]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating the minimal symbol tables. |
b6ba6518 KB |
2 | Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 |
3 | Free Software Foundation, Inc. | |
c906108c SS |
4 | Contributed by Cygnus Support, using pieces from other GDB modules. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | ||
24 | /* This file contains support routines for creating, manipulating, and | |
25 | destroying minimal symbol tables. | |
26 | ||
27 | Minimal symbol tables are used to hold some very basic information about | |
28 | all defined global symbols (text, data, bss, abs, etc). The only two | |
29 | required pieces of information are the symbol's name and the address | |
30 | associated with that symbol. | |
31 | ||
32 | In many cases, even if a file was compiled with no special options for | |
33 | debugging at all, as long as was not stripped it will contain sufficient | |
34 | information to build useful minimal symbol tables using this structure. | |
c5aa993b | 35 | |
c906108c SS |
36 | Even when a file contains enough debugging information to build a full |
37 | symbol table, these minimal symbols are still useful for quickly mapping | |
38 | between names and addresses, and vice versa. They are also sometimes used | |
39 | to figure out what full symbol table entries need to be read in. */ | |
40 | ||
41 | ||
42 | #include "defs.h" | |
9227b5eb | 43 | #include <ctype.h> |
c906108c SS |
44 | #include "gdb_string.h" |
45 | #include "symtab.h" | |
46 | #include "bfd.h" | |
47 | #include "symfile.h" | |
48 | #include "objfiles.h" | |
49 | #include "demangle.h" | |
c906108c SS |
50 | |
51 | /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. | |
52 | At the end, copy them all into one newly allocated location on an objfile's | |
53 | symbol obstack. */ | |
54 | ||
55 | #define BUNCH_SIZE 127 | |
56 | ||
57 | struct msym_bunch | |
c5aa993b JM |
58 | { |
59 | struct msym_bunch *next; | |
60 | struct minimal_symbol contents[BUNCH_SIZE]; | |
61 | }; | |
c906108c SS |
62 | |
63 | /* Bunch currently being filled up. | |
64 | The next field points to chain of filled bunches. */ | |
65 | ||
66 | static struct msym_bunch *msym_bunch; | |
67 | ||
68 | /* Number of slots filled in current bunch. */ | |
69 | ||
70 | static int msym_bunch_index; | |
71 | ||
72 | /* Total number of minimal symbols recorded so far for the objfile. */ | |
73 | ||
74 | static int msym_count; | |
75 | ||
76 | /* Prototypes for local functions. */ | |
77 | ||
a14ed312 | 78 | static int compare_minimal_symbols (const void *, const void *); |
c906108c SS |
79 | |
80 | static int | |
a14ed312 | 81 | compact_minimal_symbols (struct minimal_symbol *, int, struct objfile *); |
9227b5eb | 82 | |
a960f249 AC |
83 | static void add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, |
84 | struct minimal_symbol **table); | |
85 | ||
9227b5eb JB |
86 | /* Compute a hash code based using the same criteria as `strcmp_iw'. */ |
87 | ||
88 | unsigned int | |
89 | msymbol_hash_iw (const char *string) | |
90 | { | |
91 | unsigned int hash = 0; | |
92 | while (*string && *string != '(') | |
93 | { | |
94 | while (isspace (*string)) | |
95 | ++string; | |
96 | if (*string && *string != '(') | |
97 | hash = (31 * hash) + *string; | |
98 | ++string; | |
99 | } | |
100 | return hash % MINIMAL_SYMBOL_HASH_SIZE; | |
101 | } | |
102 | ||
103 | /* Compute a hash code for a string. */ | |
104 | ||
105 | unsigned int | |
106 | msymbol_hash (const char *string) | |
107 | { | |
108 | unsigned int hash = 0; | |
109 | for (; *string; ++string) | |
110 | hash = (31 * hash) + *string; | |
111 | return hash % MINIMAL_SYMBOL_HASH_SIZE; | |
112 | } | |
113 | ||
114 | /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */ | |
115 | void | |
116 | add_minsym_to_hash_table (struct minimal_symbol *sym, | |
117 | struct minimal_symbol **table) | |
118 | { | |
119 | if (sym->hash_next == NULL) | |
120 | { | |
121 | unsigned int hash = msymbol_hash (SYMBOL_NAME (sym)); | |
122 | sym->hash_next = table[hash]; | |
123 | table[hash] = sym; | |
124 | } | |
125 | } | |
126 | ||
0729fd50 DB |
127 | /* Add the minimal symbol SYM to an objfile's minsym demangled hash table, |
128 | TABLE. */ | |
129 | static void | |
130 | add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, | |
131 | struct minimal_symbol **table) | |
132 | { | |
133 | if (sym->demangled_hash_next == NULL) | |
134 | { | |
135 | unsigned int hash = msymbol_hash_iw (SYMBOL_DEMANGLED_NAME (sym)); | |
136 | sym->demangled_hash_next = table[hash]; | |
137 | table[hash] = sym; | |
138 | } | |
139 | } | |
140 | ||
c906108c SS |
141 | |
