403 | } | |
2404 | ||
2405 | /* Handles the TEST instruction if it's in register mode. */ | |
2406 | ||
2407 | void | |
2408 | reg_mode_test_op (unsigned short inst, inst_env_type *inst_env) | |
2409 | { | |
2410 | /* It's an error if we have got a prefix. */ | |
2411 | if (inst_env->prefix_found) | |
2412 | { | |
2413 | inst_env->invalid = 1; | |
2414 | return; | |
2415 | } | |
2416 | inst_env->slot_needed = 0; | |
2417 | inst_env->prefix_found = 0; | |
2418 | inst_env->xflag_found = 0; | |
2419 | inst_env->disable_interrupt = 0; | |
2420 | ||
2421 | } | |
2422 | ||
2423 | /* Handles the CLEAR and TEST instruction if the instruction isn't | |
2424 | in register mode. */ | |
2425 | ||
2426 | void | |
2427 | none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env) | |
2428 | { | |
2429 | /* Check if we are in a prefix mode. */ | |
2430 | if (inst_env->prefix_found) | |
2431 | { | |
2432 | /* The only way the PC can change is if this instruction is in | |
2433 | assign addressing mode. */ | |
2434 | check_assign (inst, inst_env); | |
2435 | } | |
2436 | /* Indirect mode can't change the PC so just check if the mode is | |
2437 | autoincrement. */ | |
2438 | else if (cris_get_mode (inst) == AUTOINC_MODE) | |
2439 | { | |
2440 | process_autoincrement (cris_get_size (inst), inst, inst_env); | |
2441 | } | |
2442 | inst_env->slot_needed = 0; | |
2443 | inst_env->prefix_found = 0; | |
2444 | inst_env->xflag_found = 0; | |
2445 | inst_env->disable_interrupt = 0; | |
2446 | } | |
2447 | ||
2448 | /* Checks that the PC isn't the destination register or the instructions has | |
2449 | a prefix. */ | |
2450 | ||
2451 | void | |
2452 | dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env) | |
2453 | { | |
2454 | /* It's invalid to have the PC as the destination. The instruction can't | |
2455 | have a prefix. */ | |
2456 | if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found) | |
2457 | { | |
2458 | inst_env->invalid = 1; | |
2459 | return; | |
2460 | } | |
2461 | ||
2462 | inst_env->slot_needed = 0; | |
2463 | inst_env->prefix_found = 0; | |
2464 | inst_env->xflag_found = 0; | |
2465 | inst_env->disable_interrupt = 0; | |
2466 | } | |
2467 | ||
2468 | /* Checks that the instruction doesn't have a prefix. */ | |
2469 | ||
2470 | void | |
2471 | break_op (unsigned short inst, inst_env_type *inst_env) | |
2472 | { | |
2473 | /* The instruction can't have a prefix. */ | |
2474 | if (inst_env->prefix_found) | |
2475 | { | |
2476 | inst_env->invalid = 1; | |
2477 | return; | |
2478 | } | |
2479 | ||
2480 | inst_env->slot_needed = 0; | |
2481 | inst_env->prefix_found = 0; | |
2482 | inst_env->xflag_found = 0; | |
2483 | inst_env->disable_interrupt = 1; | |
2484 | } | |
2485 | ||
2486 | /* Checks that the PC isn't the destination register and that the instruction | |
2487 | doesn't have a prefix. */ | |
2488 | ||
2489 | void | |
2490 | scc_op (unsigned short inst, inst_env_type *inst_env) | |
2491 | { | |
2492 | /* It's invalid to have the PC as the destination. The instruction can't | |
2493 | have a prefix. */ | |
2494 | if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found) | |
2495 | { | |
2496 | inst_env->invalid = 1; | |
2497 | return; | |
2498 | } | |
2499 | ||
2500 | inst_env->slot_needed = 0; | |
2501 | inst_env->prefix_found = 0; | |
2502 | inst_env->xflag_found = 0; | |
2503 | inst_env->disable_interrupt = 1; | |
2504 | } | |
2505 | ||
2506 | /* Handles the register mode JUMP instruction. */ | |
2507 | ||
2508 | void | |
2509 | reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env) | |
2510 | { | |
2511 | /* It's invalid to do a JUMP in a delay slot. The mode is register, so | |
2512 | you can't have a prefix. */ | |
2513 | if ((inst_env->slot_needed) || (inst_env->prefix_found)) | |
2514 | { | |
2515 | inst_env->invalid = 1; | |
2516 | return; | |
2517 | } | |
2518 | ||
2519 | /* Just change the PC. */ | |
2520 | inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)]; | |
2521 | inst_env->slot_needed = 0; | |
2522 | inst_env->prefix_found = 0; | |
2523 | inst_env->xflag_found = 0; | |
2524 | inst_env->disable_interrupt = 1; | |
2525 | } | |
2526 | ||
2527 | /* Handles the JUMP instruction for all modes except register. */ | |
2528 | ||
2529 | void none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env) | |
2530 | { | |
2531 | unsigned long newpc; | |
2532 | CORE_ADDR address; | |
2533 | ||
2534 | /* It's invalid to do a JUMP in a delay slot. */ | |
2535 | if (inst_env->slot_needed) | |
2536 | { | |
2537 | inst_env->invalid = 1; | |
2538 | } | |
2539 | else | |
2540 | { | |
2541 | /* Check if we have a prefix. */ | |
2542 | if (inst_env->prefix_found) | |
2543 | { | |
2544 | check_assign (inst, inst_env); | |
2545 | ||
2546 | /* Get the new value for the the PC. */ | |
2547 | newpc = | |
2548 | read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value, | |
2549 | 4); | |
2550 | } | |
2551 | else | |
2552 | { | |
2553 | /* Get the new value for the PC. */ | |
2554 | address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)]; | |
2555 | newpc = read_memory_unsigned_integer (address, 4); | |
2556 | ||
2557 | /* Check if we should increment a register. */ | |
2558 | if (cris_get_mode (inst) == AUTOINC_MODE) | |
2559 | { | |
2560 | inst_env->reg[cris_get_operand1 (inst)] += 4; | |
2561 | } | |
2562 | } | |
2563 | inst_env->reg[REG_PC] = newpc; | |
2564 | } | |
2565 | inst_env->slot_needed = 0; | |
2566 | inst_env->prefix_found = 0; | |
2567 | inst_env->xflag_found = 0; | |
2568 | inst_env->disable_interrupt = 1; | |
2569 | } | |
2570 | ||
2571 | /* Handles moves to special registers (aka P-register) for all modes. */ | |
2572 | ||
2573 | void | |
2574 | move_to_preg_op (unsigned short inst, inst_env_type *inst_env) | |
2575 | { | |
2576 | if (inst_env->prefix_found) | |
2577 | { | |
2578 | /* The instruction has a prefix that means we are only interested if | |
2579 | the instruction is in assign mode. */ | |
2580 | if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) | |
2581 | { | |
2582 | /* The prefix handles the problem if we are in a delay slot. */ | |
2583 | if (cris_get_operand1 (inst) == REG_PC) | |
2584 | { | |
2585 | /* Just take care of the assign. */ | |
2586 | check_assign (inst, inst_env); | |
2587 | } | |
2588 | } | |
2589 | } | |
2590 | else if (cris_get_mode (inst) == AUTOINC_MODE) | |
2591 | { | |
2592 | /* The instruction doesn't have a prefix, the only case left that we | |
2593 | are interested in is the autoincrement mode. */ | |
2594 | if (cris_get_operand1 (inst) == REG_PC) | |
2595 | { | |
2596 | /* If the PC is to be incremented it's invalid to be in a | |
2597 | delay slot. */ | |
2598 | if (inst_env->slot_needed) | |
2599 | { | |
2600 | inst_env->invalid = 1; | |
2601 | return; | |
2602 | } | |
2a9ecef2 OF |
2603 | |
2604 | /* The increment depends on the size of the special register. */ | |
2605 | if (cris_register_size (cris_get_operand2 (inst)) == 1) | |
29134980 OF |
2606 | { |
2607 | process_autoincrement (INST_BYTE_SIZE, inst, inst_env); | |
2608 | } | |
2a9ecef2 | 2609 | else if (cris_register_size (cris_get_operand2 (inst)) == 2) |
29134980 OF |
2610 | { |
2611 | process_autoincrement (INST_WORD_SIZE, inst, inst_env); | |
2612 | } | |
2613 | else | |
2614 | { | |
2615 | process_autoincrement (INST_DWORD_SIZE, inst, inst_env); | |
2616 | } | |
2617 | } | |
2618 | } | |
2619 | inst_env->slot_needed = 0; | |
2620 | inst_env->prefix_found = 0; | |
2621 | inst_env->xflag_found = 0; | |
2622 | inst_env->disable_interrupt = 1; | |
2623 | } | |
2624 | ||
2625 | /* Handles moves from special registers (aka P-register) for all modes | |
2626 | except register. */ | |
2627 | ||
2628 | void | |
2629 | none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env) | |
2630 | { | |
2631 | if (inst_env->prefix_found) | |
2632 | { | |
2633 | /* The instruction has a prefix that means we are only interested if | |
2634 | the instruction is in assign mode. */ | |
2635 | if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) | |
2636 | { | |
2637 | /* The prefix handles the problem if we are in a delay slot. */ | |
2638 | if (cris_get_operand1 (inst) == REG_PC) | |
2639 | { | |
2640 | /* Just take care of the assign. */ | |
2641 | check_assign (inst, inst_env); | |
2642 | } | |
2643 | } | |
2644 | } | |
2645 | /* The instruction doesn't have a prefix, the only case left that we | |
2646 | are interested in is the autoincrement mode. */ | |
2647 | else if (cris_get_mode (inst) == AUTOINC_MODE) | |
2648 | { | |
2649 | if (cris_get_operand1 (inst) == REG_PC) | |
2650 | { | |
2651 | /* If the PC is to be incremented it's invalid to be in a | |
2652 | delay slot. */ | |
2653 | if (inst_env->slot_needed) | |
2654 | { | |
2655 | inst_env->invalid = 1; | |
2656 | return; | |
2657 | } | |
2a9ecef2 OF |
