]>
Commit | Line | Data |
---|---|---|
faf5f7ad | 1 | /* GNU/Linux on ARM target support. |
4be87837 | 2 | Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
faf5f7ad SB |
3 | |
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "defs.h" | |
c20f6dea SB |
22 | #include "target.h" |
23 | #include "value.h" | |
faf5f7ad | 24 | #include "gdbtypes.h" |
134e61c4 | 25 | #include "floatformat.h" |
2a451106 KB |
26 | #include "gdbcore.h" |
27 | #include "frame.h" | |
4e052eda | 28 | #include "regcache.h" |
d16aafd8 | 29 | #include "doublest.h" |
4be87837 | 30 | #include "osabi.h" |
faf5f7ad | 31 | |
34e8f22d RE |
32 | #include "arm-tdep.h" |
33 | ||
0e18d038 | 34 | /* For shared library handling. */ |
a52e6aac SB |
35 | #include "symtab.h" |
36 | #include "symfile.h" | |
37 | #include "objfiles.h" | |
38 | ||
fdf39c9a RE |
39 | /* Under ARM GNU/Linux the traditional way of performing a breakpoint |
40 | is to execute a particular software interrupt, rather than use a | |
41 | particular undefined instruction to provoke a trap. Upon exection | |
42 | of the software interrupt the kernel stops the inferior with a | |
43 | SIGTRAP, and wakes the debugger. Since ARM GNU/Linux is little | |
44 | endian, and doesn't support Thumb at the moment we only override | |
45 | the ARM little-endian breakpoint. */ | |
66e810cd RE |
46 | |
47 | static const char arm_linux_arm_le_breakpoint[] = {0x01,0x00,0x9f,0xef}; | |
48 | ||
b1e29e33 | 49 | /* DEPRECATED_CALL_DUMMY_WORDS: |
6eb69eab RE |
50 | This sequence of words is the instructions |
51 | ||
52 | mov lr, pc | |
53 | mov pc, r4 | |
54 | swi bkpt_swi | |
55 | ||
56 | Note this is 12 bytes. */ | |
57 | ||
58 | LONGEST arm_linux_call_dummy_words[] = | |
59 | { | |
60 | 0xe1a0e00f, 0xe1a0f004, 0xef9f001 | |
61 | }; | |
62 | ||
9df628e0 | 63 | /* Description of the longjmp buffer. */ |
a6cdd8c5 RE |
64 | #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_RAW_SIZE |
65 | #define ARM_LINUX_JB_PC 21 | |
faf5f7ad | 66 | |
faf5f7ad SB |
67 | /* Extract from an array REGBUF containing the (raw) register state |
68 | a function return value of type TYPE, and copy that, in virtual format, | |
69 | into VALBUF. */ | |
19d3fc80 RE |
70 | /* FIXME rearnsha/2002-02-23: This function shouldn't be necessary. |
71 | The ARM generic one should be able to handle the model used by | |
72 | linux and the low-level formatting of the registers should be | |
73 | hidden behind the regcache abstraction. */ | |
74 | static void | |
faf5f7ad SB |
75 | arm_linux_extract_return_value (struct type *type, |
76 | char regbuf[REGISTER_BYTES], | |
77 | char *valbuf) | |
78 | { | |
79 | /* ScottB: This needs to be looked at to handle the different | |
fdf39c9a | 80 | floating point emulators on ARM GNU/Linux. Right now the code |
faf5f7ad SB |
81 | assumes that fetch inferior registers does the right thing for |
82 | GDB. I suspect this won't handle NWFPE registers correctly, nor | |
83 | will the default ARM version (arm_extract_return_value()). */ | |
84 | ||
34e8f22d RE |
85 | int regnum = ((TYPE_CODE_FLT == TYPE_CODE (type)) |
86 | ? ARM_F0_REGNUM : ARM_A1_REGNUM); | |
faf5f7ad SB |
87 | memcpy (valbuf, ®buf[REGISTER_BYTE (regnum)], TYPE_LENGTH (type)); |
88 | } | |
89 | ||
134e61c4 SB |
90 | /* Note: ScottB |
91 | ||
92 | This function does not support passing parameters using the FPA | |
93 | variant of the APCS. It passes any floating point arguments in the | |
94 | general registers and/or on the stack. | |
95 | ||
96 | FIXME: This and arm_push_arguments should be merged. However this | |
97 | function breaks on a little endian host, big endian target | |
98 | using the COFF file format. ELF is ok. | |
99 | ||
100 | ScottB. */ | |
101 | ||
102 | /* Addresses for calling Thumb functions have the bit 0 set. | |