142 | /* Look through all the current minimal symbol tables and find the | |
143 | first minimal symbol that matches NAME. If OBJF is non-NULL, limit | |
144 | the search to that objfile. If SFILE is non-NULL, limit the search | |
145 | to that source file. Returns a pointer to the minimal symbol that | |
146 | matches, or NULL if no match is found. | |
147 | ||
148 | Note: One instance where there may be duplicate minimal symbols with | |
149 | the same name is when the symbol tables for a shared library and the | |
150 | symbol tables for an executable contain global symbols with the same | |
151 | names (the dynamic linker deals with the duplication). */ | |
152 | ||
153 | struct minimal_symbol * | |
fba45db2 KB |
154 | lookup_minimal_symbol (register const char *name, const char *sfile, |
155 | struct objfile *objf) | |
c906108c SS |
156 | { |
157 | struct objfile *objfile; | |
158 | struct minimal_symbol *msymbol; | |
159 | struct minimal_symbol *found_symbol = NULL; | |
160 | struct minimal_symbol *found_file_symbol = NULL; | |
161 | struct minimal_symbol *trampoline_symbol = NULL; | |
162 | ||
9227b5eb JB |
163 | unsigned int hash = msymbol_hash (name); |
164 | unsigned int dem_hash = msymbol_hash_iw (name); | |
165 | ||
c906108c SS |
166 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
167 | if (sfile != NULL) | |
168 | { | |
169 | char *p = strrchr (sfile, '/'); | |
170 | if (p != NULL) | |
171 | sfile = p + 1; | |
172 | } | |
173 | #endif | |
174 | ||
175 | for (objfile = object_files; | |
176 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 177 | objfile = objfile->next) |
c906108c SS |
178 | { |
179 | if (objf == NULL || objf == objfile) | |
180 | { | |
9227b5eb JB |
181 | /* Do two passes: the first over the ordinary hash table, |
182 | and the second over the demangled hash table. */ | |
0729fd50 | 183 | int pass; |
9227b5eb | 184 | |
0729fd50 | 185 | for (pass = 1; pass <= 2 && found_symbol == NULL; pass++) |
c906108c | 186 | { |
0729fd50 DB |
187 | /* Select hash list according to pass. */ |
188 | if (pass == 1) | |
189 | msymbol = objfile->msymbol_hash[hash]; | |
190 | else | |
191 | msymbol = objfile->msymbol_demangled_hash[dem_hash]; | |
192 | ||
193 | while (msymbol != NULL && found_symbol == NULL) | |
c906108c | 194 | { |
0729fd50 | 195 | if (SYMBOL_MATCHES_NAME (msymbol, name)) |
c906108c | 196 | { |
0729fd50 DB |
197 | switch (MSYMBOL_TYPE (msymbol)) |
198 | { | |
199 | case mst_file_text: | |
200 | case mst_file_data: | |
201 | case mst_file_bss: | |
c906108c | 202 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
0729fd50 DB |
203 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) |
204 | found_file_symbol = msymbol; | |
c906108c | 205 | #else |
0729fd50 DB |
206 | /* We have neither the ability nor the need to |
207 | deal with the SFILE parameter. If we find | |
208 | more than one symbol, just return the latest | |
209 | one (the user can't expect useful behavior in | |
210 | that case). */ | |
211 | found_file_symbol = msymbol; | |
c906108c | 212 | #endif |
0729fd50 DB |
213 | break; |
214 | ||
215 | case mst_solib_trampoline: | |
216 | ||
217 | /* If a trampoline symbol is found, we prefer to | |
218 | keep looking for the *real* symbol. If the | |
219 | actual symbol is not found, then we'll use the | |
220 | trampoline entry. */ | |
221 | if (trampoline_symbol == NULL) | |
222 | trampoline_symbol = msymbol; | |
223 | break; | |
224 | ||
225 | case mst_unknown: | |
226 | default: | |
227 | found_symbol = msymbol; | |
228 | break; | |
229 | } | |
c906108c | 230 | } |
9227b5eb | 231 | |
0729fd50 DB |
232 | /* Find the next symbol on the hash chain. */ |
233 | if (pass == 1) | |
234 | msymbol = msymbol->hash_next; | |
235 | else | |
236 | msymbol = msymbol->demangled_hash_next; | |
9227b5eb | 237 | } |
c906108c SS |
238 | } |
239 | } | |
240 | } | |
241 | /* External symbols are best. */ | |
242 | if (found_symbol) | |
243 | return found_symbol; | |
244 | ||
245 | /* File-local symbols are next best. */ | |
246 | if (found_file_symbol) | |
247 | return found_file_symbol; | |
248 | ||
249 | /* Symbols for shared library trampolines are next best. */ | |
250 | if (trampoline_symbol) | |
251 | return trampoline_symbol; | |
252 | ||
253 | return NULL; | |
254 | } | |
255 | ||
256 | /* Look through all the current minimal symbol tables and find the | |
257 | first minimal symbol that matches NAME and of text type. | |
258 | If OBJF is non-NULL, limit | |
259 | the search to that objfile. If SFILE is non-NULL, limit the search | |
260 | to that source file. Returns a pointer to the minimal symbol that | |
261 | matches, or NULL if no match is found. | |
c5aa993b JM |
262 | */ |
