]>
Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* tc-i960.c - All the i80960-specific stuff |
f7e42eb4 | 2 | Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, |
5a38dc70 | 3 | 1999, 2000, 2001, 2002 |
252b5132 RH |
4 | Free Software Foundation, Inc. |
5 | ||
6 | This file is part of GAS. | |
7 | ||
8 | GAS is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GAS is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GAS; see the file COPYING. If not, write to the Free | |
20 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA | |
21 | 02111-1307, USA. */ | |
22 | ||
92774660 | 23 | /* See comment on md_parse_option for 80960-specific invocation options. */ |
252b5132 RH |
24 | |
25 | /* There are 4 different lengths of (potentially) symbol-based displacements | |
26 | in the 80960 instruction set, each of which could require address fix-ups | |
27 | and (in the case of external symbols) emission of relocation directives: | |
28 | ||
29 | 32-bit (MEMB) | |
30 | This is a standard length for the base assembler and requires no | |
31 | special action. | |
32 | ||
33 | 13-bit (COBR) | |
34 | This is a non-standard length, but the base assembler has a | |
35 | hook for bit field address fixups: the fixS structure can | |
36 | point to a descriptor of the field, in which case our | |
37 | md_number_to_field() routine gets called to process it. | |
38 | ||
39 | I made the hook a little cleaner by having fix_new() (in the base | |
40 | assembler) return a pointer to the fixS in question. And I made it a | |
41 | little simpler by storing the field size (in this case 13) instead of | |
42 | of a pointer to another structure: 80960 displacements are ALWAYS | |
43 | stored in the low-order bits of a 4-byte word. | |
44 | ||
45 | Since the target of a COBR cannot be external, no relocation | |
46 | directives for this size displacement have to be generated. | |
47 | But the base assembler had to be modified to issue error | |
48 | messages if the symbol did turn out to be external. | |
49 | ||
50 | 24-bit (CTRL) | |
51 | Fixups are handled as for the 13-bit case (except that 24 is stored | |
52 | in the fixS). | |
53 | ||
54 | The relocation directive generated is the same as that for the 32-bit | |
55 | displacement, except that it's PC-relative (the 32-bit displacement | |
56 | never is). The i80960 version of the linker needs a mod to | |
57 | distinguish and handle the 24-bit case. | |
58 | ||
59 | 12-bit (MEMA) | |
60 | MEMA formats are always promoted to MEMB (32-bit) if the displacement | |
61 | is based on a symbol, because it could be relocated at link time. | |
62 | The only time we use the 12-bit format is if an absolute value of | |
63 | less than 4096 is specified, in which case we need neither a fixup nor | |
64 | a relocation directive. */ | |
65 | ||
66 | #include <stdio.h> | |
252b5132 RH |
67 | |
68 | #include "as.h" | |
69 | ||
3882b010 | 70 | #include "safe-ctype.h" |
252b5132 RH |
71 | #include "obstack.h" |
72 | ||
73 | #include "opcode/i960.h" | |
74 | ||
75 | #if defined (OBJ_AOUT) || defined (OBJ_BOUT) | |
76 | ||
77 | #define TC_S_IS_SYSPROC(s) ((1<=S_GET_OTHER(s)) && (S_GET_OTHER(s)<=32)) | |
78 | #define TC_S_IS_BALNAME(s) (S_GET_OTHER(s) == N_BALNAME) | |
79 | #define TC_S_IS_CALLNAME(s) (S_GET_OTHER(s) == N_CALLNAME) | |
80 | #define TC_S_IS_BADPROC(s) ((S_GET_OTHER(s) != 0) && !TC_S_IS_CALLNAME(s) && !TC_S_IS_BALNAME(s) && !TC_S_IS_SYSPROC(s)) | |
81 | ||
82 | #define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER((s), (p)+1)) | |
83 | #define TC_S_GET_SYSPROC(s) (S_GET_OTHER(s)-1) | |
84 | ||
85 | #define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER((s), N_BALNAME)) | |
86 | #define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER((s), N_CALLNAME)) | |
87 | #define TC_S_FORCE_TO_SYSPROC(s) {;} | |
88 | ||
89 | #else /* ! OBJ_A/BOUT */ | |
90 | #ifdef OBJ_COFF | |
91 | ||
92 | #define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS(s) == C_SCALL) | |
93 | #define TC_S_IS_BALNAME(s) (SF_GET_BALNAME(s)) | |
94 | #define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME(s)) | |
95 | #define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC(s) && TC_S_GET_SYSPROC(s) < 0 && 31 < TC_S_GET_SYSPROC(s)) | |
96 | ||
97 | #define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p)) | |
98 | #define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx) | |
99 | ||
100 | #define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME(s)) | |
101 | #define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME(s)) | |
102 | #define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS((s), C_SCALL)) | |
103 | ||
104 | #else /* ! OBJ_COFF */ | |
bedf545c ILT |
105 | #ifdef OBJ_ELF |
106 | #define TC_S_IS_SYSPROC(s) 0 | |
107 | ||
108 | #define TC_S_IS_BALNAME(s) 0 | |
109 | #define TC_S_IS_CALLNAME(s) 0 | |
110 | #define TC_S_IS_BADPROC(s) 0 | |
111 | ||
112 | #define TC_S_SET_SYSPROC(s, p) | |
113 | #define TC_S_GET_SYSPROC(s) 0 | |
114 | ||
115 | #define TC_S_FORCE_TO_BALNAME(s) | |
116 | #define TC_S_FORCE_TO_CALLNAME(s) | |
117 | #define TC_S_FORCE_TO_SYSPROC(s) | |
118 | #else | |
119 | #error COFF, a.out, b.out, and ELF are the only supported formats. | |
120 | #endif /* ! OBJ_ELF */ | |
252b5132 RH |
121 | #endif /* ! OBJ_COFF */ |
122 | #endif /* ! OBJ_A/BOUT */ | |
123 | ||
124 | extern char *input_line_pointer; | |
125 | ||
126 | #if !defined (BFD_ASSEMBLER) && !defined (BFD) | |
127 | #ifdef OBJ_COFF | |
128 | const int md_reloc_size = sizeof (struct reloc); | |
129 | #else /* OBJ_COFF */ | |
130 | const int md_reloc_size = sizeof (struct relocation_info); | |
131 | #endif /* OBJ_COFF */ | |
132 | #endif | |
133 | ||
134 | /* Local i80960 routines. */ | |
135 | ||
136 | static void brcnt_emit (); /* Emit branch-prediction instrumentation code */ | |
137 | static char *brlab_next (); /* Return next branch local label */ | |
138 | void brtab_emit (); /* Emit br-predict instrumentation table */ | |
139 | static void cobr_fmt (); /* Generate COBR instruction */ | |
140 | static void ctrl_fmt (); /* Generate CTRL instruction */ | |
141 | static char *emit (); /* Emit (internally) binary */ | |
142 | static int get_args (); /* Break arguments out of comma-separated list */ | |
143 | static void get_cdisp (); /* Handle COBR or CTRL displacement */ | |
144 | static char *get_ispec (); /* Find index specification string */ | |
145 | static int get_regnum (); /* Translate text to register number */ | |
146 | static int i_scan (); /* Lexical scan of instruction source */ | |
147 | static void mem_fmt (); /* Generate MEMA or MEMB instruction */ | |
148 | static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */ | |
149 | static void parse_expr (); /* Parse an expression */ | |
150 | static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */ | |
151 | static void parse_memop (); /* Parse a memory operand */ | |
152 | static void parse_po (); /* Parse machine-dependent pseudo-op */ | |
153 | static void parse_regop (); /* Parse a register operand */ | |
154 | static void reg_fmt (); /* Generate a REG format instruction */ | |
155 | void reloc_callj (); /* Relocate a 'callj' instruction */ | |
156 | static void relax_cobr (); /* "De-optimize" cobr into compare/branch */ | |
157 | static void s_leafproc (); /* Process '.leafproc' pseudo-op */ | |
158 | static void s_sysproc (); /* Process '.sysproc' pseudo-op */ | |
159 | static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */ | |
160 | static void syntax (); /* Give syntax error */ | |
161 | static int targ_has_sfr (); /* Target chip supports spec-func register? */ | |
162 | static int targ_has_iclass (); /* Target chip supports instruction set? */ | |
163 | ||
164 | /* See md_parse_option() for meanings of these options */ | |
165 | static char norelax; /* True if -norelax switch seen */ | |
166 | static char instrument_branches; /* True if -b switch seen */ | |
167 | ||
168 | /* Characters that always start a comment. | |
169 | If the pre-processor is disabled, these aren't very useful. | |
170 | */ | |
171 | const char comment_chars[] = "#"; | |
172 | ||
173 | /* Characters that only start a comment at the beginning of | |
174 | a line. If the line seems to have the form '# 123 filename' | |
175 | .line and .file directives will appear in the pre-processed output. | |
176 | ||
177 | Note that input_file.c hand checks for '#' at the beginning of the | |
178 | first line of the input file. This is because the compiler outputs | |
179 | #NO_APP at the beginning of its output. | |
180 | */ | |
181 | ||
92774660 | 182 | /* Also note that comments started like this one will always work. */ |
252b5132 | 183 | |
63a0b638 | 184 | const char line_comment_chars[] = ""; |
252b5132 | 185 | |
63a0b638 | 186 | const char line_separator_chars[] = ";"; |
252b5132 RH |
187 | |
188 | /* Chars that can be used to separate mant from exp in floating point nums */ | |
189 | const char EXP_CHARS[] = "eE"; | |
190 | ||
191 | /* Chars that mean this number is a floating point constant, | |
192 | as in 0f12.456 or 0d1.2345e12 | |
193 | */ | |
194 | const char FLT_CHARS[] = "fFdDtT"; | |
195 | ||
252b5132 RH |
196 | /* Table used by base assembler to relax addresses based on varying length |
197 | instructions. The fields are: | |
198 | 1) most positive reach of this state, | |
199 | 2) most negative reach of this state, | |
200 | 3) how many bytes this mode will add to the size of the current frag | |
201 | 4) which index into the table to try if we can't fit into this one. | |
202 | ||
203 | For i80960, the only application is the (de-)optimization of cobr | |
204 | instructions into separate compare and branch instructions when a 13-bit | |
205 | displacement won't hack it. | |
206 | */ | |
207 | const relax_typeS md_relax_table[] = | |
208 | { | |
209 | {0, 0, 0, 0}, /* State 0 => no more relaxation possible */ | |
210 | {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */ | |
211 | {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */ | |
212 | }; | |
213 | ||
214 | static void s_endian PARAMS ((int)); | |
215 | ||
216 | /* These are the machine dependent pseudo-ops. | |
217 | ||
218 | This table describes all the machine specific pseudo-ops the assembler | |
219 | has to support. The fields are: | |
220 | pseudo-op name without dot | |
221 | function to call to execute this pseudo-op | |
222 | integer arg to pass to the function | |
223 | */ | |
224 | #define S_LEAFPROC 1 | |
225 | #define S_SYSPROC 2 | |
226 | ||
227 | const pseudo_typeS md_pseudo_table[] = | |
228 | { | |
229 | {"bss", s_lcomm, 1}, | |
230 | {"endian", s_endian, 0}, | |
231 | {"extended", float_cons, 't'}, | |
232 | {"leafproc", parse_po, S_LEAFPROC}, | |
233 | {"sysproc", parse_po, S_SYSPROC}, | |
234 | ||
235 | {"word", cons, 4}, | |
236 | {"quad", cons, 16}, | |
237 | ||
238 | {0, 0, 0} | |
239 | }; | |
240 | \f | |
241 | /* Macros to extract info from an 'expressionS' structure 'e' */ | |
242 | #define adds(e) e.X_add_symbol | |
243 | #define offs(e) e.X_add_number | |
244 | ||
252b5132 RH |
245 | /* Branch-prediction bits for CTRL/COBR format opcodes */ |
246 | #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */ | |
247 | #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */ | |
248 | #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */ | |
249 | ||
252b5132 RH |
250 | /* Some instruction opcodes that we need explicitly */ |
251 | #define BE 0x12000000 | |
252 | #define BG 0x11000000 | |
253 | #define BGE 0x13000000 | |
254 | #define BL 0x14000000 | |
255 | #define BLE 0x16000000 | |
256 | #define BNE 0x15000000 | |
257 | #define BNO 0x10000000 | |
258 | #define BO 0x17000000 | |
259 | #define CHKBIT 0x5a002700 | |
260 | #define CMPI 0x5a002080 | |
261 | #define CMPO 0x5a002000 | |
262 | ||
263 | #define B 0x08000000 | |
264 | #define BAL 0x0b000000 | |
265 | #define CALL 0x09000000 | |
266 | #define CALLS 0x66003800 | |
267 | #define RET 0x0a000000 | |
268 | ||
92774660 | 269 | /* These masks are used to build up a set of MEMB mode bits. */ |
252b5132 RH |
270 | #define A_BIT 0x0400 |
271 | #define I_BIT 0x0800 | |
272 | #define MEMB_BIT 0x1000 | |
273 | #define D_BIT 0x2000 | |
274 | ||
252b5132 RH |
275 | /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is |
276 | used). */ | |
277 | #define MEMA_ABASE 0x2000 | |
278 | ||
279 | /* Info from which a MEMA or MEMB format instruction can be generated */ | |
280 | typedef struct | |
281 | { | |
282 | /* (First) 32 bits of instruction */ | |
283 | long opcode; | |
284 | /* 0-(none), 12- or, 32-bit displacement needed */ | |
285 | int disp; | |
286 | /* The expression in the source instruction from which the | |
287 | displacement should be determined. */ | |
288 | char *e; | |
289 | } | |
290 | ||
291 | memS; | |
292 | ||
252b5132 RH |
293 | /* The two pieces of info we need to generate a register operand */ |
294 | struct regop | |
295 | { | |
296 | int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */ | |
297 | int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */ | |
298 | int n; /* Register number or literal value */ | |
299 | }; | |
300 | ||
252b5132 RH |
301 | /* Number and assembler mnemonic for all registers that can appear in |
302 | operands. */ | |
303 | static const struct | |
304 | { | |
305 | char *reg_name; | |
306 | int reg_num; | |
307 | } | |
308 | regnames[] = | |
309 | { | |
310 | { "pfp", 0 }, | |
311 | { "sp", 1 }, | |
312 | { "rip", 2 }, | |
313 | { "r3", 3 }, | |
314 | { "r4", 4 }, | |
315 | { "r5", 5 }, | |
316 | { "r6", 6 }, | |
317 | { "r7", 7 }, | |
318 | { "r8", 8 }, | |
319 | { "r9", 9 }, | |
320 | { "r10", 10 }, | |
321 | { "r11", 11 }, | |
322 | { "r12", 12 }, | |
323 | { "r13", 13 }, | |
324 | { "r14", 14 }, | |
325 | { "r15", 15 }, | |
326 | { "g0", 16 }, | |
327 | { "g1", 17 }, | |
328 | { "g2", 18 }, | |
329 | { "g3", 19 }, | |
330 | { "g4", 20 }, | |
331 | { "g5", 21 }, | |
332 | { "g6", 22 }, | |
333 | { "g7", 23 }, | |
334 | { "g8", 24 }, | |
335 | { "g9", 25 }, | |
336 | { "g10", 26 }, | |
337 | { "g11", 27 }, | |
338 | { "g12", 28 }, | |
339 | { "g13", 29 }, | |
340 | { "g14", 30 }, | |
341 | { "fp", 31 }, | |
342 | ||
343 | /* Numbers for special-function registers are for assembler internal | |
344 | use only: they are scaled back to range [0-31] for binary output. */ | |
345 | #define SF0 32 | |
346 | ||
347 | { "sf0", 32 }, | |
348 | { "sf1", 33 }, | |
349 | { "sf2", 34 }, | |
350 | { "sf3", 35 }, | |