103 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
104 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
105 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
106 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
107 | ||
19d3fc80 | 108 | static CORE_ADDR |
ea7c478f | 109 | arm_linux_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
134e61c4 SB |
110 | int struct_return, CORE_ADDR struct_addr) |
111 | { | |
112 | char *fp; | |
113 | int argnum, argreg, nstack_size; | |
114 | ||
115 | /* Walk through the list of args and determine how large a temporary | |
116 | stack is required. Need to take care here as structs may be | |
117 | passed on the stack, and we have to to push them. */ | |
b1e29e33 | 118 | nstack_size = -4 * DEPRECATED_REGISTER_SIZE; /* Some arguments go into A1-A4. */ |
134e61c4 SB |
119 | |
120 | if (struct_return) /* The struct address goes in A1. */ | |
b1e29e33 | 121 | nstack_size += DEPRECATED_REGISTER_SIZE; |
134e61c4 SB |
122 | |
123 | /* Walk through the arguments and add their size to nstack_size. */ | |
124 | for (argnum = 0; argnum < nargs; argnum++) | |
125 | { | |
126 | int len; | |
127 | struct type *arg_type; | |
128 | ||
129 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
130 | len = TYPE_LENGTH (arg_type); | |
131 | ||
132 | /* ANSI C code passes float arguments as integers, K&R code | |
133 | passes float arguments as doubles. Correct for this here. */ | |
b1e29e33 | 134 | if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && DEPRECATED_REGISTER_SIZE == len) |
134e61c4 SB |
135 | nstack_size += FP_REGISTER_VIRTUAL_SIZE; |
136 | else | |
137 | nstack_size += len; | |
138 | } | |
139 | ||
140 | /* Allocate room on the stack, and initialize our stack frame | |
141 | pointer. */ | |
142 | fp = NULL; | |
143 | if (nstack_size > 0) | |
144 | { | |
145 | sp -= nstack_size; | |
146 | fp = (char *) sp; | |
147 | } | |
148 | ||
149 | /* Initialize the integer argument register pointer. */ | |
34e8f22d | 150 | argreg = ARM_A1_REGNUM; |
134e61c4 SB |
151 | |
152 | /* The struct_return pointer occupies the first parameter passing | |
153 | register. */ | |
154 | if (struct_return) | |
155 | write_register (argreg++, struct_addr); | |
156 | ||
157 | /* Process arguments from left to right. Store as many as allowed | |
158 | in the parameter passing registers (A1-A4), and save the rest on | |
159 | the temporary stack. */ | |
160 | for (argnum = 0; argnum < nargs; argnum++) | |
161 | { | |
162 | int len; | |
163 | char *val; | |
134e61c4 SB |
164 | CORE_ADDR regval; |
165 | enum type_code typecode; | |
166 | struct type *arg_type, *target_type; | |
167 | ||
168 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
169 | target_type = TYPE_TARGET_TYPE (arg_type); | |
170 | len = TYPE_LENGTH (arg_type); | |
171 | typecode = TYPE_CODE (arg_type); | |
172 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
173 | ||
174 | /* ANSI C code passes float arguments as integers, K&R code | |
175 | passes float arguments as doubles. The .stabs record for | |
176 | for ANSI prototype floating point arguments records the | |
177 | type as FP_INTEGER, while a K&R style (no prototype) | |
178 | .stabs records the type as FP_FLOAT. In this latter case | |
179 | the compiler converts the float arguments to double before | |
180 | calling the function. */ | |
b1e29e33 | 181 | if (TYPE_CODE_FLT == typecode && DEPRECATED_REGISTER_SIZE == len) |
134e61c4 | 182 | { |
134e61c4 | 183 | DOUBLEST dblval; |
f1908289 | 184 | dblval = deprecated_extract_floating (val, len); |
134e61c4 | 185 | len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT; |
a37b3cc0 | 186 | val = alloca (len); |
f1908289 | 187 | deprecated_store_floating (val, len, dblval); |
134e61c4 SB |
188 | } |
189 | ||