2658 | |
2659 | /* The increment depends on the size of the special register. */ | |
2660 | if (cris_register_size (cris_get_operand2 (inst)) == 1) | |
29134980 OF |
2661 | { |
2662 | process_autoincrement (INST_BYTE_SIZE, inst, inst_env); | |
2663 | } | |
2a9ecef2 | 2664 | else if (cris_register_size (cris_get_operand2 (inst)) == 2) |
29134980 OF |
2665 | { |
2666 | process_autoincrement (INST_WORD_SIZE, inst, inst_env); | |
2667 | } | |
2668 | else | |
2669 | { | |
2670 | process_autoincrement (INST_DWORD_SIZE, inst, inst_env); | |
2671 | } | |
2672 | } | |
2673 | } | |
2674 | inst_env->slot_needed = 0; | |
2675 | inst_env->prefix_found = 0; | |
2676 | inst_env->xflag_found = 0; | |
2677 | inst_env->disable_interrupt = 1; | |
2678 | } | |
2679 | ||
2680 | /* Handles moves from special registers (aka P-register) when the mode | |
2681 | is register. */ | |
2682 | ||
2683 | void | |
2684 | reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env) | |
2685 | { | |
2686 | /* Register mode move from special register can't have a prefix. */ | |
2687 | if (inst_env->prefix_found) | |
2688 | { | |
2689 | inst_env->invalid = 1; | |
2690 | return; | |
2691 | } | |
2692 | ||
2693 | if (cris_get_operand1 (inst) == REG_PC) | |
2694 | { | |
2695 | /* It's invalid to change the PC in a delay slot. */ | |
2696 | if (inst_env->slot_needed) | |
2697 | { | |
2698 | inst_env->invalid = 1; | |
2699 | return; | |
2700 | } | |
2701 | /* The destination is the PC, the jump will have a delay slot. */ | |
2702 | inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)]; | |
2703 | inst_env->slot_needed = 1; | |
2704 | inst_env->delay_slot_pc_active = 1; | |
2705 | } | |
2706 | else | |
2707 | { | |
2708 | /* If the destination isn't PC, there will be no jump. */ | |
2709 | inst_env->slot_needed = 0; | |
2710 | } | |
2711 | inst_env->prefix_found = 0; | |
2712 | inst_env->xflag_found = 0; | |
2713 | inst_env->disable_interrupt = 1; | |
2714 | } | |
2715 | ||
2716 | /* Handles the MOVEM from memory to general register instruction. */ | |
2717 | ||
2718 | void | |
2719 | move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env) | |
2720 | { | |
2721 | if (inst_env->prefix_found) | |
2722 | { | |
2723 | /* The prefix handles the problem if we are in a delay slot. Is the | |
2724 | MOVEM instruction going to change the PC? */ | |
2725 | if (cris_get_operand2 (inst) >= REG_PC) | |
2726 | { | |
2727 | inst_env->reg[REG_PC] = | |
2728 | read_memory_unsigned_integer (inst_env->prefix_value, 4); | |
2729 | } | |
2730 | /* The assign value is the value after the increment. Normally, the | |
2731 | assign value is the value before the increment. */ | |
2732 | if ((cris_get_operand1 (inst) == REG_PC) | |
2733 | && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)) | |
2734 | { | |
2735 | inst_env->reg[REG_PC] = inst_env->prefix_value; | |
2736 | inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); | |
2737 | } | |
2738 | } | |
2739 | else | |
2740 | { | |
2741 | /* Is the MOVEM instruction going to change the PC? */ | |
2742 | if (cris_get_operand2 (inst) == REG_PC) | |
2743 | { | |
2744 | /* It's invalid to change the PC in a delay slot. */ | |
2745 | if (inst_env->slot_needed) | |
2746 | { | |
2747 | inst_env->invalid = 1; | |
2748 | return; | |
2749 | } | |
2750 | inst_env->reg[REG_PC] = | |
2751 | read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)], | |
2752 | 4); | |
2753 | } | |
2754 | /* The increment is not depending on the size, instead it's depending | |
2755 | on the number of registers loaded from memory. */ | |
2756 | if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE)) | |
2757 | { | |
2758 | /* It's invalid to change the PC in a delay slot. */ | |
2759 | if (inst_env->slot_needed) | |
2760 | { | |
2761 | inst_env->invalid = 1; | |
2762 | return; | |
2763 | } | |
2764 | inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); | |
2765 | } | |
2766 | } | |
2767 | inst_env->slot_needed = 0; | |
2768 | inst_env->prefix_found = 0; | |
2769 | inst_env->xflag_found = 0; | |
2770 | inst_env->disable_interrupt = 0; | |
2771 | } | |
2772 | ||
2773 | /* Handles the MOVEM to memory from general register instruction. */ | |
2774 | ||
2775 | void | |
2776 | move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env) | |
2777 | { | |
2778 | if (inst_env->prefix_found) | |
2779 | { | |
2780 | /* The assign value is the value after the increment. Normally, the | |
2781 | assign value is the value before the increment. */ | |
2782 | if ((cris_get_operand1 (inst) == REG_PC) && | |
2783 | (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)) | |
2784 | { | |
2785 | /* The prefix handles the problem if we are in a delay slot. */ | |
2786 | inst_env->reg[REG_PC] = inst_env->prefix_value; | |
2787 | inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); | |
2788 | } | |
2789 | } | |
2790 | else | |
2791 | { | |
2792 | /* The increment is not depending on the size, instead it's depending | |
2793 | on the number of registers loaded to memory. */ | |
2794 | if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE)) | |
2795 | { | |
2796 | /* It's invalid to change the PC in a delay slot. */ | |
2797 | if (inst_env->slot_needed) | |
2798 | { | |
2799 | inst_env->invalid = 1; | |
2800 | return; | |
2801 | } | |
2802 | inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); | |
2803 | } | |
2804 | } | |
2805 | inst_env->slot_needed = 0; | |
2806 | inst_env->prefix_found = 0; | |
2807 | inst_env->xflag_found = 0; | |
2808 | inst_env->disable_interrupt = 0; | |
2809 | } | |
2810 | ||
2811 | /* Handles the pop instruction to a general register. | |
2812 | POP is a assembler macro for MOVE.D [SP+], Rd. */ | |
2813 | ||
2814 | void | |
2815 | reg_pop_op (unsigned short inst, inst_env_type *inst_env) | |
2816 | { | |
2817 | /* POP can't have a prefix. */ | |
2818 | if (inst_env->prefix_found) | |
2819 | { | |
2820 | inst_env->invalid = 1; | |
2821 | return; | |
2822 | } | |
2823 | if (cris_get_operand2 (inst) == REG_PC) | |
2824 | { | |
2825 | /* It's invalid to change the PC in a delay slot. */ | |
2826 | if (inst_env->slot_needed) | |
2827 | { | |
2828 | inst_env->invalid = 1; | |
2829 | return; | |
2830 | } | |
2831 | inst_env->reg[REG_PC] = | |
2832 | read_memory_unsigned_integer (inst_env->reg[REG_SP], 4); | |
2833 | } | |
2834 | inst_env->slot_needed = 0; | |
2835 | inst_env->prefix_found = 0; | |
2836 | inst_env->xflag_found = 0; | |
2837 | inst_env->disable_interrupt = 0; | |
2838 | } | |
2839 | ||
2840 | /* Handles moves from register to memory. */ | |
2841 | ||
2842 | void | |
2843 | move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env) | |
2844 | { | |
2845 | /* Check if we have a prefix. */ | |
2846 | if (inst_env->prefix_found) | |
2847 | { | |
2848 | /* The only thing that can change the PC is an assign. */ | |
2849 | check_assign (inst, inst_env); | |
2850 | } | |
2851 | else if ((cris_get_operand1 (inst) == REG_PC) | |
2852 | && (cris_get_mode (inst) == AUTOINC_MODE)) | |
2853 | { | |
2854 | /* It's invalid to change the PC in a delay slot. */ | |
2855 | if (inst_env->slot_needed) | |
2856 | { | |
2857 | inst_env->invalid = 1; | |
2858 | return; | |
2859 | } | |
2860 | process_autoincrement (cris_get_size (inst), inst, inst_env); | |
2861 | } | |
2862 | inst_env->slot_needed = 0; | |
2863 | inst_env->prefix_found = 0; | |
2864 | inst_env->xflag_found = 0; | |
2865 | inst_env->disable_interrupt = 0; | |
2866 | } | |
2867 | ||
2868 | /* Handles the intructions that's not yet implemented, by setting | |
2869 | inst_env->invalid to true. */ | |
2870 | ||
2871 | void | |
2872 | not_implemented_op (unsigned short inst, inst_env_type *inst_env) | |
2873 | { | |
2874 | inst_env->invalid = 1; | |
2875 | } | |
2876 | ||
2877 | /* Handles the XOR instruction. */ | |
2878 | ||
2879 | void | |
2880 | xor_op (unsigned short inst, inst_env_type *inst_env) | |
2881 | { | |
2882 | /* XOR can't have a prefix. */ | |
2883 | if (inst_env->prefix_found) | |
2884 | { | |
2885 | inst_env->invalid = 1; | |
2886 | return; | |
2887 | } | |
2888 | ||
2889 | /* Check if the PC is the target. */ | |
2890 | if (cris_get_operand2 (inst) == REG_PC) | |
2891 | { | |
2892 | /* It's invalid to change the PC in a delay slot. */ | |
2893 | if (inst_env->slot_needed) | |
2894 | { | |
2895 | inst_env->invalid = 1; | |
2896 | return; | |
2897 | } | |
2898 | inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)]; | |
2899 | } | |
2900 | inst_env->slot_needed = 0; | |
2901 | inst_env->prefix_found = 0; | |
2902 | inst_env->xflag_found = 0; | |
2903 | inst_env->disable_interrupt = 0; | |
2904 | } | |
2905 | ||
2906 | /* Handles the MULS instruction. */ | |
2907 | ||
2908 | void | |
2909 | muls_op (unsigned short inst, inst_env_type *inst_env) | |
2910 | { | |