263 | ||
c906108c | 264 | struct minimal_symbol * |
fba45db2 KB |
265 | lookup_minimal_symbol_text (register const char *name, const char *sfile, |
266 | struct objfile *objf) | |
c906108c SS |
267 | { |
268 | struct objfile *objfile; | |
269 | struct minimal_symbol *msymbol; | |
270 | struct minimal_symbol *found_symbol = NULL; | |
271 | struct minimal_symbol *found_file_symbol = NULL; | |
272 | ||
273 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
274 | if (sfile != NULL) | |
275 | { | |
276 | char *p = strrchr (sfile, '/'); | |
277 | if (p != NULL) | |
278 | sfile = p + 1; | |
279 | } | |
280 | #endif | |
281 | ||
282 | for (objfile = object_files; | |
283 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 284 | objfile = objfile->next) |
c906108c SS |
285 | { |
286 | if (objf == NULL || objf == objfile) | |
287 | { | |
c5aa993b | 288 | for (msymbol = objfile->msymbols; |
c906108c SS |
289 | msymbol != NULL && SYMBOL_NAME (msymbol) != NULL && |
290 | found_symbol == NULL; | |
291 | msymbol++) | |
292 | { | |
c5aa993b | 293 | if (SYMBOL_MATCHES_NAME (msymbol, name) && |
c906108c SS |
294 | (MSYMBOL_TYPE (msymbol) == mst_text || |
295 | MSYMBOL_TYPE (msymbol) == mst_file_text)) | |
296 | { | |
297 | switch (MSYMBOL_TYPE (msymbol)) | |
298 | { | |
299 | case mst_file_text: | |
300 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
301 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) | |
302 | found_file_symbol = msymbol; | |
303 | #else | |
304 | /* We have neither the ability nor the need to | |
c5aa993b JM |
305 | deal with the SFILE parameter. If we find |
306 | more than one symbol, just return the latest | |
307 | one (the user can't expect useful behavior in | |
308 | that case). */ | |
c906108c SS |
309 | found_file_symbol = msymbol; |
310 | #endif | |
311 | break; | |
312 | default: | |
313 | found_symbol = msymbol; | |
314 | break; | |
315 | } | |
316 | } | |
317 | } | |
318 | } | |
319 | } | |
320 | /* External symbols are best. */ | |
321 | if (found_symbol) | |
322 | return found_symbol; | |
323 | ||
324 | /* File-local symbols are next best. */ | |
325 | if (found_file_symbol) | |
326 | return found_file_symbol; | |
327 | ||
328 | return NULL; | |
329 | } | |
330 | ||
331 | /* Look through all the current minimal symbol tables and find the | |
332 | first minimal symbol that matches NAME and of solib trampoline type. | |
333 | If OBJF is non-NULL, limit | |
334 | the search to that objfile. If SFILE is non-NULL, limit the search | |
335 | to that source file. Returns a pointer to the minimal symbol that | |
336 | matches, or NULL if no match is found. | |
c5aa993b JM |
337 | */ |
338 | ||
c906108c | 339 | struct minimal_symbol * |
fba45db2 KB |
340 | lookup_minimal_symbol_solib_trampoline (register const char *name, |
341 | const char *sfile, struct objfile *objf) | |
c906108c SS |
342 | { |
343 | struct objfile *objfile; | |
344 | struct minimal_symbol *msymbol; | |
345 | struct minimal_symbol *found_symbol = NULL; | |
346 | ||
347 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
348 | if (sfile != NULL) | |
349 | { | |
350 | char *p = strrchr (sfile, '/'); | |
351 | if (p != NULL) | |
352 | sfile = p + 1; | |
353 | } | |
354 | #endif | |
355 | ||
356 | for (objfile = object_files; | |
357 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 358 | objfile = objfile->next) |
c906108c SS |
359 | { |
360 | if (objf == NULL || objf == objfile) | |
361 | { | |
c5aa993b | 362 | for (msymbol = objfile->msymbols; |
c906108c SS |
363 | msymbol != NULL && SYMBOL_NAME (msymbol) != NULL && |
364 | found_symbol == NULL; | |
365 | msymbol++) | |
366 | { | |
c5aa993b | 367 | if (SYMBOL_MATCHES_NAME (msymbol, name) && |
c906108c SS |
368 | MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
369 | return msymbol; | |
370 | } | |
371 | } | |
372 | } | |
373 | ||
374 | return NULL; | |
375 | } | |
376 | ||
377 | ||
378 | /* Search through the minimal symbol table for each objfile and find | |
379 | the symbol whose address is the largest address that is still less | |
380 | than or equal to PC, and matches SECTION (if non-null). Returns a | |
381 | pointer to the minimal symbol if such a symbol is found, or NULL if | |
382 | PC is not in a suitable range. Note that we need to look through | |
383 | ALL the minimal symbol tables before deciding on the symbol that | |
384 | comes closest to the specified PC. This is because objfiles can | |
385 | overlap, for example objfile A has .text at 0x100 and .data at | |
386 | 0x40000 and objfile B has .text at 0x234 and .data at 0x40048. */ | |
387 | ||
388 | struct minimal_symbol * | |