351 | { "sf4", 36 }, | |
352 | { "sf5", 37 }, | |
353 | { "sf6", 38 }, | |
354 | { "sf7", 39 }, | |
355 | { "sf8", 40 }, | |
356 | { "sf9", 41 }, | |
357 | { "sf10", 42 }, | |
358 | { "sf11", 43 }, | |
359 | { "sf12", 44 }, | |
360 | { "sf13", 45 }, | |
361 | { "sf14", 46 }, | |
362 | { "sf15", 47 }, | |
363 | { "sf16", 48 }, | |
364 | { "sf17", 49 }, | |
365 | { "sf18", 50 }, | |
366 | { "sf19", 51 }, | |
367 | { "sf20", 52 }, | |
368 | { "sf21", 53 }, | |
369 | { "sf22", 54 }, | |
370 | { "sf23", 55 }, | |
371 | { "sf24", 56 }, | |
372 | { "sf25", 57 }, | |
373 | { "sf26", 58 }, | |
374 | { "sf27", 59 }, | |
375 | { "sf28", 60 }, | |
376 | { "sf29", 61 }, | |
377 | { "sf30", 62 }, | |
378 | { "sf31", 63 }, | |
379 | ||
380 | /* Numbers for floating point registers are for assembler internal | |
381 | use only: they are scaled back to [0-3] for binary output. */ | |
382 | #define FP0 64 | |
383 | ||
384 | { "fp0", 64 }, | |
385 | { "fp1", 65 }, | |
386 | { "fp2", 66 }, | |
387 | { "fp3", 67 }, | |
388 | ||
389 | { NULL, 0 }, /* END OF LIST */ | |
390 | }; | |
391 | ||
392 | #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0)) | |
393 | #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0)) | |
394 | #define IS_FP_REG(n) ((n) >= FP0) | |
395 | ||
396 | /* Number and assembler mnemonic for all registers that can appear as | |
397 | 'abase' (indirect addressing) registers. */ | |
398 | static const struct | |
399 | { | |
400 | char *areg_name; | |
401 | int areg_num; | |
402 | } | |
403 | aregs[] = | |
404 | { | |
405 | { "(pfp)", 0 }, | |
406 | { "(sp)", 1 }, | |
407 | { "(rip)", 2 }, | |
408 | { "(r3)", 3 }, | |
409 | { "(r4)", 4 }, | |
410 | { "(r5)", 5 }, | |
411 | { "(r6)", 6 }, | |
412 | { "(r7)", 7 }, | |
413 | { "(r8)", 8 }, | |
414 | { "(r9)", 9 }, | |
415 | { "(r10)", 10 }, | |
416 | { "(r11)", 11 }, | |
417 | { "(r12)", 12 }, | |
418 | { "(r13)", 13 }, | |
419 | { "(r14)", 14 }, | |
420 | { "(r15)", 15 }, | |
421 | { "(g0)", 16 }, | |
422 | { "(g1)", 17 }, | |
423 | { "(g2)", 18 }, | |
424 | { "(g3)", 19 }, | |
425 | { "(g4)", 20 }, | |
426 | { "(g5)", 21 }, | |
427 | { "(g6)", 22 }, | |
428 | { "(g7)", 23 }, | |
429 | { "(g8)", 24 }, | |
430 | { "(g9)", 25 }, | |
431 | { "(g10)", 26 }, | |
432 | { "(g11)", 27 }, | |
433 | { "(g12)", 28 }, | |
434 | { "(g13)", 29 }, | |
435 | { "(g14)", 30 }, | |
436 | { "(fp)", 31 }, | |
437 | ||
438 | #define IPREL 32 | |
439 | /* For assembler internal use only: this number never appears in binary | |
440 | output. */ | |
441 | { "(ip)", IPREL }, | |
442 | ||
443 | { NULL, 0 }, /* END OF LIST */ | |
444 | }; | |
445 | ||
252b5132 RH |
446 | /* Hash tables */ |
447 | static struct hash_control *op_hash; /* Opcode mnemonics */ | |
448 | static struct hash_control *reg_hash; /* Register name hash table */ | |
449 | static struct hash_control *areg_hash; /* Abase register hash table */ | |
450 | ||
252b5132 RH |
451 | /* Architecture for which we are assembling */ |
452 | #define ARCH_ANY 0 /* Default: no architecture checking done */ | |
453 | #define ARCH_KA 1 | |
454 | #define ARCH_KB 2 | |
455 | #define ARCH_MC 3 | |
456 | #define ARCH_CA 4 | |
457 | #define ARCH_JX 5 | |
458 | #define ARCH_HX 6 | |
459 | int architecture = ARCH_ANY; /* Architecture requested on invocation line */ | |
460 | int iclasses_seen; /* OR of instruction classes (I_* constants) | |
461 | * for which we've actually assembled | |
462 | * instructions. | |
463 | */ | |
464 | ||
252b5132 RH |
465 | /* BRANCH-PREDICTION INSTRUMENTATION |
466 | ||
467 | The following supports generation of branch-prediction instrumentation | |
468 | (turned on by -b switch). The instrumentation collects counts | |
469 | of branches taken/not-taken for later input to a utility that will | |
470 | set the branch prediction bits of the instructions in accordance with | |
471 | the behavior observed. (Note that the KX series does not have | |
472 | brach-prediction.) | |
473 | ||
474 | The instrumentation consists of: | |
475 | ||
476 | (1) before and after each conditional branch, a call to an external | |
477 | routine that increments and steps over an inline counter. The | |
478 | counter itself, initialized to 0, immediately follows the call | |
479 | instruction. For each branch, the counter following the branch | |
480 | is the number of times the branch was not taken, and the difference | |
481 | between the counters is the number of times it was taken. An | |
482 | example of an instrumented conditional branch: | |
483 | ||
484 | call BR_CNT_FUNC | |
485 | .word 0 | |
486 | LBRANCH23: be label | |
487 | call BR_CNT_FUNC | |
488 | .word 0 | |
489 | ||
490 | (2) a table of pointers to the instrumented branches, so that an | |
491 | external postprocessing routine can locate all of the counters. | |
492 | the table begins with a 2-word header: a pointer to the next in | |
493 | a linked list of such tables (initialized to 0); and a count | |
494 | of the number of entries in the table (exclusive of the header. | |
495 | ||
496 | Note that input source code is expected to already contain calls | |
497 | an external routine that will link the branch local table into a | |
498 | list of such tables. | |
499 | */ | |
500 | ||
501 | /* Number of branches instrumented so far. Also used to generate | |
502 | unique local labels for each instrumented branch. */ | |
503 | static int br_cnt; | |
504 | ||
505 | #define BR_LABEL_BASE "LBRANCH" | |
506 | /* Basename of local labels on instrumented branches, to avoid | |
507 | conflict with compiler- generated local labels. */ | |
508 | ||
509 | #define BR_CNT_FUNC "__inc_branch" | |
510 | /* Name of the external routine that will increment (and step over) an | |
511 | inline counter. */ | |
512 | ||
513 | #define BR_TAB_NAME "__BRANCH_TABLE__" | |
514 | /* Name of the table of pointers to branches. A local (i.e., | |
515 | non-external) symbol. */ | |
516 | \f | |
517 | /***************************************************************************** | |
518 | md_begin: One-time initialization. | |
519 | ||
520 | Set up hash tables. | |
521 | ||
522 | *************************************************************************** */ | |
523 | void | |
524 | md_begin () | |
525 | { | |
526 | int i; /* Loop counter */ | |
527 | const struct i960_opcode *oP; /* Pointer into opcode table */ | |
528 | const char *retval; /* Value returned by hash functions */ | |
529 | ||
530 | op_hash = hash_new (); | |
531 | reg_hash = hash_new (); | |
532 | areg_hash = hash_new (); | |
533 | ||
534 | /* For some reason, the base assembler uses an empty string for "no | |
535 | error message", instead of a NULL pointer. */ | |
536 | retval = 0; | |
537 | ||
538 | for (oP = i960_opcodes; oP->name && !retval; oP++) | |
539 | retval = hash_insert (op_hash, oP->name, (PTR) oP); | |
540 | ||
541 | for (i = 0; regnames[i].reg_name && !retval; i++) | |
542 | retval = hash_insert (reg_hash, regnames[i].reg_name, | |
543 | (char *) ®names[i].reg_num); | |
544 | ||
545 | for (i = 0; aregs[i].areg_name && !retval; i++) | |
546 | retval = hash_insert (areg_hash, aregs[i].areg_name, | |
547 | (char *) &aregs[i].areg_num); | |
548 | ||
549 | if (retval) | |
550 | as_fatal (_("Hashing returned \"%s\"."), retval); | |
551 | } | |
552 | ||
553 | /***************************************************************************** | |
554 | md_assemble: Assemble an instruction | |
555 | ||
556 | Assumptions about the passed-in text: | |
557 | - all comments, labels removed | |
558 | - text is an instruction | |
559 | - all white space compressed to single blanks | |
560 | - all character constants have been replaced with decimal | |
561 | ||
562 | *************************************************************************** */ | |
563 | void | |
564 | md_assemble (textP) | |
565 | char *textP; /* Source text of instruction */ | |
566 | { | |
567 | /* Parsed instruction text, containing NO whitespace: arg[0]->opcode | |
568 | mnemonic arg[1-3]->operands, with char constants replaced by | |
569 | decimal numbers. */ | |
570 | char *args[4]; | |
571 | ||
572 | int n_ops; /* Number of instruction operands */ | |
573 | /* Pointer to instruction description */ | |
574 | struct i960_opcode *oP; | |
575 | /* TRUE iff opcode mnemonic included branch-prediction suffix (".f" | |
576 | or ".t"). */ | |
577 | int branch_predict; | |
578 | /* Setting of branch-prediction bit(s) to be OR'd into instruction | |
579 | opcode of CTRL/COBR format instructions. */ | |
580 | long bp_bits; | |
581 | ||
582 | int n; /* Offset of last character in opcode mnemonic */ | |
583 | ||
584 | const char *bp_error_msg = _("branch prediction invalid on this opcode"); | |
585 | ||
252b5132 RH |
586 | /* Parse instruction into opcode and operands */ |
587 | memset (args, '\0', sizeof (args)); | |
588 | n_ops = i_scan (textP, args); | |
589 | if (n_ops == -1) | |
590 | { | |
591 | return; /* Error message already issued */ | |
592 | } | |
593 | ||
594 | /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */ | |
595 | if (!strcmp (args[0], "ldconst")) | |
596 | { | |
597 | n_ops = parse_ldconst (args); | |
598 | if (n_ops == -1) | |
599 | { | |
600 | return; | |
601 | } | |
602 | } | |
603 | ||
252b5132 RH |
604 | /* Check for branch-prediction suffix on opcode mnemonic, strip it off */ |
605 | n = strlen (args[0]) - 1; | |
606 | branch_predict = 0; | |
607 | bp_bits = 0; | |
608 | if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')) | |
609 | { | |
610 | /* We could check here to see if the target architecture | |
611 | supports branch prediction, but why bother? The bit will | |
612 | just be ignored by processors that don't use it. */ | |
613 | branch_predict = 1; | |
614 | bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN; | |
615 | args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */ | |
616 | } | |
617 | ||
618 | /* Look up opcode mnemonic in table and check number of operands. | |
619 | Check that opcode is legal for the target architecture. If all | |
620 | looks good, assemble instruction. */ | |
621 | oP = (struct i960_opcode *) hash_find (op_hash, args[0]); | |
622 | if (!oP || !targ_has_iclass (oP->iclass)) | |
623 | { | |
624 | as_bad (_("invalid opcode, \"%s\"."), args[0]); | |
625 | ||
626 | } | |
627 | else if (n_ops != oP->num_ops) | |
628 | { | |
629 | as_bad (_("improper number of operands. expecting %d, got %d"), | |
630 | oP->num_ops, n_ops); | |
631 | } | |
632 | else | |
633 | { | |
634 | switch (oP->format) | |
635 | { | |
636 | case FBRA: | |
637 | case CTRL: | |
638 | ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops); | |
639 | if (oP->format == FBRA) | |
640 | { | |
641 | /* Now generate a 'bno' to same arg */ | |
642 | ctrl_fmt (args[1], BNO | bp_bits, 1); | |
643 | } | |
644 | break; | |
645 | case COBR: | |
646 | case COJ: | |
647 | cobr_fmt (args, oP->opcode | bp_bits, oP); | |
648 | break; | |
649 | case REG: | |
650 | if (branch_predict) | |
651 | { | |
652 | as_warn (bp_error_msg); | |
653 | } | |
654 | reg_fmt (args, oP); | |
655 | break; | |
656 | case MEM1: | |
657 | if (args[0][0] == 'c' && args[0][1] == 'a') | |
658 | { | |
659 | if (branch_predict) | |
660 | { | |
661 | as_warn (bp_error_msg); | |
662 | } | |
663 | mem_fmt (args, oP, 1); | |
664 | break; | |
665 | } | |
666 | case MEM2: | |
667 | case MEM4: | |
668 | case MEM8: | |
669 | case MEM12: | |
670 | case MEM16: | |
671 | if (branch_predict) | |
672 | { | |
673 | as_warn (bp_error_msg); | |
674 | } | |
675 | mem_fmt (args, oP, 0); | |
676 | break; | |
677 | case CALLJ: | |
678 | if (branch_predict) | |
679 | { | |
680 | as_warn (bp_error_msg); | |
681 | } | |
682 | /* Output opcode & set up "fixup" (relocation); flag | |
683 | relocation as 'callj' type. */ | |
684 | know (oP->num_ops == 1); | |
685 | get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1); | |
686 | break; | |
687 | default: | |
688 | BAD_CASE (oP->format); | |
689 | break; | |
690 | } | |
691 | } | |
692 | } /* md_assemble() */ | |
693 | ||
694 | /***************************************************************************** | |
695 | md_number_to_chars: convert a number to target byte order | |
696 | ||
697 | *************************************************************************** */ | |
698 | void | |
699 | md_number_to_chars (buf, value, n) | |
700 | char *buf; | |
701 | valueT value; | |
702 | int n; | |
703 | { | |
704 | number_to_chars_littleendian (buf, value, n); | |
705 | } | |
706 | ||
707 | /***************************************************************************** | |
708 | md_chars_to_number: convert from target byte order to host byte order. | |
709 | ||
710 | *************************************************************************** */ | |
711 | int | |
712 | md_chars_to_number (val, n) | |
713 | unsigned char *val; /* Value in target byte order */ | |
714 | int n; /* Number of bytes in the input */ | |
715 | { | |
716 | int retval; | |
717 | ||
718 | for (retval = 0; n--;) | |
719 | { | |
720 | retval <<= 8; | |
721 | retval |= val[n]; | |
722 | } | |
723 | return retval; | |
724 | } | |
725 | ||
252b5132 | 726 | #define MAX_LITTLENUMS 6 |
bc805888 | 727 | #define LNUM_SIZE sizeof (LITTLENUM_TYPE) |
252b5132 RH |
728 | |
729 | /***************************************************************************** | |
730 | md_atof: convert ascii to floating point | |
731 | ||
732 | Turn a string at input_line_pointer into a floating point constant of type | |
733 | 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS | |
734 | emitted is returned at 'sizeP'. An error message is returned, or a pointer | |
735 | to an empty message if OK. | |
736 | ||
737 | Note we call the i386 floating point routine, rather than complicating | |
738 | things with more files or symbolic links. | |
739 | ||
740 | *************************************************************************** */ | |
741 | char * | |
742 | md_atof (type, litP, sizeP) | |
743 | int type; | |
744 | char *litP; | |
745 | int *sizeP; | |
746 | { | |
747 | LITTLENUM_TYPE words[MAX_LITTLENUMS]; | |
748 | LITTLENUM_TYPE *wordP; | |
749 | int prec; | |
750 | char *t; | |
751 | char *atof_ieee (); | |
752 | ||
753 | switch (type) | |
754 | { | |
755 | case 'f': | |
756 | case 'F': | |
757 | prec = 2; | |
758 | break; | |
759 | ||
760 | case 'd': | |
761 | case 'D': | |
762 | prec = 4; | |
763 | break; | |
764 | ||
765 | case 't': | |
766 | case 'T': | |
767 | prec = 5; | |