2911 | /* MULS/U can't have a prefix. */ | |
2912 | if (inst_env->prefix_found) | |
2913 | { | |
2914 | inst_env->invalid = 1; | |
2915 | return; | |
2916 | } | |
2917 | ||
2918 | /* Consider it invalid if the PC is the target. */ | |
2919 | if (cris_get_operand2 (inst) == REG_PC) | |
2920 | { | |
2921 | inst_env->invalid = 1; | |
2922 | return; | |
2923 | } | |
2924 | inst_env->slot_needed = 0; | |
2925 | inst_env->prefix_found = 0; | |
2926 | inst_env->xflag_found = 0; | |
2927 | inst_env->disable_interrupt = 0; | |
2928 | } | |
2929 | ||
2930 | /* Handles the MULU instruction. */ | |
2931 | ||
2932 | void | |
2933 | mulu_op (unsigned short inst, inst_env_type *inst_env) | |
2934 | { | |
2935 | /* MULS/U can't have a prefix. */ | |
2936 | if (inst_env->prefix_found) | |
2937 | { | |
2938 | inst_env->invalid = 1; | |
2939 | return; | |
2940 | } | |
2941 | ||
2942 | /* Consider it invalid if the PC is the target. */ | |
2943 | if (cris_get_operand2 (inst) == REG_PC) | |
2944 | { | |
2945 | inst_env->invalid = 1; | |
2946 | return; | |
2947 | } | |
2948 | inst_env->slot_needed = 0; | |
2949 | inst_env->prefix_found = 0; | |
2950 | inst_env->xflag_found = 0; | |
2951 | inst_env->disable_interrupt = 0; | |
2952 | } | |
2953 | ||
2954 | /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE. | |
2955 | The MOVE instruction is the move from source to register. */ | |
2956 | ||
2957 | void | |
2958 | add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env, | |
2959 | unsigned long source1, unsigned long source2) | |
2960 | { | |
2961 | unsigned long pc_mask; | |
2962 | unsigned long operation_mask; | |
2963 | ||
2964 | /* Find out how many bits the operation should apply to. */ | |
2965 | if (cris_get_size (inst) == INST_BYTE_SIZE) | |
2966 | { | |
2967 | pc_mask = 0xFFFFFF00; | |
2968 | operation_mask = 0xFF; | |
2969 | } | |
2970 | else if (cris_get_size (inst) == INST_WORD_SIZE) | |
2971 | { | |
2972 | pc_mask = 0xFFFF0000; | |
2973 | operation_mask = 0xFFFF; | |
2974 | } | |
2975 | else if (cris_get_size (inst) == INST_DWORD_SIZE) | |
2976 | { | |
2977 | pc_mask = 0x0; | |
2978 | operation_mask = 0xFFFFFFFF; | |
2979 | } | |
2980 | else | |
2981 | { | |
2982 | /* The size is out of range. */ | |
2983 | inst_env->invalid = 1; | |
2984 | return; | |
2985 | } | |
2986 | ||
2987 | /* The instruction just works on uw_operation_mask bits. */ | |
2988 | source2 &= operation_mask; | |
2989 | source1 &= operation_mask; | |
2990 | ||
2991 | /* Now calculate the result. The opcode's 3 first bits separates | |
2992 | the different actions. */ | |
2993 | switch (cris_get_opcode (inst) & 7) | |
2994 | { | |
2995 | case 0: /* add */ | |
2996 | source1 += source2; | |
2997 | break; | |
2998 | ||
2999 | case 1: /* move */ | |
3000 | source1 = source2; | |
3001 | break; | |
3002 | ||
3003 | case 2: /* subtract */ | |
3004 | source1 -= source2; | |
3005 | break; | |
3006 | ||
3007 | case 3: /* compare */ | |
3008 | break; | |
3009 | ||
3010 | case 4: /* and */ | |
3011 | source1 &= source2; | |
3012 | break; | |
3013 | ||
3014 | case 5: /* or */ | |
3015 | source1 |= source2; | |
3016 | break; | |
3017 | ||
3018 | default: | |
3019 | inst_env->invalid = 1; | |
3020 | return; | |
3021 | ||
3022 | break; | |
3023 | } | |
3024 | ||
3025 | /* Make sure that the result doesn't contain more than the instruction | |
3026 | size bits. */ | |
3027 | source2 &= operation_mask; | |
3028 | ||
3029 | /* Calculate the new breakpoint address. */ | |
3030 | inst_env->reg[REG_PC] &= pc_mask; | |
3031 | inst_env->reg[REG_PC] |= source1; | |
3032 | ||
3033 | } | |
3034 | ||
3035 | /* Extends the value from either byte or word size to a dword. If the mode | |
3036 | is zero extend then the value is extended with zero. If instead the mode | |
3037 | is signed extend the sign bit of the value is taken into consideration. */ | |
3038 | ||
3039 | unsigned long | |
3040 | do_sign_or_zero_extend (unsigned long value, unsigned short *inst) | |
3041 | { | |
3042 | /* The size can be either byte or word, check which one it is. | |
3043 | Don't check the highest bit, it's indicating if it's a zero | |
3044 | or sign extend. */ | |
3045 | if (cris_get_size (*inst) & INST_WORD_SIZE) | |
3046 | { | |
3047 | /* Word size. */ | |
3048 | value &= 0xFFFF; | |
3049 | ||
3050 | /* Check if the instruction is signed extend. If so, check if value has | |
3051 | the sign bit on. */ | |
3052 | if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK)) | |
3053 | { | |
3054 | value |= SIGNED_WORD_EXTEND_MASK; | |
3055 | } | |
3056 | } | |
3057 | else | |
3058 | { | |
3059 | /* Byte size. */ | |
3060 | value &= 0xFF; | |
3061 | ||
3062 | /* Check if the instruction is signed extend. If so, check if value has | |
3063 | the sign bit on. */ | |
3064 | if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK)) | |
3065 | { | |
3066 | value |= SIGNED_BYTE_EXTEND_MASK; | |
3067 | } | |
3068 | } | |
3069 | /* The size should now be dword. */ | |
3070 | cris_set_size_to_dword (inst); | |
3071 | return value; | |
3072 | } | |
3073 | ||
3074 | /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE | |
3075 | instruction. The MOVE instruction is the move from source to register. */ | |
3076 | ||
3077 | void | |
3078 | reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst, | |
3079 | inst_env_type *inst_env) | |
3080 | { | |
3081 | unsigned long operand1; | |
3082 | unsigned long operand2; | |
3083 | ||
3084 | /* It's invalid to have a prefix to the instruction. This is a register | |
3085 | mode instruction and can't have a prefix. */ | |
3086 | if (inst_env->prefix_found) | |
3087 | { | |
3088 | inst_env->invalid = 1; | |
3089 | return; | |
3090 | } | |
3091 | /* Check if the instruction has PC as its target. */ | |
3092 | if (cris_get_operand2 (inst) == REG_PC) | |
3093 | { | |
3094 | if (inst_env->slot_needed) | |
3095 | { | |
3096 | inst_env->invalid = 1; | |
3097 | return; | |
3098 | } | |
3099 | /* The instruction has the PC as its target register. */ | |
7ab98e9e | 3100 | operand1 = inst_env->reg[cris_get_operand1 (inst)]; |
29134980 OF |
3101 | operand2 = inst_env->reg[REG_PC]; |
3102 | ||
3103 | /* Check if it's a extend, signed or zero instruction. */ | |
3104 | if (cris_get_opcode (inst) < 4) | |
3105 | { | |
3106 | operand1 = do_sign_or_zero_extend (operand1, &inst); | |
3107 | } | |
3108 | /* Calculate the PC value after the instruction, i.e. where the | |
3109 | breakpoint should be. The order of the udw_operands is vital. */ | |
3110 | add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); | |
3111 | } | |
3112 | inst_env->slot_needed = 0; | |
3113 | inst_env->prefix_found = 0; | |
3114 | inst_env->xflag_found = 0; | |
3115 | inst_env->disable_interrupt = 0; | |
3116 | } | |
3117 | ||
3118 | /* Returns the data contained at address. The size of the data is derived from | |
3119 | the size of the operation. If the instruction is a zero or signed | |
3120 | extend instruction, the size field is changed in instruction. */ | |
3121 | ||
3122 | unsigned long | |
3123 | get_data_from_address (unsigned short *inst, CORE_ADDR address) | |
3124 | { | |
3125 | int size = cris_get_size (*inst); | |
3126 | unsigned long value; | |
3127 | ||
3128 | /* If it's an extend instruction we don't want the signed extend bit, | |
3129 | because it influences the size. */ | |
3130 | if (cris_get_opcode (*inst) < 4) | |
3131 | { | |
3132 | size &= ~SIGNED_EXTEND_BIT_MASK; | |
3133 | } | |
3134 | /* Is there a need for checking the size? Size should contain the number of | |
3135 | bytes to read. */ | |
3136 | size = 1 << size; | |
3137 | value = read_memory_unsigned_integer (address, size); | |
3138 | ||
3139 | /* Check if it's an extend, signed or zero instruction. */ | |
3140 | if (cris_get_opcode (*inst) < 4) | |
3141 | { | |
3142 | value = do_sign_or_zero_extend (value, inst); | |
3143 | } | |
3144 | return value; | |
3145 | } | |
3146 | ||
3147 | /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE | |
3148 | instructions. The MOVE instruction is the move from source to register. */ | |
3149 | ||
3150 | void | |
3151 | handle_prefix_assign_mode_for_aritm_op (unsigned short inst, | |
3152 | inst_env_type *inst_env) | |
3153 | { | |
3154 | unsigned long operand2; | |
3155 | unsigned long operand3; | |
3156 | ||
3157 | check_assign (inst, inst_env); | |
3158 | if (cris_get_operand2 (inst) == REG_PC) | |
3159 | { | |
3160 | operand2 = inst_env->reg[REG_PC]; | |
3161 | ||
3162 | /* Get the value of the third operand. */ | |
3163 | operand3 = get_data_from_address (&inst, inst_env->prefix_value); | |
3164 | ||
3165 | /* Calculate the PC value after the instruction, i.e. where the | |
3166 | breakpoint should be. The order of the udw_operands is vital. */ | |
3167 | add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); | |