fba45db2 | 389 | lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, asection *section) |
c906108c SS |
390 | { |
391 | int lo; | |
392 | int hi; | |
393 | int new; | |
394 | struct objfile *objfile; | |
395 | struct minimal_symbol *msymbol; | |
396 | struct minimal_symbol *best_symbol = NULL; | |
397 | ||
398 | /* pc has to be in a known section. This ensures that anything beyond | |
399 | the end of the last segment doesn't appear to be part of the last | |
400 | function in the last segment. */ | |
401 | if (find_pc_section (pc) == NULL) | |
402 | return NULL; | |
403 | ||
404 | for (objfile = object_files; | |
405 | objfile != NULL; | |
c5aa993b | 406 | objfile = objfile->next) |
c906108c SS |
407 | { |
408 | /* If this objfile has a minimal symbol table, go search it using | |
c5aa993b JM |
409 | a binary search. Note that a minimal symbol table always consists |
410 | of at least two symbols, a "real" symbol and the terminating | |
411 | "null symbol". If there are no real symbols, then there is no | |
412 | minimal symbol table at all. */ | |
c906108c | 413 | |
c5aa993b | 414 | if ((msymbol = objfile->msymbols) != NULL) |
c906108c SS |
415 | { |
416 | lo = 0; | |
c5aa993b | 417 | hi = objfile->minimal_symbol_count - 1; |
c906108c SS |
418 | |
419 | /* This code assumes that the minimal symbols are sorted by | |
420 | ascending address values. If the pc value is greater than or | |
421 | equal to the first symbol's address, then some symbol in this | |
422 | minimal symbol table is a suitable candidate for being the | |
423 | "best" symbol. This includes the last real symbol, for cases | |
424 | where the pc value is larger than any address in this vector. | |
425 | ||
426 | By iterating until the address associated with the current | |
427 | hi index (the endpoint of the test interval) is less than | |
428 | or equal to the desired pc value, we accomplish two things: | |
429 | (1) the case where the pc value is larger than any minimal | |
430 | symbol address is trivially solved, (2) the address associated | |
431 | with the hi index is always the one we want when the interation | |
432 | terminates. In essence, we are iterating the test interval | |
433 | down until the pc value is pushed out of it from the high end. | |
434 | ||
435 | Warning: this code is trickier than it would appear at first. */ | |
436 | ||
437 | /* Should also require that pc is <= end of objfile. FIXME! */ | |
438 | if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) | |
439 | { | |
440 | while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) | |
441 | { | |
442 | /* pc is still strictly less than highest address */ | |
443 | /* Note "new" will always be >= lo */ | |
444 | new = (lo + hi) / 2; | |
445 | if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || | |
446 | (lo == new)) | |
447 | { | |
448 | hi = new; | |
449 | } | |
450 | else | |
451 | { | |
452 | lo = new; | |
453 | } | |
454 | } | |
455 | ||
456 | /* If we have multiple symbols at the same address, we want | |
c5aa993b JM |
457 | hi to point to the last one. That way we can find the |
458 | right symbol if it has an index greater than hi. */ | |
459 | while (hi < objfile->minimal_symbol_count - 1 | |
c906108c | 460 | && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) |
c5aa993b | 461 | == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1]))) |
c906108c SS |
462 | hi++; |
463 | ||
464 | /* The minimal symbol indexed by hi now is the best one in this | |
c5aa993b JM |
465 | objfile's minimal symbol table. See if it is the best one |
466 | overall. */ | |
c906108c SS |
467 | |
468 | /* Skip any absolute symbols. This is apparently what adb | |
c5aa993b JM |
469 | and dbx do, and is needed for the CM-5. There are two |
470 | known possible problems: (1) on ELF, apparently end, edata, | |
471 | etc. are absolute. Not sure ignoring them here is a big | |
472 | deal, but if we want to use them, the fix would go in | |
473 | elfread.c. (2) I think shared library entry points on the | |
474 | NeXT are absolute. If we want special handling for this | |
475 | it probably should be triggered by a special | |
476 | mst_abs_or_lib or some such. */ | |
c906108c SS |
477 | while (hi >= 0 |
478 | && msymbol[hi].type == mst_abs) | |
479 | --hi; | |
480 | ||
481 | /* If "section" specified, skip any symbol from wrong section */ | |
482 | /* This is the new code that distinguishes it from the old function */ | |
483 | if (section) | |
484 | while (hi >= 0 | |
65d5a54a EZ |
485 | /* Some types of debug info, such as COFF, |
486 | don't fill the bfd_section member, so don't | |
487 | throw away symbols on those platforms. */ | |
488 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != NULL | |