768 | type = 'x'; /* That's what atof_ieee() understands */ | |
769 | break; | |
770 | ||
771 | default: | |
772 | *sizeP = 0; | |
773 | return _("Bad call to md_atof()"); | |
774 | } | |
775 | ||
776 | t = atof_ieee (input_line_pointer, type, words); | |
777 | if (t) | |
778 | { | |
779 | input_line_pointer = t; | |
780 | } | |
781 | ||
782 | *sizeP = prec * LNUM_SIZE; | |
783 | ||
784 | /* Output the LITTLENUMs in REVERSE order in accord with i80960 | |
785 | word-order. (Dunno why atof_ieee doesn't do it in the right | |
786 | order in the first place -- probably because it's a hack of | |
787 | atof_m68k.) */ | |
788 | ||
789 | for (wordP = words + prec - 1; prec--;) | |
790 | { | |
791 | md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE); | |
792 | litP += sizeof (LITTLENUM_TYPE); | |
793 | } | |
794 | ||
795 | return 0; | |
796 | } | |
797 | ||
252b5132 RH |
798 | /***************************************************************************** |
799 | md_number_to_imm | |
800 | ||
801 | *************************************************************************** */ | |
802 | void | |
803 | md_number_to_imm (buf, val, n) | |
804 | char *buf; | |
805 | long val; | |
806 | int n; | |
807 | { | |
808 | md_number_to_chars (buf, val, n); | |
809 | } | |
810 | ||
252b5132 RH |
811 | /***************************************************************************** |
812 | md_number_to_disp | |
813 | ||
814 | *************************************************************************** */ | |
815 | void | |
816 | md_number_to_disp (buf, val, n) | |
817 | char *buf; | |
818 | long val; | |
819 | int n; | |
820 | { | |
821 | md_number_to_chars (buf, val, n); | |
822 | } | |
823 | ||
824 | /***************************************************************************** | |
825 | md_number_to_field: | |
826 | ||
827 | Stick a value (an address fixup) into a bit field of | |
828 | previously-generated instruction. | |
829 | ||
830 | *************************************************************************** */ | |
831 | void | |
832 | md_number_to_field (instrP, val, bfixP) | |
833 | char *instrP; /* Pointer to instruction to be fixed */ | |
834 | long val; /* Address fixup value */ | |
835 | bit_fixS *bfixP; /* Description of bit field to be fixed up */ | |
836 | { | |
837 | int numbits; /* Length of bit field to be fixed */ | |
838 | long instr; /* 32-bit instruction to be fixed-up */ | |
839 | long sign; /* 0 or -1, according to sign bit of 'val' */ | |
840 | ||
841 | /* Convert instruction back to host byte order. */ | |
842 | instr = md_chars_to_number (instrP, 4); | |
843 | ||
844 | /* Surprise! -- we stored the number of bits to be modified rather | |
845 | than a pointer to a structure. */ | |
846 | numbits = (int) bfixP; | |
847 | if (numbits == 1) | |
848 | { | |
849 | /* This is a no-op, stuck here by reloc_callj() */ | |
850 | return; | |
851 | } | |
852 | ||
853 | know ((numbits == 13) || (numbits == 24)); | |
854 | ||
855 | /* Propagate sign bit of 'val' for the given number of bits. Result | |
856 | should be all 0 or all 1. */ | |
857 | sign = val >> ((int) numbits - 1); | |
858 | if (((val < 0) && (sign != -1)) | |
859 | || ((val > 0) && (sign != 0))) | |
860 | { | |
861 | as_bad (_("Fixup of %ld too large for field width of %d"), | |
862 | val, numbits); | |
863 | } | |
864 | else | |
865 | { | |
866 | /* Put bit field into instruction and write back in target | |
867 | * byte order. | |
868 | */ | |
869 | val &= ~(-1 << (int) numbits); /* Clear unused sign bits */ | |
870 | instr |= val; | |
871 | md_number_to_chars (instrP, instr, 4); | |
872 | } | |
873 | } /* md_number_to_field() */ | |
874 | \f | |
875 | ||
876 | /***************************************************************************** | |
877 | md_parse_option | |
878 | Invocation line includes a switch not recognized by the base assembler. | |
879 | See if it's a processor-specific option. For the 960, these are: | |
880 | ||
881 | -norelax: | |
882 | Conditional branch instructions that require displacements | |
883 | greater than 13 bits (or that have external targets) should | |
884 | generate errors. The default is to replace each such | |
885 | instruction with the corresponding compare (or chkbit) and | |
886 | branch instructions. Note that the Intel "j" cobr directives | |
887 | are ALWAYS "de-optimized" in this way when necessary, | |
888 | regardless of the setting of this option. | |
889 | ||
890 | -b: | |
891 | Add code to collect information about branches taken, for | |
892 | later optimization of branch prediction bits by a separate | |
893 | tool. COBR and CNTL format instructions have branch | |
894 | prediction bits (in the CX architecture); if "BR" represents | |
895 | an instruction in one of these classes, the following rep- | |
896 | resents the code generated by the assembler: | |
897 | ||
898 | call <increment routine> | |
899 | .word 0 # pre-counter | |
900 | Label: BR | |
901 | call <increment routine> | |
902 | .word 0 # post-counter | |
903 | ||
904 | A table of all such "Labels" is also generated. | |
905 | ||
252b5132 RH |
906 | -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA: |
907 | Select the 80960 architecture. Instructions or features not | |
908 | supported by the selected architecture cause fatal errors. | |
909 | The default is to generate code for any instruction or feature | |
910 | that is supported by SOME version of the 960 (even if this | |
911 | means mixing architectures!). | |
912 | ||
913 | ****************************************************************************/ | |
914 | ||
5a38dc70 | 915 | const char *md_shortopts = "A:b"; |
252b5132 RH |
916 | struct option md_longopts[] = |
917 | { | |
918 | #define OPTION_LINKRELAX (OPTION_MD_BASE) | |
919 | {"linkrelax", no_argument, NULL, OPTION_LINKRELAX}, | |
920 | {"link-relax", no_argument, NULL, OPTION_LINKRELAX}, | |
921 | #define OPTION_NORELAX (OPTION_MD_BASE + 1) | |
922 | {"norelax", no_argument, NULL, OPTION_NORELAX}, | |
923 | {"no-relax", no_argument, NULL, OPTION_NORELAX}, | |
924 | {NULL, no_argument, NULL, 0} | |
925 | }; | |
926 | size_t md_longopts_size = sizeof (md_longopts); | |
927 | ||
928 | struct tabentry | |
929 | { | |
930 | char *flag; | |
931 | int arch; | |
932 | }; | |
933 | static const struct tabentry arch_tab[] = | |
934 | { | |
935 | {"KA", ARCH_KA}, | |
936 | {"KB", ARCH_KB}, | |
937 | {"SA", ARCH_KA}, /* Synonym for KA */ | |
938 | {"SB", ARCH_KB}, /* Synonym for KB */ | |
939 | {"KC", ARCH_MC}, /* Synonym for MC */ | |
940 | {"MC", ARCH_MC}, | |
941 | {"CA", ARCH_CA}, | |
942 | {"JX", ARCH_JX}, | |
943 | {"HX", ARCH_HX}, | |
944 | {NULL, 0} | |
945 | }; | |
946 | ||
947 | int | |
948 | md_parse_option (c, arg) | |
949 | int c; | |
950 | char *arg; | |
951 | { | |
952 | switch (c) | |
953 | { | |
954 | case OPTION_LINKRELAX: | |
955 | linkrelax = 1; | |
956 | flag_keep_locals = 1; | |
957 | break; | |
958 | ||
959 | case OPTION_NORELAX: | |
960 | norelax = 1; | |
961 | break; | |
962 | ||
963 | case 'b': | |
964 | instrument_branches = 1; | |
965 | break; | |
966 | ||
967 | case 'A': | |
968 | { | |
969 | const struct tabentry *tp; | |
970 | char *p = arg; | |
971 | ||
972 | for (tp = arch_tab; tp->flag != NULL; tp++) | |
973 | if (!strcmp (p, tp->flag)) | |
974 | break; | |
975 | ||
976 | if (tp->flag == NULL) | |
977 | { | |
978 | as_bad (_("invalid architecture %s"), p); | |
979 | return 0; | |
980 | } | |
981 | else | |
982 | architecture = tp->arch; | |
983 | } | |
984 | break; | |
985 | ||
986 | default: | |
987 | return 0; | |
988 | } | |
989 | ||
990 | return 1; | |
991 | } | |
992 | ||
993 | void | |
994 | md_show_usage (stream) | |
995 | FILE *stream; | |
996 | { | |
997 | int i; | |
998 | fprintf (stream, _("I960 options:\n")); | |
999 | for (i = 0; arch_tab[i].flag; i++) | |
1000 | fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag); | |
1001 | fprintf (stream, _("\n\ | |
1002 | specify variant of 960 architecture\n\ | |
1003 | -b add code to collect statistics about branches taken\n\ | |
1004 | -link-relax preserve individual alignment directives so linker\n\ | |
1005 | can do relaxing (b.out format only)\n\ | |
1006 | -no-relax don't alter compare-and-branch instructions for\n\ | |
1007 | long displacements\n")); | |
1008 | } | |
1009 | \f | |
1010 | ||
252b5132 RH |
1011 | /***************************************************************************** |
1012 | md_convert_frag: | |
1013 | Called by base assembler after address relaxation is finished: modify | |
1014 | variable fragments according to how much relaxation was done. | |
1015 | ||
1016 | If the fragment substate is still 1, a 13-bit displacement was enough | |
1017 | to reach the symbol in question. Set up an address fixup, but otherwise | |
1018 | leave the cobr instruction alone. | |
1019 | ||
1020 | If the fragment substate is 2, a 13-bit displacement was not enough. | |
1021 | Replace the cobr with a two instructions (a compare and a branch). | |
1022 | ||
1023 | *************************************************************************** */ | |
bedf545c | 1024 | #ifndef BFD_ASSEMBLER |
252b5132 RH |
1025 | void |
1026 | md_convert_frag (headers, seg, fragP) | |
1027 | object_headers *headers; | |
1028 | segT seg; | |
1029 | fragS *fragP; | |
bedf545c ILT |
1030 | #else |
1031 | void | |
1032 | md_convert_frag (abfd, sec, fragP) | |
1033 | bfd *abfd; | |
1034 | segT sec; | |
1035 | fragS *fragP; | |
1036 | #endif | |
252b5132 RH |
1037 | { |
1038 | fixS *fixP; /* Structure describing needed address fix */ | |
1039 | ||
1040 | switch (fragP->fr_subtype) | |
1041 | { | |
1042 | case 1: | |
1043 | /* LEAVE SINGLE COBR INSTRUCTION */ | |
1044 | fixP = fix_new (fragP, | |
1045 | fragP->fr_opcode - fragP->fr_literal, | |
1046 | 4, | |
1047 | fragP->fr_symbol, | |
1048 | fragP->fr_offset, | |
1049 | 1, | |
1050 | NO_RELOC); | |
1051 | ||
1052 | fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */ | |
1053 | break; | |
1054 | case 2: | |
1055 | /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */ | |
1056 | relax_cobr (fragP); | |
1057 | break; | |
1058 | default: | |
1059 | BAD_CASE (fragP->fr_subtype); | |
1060 | break; | |
1061 | } | |
1062 | } | |
1063 | ||
1064 | /***************************************************************************** | |
1065 | md_estimate_size_before_relax: How much does it look like *fragP will grow? | |
1066 | ||
1067 | Called by base assembler just before address relaxation. | |
1068 | Return the amount by which the fragment will grow. | |
1069 | ||
1070 | Any symbol that is now undefined will not become defined; cobr's | |
1071 | based on undefined symbols will have to be replaced with a compare | |
1072 | instruction and a branch instruction, and the code fragment will grow | |
1073 | by 4 bytes. | |
1074 | ||
1075 | *************************************************************************** */ | |
1076 | int | |
1077 | md_estimate_size_before_relax (fragP, segment_type) | |
1078 | register fragS *fragP; | |
1079 | register segT segment_type; | |
1080 | { | |
1081 | /* If symbol is undefined in this segment, go to "relaxed" state | |
1082 | (compare and branch instructions instead of cobr) right now. */ | |
1083 | if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type) | |
1084 | { | |
1085 | relax_cobr (fragP); | |
1086 | return 4; | |
1087 | } | |
91975467 JW |
1088 | |
1089 | return md_relax_table[fragP->fr_subtype].rlx_length; | |
252b5132 RH |
1090 | } /* md_estimate_size_before_relax() */ |
1091 | ||
bedf545c | 1092 | #if defined(OBJ_AOUT) | defined(OBJ_BOUT) |
252b5132 RH |
1093 | |
1094 | /***************************************************************************** | |
1095 | md_ri_to_chars: | |
1096 | This routine exists in order to overcome machine byte-order problems | |
1097 | when dealing with bit-field entries in the relocation_info struct. | |
1098 | ||
1099 | But relocation info will be used on the host machine only (only | |
1100 | executable code is actually downloaded to the i80960). Therefore, | |
1101 | we leave it in host byte order. | |
1102 | ||
1103 | The above comment is no longer true. This routine now really | |
1104 | does do the reordering (Ian Taylor 28 Aug 92). | |
1105 | ||
1106 | *************************************************************************** */ | |
bedf545c ILT |
1107 | |
1108 | static void | |
252b5132 RH |
1109 | md_ri_to_chars (where, ri) |
1110 | char *where; | |
1111 | struct relocation_info *ri; | |
1112 | { | |
1113 | md_number_to_chars (where, ri->r_address, | |
1114 | sizeof (ri->r_address)); | |
1115 | where[4] = ri->r_index & 0x0ff; | |
1116 | where[5] = (ri->r_index >> 8) & 0x0ff; | |
1117 | where[6] = (ri->r_index >> 16) & 0x0ff; | |
1118 | where[7] = ((ri->r_pcrel << 0) | |
1119 | | (ri->r_length << 1) | |
1120 | | (ri->r_extern << 3) | |
1121 | | (ri->r_bsr << 4) | |
1122 | | (ri->r_disp << 5) | |
1123 | | (ri->r_callj << 6)); | |
1124 | } | |
1125 | ||
bedf545c ILT |
1126 | #endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */ |
1127 | ||
252b5132 RH |
1128 | \f |
1129 | /* FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER */ | |
1130 | ||
1131 | /***************************************************************************** | |
1132 | brcnt_emit: Emit code to increment inline branch counter. | |
1133 | ||
1134 | See the comments above the declaration of 'br_cnt' for details on | |
1135 | branch-prediction instrumentation. | |
1136 | *************************************************************************** */ | |
1137 | static void | |
1138 | brcnt_emit () | |
1139 | { | |
1140 | ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */ | |
1141 | emit (0); /* Emit inline counter to be incremented */ | |
1142 | } | |
1143 | ||
1144 | /***************************************************************************** | |
1145 | brlab_next: generate the next branch local label | |
1146 | ||
1147 | See the comments above the declaration of 'br_cnt' for details on | |
1148 | branch-prediction instrumentation. | |
1149 | *************************************************************************** */ | |
1150 | static char * | |
1151 | brlab_next () | |
1152 | { | |
1153 | static char buf[20]; | |
1154 | ||
1155 | sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++); | |
1156 | return buf; | |
1157 | } | |
1158 | ||
1159 | /***************************************************************************** | |