3168 | } | |
3169 | inst_env->slot_needed = 0; | |
3170 | inst_env->prefix_found = 0; | |
3171 | inst_env->xflag_found = 0; | |
3172 | inst_env->disable_interrupt = 0; | |
3173 | } | |
3174 | ||
3175 | /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and | |
3176 | OR instructions. Note that for this to work as expected, the calling | |
3177 | function must have made sure that there is a prefix to this instruction. */ | |
3178 | ||
3179 | void | |
3180 | three_operand_add_sub_cmp_and_or_op (unsigned short inst, | |
3181 | inst_env_type *inst_env) | |
3182 | { | |
3183 | unsigned long operand2; | |
3184 | unsigned long operand3; | |
3185 | ||
3186 | if (cris_get_operand1 (inst) == REG_PC) | |
3187 | { | |
3188 | /* The PC will be changed by the instruction. */ | |
3189 | operand2 = inst_env->reg[cris_get_operand2 (inst)]; | |
3190 | ||
3191 | /* Get the value of the third operand. */ | |
3192 | operand3 = get_data_from_address (&inst, inst_env->prefix_value); | |
3193 | ||
3194 | /* Calculate the PC value after the instruction, i.e. where the | |
3195 | breakpoint should be. */ | |
3196 | add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); | |
3197 | } | |
3198 | inst_env->slot_needed = 0; | |
3199 | inst_env->prefix_found = 0; | |
3200 | inst_env->xflag_found = 0; | |
3201 | inst_env->disable_interrupt = 0; | |
3202 | } | |
3203 | ||
3204 | /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE | |
3205 | instructions. The MOVE instruction is the move from source to register. */ | |
3206 | ||
3207 | void | |
3208 | handle_prefix_index_mode_for_aritm_op (unsigned short inst, | |
3209 | inst_env_type *inst_env) | |
3210 | { | |
3211 | if (cris_get_operand1 (inst) != cris_get_operand2 (inst)) | |
3212 | { | |
3213 | /* If the instruction is MOVE it's invalid. If the instruction is ADD, | |
3214 | SUB, AND or OR something weird is going on (if everything works these | |
3215 | instructions should end up in the three operand version). */ | |
3216 | inst_env->invalid = 1; | |
3217 | return; | |
3218 | } | |
3219 | else | |
3220 | { | |
3221 | /* three_operand_add_sub_cmp_and_or does the same as we should do here | |
3222 | so use it. */ | |
3223 | three_operand_add_sub_cmp_and_or_op (inst, inst_env); | |
3224 | } | |
3225 | inst_env->slot_needed = 0; | |
3226 | inst_env->prefix_found = 0; | |
3227 | inst_env->xflag_found = 0; | |
3228 | inst_env->disable_interrupt = 0; | |
3229 | } | |
3230 | ||
3231 | /* Handles the autoincrement and indirect addresing mode for the ADD, SUB, | |
3232 | CMP, AND OR and MOVE instruction. The MOVE instruction is the move from | |
3233 | source to register. */ | |
3234 | ||
3235 | void | |
3236 | handle_inc_and_index_mode_for_aritm_op (unsigned short inst, | |
3237 | inst_env_type *inst_env) | |
3238 | { | |
3239 | unsigned long operand1; | |
3240 | unsigned long operand2; | |
3241 | unsigned long operand3; | |
3242 | int size; | |
3243 | ||
3244 | /* The instruction is either an indirect or autoincrement addressing mode. | |
3245 | Check if the destination register is the PC. */ | |
3246 | if (cris_get_operand2 (inst) == REG_PC) | |
3247 | { | |
3248 | /* Must be done here, get_data_from_address may change the size | |
3249 | field. */ | |
3250 | size = cris_get_size (inst); | |
3251 | operand2 = inst_env->reg[REG_PC]; | |
3252 | ||
3253 | /* Get the value of the third operand, i.e. the indirect operand. */ | |
3254 | operand1 = inst_env->reg[cris_get_operand1 (inst)]; | |
3255 | operand3 = get_data_from_address (&inst, operand1); | |
3256 | ||
3257 | /* Calculate the PC value after the instruction, i.e. where the | |
3258 | breakpoint should be. The order of the udw_operands is vital. */ | |
3259 | add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); | |
3260 | } | |
3261 | /* If this is an autoincrement addressing mode, check if the increment | |
3262 | changes the PC. */ | |
3263 | if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE)) | |
3264 | { | |
3265 | /* Get the size field. */ | |
3266 | size = cris_get_size (inst); | |
3267 | ||
3268 | /* If it's an extend instruction we don't want the signed extend bit, | |
3269 | because it influences the size. */ | |
3270 | if (cris_get_opcode (inst) < 4) | |
3271 | { | |
3272 | size &= ~SIGNED_EXTEND_BIT_MASK; | |
3273 | } | |
3274 | process_autoincrement (size, inst, inst_env); | |
3275 | } | |
3276 | inst_env->slot_needed = 0; | |
3277 | inst_env->prefix_found = 0; | |
3278 | inst_env->xflag_found = 0; | |
3279 | inst_env->disable_interrupt = 0; | |
3280 | } | |
3281 | ||
3282 | /* Handles the two-operand addressing mode, all modes except register, for | |
3283 | the ADD, SUB CMP, AND and OR instruction. */ | |
3284 | ||
3285 | void | |
3286 | none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst, | |
3287 | inst_env_type *inst_env) | |
3288 | { | |
3289 | if (inst_env->prefix_found) | |
3290 | { | |
3291 | if (cris_get_mode (inst) == PREFIX_INDEX_MODE) | |
3292 | { | |
3293 | handle_prefix_index_mode_for_aritm_op (inst, inst_env); | |
3294 | } | |
3295 | else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) | |
3296 | { | |
3297 | handle_prefix_assign_mode_for_aritm_op (inst, inst_env); | |
3298 | } | |
3299 | else | |
3300 | { | |
3301 | /* The mode is invalid for a prefixed base instruction. */ | |
3302 | inst_env->invalid = 1; | |
3303 | return; | |
3304 | } | |
3305 | } | |
3306 | else | |
3307 | { | |
3308 | handle_inc_and_index_mode_for_aritm_op (inst, inst_env); | |
3309 | } | |
3310 | } | |
3311 | ||
3312 | /* Handles the quick addressing mode for the ADD and SUB instruction. */ | |
3313 | ||
3314 | void | |
3315 | quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env) | |
3316 | { | |
3317 | unsigned long operand1; | |
3318 | unsigned long operand2; | |
3319 | ||
3320 | /* It's a bad idea to be in a prefix instruction now. This is a quick mode | |
3321 | instruction and can't have a prefix. */ | |
3322 | if (inst_env->prefix_found) | |
3323 | { | |
3324 | inst_env->invalid = 1; | |
3325 | return; | |
3326 | } | |
3327 | ||
3328 | /* Check if the instruction has PC as its target. */ | |
3329 | if (cris_get_operand2 (inst) == REG_PC) | |
3330 | { | |
3331 | if (inst_env->slot_needed) | |
3332 | { | |
3333 | inst_env->invalid = 1; | |
3334 | return; | |
3335 | } | |
3336 | operand1 = cris_get_quick_value (inst); | |
3337 | operand2 = inst_env->reg[REG_PC]; | |
3338 | ||
3339 | /* The size should now be dword. */ | |
3340 | cris_set_size_to_dword (&inst); | |
3341 | ||
3342 | /* Calculate the PC value after the instruction, i.e. where the | |
3343 | breakpoint should be. */ | |
3344 | add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); | |
3345 | } | |
3346 | inst_env->slot_needed = 0; | |
3347 | inst_env->prefix_found = 0; | |
3348 | inst_env->xflag_found = 0; | |
3349 | inst_env->disable_interrupt = 0; | |
3350 | } | |
3351 | ||
3352 | /* Handles the quick addressing mode for the CMP, AND and OR instruction. */ | |
3353 | ||
3354 | void | |
3355 | quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env) | |
3356 | { | |
3357 | unsigned long operand1; | |
3358 | unsigned long operand2; | |
3359 | ||
3360 | /* It's a bad idea to be in a prefix instruction now. This is a quick mode | |
3361 | instruction and can't have a prefix. */ | |
3362 | if (inst_env->prefix_found) | |
3363 | { | |
3364 | inst_env->invalid = 1; | |
3365 | return; | |
3366 | } | |
3367 | /* Check if the instruction has PC as its target. */ | |
3368 | if (cris_get_operand2 (inst) == REG_PC) | |
3369 | { | |
3370 | if (inst_env->slot_needed) | |
3371 | { | |
3372 | inst_env->invalid = 1; | |
3373 | return; | |
3374 | } | |
3375 | /* The instruction has the PC as its target register. */ | |
3376 | operand1 = cris_get_quick_value (inst); | |
3377 | operand2 = inst_env->reg[REG_PC]; | |
3378 | ||
3379 | /* The quick value is signed, so check if we must do a signed extend. */ | |
3380 | if (operand1 & SIGNED_QUICK_VALUE_MASK) | |
3381 | { | |
3382 | /* sign extend */ | |
3383 | operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK; | |
3384 | } | |
3385 | /* The size should now be dword. */ | |
3386 | cris_set_size_to_dword (&inst); | |
3387 | ||
3388 | /* Calculate the PC value after the instruction, i.e. where the | |
3389 | breakpoint should be. */ | |
3390 | add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); | |
3391 | } | |
3392 | inst_env->slot_needed = 0; | |
3393 | inst_env->prefix_found = 0; | |
3394 | inst_env->xflag_found = 0; | |
3395 | inst_env->disable_interrupt = 0; | |
3396 | } | |
3397 | ||
3398 | /* Translate op_type to a function and call it. */ | |
3399 | ||
3400 | static void cris_gdb_func (enum cris_op_type op_type, unsigned short inst, | |
3401 | inst_env_type *inst_env) | |
3402 | { | |
3403 | switch (op_type) | |