190 | /* If the argument is a pointer to a function, and it is a Thumb | |
191 | function, set the low bit of the pointer. */ | |
192 | if (TYPE_CODE_PTR == typecode | |
193 | && NULL != target_type | |
194 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
195 | { | |
196 | CORE_ADDR regval = extract_address (val, len); | |
197 | if (arm_pc_is_thumb (regval)) | |
fbd9dcd3 | 198 | store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval)); |
134e61c4 SB |
199 | } |
200 | ||
201 | /* Copy the argument to general registers or the stack in | |
202 | register-sized pieces. Large arguments are split between | |
203 | registers and stack. */ | |
204 | while (len > 0) | |
205 | { | |
b1e29e33 | 206 | int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE; |
134e61c4 SB |
207 | |
208 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
209 | { | |
210 | /* It's an argument being passed in a general register. */ | |
211 | regval = extract_address (val, partial_len); | |
212 | write_register (argreg++, regval); | |
213 | } | |
214 | else | |
215 | { | |
216 | /* Push the arguments onto the stack. */ | |
b1e29e33 AC |
217 | write_memory ((CORE_ADDR) fp, val, DEPRECATED_REGISTER_SIZE); |
218 | fp += DEPRECATED_REGISTER_SIZE; | |
134e61c4 SB |
219 | } |
220 | ||
221 | len -= partial_len; | |
222 | val += partial_len; | |
223 | } | |
224 | } | |
225 | ||
226 | /* Return adjusted stack pointer. */ | |
227 | return sp; | |
228 | } | |
229 | ||
f38e884d | 230 | /* |
fdf39c9a RE |
231 | Dynamic Linking on ARM GNU/Linux |
232 | -------------------------------- | |
f38e884d SB |
233 | |
234 | Note: PLT = procedure linkage table | |
235 | GOT = global offset table | |
236 | ||
237 | As much as possible, ELF dynamic linking defers the resolution of | |
238 | jump/call addresses until the last minute. The technique used is | |
239 | inspired by the i386 ELF design, and is based on the following | |
240 | constraints. | |
241 | ||
242 | 1) The calling technique should not force a change in the assembly | |
243 | code produced for apps; it MAY cause changes in the way assembly | |
244 | code is produced for position independent code (i.e. shared | |
245 | libraries). | |
246 | ||
247 | 2) The technique must be such that all executable areas must not be | |
248 | modified; and any modified areas must not be executed. | |
249 | ||
250 | To do this, there are three steps involved in a typical jump: | |
251 | ||
252 | 1) in the code | |
253 | 2) through the PLT | |
254 | 3) using a pointer from the GOT | |
255 | ||
256 | When the executable or library is first loaded, each GOT entry is | |
257 | initialized to point to the code which implements dynamic name | |
258 | resolution and code finding. This is normally a function in the | |
fdf39c9a RE |
259 | program interpreter (on ARM GNU/Linux this is usually |
260 | ld-linux.so.2, but it does not have to be). On the first | |
261 | invocation, the function is located and the GOT entry is replaced | |
262 | with the real function address. Subsequent calls go through steps | |
263 | 1, 2 and 3 and end up calling the real code. | |
f38e884d SB |
264 | |
265 | 1) In the code: | |
266 | ||
267 | b function_call | |
268 | bl function_call | |
269 | ||
270 | This is typical ARM code using the 26 bit relative branch or branch | |
271 | and link instructions. The target of the instruction | |
272 | (function_call is usually the address of the function to be called. | |
273 | In position independent code, the target of the instruction is | |
274 | actually an entry in the PLT when calling functions in a shared | |
275 | library. Note that this call is identical to a normal function | |
276 | call, only the target differs. | |
277 | ||
278 | 2) In the PLT: | |
279 | ||
280 | The PLT is a synthetic area, created by the linker. It exists in | |