1160 | brtab_emit: generate the fetch-prediction branch table. | |
1161 | ||
1162 | See the comments above the declaration of 'br_cnt' for details on | |
1163 | branch-prediction instrumentation. | |
1164 | ||
1165 | The code emitted here would be functionally equivalent to the following | |
1166 | example assembler source. | |
1167 | ||
1168 | .data | |
1169 | .align 2 | |
1170 | BR_TAB_NAME: | |
1171 | .word 0 # link to next table | |
1172 | .word 3 # length of table | |
1173 | .word LBRANCH0 # 1st entry in table proper | |
1174 | .word LBRANCH1 | |
1175 | .word LBRANCH2 | |
1176 | **************************************************************************** */ | |
1177 | void | |
1178 | brtab_emit () | |
1179 | { | |
1180 | int i; | |
1181 | char buf[20]; | |
1182 | char *p; /* Where the binary was output to */ | |
1183 | /* Pointer to description of deferred address fixup. */ | |
1184 | fixS *fixP; | |
1185 | ||
1186 | if (!instrument_branches) | |
1187 | { | |
1188 | return; | |
1189 | } | |
1190 | ||
1191 | subseg_set (data_section, 0); /* .data */ | |
1192 | frag_align (2, 0, 0); /* .align 2 */ | |
1193 | record_alignment (now_seg, 2); | |
1194 | colon (BR_TAB_NAME); /* BR_TAB_NAME: */ | |
1195 | emit (0); /* .word 0 #link to next table */ | |
1196 | emit (br_cnt); /* .word n #length of table */ | |
1197 | ||
1198 | for (i = 0; i < br_cnt; i++) | |
1199 | { | |
1200 | sprintf (buf, "%s%d", BR_LABEL_BASE, i); | |
1201 | p = emit (0); | |
1202 | fixP = fix_new (frag_now, | |
1203 | p - frag_now->fr_literal, | |
1204 | 4, | |
1205 | symbol_find (buf), | |
1206 | 0, | |
1207 | 0, | |
1208 | NO_RELOC); | |
1209 | } | |
1210 | } | |
1211 | ||
1212 | /***************************************************************************** | |
1213 | cobr_fmt: generate a COBR-format instruction | |
1214 | ||
1215 | *************************************************************************** */ | |
1216 | static | |
1217 | void | |
1218 | cobr_fmt (arg, opcode, oP) | |
1219 | /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */ | |
1220 | char *arg[]; | |
1221 | /* Opcode, with branch-prediction bits already set if necessary. */ | |
1222 | long opcode; | |
1223 | /* Pointer to description of instruction. */ | |
1224 | struct i960_opcode *oP; | |
1225 | { | |
1226 | long instr; /* 32-bit instruction */ | |
1227 | struct regop regop; /* Description of register operand */ | |
1228 | int n; /* Number of operands */ | |
1229 | int var_frag; /* 1 if varying length code fragment should | |
1230 | * be emitted; 0 if an address fix | |
1231 | * should be emitted. | |
1232 | */ | |
1233 | ||
1234 | instr = opcode; | |
1235 | n = oP->num_ops; | |
1236 | ||
1237 | if (n >= 1) | |
1238 | { | |
1239 | /* First operand (if any) of a COBR is always a register | |
1240 | operand. Parse it. */ | |
1241 | parse_regop (®op, arg[1], oP->operand[0]); | |
1242 | instr |= (regop.n << 19) | (regop.mode << 13); | |
1243 | } | |
1244 | if (n >= 2) | |
1245 | { | |
1246 | /* Second operand (if any) of a COBR is always a register | |
1247 | operand. Parse it. */ | |
1248 | parse_regop (®op, arg[2], oP->operand[1]); | |
1249 | instr |= (regop.n << 14) | regop.special; | |
1250 | } | |
1251 | ||
252b5132 RH |
1252 | if (n < 3) |
1253 | { | |
1254 | emit (instr); | |
1255 | ||
1256 | } | |
1257 | else | |
1258 | { | |
1259 | if (instrument_branches) | |
1260 | { | |
1261 | brcnt_emit (); | |
1262 | colon (brlab_next ()); | |
1263 | } | |
1264 | ||
1265 | /* A third operand to a COBR is always a displacement. Parse | |
1266 | it; if it's relaxable (a cobr "j" directive, or any cobr | |
1267 | other than bbs/bbc when the "-norelax" option is not in use) | |
1268 | set up a variable code fragment; otherwise set up an address | |
1269 | fix. */ | |
1270 | var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */ | |
1271 | get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0); | |
1272 | ||
1273 | if (instrument_branches) | |
1274 | { | |
1275 | brcnt_emit (); | |
1276 | } | |
1277 | } | |
1278 | } /* cobr_fmt() */ | |
1279 | ||
252b5132 RH |
1280 | /***************************************************************************** |
1281 | ctrl_fmt: generate a CTRL-format instruction | |
1282 | ||
1283 | *************************************************************************** */ | |
1284 | static | |
1285 | void | |
1286 | ctrl_fmt (targP, opcode, num_ops) | |
1287 | char *targP; /* Pointer to text of lone operand (if any) */ | |
1288 | long opcode; /* Template of instruction */ | |
1289 | int num_ops; /* Number of operands */ | |
1290 | { | |
1291 | int instrument; /* TRUE iff we should add instrumentation to track | |
1292 | * how often the branch is taken | |
1293 | */ | |
1294 | ||
252b5132 RH |
1295 | if (num_ops == 0) |
1296 | { | |
1297 | emit (opcode); /* Output opcode */ | |
1298 | } | |
1299 | else | |
1300 | { | |
1301 | ||
1302 | instrument = instrument_branches && (opcode != CALL) | |
1303 | && (opcode != B) && (opcode != RET) && (opcode != BAL); | |
1304 | ||
1305 | if (instrument) | |
1306 | { | |
1307 | brcnt_emit (); | |
1308 | colon (brlab_next ()); | |
1309 | } | |
1310 | ||
1311 | /* The operand MUST be an ip-relative displacment. Parse it | |
1312 | * and set up address fix for the instruction we just output. | |
1313 | */ | |
1314 | get_cdisp (targP, "CTRL", opcode, 24, 0, 0); | |
1315 | ||
1316 | if (instrument) | |
1317 | { | |
1318 | brcnt_emit (); | |
1319 | } | |
1320 | } | |
1321 | ||
1322 | } | |
1323 | ||
252b5132 RH |
1324 | /***************************************************************************** |
1325 | emit: output instruction binary | |
1326 | ||
1327 | Output instruction binary, in target byte order, 4 bytes at a time. | |
1328 | Return pointer to where it was placed. | |
1329 | ||
1330 | *************************************************************************** */ | |
1331 | static | |
1332 | char * | |
1333 | emit (instr) | |
1334 | long instr; /* Word to be output, host byte order */ | |
1335 | { | |
1336 | char *toP; /* Where to output it */ | |
1337 | ||
1338 | toP = frag_more (4); /* Allocate storage */ | |
1339 | md_number_to_chars (toP, instr, 4); /* Convert to target byte order */ | |
1340 | return toP; | |
1341 | } | |
1342 | ||
252b5132 RH |
1343 | /***************************************************************************** |
1344 | get_args: break individual arguments out of comma-separated list | |
1345 | ||
1346 | Input assumptions: | |
1347 | - all comments and labels have been removed | |
1348 | - all strings of whitespace have been collapsed to a single blank. | |
1349 | - all character constants ('x') have been replaced with decimal | |
1350 | ||
1351 | Output: | |
1352 | args[0] is untouched. args[1] points to first operand, etc. All args: | |
1353 | - are NULL-terminated | |
1354 | - contain no whitespace | |
1355 | ||
1356 | Return value: | |
1357 | Number of operands (0,1,2, or 3) or -1 on error. | |
1358 | ||
1359 | *************************************************************************** */ | |
1360 | static int | |
1361 | get_args (p, args) | |
1362 | /* Pointer to comma-separated operands; MUCKED BY US */ | |
1363 | register char *p; | |
1364 | /* Output arg: pointers to operands placed in args[1-3]. MUST | |
1365 | ACCOMMODATE 4 ENTRIES (args[0-3]). */ | |
1366 | char *args[]; | |
1367 | { | |
1368 | register int n; /* Number of operands */ | |
1369 | register char *to; | |
1370 | ||
1371 | /* Skip lead white space */ | |
1372 | while (*p == ' ') | |
1373 | { | |
1374 | p++; | |
1375 | } | |
1376 | ||
1377 | if (*p == '\0') | |
1378 | { | |
1379 | return 0; | |
1380 | } | |
1381 | ||
1382 | n = 1; | |
1383 | args[1] = p; | |
1384 | ||
1385 | /* Squeze blanks out by moving non-blanks toward start of string. | |
1386 | * Isolate operands, whenever comma is found. | |
1387 | */ | |
1388 | to = p; | |
1389 | while (*p != '\0') | |
1390 | { | |
1391 | ||
1392 | if (*p == ' ' | |
3882b010 L |
1393 | && (! ISALNUM (p[1]) |
1394 | || ! ISALNUM (p[-1]))) | |
252b5132 RH |
1395 | { |
1396 | p++; | |
1397 | ||
1398 | } | |
1399 | else if (*p == ',') | |
1400 | { | |
1401 | ||
1402 | /* Start of operand */ | |
1403 | if (n == 3) | |
1404 | { | |
1405 | as_bad (_("too many operands")); | |
1406 | return -1; | |
1407 | } | |
1408 | *to++ = '\0'; /* Terminate argument */ | |
1409 | args[++n] = to; /* Start next argument */ | |
1410 | p++; | |
1411 | ||
1412 | } | |
1413 | else | |
1414 | { | |
1415 | *to++ = *p++; | |
1416 | } | |
1417 | } | |
1418 | *to = '\0'; | |
1419 | return n; | |
1420 | } | |
1421 | ||
252b5132 RH |
1422 | /***************************************************************************** |
1423 | get_cdisp: handle displacement for a COBR or CTRL instruction. | |
1424 | ||
1425 | Parse displacement for a COBR or CTRL instruction. | |
1426 | ||
1427 | If successful, output the instruction opcode and set up for it, | |
1428 | depending on the arg 'var_frag', either: | |
1429 | o an address fixup to be done when all symbol values are known, or | |
1430 | o a varying length code fragment, with address fixup info. This | |
1431 | will be done for cobr instructions that may have to be relaxed | |
1432 | in to compare/branch instructions (8 bytes) if the final | |
1433 | address displacement is greater than 13 bits. | |
1434 | ||
1435 | ****************************************************************************/ | |
1436 | static | |
1437 | void | |
1438 | get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj) | |
1439 | /* displacement as specified in source instruction */ | |
1440 | char *dispP; | |
1441 | /* "COBR" or "CTRL" (for use in error message) */ | |
1442 | char *ifmtP; | |
1443 | /* Instruction needing the displacement */ | |
1444 | long instr; | |
1445 | /* # bits of displacement (13 for COBR, 24 for CTRL) */ | |
1446 | int numbits; | |
1447 | /* 1 if varying length code fragment should be emitted; | |
1448 | * 0 if an address fix should be emitted. | |
1449 | */ | |
1450 | int var_frag; | |
1451 | /* 1 if callj relocation should be done; else 0 */ | |
1452 | int callj; | |
1453 | { | |
1454 | expressionS e; /* Parsed expression */ | |
1455 | fixS *fixP; /* Structure describing needed address fix */ | |
1456 | char *outP; /* Where instruction binary is output to */ | |
1457 | ||
1458 | fixP = NULL; | |
1459 | ||
1460 | parse_expr (dispP, &e); | |
1461 | switch (e.X_op) | |
1462 | { | |
1463 | case O_illegal: | |
1464 | as_bad (_("expression syntax error")); | |
1465 | ||
1466 | case O_symbol: | |
1467 | if (S_GET_SEGMENT (e.X_add_symbol) == now_seg | |
1468 | || S_GET_SEGMENT (e.X_add_symbol) == undefined_section) | |
1469 | { | |
1470 | if (var_frag) | |
1471 | { | |
1472 | outP = frag_more (8); /* Allocate worst-case storage */ | |
1473 | md_number_to_chars (outP, instr, 4); | |
1474 | frag_variant (rs_machine_dependent, 4, 4, 1, | |
1475 | adds (e), offs (e), outP); | |
1476 | } | |
1477 | else | |
1478 | { | |
1479 | /* Set up a new fix structure, so address can be updated | |
1480 | * when all symbol values are known. | |
1481 | */ | |
1482 | outP = emit (instr); | |
1483 | fixP = fix_new (frag_now, | |
1484 | outP - frag_now->fr_literal, | |
1485 | 4, | |
1486 | adds (e), | |
1487 | offs (e), | |
1488 | 1, | |
1489 | NO_RELOC); | |
1490 | ||
1491 | fixP->fx_tcbit = callj; | |
1492 | ||
1493 | /* We want to modify a bit field when the address is | |
1494 | * known. But we don't need all the garbage in the | |
1495 | * bit_fix structure. So we're going to lie and store | |
1496 | * the number of bits affected instead of a pointer. | |
1497 | */ | |
1498 | fixP->fx_bit_fixP = (bit_fixS *) numbits; | |
1499 | } | |
1500 | } | |
1501 | else | |
1502 | as_bad (_("attempt to branch into different segment")); | |
1503 | break; | |
1504 | ||
1505 | default: | |
1506 | as_bad (_("target of %s instruction must be a label"), ifmtP); | |
1507 | break; | |
1508 | } | |
1509 | } | |
1510 | ||
252b5132 RH |
1511 | /***************************************************************************** |
1512 | get_ispec: parse a memory operand for an index specification | |
1513 | ||
1514 | Here, an "index specification" is taken to be anything surrounded | |
1515 | by square brackets and NOT followed by anything else. | |
1516 | ||
1517 | If it's found, detach it from the input string, remove the surrounding | |
1518 | square brackets, and return a pointer to it. Otherwise, return NULL. | |
1519 | ||
1520 | *************************************************************************** */ | |
1521 | static | |
1522 | char * | |
1523 | get_ispec (textP) | |
1524 | /* Pointer to memory operand from source instruction, no white space. */ | |
1525 | char *textP; | |
1526 | { | |
1527 | /* Points to start of index specification. */ | |
1528 | char *start; | |
1529 | /* Points to end of index specification. */ | |
1530 | char *end; | |
1531 | ||
1532 | /* Find opening square bracket, if any. */ | |
1533 | start = strchr (textP, '['); | |
1534 | ||
1535 | if (start != NULL) | |
1536 | { | |
1537 | ||
1538 | /* Eliminate '[', detach from rest of operand */ | |
1539 | *start++ = '\0'; | |
1540 | ||
1541 | end = strchr (start, ']'); | |
1542 | ||
1543 | if (end == NULL) | |
1544 | { | |
1545 | as_bad (_("unmatched '['")); | |
1546 | ||
1547 | } | |
1548 | else | |
1549 | { | |
1550 | /* Eliminate ']' and make sure it was the last thing | |
1551 | * in the string. | |
1552 | */ | |
1553 | *end = '\0'; | |
1554 | if (*(end + 1) != '\0') | |
1555 | { | |
1556 | as_bad (_("garbage after index spec ignored")); | |
1557 | } | |
1558 | } | |
1559 | } | |
1560 | return start; | |
1561 | } | |
1562 | ||
1563 | /***************************************************************************** | |
1564 | get_regnum: | |
1565 | ||
1566 | Look up a (suspected) register name in the register table and return the | |
1567 | associated register number (or -1 if not found). | |
1568 | ||
1569 | *************************************************************************** */ | |
1570 | static | |
1571 | int | |
1572 | get_regnum (regname) | |
1573 | char *regname; /* Suspected register name */ | |
1574 | { | |
1575 | int *rP; | |
1576 | ||
1577 | rP = (int *) hash_find (reg_hash, regname); | |
1578 | return (rP == NULL) ? -1 : *rP; | |
1579 | } | |
1580 | ||
252b5132 RH |
1581 | /***************************************************************************** |
1582 | i_scan: perform lexical scan of ascii assembler instruction. | |