c906108c SS |
489 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != section) |
490 | --hi; | |
491 | ||
492 | if (hi >= 0 | |
493 | && ((best_symbol == NULL) || | |
c5aa993b | 494 | (SYMBOL_VALUE_ADDRESS (best_symbol) < |
c906108c SS |
495 | SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) |
496 | { | |
497 | best_symbol = &msymbol[hi]; | |
498 | } | |
499 | } | |
500 | } | |
501 | } | |
502 | return (best_symbol); | |
503 | } | |
504 | ||
505 | /* Backward compatibility: search through the minimal symbol table | |
506 | for a matching PC (no section given) */ | |
507 | ||
508 | struct minimal_symbol * | |
fba45db2 | 509 | lookup_minimal_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
510 | { |
511 | return lookup_minimal_symbol_by_pc_section (pc, find_pc_mapped_section (pc)); | |
512 | } | |
513 | ||
514 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
515 | CORE_ADDR | |
fba45db2 KB |
516 | find_stab_function_addr (char *namestring, char *filename, |
517 | struct objfile *objfile) | |
c906108c SS |
518 | { |
519 | struct minimal_symbol *msym; | |
520 | char *p; | |
521 | int n; | |
522 | ||
523 | p = strchr (namestring, ':'); | |
524 | if (p == NULL) | |
525 | p = namestring; | |
526 | n = p - namestring; | |
527 | p = alloca (n + 2); | |
528 | strncpy (p, namestring, n); | |
529 | p[n] = 0; | |
530 | ||
c2c6d25f | 531 | msym = lookup_minimal_symbol (p, filename, objfile); |
c906108c SS |
532 | if (msym == NULL) |
533 | { | |
534 | /* Sun Fortran appends an underscore to the minimal symbol name, | |
c5aa993b JM |
535 | try again with an appended underscore if the minimal symbol |
536 | was not found. */ | |
c906108c SS |
537 | p[n] = '_'; |
538 | p[n + 1] = 0; | |
c2c6d25f | 539 | msym = lookup_minimal_symbol (p, filename, objfile); |
c906108c | 540 | } |
c2c6d25f JM |
541 | |
542 | if (msym == NULL && filename != NULL) | |
543 | { | |
544 | /* Try again without the filename. */ | |
545 | p[n] = 0; | |
546 | msym = lookup_minimal_symbol (p, 0, objfile); | |
547 | } | |
548 | if (msym == NULL && filename != NULL) | |
549 | { | |
550 | /* And try again for Sun Fortran, but without the filename. */ | |
551 | p[n] = '_'; | |
552 | p[n + 1] = 0; | |
553 | msym = lookup_minimal_symbol (p, 0, objfile); | |
554 | } | |
555 | ||
c906108c SS |
556 | return msym == NULL ? 0 : SYMBOL_VALUE_ADDRESS (msym); |
557 | } | |
558 | #endif /* SOFUN_ADDRESS_MAYBE_MISSING */ | |
c906108c | 559 | \f |
c5aa993b | 560 | |
c906108c SS |
561 | /* Return leading symbol character for a BFD. If BFD is NULL, |
562 | return the leading symbol character from the main objfile. */ | |
563 | ||
a14ed312 | 564 | static int get_symbol_leading_char (bfd *); |
c906108c SS |
565 | |
566 | static int | |
fba45db2 | 567 | get_symbol_leading_char (bfd *abfd) |
c906108c SS |
568 | { |
569 | if (abfd != NULL) | |
570 | return bfd_get_symbol_leading_char (abfd); | |
571 | if (symfile_objfile != NULL && symfile_objfile->obfd != NULL) | |
572 | return bfd_get_symbol_leading_char (symfile_objfile->obfd); | |
573 | return 0; | |
574 | } | |
575 | ||
576 | /* Prepare to start collecting minimal symbols. Note that presetting | |
577 | msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal | |
578 | symbol to allocate the memory for the first bunch. */ | |
579 | ||
580 | void | |
fba45db2 | 581 | init_minimal_symbol_collection (void) |
c906108c SS |
582 | { |
583 | msym_count = 0; | |
584 | msym_bunch = NULL; | |
585 | msym_bunch_index = BUNCH_SIZE; | |
586 | } | |
587 | ||
588 | void | |
fba45db2 KB |
589 | prim_record_minimal_symbol (const char *name, CORE_ADDR address, |
590 | enum minimal_symbol_type ms_type, | |
591 | struct objfile *objfile) | |
c906108c SS |
592 | { |
593 | int section; | |
594 | ||
595 | switch (ms_type) | |
596 | { | |
597 | case mst_text: | |
598 | case mst_file_text: | |
599 | case mst_solib_trampoline: | |
b8fbeb18 | 600 | section = SECT_OFF_TEXT (objfile); |
c906108c SS |
601 | break; |
602 | case mst_data: | |
603 | case mst_file_data: | |
b8fbeb18 | 604 | section = SECT_OFF_DATA (objfile); |
c906108c SS |
605 | break; |
606 | case mst_bss: | |
607 | case mst_file_bss: | |
b8fbeb18 | 608 | section = SECT_OFF_BSS (objfile); |
c906108c SS |
609 | break; |
610 | default: | |
611 | section = -1; | |
612 | } | |
613 | ||
614 | prim_record_minimal_symbol_and_info (name, address, ms_type, | |
615 | NULL, section, NULL, objfile); | |
616 | } | |
617 | ||
618 | /* Record a minimal symbol in the msym bunches. Returns the symbol | |
619 | newly created. */ | |
620 | ||
621 | struct minimal_symbol * | |
fba45db2 KB |
622 | prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address, |