281 | both executables and libraries. It is an array of stubs, one per | |
282 | imported function call. It looks like this: | |
283 | ||
284 | PLT[0]: | |
285 | str lr, [sp, #-4]! @push the return address (lr) | |
286 | ldr lr, [pc, #16] @load from 6 words ahead | |
287 | add lr, pc, lr @form an address for GOT[0] | |
288 | ldr pc, [lr, #8]! @jump to the contents of that addr | |
289 | ||
290 | The return address (lr) is pushed on the stack and used for | |
291 | calculations. The load on the second line loads the lr with | |
292 | &GOT[3] - . - 20. The addition on the third leaves: | |
293 | ||
294 | lr = (&GOT[3] - . - 20) + (. + 8) | |
295 | lr = (&GOT[3] - 12) | |
296 | lr = &GOT[0] | |
297 | ||
298 | On the fourth line, the pc and lr are both updated, so that: | |
299 | ||
300 | pc = GOT[2] | |
301 | lr = &GOT[0] + 8 | |
302 | = &GOT[2] | |
303 | ||
304 | NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little | |
305 | "tight", but allows us to keep all the PLT entries the same size. | |
306 | ||
307 | PLT[n+1]: | |
308 | ldr ip, [pc, #4] @load offset from gotoff | |
309 | add ip, pc, ip @add the offset to the pc | |
310 | ldr pc, [ip] @jump to that address | |
311 | gotoff: .word GOT[n+3] - . | |
312 | ||
313 | The load on the first line, gets an offset from the fourth word of | |
314 | the PLT entry. The add on the second line makes ip = &GOT[n+3], | |
315 | which contains either a pointer to PLT[0] (the fixup trampoline) or | |
316 | a pointer to the actual code. | |
317 | ||
318 | 3) In the GOT: | |
319 | ||
320 | The GOT contains helper pointers for both code (PLT) fixups and | |
321 | data fixups. The first 3 entries of the GOT are special. The next | |
322 | M entries (where M is the number of entries in the PLT) belong to | |
323 | the PLT fixups. The next D (all remaining) entries belong to | |
324 | various data fixups. The actual size of the GOT is 3 + M + D. | |
325 | ||
326 | The GOT is also a synthetic area, created by the linker. It exists | |
327 | in both executables and libraries. When the GOT is first | |
328 | initialized , all the GOT entries relating to PLT fixups are | |
329 | pointing to code back at PLT[0]. | |
330 | ||
331 | The special entries in the GOT are: | |
332 | ||
333 | GOT[0] = linked list pointer used by the dynamic loader | |
334 | GOT[1] = pointer to the reloc table for this module | |
335 | GOT[2] = pointer to the fixup/resolver code | |
336 | ||
337 | The first invocation of function call comes through and uses the | |
338 | fixup/resolver code. On the entry to the fixup/resolver code: | |
339 | ||
340 | ip = &GOT[n+3] | |
341 | lr = &GOT[2] | |
342 | stack[0] = return address (lr) of the function call | |
343 | [r0, r1, r2, r3] are still the arguments to the function call | |
344 | ||
345 | This is enough information for the fixup/resolver code to work | |
346 | with. Before the fixup/resolver code returns, it actually calls | |
347 | the requested function and repairs &GOT[n+3]. */ | |
348 | ||
a52e6aac SB |
349 | /* Find the minimal symbol named NAME, and return both the minsym |
350 | struct and its objfile. This probably ought to be in minsym.c, but | |
351 | everything there is trying to deal with things like C++ and | |
352 | SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may | |
353 | be considered too special-purpose for general consumption. */ | |
354 | ||
355 | static struct minimal_symbol * | |
356 | find_minsym_and_objfile (char *name, struct objfile **objfile_p) | |
357 | { | |
358 | struct objfile *objfile; | |
359 | ||
360 | ALL_OBJFILES (objfile) | |
361 | { | |
362 | struct minimal_symbol *msym; | |
363 | ||
364 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
365 | { | |
22abf04a DC |
366 | if (DEPRECATED_SYMBOL_NAME (msym) |