1583 | ||
1584 | Input assumptions: | |
1585 | - input string is an i80960 instruction (not a pseudo-op) | |
1586 | - all comments and labels have been removed | |
1587 | - all strings of whitespace have been collapsed to a single blank. | |
1588 | ||
1589 | Output: | |
1590 | args[0] points to opcode, other entries point to operands. All strings: | |
1591 | - are NULL-terminated | |
1592 | - contain no whitespace | |
1593 | - have character constants ('x') replaced with a decimal number | |
1594 | ||
1595 | Return value: | |
1596 | Number of operands (0,1,2, or 3) or -1 on error. | |
1597 | ||
1598 | *************************************************************************** */ | |
1599 | static int | |
1600 | i_scan (iP, args) | |
92774660 | 1601 | /* Pointer to ascii instruction; MUCKED BY US. */ |
252b5132 RH |
1602 | register char *iP; |
1603 | /* Output arg: pointers to opcode and operands placed here. MUST | |
1604 | ACCOMMODATE 4 ENTRIES. */ | |
1605 | char *args[]; | |
1606 | { | |
1607 | ||
1608 | /* Isolate opcode */ | |
1609 | if (*(iP) == ' ') | |
1610 | { | |
1611 | iP++; | |
1612 | } /* Skip lead space, if any */ | |
1613 | args[0] = iP; | |
1614 | for (; *iP != ' '; iP++) | |
1615 | { | |
1616 | if (*iP == '\0') | |
1617 | { | |
1618 | /* There are no operands */ | |
1619 | if (args[0] == iP) | |
1620 | { | |
1621 | /* We never moved: there was no opcode either! */ | |
1622 | as_bad (_("missing opcode")); | |
1623 | return -1; | |
1624 | } | |
1625 | return 0; | |
1626 | } | |
1627 | } | |
1628 | *iP++ = '\0'; /* Terminate opcode */ | |
1629 | return (get_args (iP, args)); | |
1630 | } /* i_scan() */ | |
1631 | ||
252b5132 RH |
1632 | /***************************************************************************** |
1633 | mem_fmt: generate a MEMA- or MEMB-format instruction | |
1634 | ||
1635 | *************************************************************************** */ | |
1636 | static void | |
1637 | mem_fmt (args, oP, callx) | |
1638 | char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ | |
1639 | struct i960_opcode *oP; /* Pointer to description of instruction */ | |
1640 | int callx; /* Is this a callx opcode */ | |
1641 | { | |
1642 | int i; /* Loop counter */ | |
1643 | struct regop regop; /* Description of register operand */ | |
1644 | char opdesc; /* Operand descriptor byte */ | |
1645 | memS instr; /* Description of binary to be output */ | |
1646 | char *outP; /* Where the binary was output to */ | |
1647 | expressionS expr; /* Parsed expression */ | |
1648 | /* ->description of deferred address fixup */ | |
1649 | fixS *fixP; | |
1650 | ||
1651 | #ifdef OBJ_COFF | |
1652 | /* COFF support isn't in place yet for callx relaxing. */ | |
1653 | callx = 0; | |
1654 | #endif | |
1655 | ||
1656 | memset (&instr, '\0', sizeof (memS)); | |
1657 | instr.opcode = oP->opcode; | |
1658 | ||
92774660 | 1659 | /* Process operands. */ |
252b5132 RH |
1660 | for (i = 1; i <= oP->num_ops; i++) |
1661 | { | |
1662 | opdesc = oP->operand[i - 1]; | |
1663 | ||
1664 | if (MEMOP (opdesc)) | |
1665 | { | |
1666 | parse_memop (&instr, args[i], oP->format); | |
1667 | } | |
1668 | else | |
1669 | { | |
1670 | parse_regop (®op, args[i], opdesc); | |
1671 | instr.opcode |= regop.n << 19; | |
1672 | } | |
1673 | } | |
1674 | ||
1675 | /* Parse the displacement; this must be done before emitting the | |
1676 | opcode, in case it is an expression using `.'. */ | |
1677 | parse_expr (instr.e, &expr); | |
1678 | ||
1679 | /* Output opcode */ | |
1680 | outP = emit (instr.opcode); | |
1681 | ||
1682 | if (instr.disp == 0) | |
1683 | { | |
1684 | return; | |
1685 | } | |
1686 | ||
1687 | /* Process the displacement */ | |
1688 | switch (expr.X_op) | |
1689 | { | |
1690 | case O_illegal: | |
1691 | as_bad (_("expression syntax error")); | |
1692 | break; | |
1693 | ||
1694 | case O_constant: | |
1695 | if (instr.disp == 32) | |
1696 | { | |
1697 | (void) emit (offs (expr)); /* Output displacement */ | |
1698 | } | |
1699 | else | |
1700 | { | |
1701 | /* 12-bit displacement */ | |
1702 | if (offs (expr) & ~0xfff) | |
1703 | { | |
1704 | /* Won't fit in 12 bits: convert already-output | |
1705 | * instruction to MEMB format, output | |
1706 | * displacement. | |
1707 | */ | |
1708 | mema_to_memb (outP); | |
1709 | (void) emit (offs (expr)); | |
1710 | } | |
1711 | else | |
1712 | { | |
1713 | /* WILL fit in 12 bits: OR into opcode and | |
1714 | * overwrite the binary we already put out | |
1715 | */ | |
1716 | instr.opcode |= offs (expr); | |
1717 | md_number_to_chars (outP, instr.opcode, 4); | |
1718 | } | |
1719 | } | |
1720 | break; | |
1721 | ||
1722 | default: | |
1723 | if (instr.disp == 12) | |
1724 | { | |
1725 | /* Displacement is dependent on a symbol, whose value | |
1726 | * may change at link time. We HAVE to reserve 32 bits. | |
1727 | * Convert already-output opcode to MEMB format. | |
1728 | */ | |
1729 | mema_to_memb (outP); | |
1730 | } | |
1731 | ||
1732 | /* Output 0 displacement and set up address fixup for when | |
1733 | * this symbol's value becomes known. | |
1734 | */ | |
1735 | outP = emit ((long) 0); | |
1736 | fixP = fix_new_exp (frag_now, | |
1737 | outP - frag_now->fr_literal, | |
1738 | 4, | |
1739 | &expr, | |
1740 | 0, | |
1741 | NO_RELOC); | |
1742 | /* Steve's linker relaxing hack. Mark this 32-bit relocation as | |
1743 | being in the instruction stream, specifically as part of a callx | |
1744 | instruction. */ | |
1745 | fixP->fx_bsr = callx; | |
1746 | break; | |
1747 | } | |
1748 | } /* memfmt() */ | |
1749 | ||
252b5132 RH |
1750 | /***************************************************************************** |
1751 | mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode. | |
1752 | ||
1753 | There are 2 possible MEMA formats: | |
1754 | - displacement only | |
1755 | - displacement + abase | |
1756 | ||
1757 | They are distinguished by the setting of the MEMA_ABASE bit. | |
1758 | ||
1759 | *************************************************************************** */ | |
1760 | static void | |
1761 | mema_to_memb (opcodeP) | |
1762 | char *opcodeP; /* Where to find the opcode, in target byte order */ | |
1763 | { | |
1764 | long opcode; /* Opcode in host byte order */ | |
1765 | long mode; /* Mode bits for MEMB instruction */ | |
1766 | ||
1767 | opcode = md_chars_to_number (opcodeP, 4); | |
1768 | know (!(opcode & MEMB_BIT)); | |
1769 | ||
1770 | mode = MEMB_BIT | D_BIT; | |
1771 | if (opcode & MEMA_ABASE) | |
1772 | { | |
1773 | mode |= A_BIT; | |
1774 | } | |
1775 | ||
1776 | opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */ | |
1777 | opcode |= mode; /* Set MEMB mode bits */ | |
1778 | ||
1779 | md_number_to_chars (opcodeP, opcode, 4); | |
1780 | } /* mema_to_memb() */ | |
1781 | ||
252b5132 RH |
1782 | /***************************************************************************** |
1783 | parse_expr: parse an expression | |
1784 | ||
1785 | Use base assembler's expression parser to parse an expression. | |
1786 | It, unfortunately, runs off a global which we have to save/restore | |
1787 | in order to make it work for us. | |
1788 | ||
1789 | An empty expression string is treated as an absolute 0. | |
1790 | ||
1791 | Sets O_illegal regardless of expression evaluation if entire input | |
1792 | string is not consumed in the evaluation -- tolerate no dangling junk! | |
1793 | ||
1794 | *************************************************************************** */ | |
1795 | static void | |
1796 | parse_expr (textP, expP) | |
1797 | char *textP; /* Text of expression to be parsed */ | |
1798 | expressionS *expP; /* Where to put the results of parsing */ | |
1799 | { | |
1800 | char *save_in; /* Save global here */ | |
1801 | symbolS *symP; | |
1802 | ||
1803 | know (textP); | |
1804 | ||
1805 | if (*textP == '\0') | |
1806 | { | |
1807 | /* Treat empty string as absolute 0 */ | |
1808 | expP->X_add_symbol = expP->X_op_symbol = NULL; | |
1809 | expP->X_add_number = 0; | |
1810 | expP->X_op = O_constant; | |
1811 | } | |
1812 | else | |
1813 | { | |
1814 | save_in = input_line_pointer; /* Save global */ | |
1815 | input_line_pointer = textP; /* Make parser work for us */ | |
1816 | ||
1817 | (void) expression (expP); | |
1818 | if ((size_t) (input_line_pointer - textP) != strlen (textP)) | |
1819 | { | |
1820 | /* Did not consume all of the input */ | |
1821 | expP->X_op = O_illegal; | |
1822 | } | |
1823 | symP = expP->X_add_symbol; | |
1824 | if (symP && (hash_find (reg_hash, S_GET_NAME (symP)))) | |
1825 | { | |
1826 | /* Register name in an expression */ | |
1827 | /* FIXME: this isn't much of a check any more. */ | |
1828 | expP->X_op = O_illegal; | |
1829 | } | |
1830 | ||
1831 | input_line_pointer = save_in; /* Restore global */ | |
1832 | } | |
1833 | } | |
1834 | ||
252b5132 RH |
1835 | /***************************************************************************** |
1836 | parse_ldcont: | |
1837 | Parse and replace a 'ldconst' pseudo-instruction with an appropriate | |
1838 | i80960 instruction. | |
1839 | ||
1840 | Assumes the input consists of: | |
1841 | arg[0] opcode mnemonic ('ldconst') | |
1842 | arg[1] first operand (constant) | |
1843 | arg[2] name of register to be loaded | |
1844 | ||
1845 | Replaces opcode and/or operands as appropriate. | |
1846 | ||
1847 | Returns the new number of arguments, or -1 on failure. | |
1848 | ||
1849 | *************************************************************************** */ | |
1850 | static | |
1851 | int | |
1852 | parse_ldconst (arg) | |
1853 | char *arg[]; /* See above */ | |
1854 | { | |
1855 | int n; /* Constant to be loaded */ | |
1856 | int shift; /* Shift count for "shlo" instruction */ | |
1857 | static char buf[5]; /* Literal for first operand */ | |
1858 | static char buf2[5]; /* Literal for second operand */ | |
1859 | expressionS e; /* Parsed expression */ | |
1860 | ||
252b5132 RH |
1861 | arg[3] = NULL; /* So we can tell at the end if it got used or not */ |
1862 | ||
1863 | parse_expr (arg[1], &e); | |
1864 | switch (e.X_op) | |
1865 | { | |
1866 | default: | |
1867 | /* We're dependent on one or more symbols -- use "lda" */ | |
1868 | arg[0] = "lda"; | |
1869 | break; | |
1870 | ||
1871 | case O_constant: | |
1872 | /* Try the following mappings: | |
1873 | * ldconst 0,<reg> ->mov 0,<reg> | |
1874 | * ldconst 31,<reg> ->mov 31,<reg> | |
1875 | * ldconst 32,<reg> ->addo 1,31,<reg> | |
1876 | * ldconst 62,<reg> ->addo 31,31,<reg> | |
1877 | * ldconst 64,<reg> ->shlo 8,3,<reg> | |
1878 | * ldconst -1,<reg> ->subo 1,0,<reg> | |
1879 | * ldconst -31,<reg>->subo 31,0,<reg> | |
1880 | * | |
1881 | * anthing else becomes: | |
1882 | * lda xxx,<reg> | |
1883 | */ | |
1884 | n = offs (e); | |
1885 | if ((0 <= n) && (n <= 31)) | |
1886 | { | |
1887 | arg[0] = "mov"; | |
1888 | ||
1889 | } | |
1890 | else if ((-31 <= n) && (n <= -1)) | |
1891 | { | |
1892 | arg[0] = "subo"; | |
1893 | arg[3] = arg[2]; | |
1894 | sprintf (buf, "%d", -n); | |
1895 | arg[1] = buf; | |
1896 | arg[2] = "0"; | |
1897 | ||
1898 | } | |
1899 | else if ((32 <= n) && (n <= 62)) | |
1900 | { | |
1901 | arg[0] = "addo"; | |
1902 | arg[3] = arg[2]; | |
1903 | arg[1] = "31"; | |
1904 | sprintf (buf, "%d", n - 31); | |
1905 | arg[2] = buf; | |
1906 | ||
1907 | } | |
1908 | else if ((shift = shift_ok (n)) != 0) | |
1909 | { | |
1910 | arg[0] = "shlo"; | |
1911 | arg[3] = arg[2]; | |
1912 | sprintf (buf, "%d", shift); | |
1913 | arg[1] = buf; | |
1914 | sprintf (buf2, "%d", n >> shift); | |
1915 | arg[2] = buf2; | |
1916 | ||
1917 | } | |
1918 | else | |
1919 | { | |
1920 | arg[0] = "lda"; | |
1921 | } | |
1922 | break; | |
1923 | ||
1924 | case O_illegal: | |
1925 | as_bad (_("invalid constant")); | |
1926 | return -1; | |
1927 | break; | |
1928 | } | |
1929 | return (arg[3] == 0) ? 2 : 3; | |
1930 | } | |
1931 | ||
1932 | /***************************************************************************** | |
1933 | parse_memop: parse a memory operand | |
1934 | ||
1935 | This routine is based on the observation that the 4 mode bits of the | |
1936 | MEMB format, taken individually, have fairly consistent meaning: | |
1937 | ||
1938 | M3 (bit 13): 1 if displacement is present (D_BIT) | |
1939 | M2 (bit 12): 1 for MEMB instructions (MEMB_BIT) | |
1940 | M1 (bit 11): 1 if index is present (I_BIT) | |
1941 | M0 (bit 10): 1 if abase is present (A_BIT) | |
1942 | ||
1943 | So we parse the memory operand and set bits in the mode as we find | |
1944 | things. Then at the end, if we go to MEMB format, we need only set | |
1945 | the MEMB bit (M2) and our mode is built for us. | |
1946 | ||
1947 | Unfortunately, I said "fairly consistent". The exceptions: | |
1948 | ||
1949 | DBIA | |
1950 | 0100 Would seem illegal, but means "abase-only". | |
1951 | ||
1952 | 0101 Would seem to mean "abase-only" -- it means IP-relative. | |
1953 | Must be converted to 0100. | |
1954 | ||
1955 | 0110 Would seem to mean "index-only", but is reserved. | |
1956 | We turn on the D bit and provide a 0 displacement. | |
1957 | ||
1958 | The other thing to observe is that we parse from the right, peeling | |
1959 | things * off as we go: first any index spec, then any abase, then | |
1960 | the displacement. | |
1961 | ||
1962 | *************************************************************************** */ | |
1963 | static | |
1964 | void | |
1965 | parse_memop (memP, argP, optype) | |
1966 | memS *memP; /* Where to put the results */ | |
1967 | char *argP; /* Text of the operand to be parsed */ | |
1968 | int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */ | |
1969 | { | |
1970 | char *indexP; /* Pointer to index specification with "[]" removed */ | |
1971 | char *p; /* Temp char pointer */ | |
1972 | char iprel_flag; /* True if this is an IP-relative operand */ | |
1973 | int regnum; /* Register number */ | |
1974 | /* Scale factor: 1,2,4,8, or 16. Later converted to internal format | |
1975 | (0,1,2,3,4 respectively). */ | |
1976 | int scale; | |
1977 | int mode; /* MEMB mode bits */ | |
1978 | int *intP; /* Pointer to register number */ | |
1979 | ||
1980 | /* The following table contains the default scale factors for each | |
1981 | type of memory instruction. It is accessed using (optype-MEM1) | |
1982 | as an index -- thus it assumes the 'optype' constants are | |
1983 | assigned consecutive values, in the order they appear in this | |
1984 | table. */ | |
1985 | static const int def_scale[] = | |
1986 | { | |