623 | enum minimal_symbol_type ms_type, | |
624 | char *info, int section, | |
625 | asection *bfd_section, | |
626 | struct objfile *objfile) | |
c906108c SS |
627 | { |
628 | register struct msym_bunch *new; | |
629 | register struct minimal_symbol *msymbol; | |
630 | ||
631 | if (ms_type == mst_file_text) | |
632 | { | |
633 | /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into | |
c5aa993b JM |
634 | the minimal symbols, because if there is also another symbol |
635 | at the same address (e.g. the first function of the file), | |
636 | lookup_minimal_symbol_by_pc would have no way of getting the | |
637 | right one. */ | |
c906108c SS |
638 | if (name[0] == 'g' |
639 | && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 | |
640 | || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) | |
641 | return (NULL); | |
642 | ||
643 | { | |
644 | const char *tempstring = name; | |
645 | if (tempstring[0] == get_symbol_leading_char (objfile->obfd)) | |
646 | ++tempstring; | |
647 | if (STREQN (tempstring, "__gnu_compiled", 14)) | |
648 | return (NULL); | |
649 | } | |
650 | } | |
651 | ||
652 | if (msym_bunch_index == BUNCH_SIZE) | |
653 | { | |
654 | new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch)); | |
655 | msym_bunch_index = 0; | |
c5aa993b | 656 | new->next = msym_bunch; |
c906108c SS |
657 | msym_bunch = new; |
658 | } | |
c5aa993b | 659 | msymbol = &msym_bunch->contents[msym_bunch_index]; |
c906108c SS |
660 | SYMBOL_NAME (msymbol) = obsavestring ((char *) name, strlen (name), |
661 | &objfile->symbol_obstack); | |
662 | SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); | |
663 | SYMBOL_VALUE_ADDRESS (msymbol) = address; | |
664 | SYMBOL_SECTION (msymbol) = section; | |
665 | SYMBOL_BFD_SECTION (msymbol) = bfd_section; | |
666 | ||
667 | MSYMBOL_TYPE (msymbol) = ms_type; | |
668 | /* FIXME: This info, if it remains, needs its own field. */ | |
c5aa993b | 669 | MSYMBOL_INFO (msymbol) = info; /* FIXME! */ |
9227b5eb | 670 | |
a79dea61 | 671 | /* The hash pointers must be cleared! If they're not, |
72a0cf8f | 672 | add_minsym_to_hash_table will NOT add this msymbol to the hash table. */ |
9227b5eb JB |
673 | msymbol->hash_next = NULL; |
674 | msymbol->demangled_hash_next = NULL; | |
675 | ||
c906108c SS |
676 | msym_bunch_index++; |
677 | msym_count++; | |
678 | OBJSTAT (objfile, n_minsyms++); | |
679 | return msymbol; | |
680 | } | |
681 | ||
682 | /* Compare two minimal symbols by address and return a signed result based | |
683 | on unsigned comparisons, so that we sort into unsigned numeric order. | |
684 | Within groups with the same address, sort by name. */ | |
685 | ||
686 | static int | |
fba45db2 | 687 | compare_minimal_symbols (const PTR fn1p, const PTR fn2p) |
c906108c SS |
688 | { |
689 | register const struct minimal_symbol *fn1; | |
690 | register const struct minimal_symbol *fn2; | |
691 | ||
692 | fn1 = (const struct minimal_symbol *) fn1p; | |
693 | fn2 = (const struct minimal_symbol *) fn2p; | |
694 | ||
695 | if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) | |
696 | { | |
c5aa993b | 697 | return (-1); /* addr 1 is less than addr 2 */ |
c906108c SS |
698 | } |
699 | else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) | |
700 | { | |
c5aa993b | 701 | return (1); /* addr 1 is greater than addr 2 */ |
c906108c | 702 | } |
c5aa993b JM |
703 | else |
704 | /* addrs are equal: sort by name */ | |
c906108c SS |
705 | { |
706 | char *name1 = SYMBOL_NAME (fn1); | |
707 | char *name2 = SYMBOL_NAME (fn2); | |
708 | ||
709 | if (name1 && name2) /* both have names */ | |
710 | return strcmp (name1, name2); | |
711 | else if (name2) | |
c5aa993b JM |
712 | return 1; /* fn1 has no name, so it is "less" */ |
713 | else if (name1) /* fn2 has no name, so it is "less" */ | |
c906108c SS |
714 | return -1; |
715 | else | |
c5aa993b | 716 | return (0); /* neither has a name, so they're equal. */ |
c906108c SS |
717 | } |
718 | } | |
719 | ||
720 | /* Discard the currently collected minimal symbols, if any. If we wish | |
721 | to save them for later use, we must have already copied them somewhere | |
722 | else before calling this function. | |
723 | ||
724 | FIXME: We could allocate the minimal symbol bunches on their own | |
725 | obstack and then simply blow the obstack away when we are done with | |
726 | it. Is it worth the extra trouble though? */ | |
727 | ||
56e290f4 AC |
728 | static void |
729 | do_discard_minimal_symbols_cleanup (void *arg) | |
c906108c SS |
730 | { |
731 | register struct msym_bunch *next; | |
732 | ||
733 | while (msym_bunch != NULL) | |
734 | { | |
c5aa993b | 735 | next = msym_bunch->next; |