367 | && strcmp (DEPRECATED_SYMBOL_NAME (msym), name) == 0) | |
a52e6aac SB |
368 | { |
369 | *objfile_p = objfile; | |
370 | return msym; | |
371 | } | |
372 | } | |
373 | } | |
374 | ||
375 | return 0; | |
376 | } | |
377 | ||
378 | ||
379 | static CORE_ADDR | |
380 | skip_hurd_resolver (CORE_ADDR pc) | |
381 | { | |
382 | /* The HURD dynamic linker is part of the GNU C library, so many | |
383 | GNU/Linux distributions use it. (All ELF versions, as far as I | |
384 | know.) An unresolved PLT entry points to "_dl_runtime_resolve", | |
385 | which calls "fixup" to patch the PLT, and then passes control to | |
386 | the function. | |
387 | ||
388 | We look for the symbol `_dl_runtime_resolve', and find `fixup' in | |
389 | the same objfile. If we are at the entry point of `fixup', then | |
390 | we set a breakpoint at the return address (at the top of the | |
391 | stack), and continue. | |
392 | ||
393 | It's kind of gross to do all these checks every time we're | |
394 | called, since they don't change once the executable has gotten | |
395 | started. But this is only a temporary hack --- upcoming versions | |
fdf39c9a | 396 | of GNU/Linux will provide a portable, efficient interface for |
a52e6aac SB |
397 | debugging programs that use shared libraries. */ |
398 | ||
399 | struct objfile *objfile; | |
400 | struct minimal_symbol *resolver | |
401 | = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile); | |
402 | ||
403 | if (resolver) | |
404 | { | |
405 | struct minimal_symbol *fixup | |
9b27852e | 406 | = lookup_minimal_symbol ("fixup", NULL, objfile); |
a52e6aac SB |
407 | |
408 | if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc) | |
6913c89a | 409 | return (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ())); |
a52e6aac SB |
410 | } |
411 | ||
412 | return 0; | |
413 | } | |
414 | ||
415 | /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c. | |
416 | This function: | |
417 | 1) decides whether a PLT has sent us into the linker to resolve | |
418 | a function reference, and | |
419 | 2) if so, tells us where to set a temporary breakpoint that will | |
420 | trigger when the dynamic linker is done. */ | |
421 | ||
f38e884d | 422 | CORE_ADDR |
a52e6aac | 423 | arm_linux_skip_solib_resolver (CORE_ADDR pc) |
f38e884d | 424 | { |
a52e6aac SB |
425 | CORE_ADDR result; |
426 | ||
427 | /* Plug in functions for other kinds of resolvers here. */ | |
428 | result = skip_hurd_resolver (pc); | |
e1d6e81f | 429 | |
a52e6aac SB |
430 | if (result) |
431 | return result; | |
a52e6aac | 432 | |
f38e884d SB |
433 | return 0; |
434 | } | |
435 | ||
2a451106 KB |
436 | /* The constants below were determined by examining the following files |
437 | in the linux kernel sources: | |
438 | ||
439 | arch/arm/kernel/signal.c | |
440 | - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN | |
441 | include/asm-arm/unistd.h | |
442 | - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */ | |
443 | ||
444 | #define ARM_LINUX_SIGRETURN_INSTR 0xef900077 | |
445 | #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad | |
446 | ||
447 | /* arm_linux_in_sigtramp determines if PC points at one of the | |
448 | instructions which cause control to return to the Linux kernel upon | |
449 | return from a signal handler. FUNC_NAME is unused. */ | |
450 | ||
451 | int | |
452 | arm_linux_in_sigtramp (CORE_ADDR pc, char *func_name) | |
453 | { | |
454 | unsigned long inst; | |
455 | ||
456 | inst = read_memory_integer (pc, 4); | |
457 | ||
458 | return (inst == ARM_LINUX_SIGRETURN_INSTR | |
459 | || inst == ARM_LINUX_RT_SIGRETURN_INSTR); | |
460 | ||
461 | } | |
462 | ||
463 | /* arm_linux_sigcontext_register_address returns the address in the | |
464 | sigcontext of register REGNO given a stack pointer value SP and | |