1987 | 1, /* MEM1 */ | |
1988 | 2, /* MEM2 */ | |
1989 | 4, /* MEM4 */ | |
1990 | 8, /* MEM8 */ | |
1991 | -1, /* MEM12 -- no valid default */ | |
1992 | 16 /* MEM16 */ | |
1993 | }; | |
1994 | ||
252b5132 RH |
1995 | iprel_flag = mode = 0; |
1996 | ||
1997 | /* Any index present? */ | |
1998 | indexP = get_ispec (argP); | |
1999 | if (indexP) | |
2000 | { | |
2001 | p = strchr (indexP, '*'); | |
2002 | if (p == NULL) | |
2003 | { | |
2004 | /* No explicit scale -- use default for this instruction | |
2005 | type and assembler mode. */ | |
2006 | if (flag_mri) | |
2007 | scale = 1; | |
2008 | else | |
2009 | /* GNU960 compatibility */ | |
2010 | scale = def_scale[optype - MEM1]; | |
2011 | } | |
2012 | else | |
2013 | { | |
2014 | *p++ = '\0'; /* Eliminate '*' */ | |
2015 | ||
2016 | /* Now indexP->a '\0'-terminated register name, | |
2017 | * and p->a scale factor. | |
2018 | */ | |
2019 | ||
2020 | if (!strcmp (p, "16")) | |
2021 | { | |
2022 | scale = 16; | |
2023 | } | |
2024 | else if (strchr ("1248", *p) && (p[1] == '\0')) | |
2025 | { | |
2026 | scale = *p - '0'; | |
2027 | } | |
2028 | else | |
2029 | { | |
2030 | scale = -1; | |
2031 | } | |
2032 | } | |
2033 | ||
2034 | regnum = get_regnum (indexP); /* Get index reg. # */ | |
2035 | if (!IS_RG_REG (regnum)) | |
2036 | { | |
2037 | as_bad (_("invalid index register")); | |
2038 | return; | |
2039 | } | |
2040 | ||
2041 | /* Convert scale to its binary encoding */ | |
2042 | switch (scale) | |
2043 | { | |
2044 | case 1: | |
2045 | scale = 0 << 7; | |
2046 | break; | |
2047 | case 2: | |
2048 | scale = 1 << 7; | |
2049 | break; | |
2050 | case 4: | |
2051 | scale = 2 << 7; | |
2052 | break; | |
2053 | case 8: | |
2054 | scale = 3 << 7; | |
2055 | break; | |
2056 | case 16: | |
2057 | scale = 4 << 7; | |
2058 | break; | |
2059 | default: | |
2060 | as_bad (_("invalid scale factor")); | |
2061 | return; | |
2062 | }; | |
2063 | ||
2064 | memP->opcode |= scale | regnum; /* Set index bits in opcode */ | |
2065 | mode |= I_BIT; /* Found a valid index spec */ | |
2066 | } | |
2067 | ||
2068 | /* Any abase (Register Indirect) specification present? */ | |
2069 | if ((p = strrchr (argP, '(')) != NULL) | |
2070 | { | |
2071 | /* "(" is there -- does it start a legal abase spec? If not, it | |
2072 | could be part of a displacement expression. */ | |
2073 | intP = (int *) hash_find (areg_hash, p); | |
2074 | if (intP != NULL) | |
2075 | { | |
2076 | /* Got an abase here */ | |
2077 | regnum = *intP; | |
2078 | *p = '\0'; /* discard register spec */ | |
2079 | if (regnum == IPREL) | |
2080 | { | |
2081 | /* We have to specialcase ip-rel mode */ | |
2082 | iprel_flag = 1; | |
2083 | } | |
2084 | else | |
2085 | { | |
2086 | memP->opcode |= regnum << 14; | |
2087 | mode |= A_BIT; | |
2088 | } | |
2089 | } | |
2090 | } | |
2091 | ||
2092 | /* Any expression present? */ | |
2093 | memP->e = argP; | |
2094 | if (*argP != '\0') | |
2095 | { | |
2096 | mode |= D_BIT; | |
2097 | } | |
2098 | ||
2099 | /* Special-case ip-relative addressing */ | |
2100 | if (iprel_flag) | |
2101 | { | |
2102 | if (mode & I_BIT) | |
2103 | { | |
2104 | syntax (); | |
2105 | } | |
2106 | else | |
2107 | { | |
2108 | memP->opcode |= 5 << 10; /* IP-relative mode */ | |
2109 | memP->disp = 32; | |
2110 | } | |
2111 | return; | |
2112 | } | |
2113 | ||
2114 | /* Handle all other modes */ | |
2115 | switch (mode) | |
2116 | { | |
2117 | case D_BIT | A_BIT: | |
2118 | /* Go with MEMA instruction format for now (grow to MEMB later | |
2119 | if 12 bits is not enough for the displacement). MEMA format | |
2120 | has a single mode bit: set it to indicate that abase is | |
2121 | present. */ | |
2122 | memP->opcode |= MEMA_ABASE; | |
2123 | memP->disp = 12; | |
2124 | break; | |
2125 | ||
2126 | case D_BIT: | |
2127 | /* Go with MEMA instruction format for now (grow to MEMB later | |
2128 | if 12 bits is not enough for the displacement). */ | |
2129 | memP->disp = 12; | |
2130 | break; | |
2131 | ||
2132 | case A_BIT: | |
2133 | /* For some reason, the bit string for this mode is not | |
2134 | consistent: it should be 0 (exclusive of the MEMB bit), so we | |
2135 | set it "by hand" here. */ | |
2136 | memP->opcode |= MEMB_BIT; | |
2137 | break; | |
2138 | ||
2139 | case A_BIT | I_BIT: | |
2140 | /* set MEMB bit in mode, and OR in mode bits */ | |
2141 | memP->opcode |= mode | MEMB_BIT; | |
2142 | break; | |
2143 | ||
2144 | case I_BIT: | |
2145 | /* Treat missing displacement as displacement of 0. */ | |
2146 | mode |= D_BIT; | |
2147 | /* Fall into next case. */ | |
2148 | case D_BIT | A_BIT | I_BIT: | |
2149 | case D_BIT | I_BIT: | |
2150 | /* set MEMB bit in mode, and OR in mode bits */ | |
2151 | memP->opcode |= mode | MEMB_BIT; | |
2152 | memP->disp = 32; | |
2153 | break; | |
2154 | ||
2155 | default: | |
2156 | syntax (); | |
2157 | break; | |
2158 | } | |
2159 | } | |
2160 | ||
2161 | /***************************************************************************** | |
2162 | parse_po: parse machine-dependent pseudo-op | |
2163 | ||
2164 | This is a top-level routine for machine-dependent pseudo-ops. It slurps | |
2165 | up the rest of the input line, breaks out the individual arguments, | |
2166 | and dispatches them to the correct handler. | |
2167 | *************************************************************************** */ | |
2168 | static | |
2169 | void | |
2170 | parse_po (po_num) | |
2171 | int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */ | |
2172 | { | |
2173 | /* Pointers operands, with no embedded whitespace. | |
2174 | arg[0] unused, arg[1-3]->operands */ | |
2175 | char *args[4]; | |
2176 | int n_ops; /* Number of operands */ | |
2177 | char *p; /* Pointer to beginning of unparsed argument string */ | |
2178 | char eol; /* Character that indicated end of line */ | |
2179 | ||
2180 | extern char is_end_of_line[]; | |
2181 | ||
92774660 | 2182 | /* Advance input pointer to end of line. */ |
252b5132 RH |
2183 | p = input_line_pointer; |
2184 | while (!is_end_of_line[(unsigned char) *input_line_pointer]) | |
2185 | { | |
2186 | input_line_pointer++; | |
2187 | } | |
2188 | eol = *input_line_pointer; /* Save end-of-line char */ | |
2189 | *input_line_pointer = '\0'; /* Terminate argument list */ | |
2190 | ||
2191 | /* Parse out operands */ | |
2192 | n_ops = get_args (p, args); | |
2193 | if (n_ops == -1) | |
2194 | { | |
2195 | return; | |
2196 | } | |
2197 | ||
2198 | /* Dispatch to correct handler */ | |
2199 | switch (po_num) | |
2200 | { | |
2201 | case S_SYSPROC: | |
2202 | s_sysproc (n_ops, args); | |
2203 | break; | |
2204 | case S_LEAFPROC: | |
2205 | s_leafproc (n_ops, args); | |
2206 | break; | |
2207 | default: | |
2208 | BAD_CASE (po_num); | |
2209 | break; | |
2210 | } | |
2211 | ||
2212 | /* Restore eol, so line numbers get updated correctly. Base | |
2213 | assembler assumes we leave input pointer pointing at char | |
2214 | following the eol. */ | |
2215 | *input_line_pointer++ = eol; | |
2216 | } | |
2217 | ||
2218 | /***************************************************************************** | |
2219 | parse_regop: parse a register operand. | |
2220 | ||
2221 | In case of illegal operand, issue a message and return some valid | |
2222 | information so instruction processing can continue. | |
2223 | *************************************************************************** */ | |
2224 | static | |
2225 | void | |
2226 | parse_regop (regopP, optext, opdesc) | |
2227 | struct regop *regopP; /* Where to put description of register operand */ | |
2228 | char *optext; /* Text of operand */ | |
2229 | char opdesc; /* Descriptor byte: what's legal for this operand */ | |
2230 | { | |
2231 | int n; /* Register number */ | |
2232 | expressionS e; /* Parsed expression */ | |
2233 | ||
2234 | /* See if operand is a register */ | |
2235 | n = get_regnum (optext); | |
2236 | if (n >= 0) | |
2237 | { | |
2238 | if (IS_RG_REG (n)) | |
2239 | { | |
2240 | /* global or local register */ | |
2241 | if (!REG_ALIGN (opdesc, n)) | |
2242 | { | |
2243 | as_bad (_("unaligned register")); | |
2244 | } | |
2245 | regopP->n = n; | |
2246 | regopP->mode = 0; | |
2247 | regopP->special = 0; | |
2248 | return; | |
2249 | } | |
2250 | else if (IS_FP_REG (n) && FP_OK (opdesc)) | |
2251 | { | |
2252 | /* Floating point register, and it's allowed */ | |
2253 | regopP->n = n - FP0; | |
2254 | regopP->mode = 1; | |
2255 | regopP->special = 0; | |
2256 | return; | |
2257 | } | |
2258 | else if (IS_SF_REG (n) && SFR_OK (opdesc)) | |
2259 | { | |
2260 | /* Special-function register, and it's allowed */ | |
2261 | regopP->n = n - SF0; | |
2262 | regopP->mode = 0; | |
2263 | regopP->special = 1; | |
2264 | if (!targ_has_sfr (regopP->n)) | |
2265 | { | |
2266 | as_bad (_("no such sfr in this architecture")); | |
2267 | } | |
2268 | return; | |
2269 | } | |
2270 | } | |
2271 | else if (LIT_OK (opdesc)) | |
2272 | { | |
2273 | /* How about a literal? */ | |
2274 | regopP->mode = 1; | |
2275 | regopP->special = 0; | |
2276 | if (FP_OK (opdesc)) | |
2277 | { /* floating point literal acceptable */ | |
2278 | /* Skip over 0f, 0d, or 0e prefix */ | |
2279 | if ((optext[0] == '0') | |
2280 | && (optext[1] >= 'd') | |
2281 | && (optext[1] <= 'f')) | |
2282 | { | |
2283 | optext += 2; | |
2284 | } | |
2285 | ||
2286 | if (!strcmp (optext, "0.0") || !strcmp (optext, "0")) | |
2287 | { | |
2288 | regopP->n = 0x10; | |
2289 | return; | |
2290 | } | |
2291 | if (!strcmp (optext, "1.0") || !strcmp (optext, "1")) | |
2292 | { | |
2293 | regopP->n = 0x16; | |
2294 | return; | |
2295 | } | |
2296 | ||
2297 | } | |
2298 | else | |
2299 | { /* fixed point literal acceptable */ | |
2300 | parse_expr (optext, &e); | |
2301 | if (e.X_op != O_constant | |
2302 | || (offs (e) < 0) || (offs (e) > 31)) | |
2303 | { | |
2304 | as_bad (_("illegal literal")); | |
2305 | offs (e) = 0; | |
2306 | } | |
2307 | regopP->n = offs (e); | |
2308 | return; | |
2309 | } | |
2310 | } | |
2311 | ||
2312 | /* Nothing worked */ | |
2313 | syntax (); | |
2314 | regopP->mode = 0; /* Register r0 is always a good one */ | |
2315 | regopP->n = 0; | |
2316 | regopP->special = 0; | |
2317 | } /* parse_regop() */ | |
2318 | ||
2319 | /***************************************************************************** | |
2320 | reg_fmt: generate a REG-format instruction | |
2321 | ||
2322 | *************************************************************************** */ | |
2323 | static void | |
2324 | reg_fmt (args, oP) | |
2325 | char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ | |
2326 | struct i960_opcode *oP; /* Pointer to description of instruction */ | |
2327 | { | |
2328 | long instr; /* Binary to be output */ | |
2329 | struct regop regop; /* Description of register operand */ | |
2330 | int n_ops; /* Number of operands */ | |
2331 | ||
252b5132 RH |
2332 | instr = oP->opcode; |
2333 | n_ops = oP->num_ops; | |
2334 | ||
2335 | if (n_ops >= 1) | |
2336 | { | |
2337 | parse_regop (®op, args[1], oP->operand[0]); | |
2338 | ||
2339 | if ((n_ops == 1) && !(instr & M3)) | |
2340 | { | |
2341 | /* 1-operand instruction in which the dst field should | |
2342 | * be used (instead of src1). | |
2343 | */ | |
2344 | regop.n <<= 19; | |
2345 | if (regop.special) | |
2346 | { | |
2347 | regop.mode = regop.special; | |
2348 | } | |
2349 | regop.mode <<= 13; | |
2350 | regop.special = 0; | |
2351 | } | |
2352 | else | |
2353 | { | |
2354 | /* regop.n goes in bit 0, needs no shifting */ | |
2355 | regop.mode <<= 11; | |
2356 | regop.special <<= 5; | |
2357 | } | |
2358 | instr |= regop.n | regop.mode | regop.special; | |
2359 | } | |
2360 | ||
2361 | if (n_ops >= 2) | |
2362 | { | |
2363 | parse_regop (®op, args[2], oP->operand[1]); | |
2364 | ||
2365 | if ((n_ops == 2) && !(instr & M3)) | |
2366 | { | |
2367 | /* 2-operand instruction in which the dst field should | |
2368 | * be used instead of src2). | |
2369 | */ | |
2370 | regop.n <<= 19; | |
2371 | if (regop.special) | |
2372 | { | |
2373 | regop.mode = regop.special; | |
2374 | } | |
2375 | regop.mode <<= 13; | |
2376 | regop.special = 0; | |
2377 | } | |
2378 | else | |
2379 | { | |
2380 | regop.n <<= 14; | |
2381 | regop.mode <<= 12; | |
2382 | regop.special <<= 6; | |
2383 | } | |
2384 | instr |= regop.n | regop.mode | regop.special; | |
2385 | } | |
2386 | if (n_ops == 3) | |
2387 | { | |
2388 | parse_regop (®op, args[3], oP->operand[2]); | |
2389 | if (regop.special) | |
2390 | { | |
2391 | regop.mode = regop.special; | |
2392 | } | |
2393 | instr |= (regop.n <<= 19) | (regop.mode <<= 13); | |
2394 | } | |
2395 | emit (instr); | |
2396 | } | |
2397 | ||
252b5132 RH |
2398 | /***************************************************************************** |
2399 | relax_cobr: | |
2400 | Replace cobr instruction in a code fragment with equivalent branch and | |
2401 | compare instructions, so it can reach beyond a 13-bit displacement. | |
2402 | Set up an address fix/relocation for the new branch instruction. | |
2403 | ||
2404 | *************************************************************************** */ | |
2405 | ||
2406 | /* This "conditional jump" table maps cobr instructions into | |
2407 | equivalent compare and branch opcodes. */ | |
2408 | static const | |
2409 | struct | |
2410 | { | |
2411 | long compare; | |
2412 | long branch; | |
2413 | } | |
2414 | ||
2415 | coj[] = | |
2416 | { /* COBR OPCODE: */ | |
2417 | { CHKBIT, BNO }, /* 0x30 - bbc */ | |
2418 | { CMPO, BG }, /* 0x31 - cmpobg */ | |
2419 | { CMPO, BE }, /* 0x32 - cmpobe */ | |
2420 | { CMPO, BGE }, /* 0x33 - cmpobge */ | |
2421 | { CMPO, BL }, /* 0x34 - cmpobl */ | |
2422 | { CMPO, BNE }, /* 0x35 - cmpobne */ | |
2423 | { CMPO, BLE }, /* 0x36 - cmpoble */ | |
2424 | { CHKBIT, BO }, /* 0x37 - bbs */ | |
2425 | { CMPI, BNO }, /* 0x38 - cmpibno */ | |
2426 | { CMPI, BG }, /* 0x39 - cmpibg */ | |
2427 | { CMPI, BE }, /* 0x3a - cmpibe */ | |
2428 | { CMPI, BGE }, /* 0x3b - cmpibge */ | |
2429 | { CMPI, BL }, /* 0x3c - cmpibl */ | |
2430 | { CMPI, BNE }, /* 0x3d - cmpibne */ | |
2431 | { CMPI, BLE }, /* 0x3e - cmpible */ | |
2432 | { CMPI, BO }, /* 0x3f - cmpibo */ | |
2433 | }; | |
2434 | ||
2435 | static | |
2436 | void | |
2437 | relax_cobr (fragP) | |
2438 | register fragS *fragP; /* fragP->fr_opcode is assumed to point to | |
2439 | * the cobr instruction, which comes at the | |
2440 | * end of the code fragment. | |
2441 | */ | |
2442 | { | |
2443 | int opcode, src1, src2, m1, s2; | |