b8c9b27d | 736 | xfree (msym_bunch); |
c906108c SS |
737 | msym_bunch = next; |
738 | } | |
739 | } | |
740 | ||
56e290f4 AC |
741 | struct cleanup * |
742 | make_cleanup_discard_minimal_symbols (void) | |
743 | { | |
744 | return make_cleanup (do_discard_minimal_symbols_cleanup, 0); | |
745 | } | |
746 | ||
747 | ||
9227b5eb | 748 | |
c906108c SS |
749 | /* Compact duplicate entries out of a minimal symbol table by walking |
750 | through the table and compacting out entries with duplicate addresses | |
751 | and matching names. Return the number of entries remaining. | |
752 | ||
753 | On entry, the table resides between msymbol[0] and msymbol[mcount]. | |
754 | On exit, it resides between msymbol[0] and msymbol[result_count]. | |
755 | ||
756 | When files contain multiple sources of symbol information, it is | |
757 | possible for the minimal symbol table to contain many duplicate entries. | |
758 | As an example, SVR4 systems use ELF formatted object files, which | |
759 | usually contain at least two different types of symbol tables (a | |
760 | standard ELF one and a smaller dynamic linking table), as well as | |
761 | DWARF debugging information for files compiled with -g. | |
762 | ||
763 | Without compacting, the minimal symbol table for gdb itself contains | |
764 | over a 1000 duplicates, about a third of the total table size. Aside | |
765 | from the potential trap of not noticing that two successive entries | |
766 | identify the same location, this duplication impacts the time required | |
767 | to linearly scan the table, which is done in a number of places. So we | |
768 | just do one linear scan here and toss out the duplicates. | |
769 | ||
770 | Note that we are not concerned here about recovering the space that | |
771 | is potentially freed up, because the strings themselves are allocated | |
772 | on the symbol_obstack, and will get automatically freed when the symbol | |
773 | table is freed. The caller can free up the unused minimal symbols at | |
774 | the end of the compacted region if their allocation strategy allows it. | |
775 | ||
776 | Also note we only go up to the next to last entry within the loop | |
777 | and then copy the last entry explicitly after the loop terminates. | |
778 | ||
779 | Since the different sources of information for each symbol may | |
780 | have different levels of "completeness", we may have duplicates | |
781 | that have one entry with type "mst_unknown" and the other with a | |
782 | known type. So if the one we are leaving alone has type mst_unknown, | |
783 | overwrite its type with the type from the one we are compacting out. */ | |
784 | ||
785 | static int | |
fba45db2 KB |
786 | compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount, |
787 | struct objfile *objfile) | |
c906108c SS |
788 | { |
789 | struct minimal_symbol *copyfrom; | |
790 | struct minimal_symbol *copyto; | |
791 | ||
792 | if (mcount > 0) | |
793 | { | |
794 | copyfrom = copyto = msymbol; | |
795 | while (copyfrom < msymbol + mcount - 1) | |
796 | { | |
c5aa993b | 797 | if (SYMBOL_VALUE_ADDRESS (copyfrom) == |
c906108c SS |
798 | SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) && |
799 | (STREQ (SYMBOL_NAME (copyfrom), SYMBOL_NAME ((copyfrom + 1))))) | |
800 | { | |
c5aa993b | 801 | if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown) |
c906108c SS |
802 | { |
803 | MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); | |
804 | } | |
805 | copyfrom++; | |
806 | } | |
807 | else | |
afbb8d7a | 808 | *copyto++ = *copyfrom++; |
c906108c SS |
809 | } |
810 | *copyto++ = *copyfrom++; | |
811 | mcount = copyto - msymbol; | |
812 | } | |
813 | return (mcount); | |
814 | } | |
815 | ||
afbb8d7a KB |
816 | /* Build (or rebuild) the minimal symbol hash tables. This is necessary |
817 | after compacting or sorting the table since the entries move around | |
818 | thus causing the internal minimal_symbol pointers to become jumbled. */ | |
819 | ||
820 | static void | |
821 | build_minimal_symbol_hash_tables (struct objfile *objfile) | |
822 | { | |
823 | int i; | |
824 | struct minimal_symbol *msym; | |
825 | ||
826 | /* Clear the hash tables. */ | |
827 | for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++) | |
828 | { | |
829 | objfile->msymbol_hash[i] = 0; | |
830 | objfile->msymbol_demangled_hash[i] = 0; | |
831 | } | |
832 | ||
833 | /* Now, (re)insert the actual entries. */ | |
834 | for (i = objfile->minimal_symbol_count, msym = objfile->msymbols; | |
835 | i > 0; | |
836 | i--, msym++) | |
837 | { | |
838 | msym->hash_next = 0; | |
839 | add_minsym_to_hash_table (msym, objfile->msymbol_hash); | |
840 | ||