3404 | { | |
3405 | case cris_not_implemented_op: | |
3406 | not_implemented_op (inst, inst_env); | |
3407 | break; | |
3408 | ||
3409 | case cris_abs_op: | |
3410 | abs_op (inst, inst_env); | |
3411 | break; | |
3412 | ||
3413 | case cris_addi_op: | |
3414 | addi_op (inst, inst_env); | |
3415 | break; | |
3416 | ||
3417 | case cris_asr_op: | |
3418 | asr_op (inst, inst_env); | |
3419 | break; | |
3420 | ||
3421 | case cris_asrq_op: | |
3422 | asrq_op (inst, inst_env); | |
3423 | break; | |
3424 | ||
3425 | case cris_ax_ei_setf_op: | |
3426 | ax_ei_setf_op (inst, inst_env); | |
3427 | break; | |
3428 | ||
3429 | case cris_bdap_prefix: | |
3430 | bdap_prefix (inst, inst_env); | |
3431 | break; | |
3432 | ||
3433 | case cris_biap_prefix: | |
3434 | biap_prefix (inst, inst_env); | |
3435 | break; | |
3436 | ||
3437 | case cris_break_op: | |
3438 | break_op (inst, inst_env); | |
3439 | break; | |
3440 | ||
3441 | case cris_btst_nop_op: | |
3442 | btst_nop_op (inst, inst_env); | |
3443 | break; | |
3444 | ||
3445 | case cris_clearf_di_op: | |
3446 | clearf_di_op (inst, inst_env); | |
3447 | break; | |
3448 | ||
3449 | case cris_dip_prefix: | |
3450 | dip_prefix (inst, inst_env); | |
3451 | break; | |
3452 | ||
3453 | case cris_dstep_logshift_mstep_neg_not_op: | |
3454 | dstep_logshift_mstep_neg_not_op (inst, inst_env); | |
3455 | break; | |
3456 | ||
3457 | case cris_eight_bit_offset_branch_op: | |
3458 | eight_bit_offset_branch_op (inst, inst_env); | |
3459 | break; | |
3460 | ||
3461 | case cris_move_mem_to_reg_movem_op: | |
3462 | move_mem_to_reg_movem_op (inst, inst_env); | |
3463 | break; | |
3464 | ||
3465 | case cris_move_reg_to_mem_movem_op: | |
3466 | move_reg_to_mem_movem_op (inst, inst_env); | |
3467 | break; | |
3468 | ||
3469 | case cris_move_to_preg_op: | |
3470 | move_to_preg_op (inst, inst_env); | |
3471 | break; | |
3472 | ||
3473 | case cris_muls_op: | |
3474 | muls_op (inst, inst_env); | |
3475 | break; | |
3476 | ||
3477 | case cris_mulu_op: | |
3478 | mulu_op (inst, inst_env); | |
3479 | break; | |
3480 | ||
3481 | case cris_none_reg_mode_add_sub_cmp_and_or_move_op: | |
3482 | none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env); | |
3483 | break; | |
3484 | ||
3485 | case cris_none_reg_mode_clear_test_op: | |
3486 | none_reg_mode_clear_test_op (inst, inst_env); | |
3487 | break; | |
3488 | ||
3489 | case cris_none_reg_mode_jump_op: | |
3490 | none_reg_mode_jump_op (inst, inst_env); | |
3491 | break; | |
3492 | ||
3493 | case cris_none_reg_mode_move_from_preg_op: | |
3494 | none_reg_mode_move_from_preg_op (inst, inst_env); | |
3495 | break; | |
3496 | ||
3497 | case cris_quick_mode_add_sub_op: | |
3498 | quick_mode_add_sub_op (inst, inst_env); | |
3499 | break; | |
3500 | ||
3501 | case cris_quick_mode_and_cmp_move_or_op: | |
3502 | quick_mode_and_cmp_move_or_op (inst, inst_env); | |
3503 | break; | |
3504 | ||
3505 | case cris_quick_mode_bdap_prefix: | |
3506 | quick_mode_bdap_prefix (inst, inst_env); | |
3507 | break; | |
3508 | ||
3509 | case cris_reg_mode_add_sub_cmp_and_or_move_op: | |
3510 | reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env); | |
3511 | break; | |
3512 | ||
3513 | case cris_reg_mode_clear_op: | |
3514 | reg_mode_clear_op (inst, inst_env); | |
3515 | break; | |
3516 | ||
3517 | case cris_reg_mode_jump_op: | |
3518 | reg_mode_jump_op (inst, inst_env); | |
3519 | break; | |
3520 | ||
3521 | case cris_reg_mode_move_from_preg_op: | |
3522 | reg_mode_move_from_preg_op (inst, inst_env); | |
3523 | break; | |
3524 | ||
3525 | case cris_reg_mode_test_op: | |
3526 | reg_mode_test_op (inst, inst_env); | |
3527 | break; | |
3528 | ||
3529 | case cris_scc_op: | |
3530 | scc_op (inst, inst_env); | |
3531 | break; | |
3532 | ||
3533 | case cris_sixteen_bit_offset_branch_op: | |
3534 | sixteen_bit_offset_branch_op (inst, inst_env); | |
3535 | break; | |
3536 | ||
3537 | case cris_three_operand_add_sub_cmp_and_or_op: | |
3538 | three_operand_add_sub_cmp_and_or_op (inst, inst_env); | |
3539 | break; | |
3540 | ||
3541 | case cris_three_operand_bound_op: | |
3542 | three_operand_bound_op (inst, inst_env); | |
3543 | break; | |
3544 | ||
3545 | case cris_two_operand_bound_op: | |
3546 | two_operand_bound_op (inst, inst_env); | |
3547 | break; | |
3548 | ||
3549 | case cris_xor_op: | |
3550 | xor_op (inst, inst_env); | |
3551 | break; | |
3552 | } | |
3553 | } | |
3554 | ||
3555 | /* This wrapper is to avoid cris_get_assembler being called before | |
3556 | exec_bfd has been set. */ | |
3557 | ||
3558 | static int | |
3559 | cris_delayed_get_disassembler (bfd_vma addr, disassemble_info *info) | |
3560 | { | |
3561 | tm_print_insn = cris_get_disassembler (exec_bfd); | |
2bf0cb65 | 3562 | return TARGET_PRINT_INSN (addr, info); |
29134980 OF |
3563 | } |
3564 | ||
dbbff683 OF |
3565 | /* Copied from <asm/elf.h>. */ |
3566 | typedef unsigned long elf_greg_t; | |
3567 | ||
3568 | /* Same as user_regs_struct struct in <asm/user.h>. */ | |
3569 | typedef elf_greg_t elf_gregset_t[35]; | |
3570 | ||
3571 | /* Unpack an elf_gregset_t into GDB's register cache. */ | |
3572 | ||
3573 | void | |
3574 | supply_gregset (elf_gregset_t *gregsetp) | |
3575 | { | |
3576 | int i; | |
3577 | elf_greg_t *regp = *gregsetp; | |
3578 | static char zerobuf[4] = {0}; | |
3579 | ||
3580 | /* The kernel dumps all 32 registers as unsigned longs, but supply_register | |
3581 | knows about the actual size of each register so that's no problem. */ | |
3582 | for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++) | |
3583 | { | |
3584 | supply_register (i, (char *)®p[i]); | |
3585 | } | |
3586 | } | |
3587 | ||
3588 | /* Use a local version of this function to get the correct types for | |
3589 | regsets, until multi-arch core support is ready. */ | |
3590 | ||
3591 | static void | |
3592 | fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, | |
3593 | int which, CORE_ADDR reg_addr) | |
3594 | { | |
3595 | elf_gregset_t gregset; | |
3596 | ||
3597 | switch (which) | |
3598 | { | |
3599 | case 0: | |
3600 | if (core_reg_size != sizeof (gregset)) | |
3601 | { | |
3602 | warning ("wrong size gregset struct in core file"); | |
3603 | } | |
3604 | else | |
3605 | { | |
3606 | memcpy (&gregset, core_reg_sect, sizeof (gregset)); | |
3607 | supply_gregset (&gregset); | |
3608 | } | |
3609 | ||
3610 | default: | |
3611 | /* We've covered all the kinds of registers we know about here, | |
3612 | so this must be something we wouldn't know what to do with | |
3613 | anyway. Just ignore it. */ | |
3614 | break; | |
3615 | } | |
3616 | } | |
3617 | ||
3618 | static struct core_fns cris_elf_core_fns = | |
3619 | { | |
3620 | bfd_target_elf_flavour, /* core_flavour */ | |
3621 | default_check_format, /* check_format */ | |
3622 | default_core_sniffer, /* core_sniffer */ | |
3623 | fetch_core_registers, /* core_read_registers */ | |
3624 | NULL /* next */ | |
3625 | }; | |
3626 | ||
3627 | /* Fetch (and possibly build) an appropriate link_map_offsets | |
8605d56e AC |
3628 | structure for native GNU/Linux CRIS targets using the struct |
3629 | offsets defined in link.h (but without actual reference to that | |
3630 | file). | |
dbbff683 | 3631 | |
8605d56e AC |
3632 | This makes it possible to access GNU/Linux CRIS shared libraries |
3633 | from a GDB that was not built on an GNU/Linux CRIS host (for cross | |
3634 | debugging). | |
dbbff683 OF |
3635 | |
3636 | See gdb/solib-svr4.h for an explanation of these fields. */ | |
3637 | ||
3638 | struct link_map_offsets * | |
3639 | cris_linux_svr4_fetch_link_map_offsets (void) | |
3640 | { | |
3641 | static struct link_map_offsets lmo; | |
3642 | static struct link_map_offsets *lmp = NULL; | |
3643 | ||
3644 | if (lmp == NULL) | |
3645 | { | |
3646 | lmp = &lmo; | |
3647 | ||
3648 | lmo.r_debug_size = 8; /* The actual size is 20 bytes, but | |
3649 | this is all we need. */ | |
3650 | lmo.r_map_offset = 4; | |
3651 | lmo.r_map_size = 4; | |
3652 | ||
3653 | lmo.link_map_size = 20; | |
3654 | ||
3655 | lmo.l_addr_offset = 0; | |
3656 | lmo.l_addr_size = 4; | |
3657 | ||
3658 | lmo.l_name_offset = 4; | |
3659 | lmo.l_name_size = 4; | |
3660 | ||
3661 | lmo.l_next_offset = 12; | |
3662 | lmo.l_next_size = 4; | |
3663 | ||
3664 | lmo.l_prev_offset = 16; | |
3665 | lmo.l_prev_size = 4; | |
3666 | } | |
3667 | ||
3668 | return lmp; | |
3669 | } | |
3670 | ||
3671 | static void | |
3672 | cris_fpless_backtrace (char *noargs, int from_tty) | |
3673 | { | |
3674 | /* Points at the instruction after the jsr (except when in innermost frame | |
3675 | where it points at the original pc). */ | |
3676 | CORE_ADDR pc = 0; | |
3677 | ||
3678 | /* Temporary variable, used for parsing from the start of the function that | |
3679 | the pc is in, up to the pc. */ | |
3680 | CORE_ADDR tmp_pc = 0; | |
3681 | CORE_ADDR sp = 0; | |