2444 | /* Bit fields from cobr instruction */ | |
2445 | long bp_bits; /* Branch prediction bits from cobr instruction */ | |
2446 | long instr; /* A single i960 instruction */ | |
2447 | /* ->instruction to be replaced */ | |
2448 | char *iP; | |
2449 | fixS *fixP; /* Relocation that can be done at assembly time */ | |
2450 | ||
2451 | /* PICK UP & PARSE COBR INSTRUCTION */ | |
2452 | iP = fragP->fr_opcode; | |
2453 | instr = md_chars_to_number (iP, 4); | |
2454 | opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */ | |
2455 | src1 = (instr >> 19) & 0x1f; | |
2456 | m1 = (instr >> 13) & 1; | |
2457 | s2 = instr & 1; | |
2458 | src2 = (instr >> 14) & 0x1f; | |
2459 | bp_bits = instr & BP_MASK; | |
2460 | ||
2461 | /* GENERATE AND OUTPUT COMPARE INSTRUCTION */ | |
2462 | instr = coj[opcode].compare | |
2463 | | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14); | |
2464 | md_number_to_chars (iP, instr, 4); | |
2465 | ||
2466 | /* OUTPUT BRANCH INSTRUCTION */ | |
2467 | md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4); | |
2468 | ||
2469 | /* SET UP ADDRESS FIXUP/RELOCATION */ | |
2470 | fixP = fix_new (fragP, | |
2471 | iP + 4 - fragP->fr_literal, | |
2472 | 4, | |
2473 | fragP->fr_symbol, | |
2474 | fragP->fr_offset, | |
2475 | 1, | |
2476 | NO_RELOC); | |
2477 | ||
2478 | fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */ | |
2479 | ||
2480 | fragP->fr_fix += 4; | |
2481 | frag_wane (fragP); | |
2482 | } | |
2483 | ||
252b5132 RH |
2484 | /***************************************************************************** |
2485 | reloc_callj: Relocate a 'callj' instruction | |
2486 | ||
2487 | This is a "non-(GNU)-standard" machine-dependent hook. The base | |
2488 | assembler calls it when it decides it can relocate an address at | |
2489 | assembly time instead of emitting a relocation directive. | |
2490 | ||
2491 | Check to see if the relocation involves a 'callj' instruction to a: | |
2492 | sysproc: Replace the default 'call' instruction with a 'calls' | |
2493 | leafproc: Replace the default 'call' instruction with a 'bal'. | |
2494 | other proc: Do nothing. | |
2495 | ||
2496 | See b.out.h for details on the 'n_other' field in a symbol structure. | |
2497 | ||
2498 | IMPORTANT!: | |
2499 | Assumes the caller has already figured out, in the case of a leafproc, | |
2500 | to use the 'bal' entry point, and has substituted that symbol into the | |
2501 | passed fixup structure. | |
2502 | ||
2503 | *************************************************************************** */ | |
2504 | void | |
2505 | reloc_callj (fixP) | |
2506 | /* Relocation that can be done at assembly time */ | |
2507 | fixS *fixP; | |
2508 | { | |
2509 | /* Points to the binary for the instruction being relocated. */ | |
2510 | char *where; | |
2511 | ||
2512 | if (!fixP->fx_tcbit) | |
2513 | { | |
2514 | /* This wasn't a callj instruction in the first place */ | |
2515 | return; | |
2516 | } | |
2517 | ||
2518 | where = fixP->fx_frag->fr_literal + fixP->fx_where; | |
2519 | ||
2520 | if (TC_S_IS_SYSPROC (fixP->fx_addsy)) | |
2521 | { | |
2522 | /* Symbol is a .sysproc: replace 'call' with 'calls'. System | |
2523 | procedure number is (other-1). */ | |
2524 | md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4); | |
2525 | ||
2526 | /* Nothing else needs to be done for this instruction. Make | |
2527 | sure 'md_number_to_field()' will perform a no-op. */ | |
2528 | fixP->fx_bit_fixP = (bit_fixS *) 1; | |
2529 | ||
2530 | } | |
2531 | else if (TC_S_IS_CALLNAME (fixP->fx_addsy)) | |
2532 | { | |
2533 | /* Should not happen: see block comment above */ | |
2534 | as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy)); | |
2535 | } | |
2536 | else if (TC_S_IS_BALNAME (fixP->fx_addsy)) | |
2537 | { | |
2538 | /* Replace 'call' with 'bal'; both instructions have the same | |
2539 | format, so calling code should complete relocation as if | |
2540 | nothing happened here. */ | |
2541 | md_number_to_chars (where, BAL, 4); | |
2542 | } | |
2543 | else if (TC_S_IS_BADPROC (fixP->fx_addsy)) | |
2544 | { | |
2545 | as_bad (_("Looks like a proc, but can't tell what kind.\n")); | |
2546 | } /* switch on proc type */ | |
2547 | ||
2548 | /* else Symbol is neither a sysproc nor a leafproc */ | |
2549 | } | |
2550 | ||
252b5132 RH |
2551 | /***************************************************************************** |
2552 | s_leafproc: process .leafproc pseudo-op | |
2553 | ||
2554 | .leafproc takes two arguments, the second one is optional: | |
2555 | arg[1]: name of 'call' entry point to leaf procedure | |
2556 | arg[2]: name of 'bal' entry point to leaf procedure | |
2557 | ||
2558 | If the two arguments are identical, or if the second one is missing, | |
2559 | the first argument is taken to be the 'bal' entry point. | |
2560 | ||
2561 | If there are 2 distinct arguments, we must make sure that the 'bal' | |
2562 | entry point immediately follows the 'call' entry point in the linked | |
2563 | list of symbols. | |
2564 | ||
2565 | *************************************************************************** */ | |
2566 | static void | |
2567 | s_leafproc (n_ops, args) | |
2568 | int n_ops; /* Number of operands */ | |
2569 | char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ | |
2570 | { | |
2571 | symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */ | |
2572 | symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */ | |
2573 | ||
2574 | if ((n_ops != 1) && (n_ops != 2)) | |
2575 | { | |
2576 | as_bad (_("should have 1 or 2 operands")); | |
2577 | return; | |
2578 | } /* Check number of arguments */ | |
2579 | ||
92774660 | 2580 | /* Find or create symbol for 'call' entry point. */ |
252b5132 RH |
2581 | callP = symbol_find_or_make (args[1]); |
2582 | ||
2583 | if (TC_S_IS_CALLNAME (callP)) | |
2584 | { | |
2585 | as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP)); | |
2586 | } /* is leafproc */ | |
2587 | ||
2588 | /* If that was the only argument, use it as the 'bal' entry point. | |
2589 | * Otherwise, mark it as the 'call' entry point and find or create | |
2590 | * another symbol for the 'bal' entry point. | |
2591 | */ | |
2592 | if ((n_ops == 1) || !strcmp (args[1], args[2])) | |
2593 | { | |
2594 | TC_S_FORCE_TO_BALNAME (callP); | |
2595 | ||
2596 | } | |
2597 | else | |
2598 | { | |
2599 | TC_S_FORCE_TO_CALLNAME (callP); | |
2600 | ||
2601 | balP = symbol_find_or_make (args[2]); | |
2602 | if (TC_S_IS_CALLNAME (balP)) | |
2603 | { | |
2604 | as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP)); | |
2605 | } | |
2606 | TC_S_FORCE_TO_BALNAME (balP); | |
2607 | ||
76171f81 | 2608 | #ifndef OBJ_ELF |
252b5132 | 2609 | tc_set_bal_of_call (callP, balP); |
76171f81 | 2610 | #endif |
252b5132 RH |
2611 | } /* if only one arg, or the args are the same */ |
2612 | } | |
2613 | ||
252b5132 RH |
2614 | /* |
2615 | s_sysproc: process .sysproc pseudo-op | |
2616 | ||
2617 | .sysproc takes two arguments: | |
2618 | arg[1]: name of entry point to system procedure | |
2619 | arg[2]: 'entry_num' (index) of system procedure in the range | |
2620 | [0,31] inclusive. | |
2621 | ||
2622 | For [ab].out, we store the 'entrynum' in the 'n_other' field of | |
2623 | the symbol. Since that entry is normally 0, we bias 'entrynum' | |
2624 | by adding 1 to it. It must be unbiased before it is used. */ | |
2625 | static void | |
2626 | s_sysproc (n_ops, args) | |
2627 | int n_ops; /* Number of operands */ | |
2628 | char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ | |
2629 | { | |
2630 | expressionS exp; | |
2631 | symbolS *symP; | |
2632 | ||
2633 | if (n_ops != 2) | |
2634 | { | |
2635 | as_bad (_("should have two operands")); | |
2636 | return; | |
2637 | } /* bad arg count */ | |
2638 | ||
92774660 | 2639 | /* Parse "entry_num" argument and check it for validity. */ |
252b5132 RH |
2640 | parse_expr (args[2], &exp); |
2641 | if (exp.X_op != O_constant | |
2642 | || (offs (exp) < 0) | |
2643 | || (offs (exp) > 31)) | |
2644 | { | |
2645 | as_bad (_("'entry_num' must be absolute number in [0,31]")); | |
2646 | return; | |
2647 | } | |
2648 | ||
2649 | /* Find/make symbol and stick entry number (biased by +1) into it */ | |
2650 | symP = symbol_find_or_make (args[1]); | |
2651 | ||
2652 | if (TC_S_IS_SYSPROC (symP)) | |
2653 | { | |
2654 | as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP)); | |
2655 | } /* redefining */ | |
2656 | ||
2657 | TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */ | |
2658 | TC_S_FORCE_TO_SYSPROC (symP); | |
2659 | } | |
2660 | ||
252b5132 RH |
2661 | /***************************************************************************** |
2662 | shift_ok: | |
2663 | Determine if a "shlo" instruction can be used to implement a "ldconst". | |
2664 | This means that some number X < 32 can be shifted left to produce the | |
2665 | constant of interest. | |
2666 | ||
2667 | Return the shift count, or 0 if we can't do it. | |
2668 | Caller calculates X by shifting original constant right 'shift' places. | |
2669 | ||
2670 | *************************************************************************** */ | |
2671 | static | |
2672 | int | |
2673 | shift_ok (n) | |
2674 | int n; /* The constant of interest */ | |
2675 | { | |
2676 | int shift; /* The shift count */ | |
2677 | ||
2678 | if (n <= 0) | |
2679 | { | |
2680 | /* Can't do it for negative numbers */ | |
2681 | return 0; | |
2682 | } | |
2683 | ||
2684 | /* Shift 'n' right until a 1 is about to be lost */ | |
2685 | for (shift = 0; (n & 1) == 0; shift++) | |
2686 | { | |
2687 | n >>= 1; | |
2688 | } | |
2689 | ||
2690 | if (n >= 32) | |
2691 | { | |
2692 | return 0; | |
2693 | } | |
2694 | return shift; | |
2695 | } | |
2696 | ||
252b5132 RH |
2697 | /* syntax: issue syntax error */ |
2698 | ||
2699 | static void | |
2700 | syntax () | |
2701 | { | |
2702 | as_bad (_("syntax error")); | |
2703 | } /* syntax() */ | |
2704 | ||
252b5132 RH |
2705 | /* targ_has_sfr: |
2706 | ||
2707 | Return TRUE iff the target architecture supports the specified | |
2708 | special-function register (sfr). */ | |
2709 | ||
2710 | static | |
2711 | int | |
2712 | targ_has_sfr (n) | |
2713 | int n; /* Number (0-31) of sfr */ | |
2714 | { | |
2715 | switch (architecture) | |
2716 | { | |
2717 | case ARCH_KA: | |
2718 | case ARCH_KB: | |
2719 | case ARCH_MC: | |
2720 | case ARCH_JX: | |
2721 | return 0; | |
2722 | case ARCH_HX: | |
2723 | return ((0 <= n) && (n <= 4)); | |
2724 | case ARCH_CA: | |
2725 | default: | |
2726 | return ((0 <= n) && (n <= 2)); | |
2727 | } | |
2728 | } | |
2729 | ||
252b5132 RH |
2730 | /* targ_has_iclass: |
2731 | ||
2732 | Return TRUE iff the target architecture supports the indicated | |
2733 | class of instructions. */ | |
2734 | static | |
2735 | int | |
2736 | targ_has_iclass (ic) | |
2737 | /* Instruction class; one of: | |
2738 | I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2 | |
2739 | */ | |
2740 | int ic; | |
2741 | { | |
2742 | iclasses_seen |= ic; | |
2743 | switch (architecture) | |
2744 | { | |
2745 | case ARCH_KA: | |
2746 | return ic & (I_BASE | I_KX); | |
2747 | case ARCH_KB: | |
2748 | return ic & (I_BASE | I_KX | I_FP | I_DEC); | |
2749 | case ARCH_MC: | |
2750 | return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL); | |
2751 | case ARCH_CA: | |
2752 | return ic & (I_BASE | I_CX | I_CX2 | I_CASIM); | |
2753 | case ARCH_JX: | |
2754 | return ic & (I_BASE | I_CX2 | I_JX); | |
2755 | case ARCH_HX: | |
2756 | return ic & (I_BASE | I_CX2 | I_JX | I_HX); | |
2757 | default: | |
2758 | if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL)) | |
2759 | && (iclasses_seen & (I_CX | I_CX2))) | |
2760 | { | |
2761 | as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)")); | |
2762 | iclasses_seen &= ~ic; | |
2763 | } | |
2764 | return 1; | |
2765 | } | |
2766 | } | |
2767 | ||
2768 | /* Handle the MRI .endian pseudo-op. */ | |
2769 | ||
2770 | static void | |
2771 | s_endian (ignore) | |
2772 | int ignore; | |
2773 | { | |
2774 | char *name; | |
2775 | char c; | |
2776 | ||
2777 | name = input_line_pointer; | |
2778 | c = get_symbol_end (); | |
2779 | if (strcasecmp (name, "little") == 0) | |
2780 | ; | |
2781 | else if (strcasecmp (name, "big") == 0) | |
2782 | as_bad (_("big endian mode is not supported")); | |
2783 | else | |
2784 | as_warn (_("ignoring unrecognized .endian type `%s'"), name); | |
2785 | ||
2786 | *input_line_pointer = c; | |
2787 | ||
2788 | demand_empty_rest_of_line (); | |
2789 | } | |
2790 | ||
92774660 | 2791 | /* We have no need to default values of symbols. */ |
252b5132 | 2792 | |
252b5132 RH |
2793 | symbolS * |
2794 | md_undefined_symbol (name) | |
2795 | char *name; | |
2796 | { | |
2797 | return 0; | |
2798 | } | |
2799 | ||
2800 | /* Exactly what point is a PC-relative offset relative TO? | |
2801 | On the i960, they're relative to the address of the instruction, | |
92774660 | 2802 | which we have set up as the address of the fixup too. */ |
252b5132 RH |
2803 | long |
2804 | md_pcrel_from (fixP) | |
2805 | fixS *fixP; | |
2806 | { | |
2807 | return fixP->fx_where + fixP->fx_frag->fr_address; | |
2808 | } | |
2809 | ||
2810 | void | |
94f592af | 2811 | md_apply_fix3 (fixP, valP, seg) |
252b5132 | 2812 | fixS *fixP; |
94f592af NC |
2813 | valueT * valP; |
2814 | segT seg ATTRIBUTE_UNUSED; | |
252b5132 | 2815 | { |
94f592af | 2816 | long val = * (long *) valP; |
252b5132 RH |
2817 | char *place = fixP->fx_where + fixP->fx_frag->fr_literal; |
2818 | ||
2819 | if (!fixP->fx_bit_fixP) | |
2820 | { | |
76171f81 | 2821 | #ifndef BFD_ASSEMBLER |
252b5132 RH |
2822 | /* For callx, we always want to write out zero, and emit a |
2823 | symbolic relocation. */ | |
2824 | if (fixP->fx_bsr) | |
2825 | val = 0; | |
2826 | ||
2827 | fixP->fx_addnumber = val; | |
bedf545c ILT |
2828 | #endif |
2829 | ||
252b5132 RH |
2830 | md_number_to_imm (place, val, fixP->fx_size, fixP); |
2831 | } | |
2832 | else | |
2833 | md_number_to_field (place, val, fixP->fx_bit_fixP); | |
bedf545c | 2834 | |
94f592af NC |
2835 | if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0) |
2836 | fixP->fx_done = 1; | |
252b5132 RH |
2837 | } |
2838 | ||
2839 | #if defined(OBJ_AOUT) | defined(OBJ_BOUT) | |
2840 | void | |
2841 | tc_bout_fix_to_chars (where, fixP, segment_address_in_file) | |
2842 | char *where; | |
2843 | fixS *fixP; | |
2844 | relax_addressT segment_address_in_file; | |
2845 | { | |
2846 | static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2}; | |
2847 | struct relocation_info ri; | |