465 | program counter value PC. The value 0 is returned if PC is not | |
466 | pointing at one of the signal return instructions or if REGNO is | |
467 | not saved in the sigcontext struct. */ | |
468 | ||
469 | CORE_ADDR | |
470 | arm_linux_sigcontext_register_address (CORE_ADDR sp, CORE_ADDR pc, int regno) | |
471 | { | |
472 | unsigned long inst; | |
473 | CORE_ADDR reg_addr = 0; | |
474 | ||
475 | inst = read_memory_integer (pc, 4); | |
476 | ||
fdf39c9a RE |
477 | if (inst == ARM_LINUX_SIGRETURN_INSTR |
478 | || inst == ARM_LINUX_RT_SIGRETURN_INSTR) | |
2a451106 KB |
479 | { |
480 | CORE_ADDR sigcontext_addr; | |
481 | ||
482 | /* The sigcontext structure is at different places for the two | |
483 | signal return instructions. For ARM_LINUX_SIGRETURN_INSTR, | |
484 | it starts at the SP value. For ARM_LINUX_RT_SIGRETURN_INSTR, | |
485 | it is at SP+8. For the latter instruction, it may also be | |
486 | the case that the address of this structure may be determined | |
487 | by reading the 4 bytes at SP, but I'm not convinced this is | |
488 | reliable. | |
489 | ||
490 | In any event, these magic constants (0 and 8) may be | |
491 | determined by examining struct sigframe and struct | |
492 | rt_sigframe in arch/arm/kernel/signal.c in the Linux kernel | |
493 | sources. */ | |
494 | ||
495 | if (inst == ARM_LINUX_RT_SIGRETURN_INSTR) | |
496 | sigcontext_addr = sp + 8; | |
497 | else /* inst == ARM_LINUX_SIGRETURN_INSTR */ | |
498 | sigcontext_addr = sp + 0; | |
499 | ||
500 | /* The layout of the sigcontext structure for ARM GNU/Linux is | |
501 | in include/asm-arm/sigcontext.h in the Linux kernel sources. | |
502 | ||
503 | There are three 4-byte fields which precede the saved r0 | |
504 | field. (This accounts for the 12 in the code below.) The | |
505 | sixteen registers (4 bytes per field) follow in order. The | |
506 | PSR value follows the sixteen registers which accounts for | |
507 | the constant 19 below. */ | |
508 | ||
34e8f22d | 509 | if (0 <= regno && regno <= ARM_PC_REGNUM) |
2a451106 | 510 | reg_addr = sigcontext_addr + 12 + (4 * regno); |
34e8f22d | 511 | else if (regno == ARM_PS_REGNUM) |
2a451106 KB |
512 | reg_addr = sigcontext_addr + 19 * 4; |
513 | } | |
514 | ||
515 | return reg_addr; | |
516 | } | |
517 | ||
97e03143 RE |
518 | static void |
519 | arm_linux_init_abi (struct gdbarch_info info, | |
520 | struct gdbarch *gdbarch) | |
521 | { | |
522 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
523 | ||
524 | tdep->lowest_pc = 0x8000; | |
66e810cd RE |
525 | tdep->arm_breakpoint = arm_linux_arm_le_breakpoint; |
526 | tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint); | |
9df628e0 | 527 | |
fd50bc42 RE |
528 | tdep->fp_model = ARM_FLOAT_FPA; |
529 | ||
a6cdd8c5 RE |
530 | tdep->jb_pc = ARM_LINUX_JB_PC; |
531 | tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE; | |
19d3fc80 | 532 | |
b1e29e33 AC |
533 | set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_linux_call_dummy_words); |
534 | set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (arm_linux_call_dummy_words)); | |
19d3fc80 RE |
535 | |
536 | /* The following two overrides shouldn't be needed. */ | |
26e9b323 | 537 | set_gdbarch_deprecated_extract_return_value (gdbarch, arm_linux_extract_return_value); |
b81774d8 | 538 | set_gdbarch_deprecated_push_arguments (gdbarch, arm_linux_push_arguments); |
0e18d038 RE |
539 | |
540 | /* Shared library handling. */ | |
541 | set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); | |
542 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); | |
97e03143 RE |
543 | } |
544 | ||
faf5f7ad SB |
545 | void |
546 | _initialize_arm_linux_tdep (void) | |
547 | { | |
05816f70 MK |
548 | gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX, |
549 | arm_linux_init_abi); | |
faf5f7ad | 550 | } |