3682 | ||
3683 | /* Information about current frame. */ | |
3684 | struct symtab_and_line sal; | |
3685 | char* func_name; | |
3686 | ||
3687 | /* Present instruction. */ | |
3688 | unsigned short insn; | |
3689 | ||
3690 | /* Next instruction, lookahead. */ | |
3691 | unsigned short insn_next; | |
3692 | ||
3693 | /* This is to store the offset between sp at start of function and until we | |
3694 | reach push srp (if any). */ | |
3695 | int sp_add_later = 0; | |
3696 | int push_srp_found = 0; | |
3697 | ||
3698 | int val = 0; | |
3699 | ||
3700 | /* Frame counter. */ | |
3701 | int frame = 0; | |
3702 | ||
3703 | /* For the innermost frame, we want to look at srp in case it's a leaf | |
3704 | function (since there's no push srp in that case). */ | |
3705 | int innermost_frame = 1; | |
3706 | ||
3707 | read_register_gen (PC_REGNUM, (char *) &pc); | |
3708 | read_register_gen (SP_REGNUM, (char *) &sp); | |
3709 | ||
3710 | /* We make an explicit return when we can't find an outer frame. */ | |
3711 | while (1) | |
3712 | { | |
3713 | /* Get file name and line number. */ | |
3714 | sal = find_pc_line (pc, 0); | |
3715 | ||
3716 | /* Get function name. */ | |
3717 | find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL, | |
3718 | (CORE_ADDR *) NULL); | |
3719 | ||
3720 | /* Print information about current frame. */ | |
3721 | printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name); | |
3722 | if (sal.symtab) | |
3723 | { | |
3724 | printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line); | |
3725 | } | |
3726 | printf_unfiltered ("\n"); | |
3727 | ||
3728 | /* Get the start address of this function. */ | |
3729 | tmp_pc = get_pc_function_start (pc); | |
3730 | ||
3731 | /* Mini parser, only meant to find push sp and sub ...,sp from the start | |
3732 | of the function, up to the pc. */ | |
3733 | while (tmp_pc < pc) | |
3734 | { | |
3735 | insn = read_memory_unsigned_integer (tmp_pc, sizeof (short)); | |
3736 | tmp_pc += sizeof (short); | |
3737 | if (insn == 0xE1FC) | |
3738 | { | |
3739 | /* push <reg> 32 bit instruction */ | |
3740 | insn_next = read_memory_unsigned_integer (tmp_pc, | |
3741 | sizeof (short)); | |
3742 | tmp_pc += sizeof (short); | |
3743 | ||
3744 | /* Recognize srp. */ | |
3745 | if (insn_next == 0xBE7E) | |
3746 | { | |
3747 | /* For subsequent (not this one though) push or sub which | |
3748 | affects sp, adjust sp immediately. */ | |
3749 | push_srp_found = 1; | |
3750 | ||
3751 | /* Note: this will break if we ever encounter a | |
3752 | push vr (1 byte) or push ccr (2 bytes). */ | |
3753 | sp_add_later += 4; | |
3754 | } | |
3755 | else | |
3756 | { | |
3757 | /* Some other register was pushed. */ | |
3758 | if (push_srp_found) | |
3759 | { | |
3760 | sp += 4; | |
3761 | } | |
3762 | else | |
3763 | { | |
3764 | sp_add_later += 4; | |
3765 | } | |
3766 | } | |
3767 | } | |
3768 | else if (cris_get_operand2 (insn) == SP_REGNUM | |
3769 | && cris_get_mode (insn) == 0x0000 | |
3770 | && cris_get_opcode (insn) == 0x000A) | |
3771 | { | |
3772 | /* subq <val>,sp */ | |
3773 | val = cris_get_quick_value (insn); | |
3774 | ||
3775 | if (push_srp_found) | |
3776 | { | |
3777 | sp += val; | |
3778 | } | |
3779 | else | |
3780 | { | |
3781 | sp_add_later += val; | |
3782 | } | |
3783 | ||
3784 | } | |
3785 | else if (cris_get_operand2 (insn) == SP_REGNUM | |
3786 | /* Autoincrement addressing mode. */ | |
3787 | && cris_get_mode (insn) == 0x0003 | |
3788 | /* Opcode. */ | |
3789 | && ((insn) & 0x03E0) >> 5 == 0x0004) | |
3790 | { | |
3791 | /* subu <val>,sp */ | |
3792 | val = get_data_from_address (&insn, tmp_pc); | |
3793 | ||
3794 | if (push_srp_found) | |
3795 | { | |
3796 | sp += val; | |
3797 | } | |
3798 | else | |
3799 | { | |
3800 | sp_add_later += val; | |
3801 | } | |
3802 | } | |
3803 | else if (cris_get_operand2 (insn) == SP_REGNUM | |
3804 | && ((insn & 0x0F00) >> 8) == 0x0001 | |
3805 | && (cris_get_signed_offset (insn) < 0)) | |
3806 | { | |
3807 | /* Immediate byte offset addressing prefix word with sp as base | |
3808 | register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val> | |
3809 | is between 64 and 128. | |
3810 | movem r<regsave>,[sp=sp-<val>] */ | |
3811 | val = -cris_get_signed_offset (insn); | |
3812 | insn_next = read_memory_unsigned_integer (tmp_pc, | |
3813 | sizeof (short)); | |
3814 | tmp_pc += sizeof (short); | |
3815 | ||
3816 | if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE | |
3817 | && cris_get_opcode (insn_next) == 0x000F | |
3818 | && cris_get_size (insn_next) == 0x0003 | |
3819 | && cris_get_operand1 (insn_next) == SP_REGNUM) | |
3820 | { | |
3821 | if (push_srp_found) | |
3822 | { | |
3823 | sp += val; | |
3824 | } | |
3825 | else | |
3826 | { | |
3827 | sp_add_later += val; | |
3828 | } | |
3829 | } | |
3830 | } | |
3831 | } | |
3832 | ||
3833 | if (push_srp_found) | |
3834 | { | |
3835 | /* Reset flag. */ | |
3836 | push_srp_found = 0; | |
3837 | ||
3838 | /* sp should now point at where srp is stored on the stack. Update | |
3839 | the pc to the srp. */ | |
3840 | pc = read_memory_unsigned_integer (sp, 4); | |
3841 | } | |
3842 | else if (innermost_frame) | |
3843 | { | |
3844 | /* We couldn't find a push srp in the prologue, so this must be | |
3845 | a leaf function, and thus we use the srp register directly. | |
3846 | This should happen at most once, for the innermost function. */ | |
3847 | read_register_gen (SRP_REGNUM, (char *) &pc); | |
3848 | } | |
3849 | else | |
3850 | { | |
3851 | /* Couldn't find an outer frame. */ | |
3852 | return; | |
3853 | } | |
3854 | ||
3855 | /* Reset flag. (In case the innermost frame wasn't a leaf, we don't | |
3856 | want to look at the srp register later either). */ | |
3857 | innermost_frame = 0; | |
3858 | ||
3859 | /* Now, add the offset for everything up to, and including push srp, | |
3860 | that was held back during the prologue parsing. */ | |
3861 | sp += sp_add_later; | |
3862 | sp_add_later = 0; | |
3863 | } | |
3864 | } | |
3865 | ||
29134980 OF |
3866 | void |
3867 | _initialize_cris_tdep (void) | |
3868 | { | |
3869 | struct cmd_list_element *c; | |
3870 | ||
3871 | gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep); | |
3872 | ||
3873 | /* Used in disassembly. */ | |
3874 | tm_print_insn = cris_delayed_get_disassembler; | |
3875 | ||
3876 | /* CRIS-specific user-commands. */ | |
3877 | c = add_set_cmd ("cris-version", class_support, var_integer, | |
3878 | (char *) &usr_cmd_cris_version, | |
3879 | "Set the current CRIS version.", &setlist); | |
9f60d481 | 3880 | set_cmd_sfunc (c, cris_version_update); |
29134980 OF |
3881 | add_show_from_set (c, &showlist); |
3882 | ||
3883 | c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums, | |
3884 | &usr_cmd_cris_mode, | |
3885 | "Set the current CRIS mode.", &setlist); | |
9f60d481 | 3886 | set_cmd_sfunc (c, cris_mode_update); |
29134980 OF |
3887 | add_show_from_set (c, &showlist); |
3888 | ||
3889 | c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums, | |
3890 | &usr_cmd_cris_abi, | |
3891 | "Set the current CRIS ABI version.", &setlist); | |
9f60d481 | 3892 | set_cmd_sfunc (c, cris_abi_update); |
29134980 | 3893 | add_show_from_set (c, &showlist); |
dbbff683 OF |
3894 | |
3895 | c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace, | |
3896 | "Display call chain using the subroutine return pointer.\n" | |
3897 | "Note that this displays the address after the jump to the " | |
3898 | "subroutine.", &cmdlist); | |
3899 | ||
3900 | add_core_fns (&cris_elf_core_fns); | |
3901 | ||
29134980 OF |
3902 | } |
3903 | ||
3904 | /* Prints out all target specific values. */ | |
3905 | ||
3906 | static void | |
3907 | cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) | |
3908 | { | |
3909 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3910 | if (tdep != NULL) | |
3911 | { | |
3912 | fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n", | |
3913 | tdep->cris_version); | |
3914 | fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n", | |
3915 | tdep->cris_mode); | |
3916 | fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n", | |
3917 | tdep->cris_abi); | |
3918 | ||
3919 | } | |
3920 | } | |
3921 | ||
3922 | static void | |
3923 | cris_version_update (char *ignore_args, int from_tty, | |
3924 | struct cmd_list_element *c) | |
3925 | { | |
3926 | struct gdbarch_info info; | |
3927 | ||
1868c04e AC |
3928 | /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones |
3929 | the set command passed as a parameter. The clone operation will | |
3930 | include (BUG?) any ``set'' command callback, if present. | |
3931 | Commands like ``info set'' call all the ``show'' command | |
3932 | callbacks. Unfortunatly, for ``show'' commands cloned from | |
3933 | ``set'', this includes callbacks belonging to ``set'' commands. | |