2848 | symbolS *symbolP; | |
2849 | ||
2850 | memset ((char *) &ri, '\0', sizeof (ri)); | |
2851 | symbolP = fixP->fx_addsy; | |
2852 | know (symbolP != 0 || fixP->fx_r_type != NO_RELOC); | |
2853 | ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */ | |
2854 | /* These two 'cuz of NS32K */ | |
2855 | ri.r_callj = fixP->fx_tcbit; | |
2856 | if (fixP->fx_bit_fixP) | |
2857 | ri.r_length = 2; | |
2858 | else | |
2859 | ri.r_length = nbytes_r_length[fixP->fx_size]; | |
2860 | ri.r_pcrel = fixP->fx_pcrel; | |
2861 | ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file; | |
2862 | ||
2863 | if (fixP->fx_r_type != NO_RELOC) | |
2864 | { | |
2865 | switch (fixP->fx_r_type) | |
2866 | { | |
2867 | case rs_align: | |
2868 | ri.r_index = -2; | |
2869 | ri.r_pcrel = 1; | |
2870 | ri.r_length = fixP->fx_size - 1; | |
2871 | break; | |
2872 | case rs_org: | |
2873 | ri.r_index = -2; | |
2874 | ri.r_pcrel = 0; | |
2875 | break; | |
2876 | case rs_fill: | |
2877 | ri.r_index = -1; | |
2878 | break; | |
2879 | default: | |
2880 | abort (); | |
2881 | } | |
2882 | ri.r_extern = 0; | |
2883 | } | |
2884 | else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr) | |
2885 | { | |
2886 | ri.r_extern = 1; | |
2887 | ri.r_index = symbolP->sy_number; | |
2888 | } | |
2889 | else | |
2890 | { | |
2891 | ri.r_extern = 0; | |
2892 | ri.r_index = S_GET_TYPE (symbolP); | |
2893 | } | |
2894 | ||
92774660 | 2895 | /* Output the relocation information in machine-dependent form. */ |
252b5132 RH |
2896 | md_ri_to_chars (where, &ri); |
2897 | } | |
2898 | ||
2899 | #endif /* OBJ_AOUT or OBJ_BOUT */ | |
2900 | ||
2901 | #if defined (OBJ_COFF) && defined (BFD) | |
2902 | short | |
2903 | tc_coff_fix2rtype (fixP) | |
2904 | fixS *fixP; | |
2905 | { | |
2906 | if (fixP->fx_bsr) | |
2907 | abort (); | |
2908 | ||
2909 | if (fixP->fx_pcrel == 0 && fixP->fx_size == 4) | |
2910 | return R_RELLONG; | |
2911 | ||
2912 | if (fixP->fx_pcrel != 0 && fixP->fx_size == 4) | |
2913 | return R_IPRMED; | |
2914 | ||
2915 | abort (); | |
2916 | return 0; | |
2917 | } | |
2918 | ||
2919 | int | |
2920 | tc_coff_sizemachdep (frag) | |
2921 | fragS *frag; | |
2922 | { | |
2923 | if (frag->fr_next) | |
2924 | return frag->fr_next->fr_address - frag->fr_address; | |
2925 | else | |
2926 | return 0; | |
2927 | } | |
2928 | #endif | |
2929 | ||
2930 | /* Align an address by rounding it up to the specified boundary. */ | |
2931 | valueT | |
2932 | md_section_align (seg, addr) | |
2933 | segT seg; | |
2934 | valueT addr; /* Address to be rounded up */ | |
2935 | { | |
bedf545c ILT |
2936 | int align; |
2937 | #ifdef BFD_ASSEMBLER | |
2938 | align = bfd_get_section_alignment (stdoutput, seg); | |
2939 | #else | |
2940 | align = section_alignment[(int) seg]; | |
2941 | #endif | |
2942 | return (addr + (1 << align) - 1) & (-1 << align); | |
2943 | } | |
252b5132 RH |
2944 | |
2945 | extern int coff_flags; | |
2946 | ||
2947 | #ifdef OBJ_COFF | |
2948 | void | |
2949 | tc_headers_hook (headers) | |
2950 | object_headers *headers; | |
2951 | { | |
2952 | switch (architecture) | |
2953 | { | |
2954 | case ARCH_KA: | |
2955 | coff_flags |= F_I960KA; | |
2956 | break; | |
2957 | ||
2958 | case ARCH_KB: | |
2959 | coff_flags |= F_I960KB; | |
2960 | break; | |
2961 | ||
2962 | case ARCH_MC: | |
2963 | coff_flags |= F_I960MC; | |
2964 | break; | |
2965 | ||
2966 | case ARCH_CA: | |
2967 | coff_flags |= F_I960CA; | |
2968 | break; | |
2969 | ||
2970 | case ARCH_JX: | |
2971 | coff_flags |= F_I960JX; | |
2972 | break; | |
2973 | ||
2974 | case ARCH_HX: | |
2975 | coff_flags |= F_I960HX; | |
2976 | break; | |
2977 | ||
2978 | default: | |
2979 | if (iclasses_seen == I_BASE) | |
2980 | coff_flags |= F_I960CORE; | |
2981 | else if (iclasses_seen & I_CX) | |
2982 | coff_flags |= F_I960CA; | |
2983 | else if (iclasses_seen & I_HX) | |
2984 | coff_flags |= F_I960HX; | |
2985 | else if (iclasses_seen & I_JX) | |
2986 | coff_flags |= F_I960JX; | |
2987 | else if (iclasses_seen & I_CX2) | |
2988 | coff_flags |= F_I960CA; | |
2989 | else if (iclasses_seen & I_MIL) | |
2990 | coff_flags |= F_I960MC; | |
2991 | else if (iclasses_seen & (I_DEC | I_FP)) | |
2992 | coff_flags |= F_I960KB; | |
2993 | else | |
2994 | coff_flags |= F_I960KA; | |
2995 | break; | |
2996 | } | |
2997 | ||
2998 | if (flag_readonly_data_in_text) | |
2999 | { | |
3000 | headers->filehdr.f_magic = I960RWMAGIC; | |
3001 | headers->aouthdr.magic = OMAGIC; | |
3002 | } | |
3003 | else | |
3004 | { | |
3005 | headers->filehdr.f_magic = I960ROMAGIC; | |
3006 | headers->aouthdr.magic = NMAGIC; | |
3007 | } /* set magic numbers */ | |
3008 | } | |
3009 | ||
3010 | #endif /* OBJ_COFF */ | |
3011 | ||
bedf545c ILT |
3012 | #ifndef BFD_ASSEMBLER |
3013 | ||
252b5132 RH |
3014 | /* Things going on here: |
3015 | ||
3016 | For bout, We need to assure a couple of simplifying | |
3017 | assumptions about leafprocs for the linker: the leafproc | |
3018 | entry symbols will be defined in the same assembly in | |
3019 | which they're declared with the '.leafproc' directive; | |
3020 | and if a leafproc has both 'call' and 'bal' entry points | |
3021 | they are both global or both local. | |
3022 | ||
3023 | For coff, the call symbol has a second aux entry that | |
3024 | contains the bal entry point. The bal symbol becomes a | |
3025 | label. | |
3026 | ||
3027 | For coff representation, the call symbol has a second aux entry that | |
3028 | contains the bal entry point. The bal symbol becomes a label. */ | |
3029 | ||
3030 | void | |
3031 | tc_crawl_symbol_chain (headers) | |
3032 | object_headers *headers; | |
3033 | { | |
3034 | symbolS *symbolP; | |
3035 | ||
3036 | for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP)) | |
3037 | { | |
3038 | #ifdef OBJ_COFF | |
3039 | if (TC_S_IS_SYSPROC (symbolP)) | |
3040 | { | |
3041 | /* second aux entry already contains the sysproc number */ | |
3042 | S_SET_NUMBER_AUXILIARY (symbolP, 2); | |
3043 | S_SET_STORAGE_CLASS (symbolP, C_SCALL); | |
3044 | S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT)); | |
3045 | continue; | |
3046 | } /* rewrite sysproc */ | |
3047 | #endif /* OBJ_COFF */ | |
3048 | ||
3049 | if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP)) | |
3050 | { | |
3051 | continue; | |
3052 | } /* Not a leafproc symbol */ | |
3053 | ||
3054 | if (!S_IS_DEFINED (symbolP)) | |
3055 | { | |
3056 | as_bad (_("leafproc symbol '%s' undefined"), S_GET_NAME (symbolP)); | |
3057 | } /* undefined leaf */ | |
3058 | ||
3059 | if (TC_S_IS_CALLNAME (symbolP)) | |
3060 | { | |
3061 | symbolS *balP = tc_get_bal_of_call (symbolP); | |
3062 | if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP)) | |
3063 | { | |
3064 | S_SET_EXTERNAL (symbolP); | |
3065 | S_SET_EXTERNAL (balP); | |
3066 | as_warn (_("Warning: making leafproc entries %s and %s both global\n"), | |
3067 | S_GET_NAME (symbolP), S_GET_NAME (balP)); | |
3068 | } /* externality mismatch */ | |
3069 | } /* if callname */ | |
3070 | } /* walk the symbol chain */ | |
3071 | } | |
3072 | ||
bedf545c ILT |
3073 | #endif /* ! BFD_ASSEMBLER */ |
3074 | ||
252b5132 RH |
3075 | /* For aout or bout, the bal immediately follows the call. |
3076 | ||
3077 | For coff, we cheat and store a pointer to the bal symbol in the | |
3078 | second aux entry of the call. */ | |
3079 | ||
3080 | #undef OBJ_ABOUT | |
3081 | #ifdef OBJ_AOUT | |
3082 | #define OBJ_ABOUT | |
3083 | #endif | |
3084 | #ifdef OBJ_BOUT | |
3085 | #define OBJ_ABOUT | |
3086 | #endif | |
3087 | ||
3088 | void | |
3089 | tc_set_bal_of_call (callP, balP) | |
3090 | symbolS *callP; | |
3091 | symbolS *balP; | |
3092 | { | |
3093 | know (TC_S_IS_CALLNAME (callP)); | |
3094 | know (TC_S_IS_BALNAME (balP)); | |
3095 | ||
3096 | #ifdef OBJ_COFF | |
3097 | ||
3098 | callP->sy_tc = balP; | |
3099 | S_SET_NUMBER_AUXILIARY (callP, 2); | |
3100 | ||
3101 | #else /* ! OBJ_COFF */ | |
3102 | #ifdef OBJ_ABOUT | |
3103 | ||
3104 | /* If the 'bal' entry doesn't immediately follow the 'call' | |
3105 | * symbol, unlink it from the symbol list and re-insert it. | |
3106 | */ | |
3107 | if (symbol_next (callP) != balP) | |
3108 | { | |
3109 | symbol_remove (balP, &symbol_rootP, &symbol_lastP); | |
3110 | symbol_append (balP, callP, &symbol_rootP, &symbol_lastP); | |
3111 | } /* if not in order */ | |
3112 | ||
3113 | #else /* ! OBJ_ABOUT */ | |
bedf545c | 3114 | as_fatal ("Only supported for a.out, b.out, or COFF"); |
252b5132 RH |
3115 | #endif /* ! OBJ_ABOUT */ |
3116 | #endif /* ! OBJ_COFF */ | |
3117 | } | |
3118 | ||
3119 | symbolS * | |
3120 | tc_get_bal_of_call (callP) | |
3121 | symbolS *callP; | |
3122 | { | |
3123 | symbolS *retval; | |
3124 | ||
3125 | know (TC_S_IS_CALLNAME (callP)); | |
3126 | ||
3127 | #ifdef OBJ_COFF | |
3128 | retval = callP->sy_tc; | |
3129 | #else | |
3130 | #ifdef OBJ_ABOUT | |
3131 | retval = symbol_next (callP); | |
3132 | #else | |
bedf545c | 3133 | as_fatal ("Only supported for a.out, b.out, or COFF"); |
252b5132 RH |
3134 | #endif /* ! OBJ_ABOUT */ |
3135 | #endif /* ! OBJ_COFF */ | |
3136 | ||
3137 | know (TC_S_IS_BALNAME (retval)); | |
3138 | return retval; | |
3139 | } /* _tc_get_bal_of_call() */ | |
3140 | ||
3141 | void | |
3142 | tc_coff_symbol_emit_hook (symbolP) | |
3143 | symbolS *symbolP; | |
3144 | { | |
3145 | if (TC_S_IS_CALLNAME (symbolP)) | |
3146 | { | |
3147 | #ifdef OBJ_COFF | |
3148 | symbolS *balP = tc_get_bal_of_call (symbolP); | |
3149 | ||
3150 | #if 0 | |
3151 | /* second aux entry contains the bal entry point */ | |
3152 | S_SET_NUMBER_AUXILIARY (symbolP, 2); | |
3153 | #endif | |
3154 | symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP); | |
3155 | if (S_GET_STORAGE_CLASS (symbolP) == C_EXT) | |
3156 | S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT); | |
3157 | else | |
3158 | S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT); | |
3159 | S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT)); | |
3160 | /* fix up the bal symbol */ | |
3161 | S_SET_STORAGE_CLASS (balP, C_LABEL); | |
3162 | #endif /* OBJ_COFF */ | |
3163 | } /* only on calls */ | |
3164 | } | |
3165 | ||
3166 | void | |
3167 | i960_handle_align (fragp) | |
3168 | fragS *fragp; | |
3169 | { | |
3170 | if (!linkrelax) | |
3171 | return; | |
3172 | ||
3173 | #ifndef OBJ_BOUT | |
3174 | ||
3175 | as_bad (_("option --link-relax is only supported in b.out format")); | |
3176 | linkrelax = 0; | |
3177 | return; | |
3178 | ||
3179 | #else | |
3180 | ||
3181 | /* The text section "ends" with another alignment reloc, to which we | |
3182 | aren't adding padding. */ | |
3183 | if (fragp->fr_next == text_last_frag | |
3184 | || fragp->fr_next == data_last_frag) | |
3185 | return; | |
3186 | ||
3187 | /* alignment directive */ | |
3188 | fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0, | |
3189 | (int) fragp->fr_type); | |
3190 | #endif /* OBJ_BOUT */ | |
3191 | } | |
3192 | ||
3193 | int | |
3194 | i960_validate_fix (fixP, this_segment_type, add_symbolPP) | |
3195 | fixS *fixP; | |
3196 | segT this_segment_type; | |
3197 | symbolS **add_symbolPP; | |
3198 | { | |
3199 | #define add_symbolP (*add_symbolPP) | |
3200 | if (fixP->fx_tcbit && TC_S_IS_CALLNAME (add_symbolP)) | |
3201 | { | |
3202 | /* Relocation should be done via the associated 'bal' | |
92774660 | 3203 | entry point symbol. */ |
252b5132 RH |
3204 | |
3205 | if (!TC_S_IS_BALNAME (tc_get_bal_of_call (add_symbolP))) | |
3206 | { | |
3207 | as_bad (_("No 'bal' entry point for leafproc %s"), | |
3208 | S_GET_NAME (add_symbolP)); | |
3209 | return 1; | |
3210 | } | |
3211 | fixP->fx_addsy = add_symbolP = tc_get_bal_of_call (add_symbolP); | |
3212 | } | |
3213 | #if 0 | |
3214 | /* Still have to work out other conditions for these tests. */ | |
3215 | { | |
3216 | if (fixP->fx_tcbit) | |
3217 | { | |
3218 | as_bad (_("callj to difference of two symbols")); | |
3219 | return 1; | |
3220 | } | |
3221 | reloc_callj (fixP); | |
3222 | if ((int) fixP->fx_bit_fixP == 13) | |
3223 | { | |
3224 | /* This is a COBR instruction. They have only a 13-bit | |
3225 | displacement and are only to be used for local branches: | |
3226 | flag as error, don't generate relocation. */ | |
3227 | as_bad (_("can't use COBR format with external label")); | |
92774660 | 3228 | fixP->fx_addsy = NULL; /* No relocations please. */ |
252b5132 RH |
3229 | return 1; |
3230 | } | |
3231 | } | |
3232 | #endif | |
3233 | #undef add_symbolP | |
3234 | return 0; | |
3235 | } | |
3236 | ||
bedf545c ILT |
3237 | #ifdef BFD_ASSEMBLER |
3238 | ||
3239 | /* From cgen.c: */ | |
3240 | ||
3241 | static short | |
3242 | tc_bfd_fix2rtype (fixP) | |
3243 | fixS *fixP; | |
3244 | { | |
3245 | #if 0 | |
3246 | if (fixP->fx_bsr) | |
3247 | abort (); | |
3248 | #endif | |
3249 | ||
3250 | if (fixP->fx_pcrel == 0 && fixP->fx_size == 4) | |
3251 | return BFD_RELOC_32; | |
3252 | ||
3253 | if (fixP->fx_pcrel != 0 && fixP->fx_size == 4) | |
3254 | return BFD_RELOC_24_PCREL; | |
3255 | ||
3256 | abort (); | |
3257 | return 0; | |
3258 | } | |
3259 | ||
3260 | /* Translate internal representation of relocation info to BFD target | |
3261 | format. | |
3262 | ||
3263 | FIXME: To what extent can we get all relevant targets to use this? */ | |
3264 | ||
3265 | arelent * | |
3266 | tc_gen_reloc (section, fixP) | |
3267 | asection *section; | |
3268 | fixS *fixP; | |
3269 | { | |
3270 | arelent * reloc; | |
3271 | ||
3272 | reloc = (arelent *) xmalloc (sizeof (arelent)); | |
3273 | ||
3274 | /* HACK: Is this right? */ | |
3275 | fixP->fx_r_type = tc_bfd_fix2rtype (fixP); | |
3276 | ||
3277 | reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); | |
3278 | if (reloc->howto == (reloc_howto_type *) NULL) | |
3279 | { | |
3280 | as_bad_where (fixP->fx_file, fixP->fx_line, | |
3281 | "internal error: can't export reloc type %d (`%s')", | |
3282 | fixP->fx_r_type, | |
3283 | bfd_get_reloc_code_name (fixP->fx_r_type)); | |
3284 | return NULL; | |
3285 | } | |
3286 | ||
3287 | assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); | |
3288 | ||
49309057 ILT |
3289 | reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); |
3290 | *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); | |
bedf545c ILT |
3291 | reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; |
3292 | reloc->addend = fixP->fx_addnumber; | |
3293 | ||
3294 | return reloc; | |
3295 | } | |
3296 | ||
3297 | /* end from cgen.c */ | |
3298 | ||
3299 | #endif /* BFD_ASSEMBLER */ | |
3300 | ||
252b5132 | 3301 | /* end of tc-i960.c */ |