3934 | Making this worse, this only occures if add_show_from_set() is | |
3935 | called after add_cmd_sfunc() (BUG?). */ | |
3936 | ||
29134980 | 3937 | /* From here on, trust the user's CRIS version setting. */ |
1868c04e | 3938 | if (cmd_type (c) == set_cmd) |
29134980 OF |
3939 | { |
3940 | usr_cmd_cris_version_valid = 1; | |
3941 | ||
3942 | /* Update the current architecture, if needed. */ | |
fb6ecb0f | 3943 | gdbarch_info_init (&info); |
29134980 OF |
3944 | if (!gdbarch_update_p (info)) |
3945 | internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture."); | |
3946 | } | |
3947 | } | |
3948 | ||
3949 | static void | |
3950 | cris_mode_update (char *ignore_args, int from_tty, | |
3951 | struct cmd_list_element *c) | |
3952 | { | |
3953 | struct gdbarch_info info; | |
3954 | ||
1868c04e AC |
3955 | /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones |
3956 | the set command passed as a parameter. The clone operation will | |
3957 | include (BUG?) any ``set'' command callback, if present. | |
3958 | Commands like ``info set'' call all the ``show'' command | |
3959 | callbacks. Unfortunatly, for ``show'' commands cloned from | |
3960 | ``set'', this includes callbacks belonging to ``set'' commands. | |
3961 | Making this worse, this only occures if add_show_from_set() is | |
3962 | called after add_cmd_sfunc() (BUG?). */ | |
3963 | ||
29134980 | 3964 | /* From here on, trust the user's CRIS mode setting. */ |
1868c04e | 3965 | if (cmd_type (c) == set_cmd) |
29134980 OF |
3966 | { |
3967 | usr_cmd_cris_mode_valid = 1; | |
3968 | ||
3969 | /* Update the current architecture, if needed. */ | |
fb6ecb0f | 3970 | gdbarch_info_init (&info); |
29134980 OF |
3971 | if (!gdbarch_update_p (info)) |
3972 | internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture."); | |
3973 | } | |
3974 | } | |
3975 | ||
3976 | static void | |
3977 | cris_abi_update (char *ignore_args, int from_tty, | |
3978 | struct cmd_list_element *c) | |
3979 | { | |
3980 | struct gdbarch_info info; | |
3981 | ||
1868c04e AC |
3982 | /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones |
3983 | the set command passed as a parameter. The clone operation will | |
3984 | include (BUG?) any ``set'' command callback, if present. | |
3985 | Commands like ``info set'' call all the ``show'' command | |
3986 | callbacks. Unfortunatly, for ``show'' commands cloned from | |
3987 | ``set'', this includes callbacks belonging to ``set'' commands. | |
3988 | Making this worse, this only occures if add_show_from_set() is | |
3989 | called after add_cmd_sfunc() (BUG?). */ | |
3990 | ||
29134980 | 3991 | /* From here on, trust the user's CRIS ABI setting. */ |
1868c04e | 3992 | if (cmd_type (c) == set_cmd) |
29134980 OF |
3993 | { |
3994 | usr_cmd_cris_abi_valid = 1; | |
3995 | ||
3996 | /* Update the current architecture, if needed. */ | |
fb6ecb0f | 3997 | gdbarch_info_init (&info); |
29134980 OF |
3998 | if (!gdbarch_update_p (info)) |
3999 | internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture."); | |
4000 | } | |
4001 | } | |
4002 | ||
4003 | /* Copied from pa64solib.c, with a couple of minor changes. */ | |
4004 | ||
4005 | static CORE_ADDR | |
4006 | bfd_lookup_symbol (bfd *abfd, const char *symname) | |
4007 | { | |
4008 | unsigned int storage_needed; | |
4009 | asymbol *sym; | |
4010 | asymbol **symbol_table; | |
4011 | unsigned int number_of_symbols; | |
4012 | unsigned int i; | |
4013 | struct cleanup *back_to; | |
4014 | CORE_ADDR symaddr = 0; | |
4015 | ||
4016 | storage_needed = bfd_get_symtab_upper_bound (abfd); | |
4017 | ||
4018 | if (storage_needed > 0) | |
4019 | { | |
4020 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
4021 | back_to = make_cleanup (free, (PTR) symbol_table); | |
4022 | number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); | |
4023 | ||
4024 | for (i = 0; i < number_of_symbols; i++) | |
4025 | { | |
4026 | sym = *symbol_table++; | |
4027 | if (!strcmp (sym->name, symname)) | |
4028 | { | |
4029 | /* Bfd symbols are section relative. */ | |
4030 | symaddr = sym->value + sym->section->vma; | |
4031 | break; | |
4032 | } | |
4033 | } | |
4034 | do_cleanups (back_to); | |
4035 | } | |
4036 | return (symaddr); | |
4037 | } | |
4038 | ||
4039 | static struct gdbarch * | |
4040 | cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
4041 | { | |
4042 | struct gdbarch *gdbarch; | |
4043 | struct gdbarch_tdep *tdep; | |
4044 | int cris_version; | |
4045 | const char *cris_mode; | |
4046 | const char *cris_abi; | |
4047 | CORE_ADDR cris_abi_sym = 0; | |
4048 | int register_bytes; | |
4049 | ||
4050 | if (usr_cmd_cris_version_valid) | |
4051 | { | |
4052 | /* Trust the user's CRIS version setting. */ | |
4053 | cris_version = usr_cmd_cris_version; | |
4054 | } | |
4055 | else | |
4056 | { | |
4057 | /* Assume it's CRIS version 10. */ | |
4058 | cris_version = 10; | |
4059 | } | |
4060 | ||
4061 | if (usr_cmd_cris_mode_valid) | |
4062 | { | |
4063 | /* Trust the user's CRIS mode setting. */ | |
4064 | cris_mode = usr_cmd_cris_mode; | |
4065 | } | |
4066 | else if (cris_version == 10) | |
4067 | { | |
4068 | /* Assume CRIS version 10 is in user mode. */ | |
4069 | cris_mode = CRIS_MODE_USER; | |
4070 | } | |
4071 | else | |
4072 | { | |
4073 | /* Strictly speaking, older CRIS version don't have a supervisor mode, | |
4074 | but we regard its only mode as supervisor mode. */ | |
4075 | cris_mode = CRIS_MODE_SUPERVISOR; | |
4076 | } | |
4077 | ||
4078 | if (usr_cmd_cris_abi_valid) | |
4079 | { | |
4080 | /* Trust the user's ABI setting. */ | |
4081 | cris_abi = usr_cmd_cris_abi; | |
4082 | } | |
4083 | else if (info.abfd) | |
4084 | { | |
4085 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
4086 | { | |
4087 | /* An elf target uses the new ABI. */ | |
4088 | cris_abi = CRIS_ABI_V2; | |
4089 | } | |
4090 | else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour) | |
4091 | { | |
4092 | /* An a.out target may use either ABI. Look for hints in the | |
4093 | symbol table. */ | |
4094 | cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL); | |
4095 | cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL; | |
4096 | } | |
4097 | else | |
4098 | { | |
4099 | /* Unknown bfd flavour. Assume it's the new ABI. */ | |
4100 | cris_abi = CRIS_ABI_V2; | |
4101 | } | |
4102 | } | |
af566d9f | 4103 | else if (arches != NULL) |
29134980 | 4104 | { |
af566d9f AC |
4105 | /* No bfd available. Stick with the ABI from the most recently |
4106 | selected architecture of this same family (the head of arches | |
4107 | always points to this). (This is to avoid changing the ABI | |
4108 | when the user updates the architecture with the 'set | |
4109 | cris-version' command.) */ | |
4110 | cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi; | |
29134980 OF |
4111 | } |
4112 | else | |
4113 | { | |
af566d9f AC |
4114 | /* No bfd, and no previously selected architecture available. |
4115 | Assume it's the new ABI. */ | |
29134980 OF |
4116 | cris_abi = CRIS_ABI_V2; |
4117 | } | |
4118 | ||
4119 | /* Make the current settings visible to the user. */ | |
4120 | usr_cmd_cris_version = cris_version; | |
4121 | usr_cmd_cris_mode = cris_mode; | |
4122 | usr_cmd_cris_abi = cris_abi; | |
4123 | ||
4124 | /* Find a candidate among the list of pre-declared architectures. Both | |
4125 | CRIS version and ABI must match. */ | |
4126 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
4127 | arches != NULL; | |
4128 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
4129 | { | |
4130 | if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version) | |
4131 | && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode) | |
4132 | && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi)) | |
4133 | return arches->gdbarch; | |
4134 | } | |
4135 | ||
4136 | /* No matching architecture was found. Create a new one. */ | |
4137 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
4138 | gdbarch = gdbarch_alloc (&info, tdep); | |
4139 | ||
4140 | tdep->cris_version = cris_version; | |
4141 | tdep->cris_mode = cris_mode; | |
4142 | tdep->cris_abi = cris_abi; | |
4143 | ||
4144 | /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */ | |
4145 | switch (info.byte_order) | |
4146 | { | |
778eb05e | 4147 | case BFD_ENDIAN_LITTLE: |
29134980 OF |
4148 | /* Ok. */ |
4149 | break; | |
4150 | ||
d7449b42 | 4151 | case BFD_ENDIAN_BIG: |
29134980 OF |
4152 | internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info"); |
4153 | break; | |
4154 | ||
4155 | default: | |
4156 | internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info"); | |
4157 | } | |
4158 | ||
4159 | /* Initialize the ABI dependent things. */ | |
4160 | if (tdep->cris_abi == CRIS_ABI_ORIGINAL) | |
4161 | { | |
4162 | set_gdbarch_double_bit (gdbarch, 32); | |
4163 | set_gdbarch_push_arguments (gdbarch, cris_abi_original_push_arguments); | |
4164 | set_gdbarch_store_return_value (gdbarch, | |
4165 | cris_abi_original_store_return_value); | |
26e9b323 | 4166 | set_gdbarch_deprecated_extract_return_value |
29134980 OF |
4167 | (gdbarch, cris_abi_original_extract_return_value); |
4168 | set_gdbarch_reg_struct_has_addr | |
4169 | (gdbarch, cris_abi_original_reg_struct_has_addr); | |
4170 | } | |
4171 | else if (tdep->cris_abi == CRIS_ABI_V2) | |
4172 | { | |
4173 | set_gdbarch_double_bit (gdbarch, 64); | |
4174 | set_gdbarch_push_arguments (gdbarch, cris_abi_v2_push_arguments); | |
4175 | set_gdbarch_store_return_value (gdbarch, cris_abi_v2_store_return_value); | |
26e9b323 AC |
4176 | set_gdbarch_deprecated_extract_return_value |
4177 | (gdbarch, cris_abi_v2_extract_return_value); | |
29134980 OF |
4178 | set_gdbarch_reg_struct_has_addr (gdbarch, |
4179 | cris_abi_v2_reg_struct_has_addr); | |
4180 | } | |
4181 | else | |
4182 | internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI"); | |
4183 | ||
4184 | /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT, | |
4185 | which means we have to set this explicitly. */ | |
4186 | set_gdbarch_long_double_bit (gdbarch, 64); | |
4187 | ||
29134980 OF |
4188 | /* There are 32 registers (some of which may not be implemented). */ |
4189 | set_gdbarch_num_regs (gdbarch, 32); | |
4190 | set_gdbarch_sp_regnum (gdbarch, 14); | |
4191 | set_gdbarch_fp_regnum (gdbarch, 8); | |
4192 | set_gdbarch_pc_regnum (gdbarch, 15); | |
4193 | ||
4194 | set_gdbarch_register_name (gdbarch, cris_register_name); | |
4195 | ||
4196 | /* Length of ordinary registers used in push_word and a few other places. | |
4197 | REGISTER_RAW_SIZE is the real way to know how big a register is. */ | |
4198 | set_gdbarch_register_size (gdbarch, 4); | |
4199 | ||
4200 | /* NEW */ | |
4201 | set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok); | |
4202 | set_gdbarch_software_single_step (gdbarch, cris_software_single_step); | |
4203 | ||
4204 | ||
4205 | set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register); | |
4206 | set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register); | |
4207 | ||
4208 | ||
4209 | /* The total amount of space needed to store (in an array called registers) | |
4210 | GDB's copy of the machine's register state. Note: We can not use | |
4211 | cris_register_size at this point, since it relies on current_gdbarch | |
4212 | being set. */ | |
4213 | switch (tdep->cris_version) | |
4214 | { | |
4215 | case 0: | |
4216 | case 1: | |
4217 | case 2: | |
4218 | case 3: | |
4219 | /* Support for these may be added later. */ | |
4220 | internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version"); | |
4221 | break; | |
4222 | ||
4223 | case 8: | |
4224 | case 9: | |
4225 | /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15 | |
4226 | (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits), | |
4227 | and P8 - P14 (32 bits). */ | |
4228 | register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4); | |
4229 | break; | |
4230 | ||
4231 | case 10: | |
4232 | case 11: | |
4233 | /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100, | |
4234 | P7 (32 bits), and P15 (32 bits) have been implemented. */ | |
4235 | register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4); | |
4236 | break; | |
4237 | ||
4238 | default: | |
4239 | internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version"); | |
4240 | } | |
4241 | ||
4242 | set_gdbarch_register_bytes (gdbarch, register_bytes); | |
4243 | ||
4244 | /* Returns the register offset for the first byte of register regno's space | |
4245 | in the saved register state. */ | |
4246 | set_gdbarch_register_byte (gdbarch, cris_register_offset); | |
4247 | ||
4248 | /* The length of the registers in the actual machine representation. */ | |
4249 | set_gdbarch_register_raw_size (gdbarch, cris_register_size); | |
4250 | ||
4251 | /* The largest value REGISTER_RAW_SIZE can have. */ | |
4252 | set_gdbarch_max_register_raw_size (gdbarch, 32); | |
4253 | ||
4254 | /* The length of the registers in the program's representation. */ | |
4255 | set_gdbarch_register_virtual_size (gdbarch, cris_register_size); | |
4256 | ||
4257 | /* The largest value REGISTER_VIRTUAL_SIZE can have. */ | |
4258 | set_gdbarch_max_register_virtual_size (gdbarch, 32); | |
4259 | ||
4260 | set_gdbarch_register_virtual_type (gdbarch, cris_register_virtual_type); | |
4261 | ||
4262 | /* Use generic dummy frames. */ | |
4263 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); | |
4264 | ||
4265 | /* Where to execute the call in the memory segments. */ | |
4266 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
4267 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); | |
4268 | ||
4269 | /* Start execution at the beginning of dummy. */ | |
4270 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
4271 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
4272 | ||
4273 | /* Set to 1 since call_dummy_breakpoint_offset was defined. */ | |
4274 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
4275 | ||
4276 | /* Read all about dummy frames in blockframe.c. */ | |
4277 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
4278 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point); | |
4279 | ||
4280 | /* Defined to 1 to indicate that the target supports inferior function | |
4281 | calls. */ | |
4282 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
4283 | set_gdbarch_call_dummy_words (gdbarch, 0); | |
4284 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
4285 | ||
4286 | /* No stack adjustment needed when peforming an inferior function call. */ | |
4287 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
4288 | set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); | |
4289 | ||
4290 | set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); | |
4291 | ||
4292 | /* No register requires conversion from raw format to virtual format. */ | |
4293 | set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not); | |
4294 | ||
4295 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
4296 | set_gdbarch_push_return_address (gdbarch, cris_push_return_address); | |
4297 | set_gdbarch_pop_frame (gdbarch, cris_pop_frame); | |
4298 | ||
4299 | set_gdbarch_store_struct_return (gdbarch, cris_store_struct_return); | |
26e9b323 AC |
4300 | set_gdbarch_deprecated_extract_struct_value_address |
4301 | (gdbarch, cris_extract_struct_value_address); | |
29134980 OF |
4302 | set_gdbarch_use_struct_convention (gdbarch, cris_use_struct_convention); |
4303 | ||
4304 | set_gdbarch_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs); | |
4305 | set_gdbarch_init_extra_frame_info (gdbarch, cris_init_extra_frame_info); | |
4306 | set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue); | |
4307 | set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p); | |
4308 | ||
4309 | /* The stack grows downward. */ | |
4310 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
4311 | ||
4312 | set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc); | |
4313 | ||
4314 | /* The PC must not be decremented after a breakpoint. (The breakpoint | |
4315 | handler takes care of that.) */ | |
4316 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
4317 | ||
4318 | /* Offset from address of function to start of its code. */ | |
4319 | set_gdbarch_function_start_offset (gdbarch, 0); | |
4320 | ||
4321 | /* The number of bytes at the start of arglist that are not really args, | |
4322 | 0 in the CRIS ABI. */ | |
4323 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
4324 | set_gdbarch_frameless_function_invocation | |
4325 | (gdbarch, cris_frameless_function_invocation); | |
4326 | set_gdbarch_frame_chain (gdbarch, cris_frame_chain); | |
4327 | set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid); | |
4328 | ||
4329 | set_gdbarch_frame_saved_pc (gdbarch, cris_frame_saved_pc); | |
4330 | set_gdbarch_frame_args_address (gdbarch, cris_frame_args_address); | |
4331 | set_gdbarch_frame_locals_address (gdbarch, cris_frame_locals_address); | |
4332 | set_gdbarch_saved_pc_after_call (gdbarch, cris_saved_pc_after_call); | |
4333 | ||
4334 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
4335 | ||
4336 | /* No extra stack alignment needed. Set to 1 by default. */ | |
4337 | set_gdbarch_extra_stack_alignment_needed (gdbarch, 0); | |
4338 | ||
4339 | /* Helpful for backtracing and returning in a call dummy. */ | |
4340 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); | |
4341 | ||
dbbff683 OF |
4342 | /* Use target_specific function to define link map offsets. */ |
4343 | set_solib_svr4_fetch_link_map_offsets | |
4344 | (gdbarch, cris_linux_svr4_fetch_link_map_offsets); | |
4345 | ||
29134980 OF |
4346 | return gdbarch; |
4347 | } |