841 | msym->demangled_hash_next = 0; | |
842 | if (SYMBOL_DEMANGLED_NAME (msym) != NULL) | |
843 | add_minsym_to_demangled_hash_table (msym, | |
844 | objfile->msymbol_demangled_hash); | |
845 | } | |
846 | } | |
847 | ||
c906108c SS |
848 | /* Add the minimal symbols in the existing bunches to the objfile's official |
849 | minimal symbol table. In most cases there is no minimal symbol table yet | |
850 | for this objfile, and the existing bunches are used to create one. Once | |
851 | in a while (for shared libraries for example), we add symbols (e.g. common | |
852 | symbols) to an existing objfile. | |
853 | ||
854 | Because of the way minimal symbols are collected, we generally have no way | |
855 | of knowing what source language applies to any particular minimal symbol. | |
856 | Specifically, we have no way of knowing if the minimal symbol comes from a | |
857 | C++ compilation unit or not. So for the sake of supporting cached | |
858 | demangled C++ names, we have no choice but to try and demangle each new one | |
859 | that comes in. If the demangling succeeds, then we assume it is a C++ | |
860 | symbol and set the symbol's language and demangled name fields | |
861 | appropriately. Note that in order to avoid unnecessary demanglings, and | |
862 | allocating obstack space that subsequently can't be freed for the demangled | |
863 | names, we mark all newly added symbols with language_auto. After | |
864 | compaction of the minimal symbols, we go back and scan the entire minimal | |
865 | symbol table looking for these new symbols. For each new symbol we attempt | |
866 | to demangle it, and if successful, record it as a language_cplus symbol | |
867 | and cache the demangled form on the symbol obstack. Symbols which don't | |
868 | demangle are marked as language_unknown symbols, which inhibits future | |
869 | attempts to demangle them if we later add more minimal symbols. */ | |
870 | ||
871 | void | |
fba45db2 | 872 | install_minimal_symbols (struct objfile *objfile) |
c906108c SS |
873 | { |
874 | register int bindex; | |
875 | register int mcount; | |
876 | register struct msym_bunch *bunch; | |
877 | register struct minimal_symbol *msymbols; | |
878 | int alloc_count; | |
879 | register char leading_char; | |
880 | ||
881 | if (msym_count > 0) | |
882 | { | |
883 | /* Allocate enough space in the obstack, into which we will gather the | |
c5aa993b JM |
884 | bunches of new and existing minimal symbols, sort them, and then |
885 | compact out the duplicate entries. Once we have a final table, | |
886 | we will give back the excess space. */ | |
c906108c SS |
887 | |
888 | alloc_count = msym_count + objfile->minimal_symbol_count + 1; | |
889 | obstack_blank (&objfile->symbol_obstack, | |
890 | alloc_count * sizeof (struct minimal_symbol)); | |
891 | msymbols = (struct minimal_symbol *) | |
c5aa993b | 892 | obstack_base (&objfile->symbol_obstack); |
c906108c SS |
893 | |
894 | /* Copy in the existing minimal symbols, if there are any. */ | |
895 | ||
896 | if (objfile->minimal_symbol_count) | |
c5aa993b JM |
897 | memcpy ((char *) msymbols, (char *) objfile->msymbols, |
898 | objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); | |
c906108c SS |
899 | |
900 | /* Walk through the list of minimal symbol bunches, adding each symbol | |
c5aa993b JM |
901 | to the new contiguous array of symbols. Note that we start with the |
902 | current, possibly partially filled bunch (thus we use the current | |
903 | msym_bunch_index for the first bunch we copy over), and thereafter | |
904 | each bunch is full. */ | |
905 | ||
c906108c SS |
906 | mcount = objfile->minimal_symbol_count; |
907 | leading_char = get_symbol_leading_char (objfile->obfd); | |
c5aa993b JM |
908 | |
909 | for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next) | |
c906108c SS |
910 | { |
911 | for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) | |
912 | { | |
c5aa993b | 913 | msymbols[mcount] = bunch->contents[bindex]; |
c906108c SS |
914 | SYMBOL_LANGUAGE (&msymbols[mcount]) = language_auto; |
915 | if (SYMBOL_NAME (&msymbols[mcount])[0] == leading_char) | |
916 | { | |
c5aa993b | 917 | SYMBOL_NAME (&msymbols[mcount])++; |
c906108c SS |
918 | } |
919 | } | |
920 | msym_bunch_index = BUNCH_SIZE; | |
921 | } | |
922 | ||
923 | /* Sort the minimal symbols by address. */ | |
c5aa993b | 924 | |
c906108c SS |
925 | qsort (msymbols, mcount, sizeof (struct minimal_symbol), |
926 | compare_minimal_symbols); | |
c5aa993b | 927 | |
c906108c | 928 | /* Compact out any duplicates, and free up whatever space we are |
c5aa993b JM |
929 | no longer using. */ |
930 | ||
9227b5eb | 931 | mcount = compact_minimal_symbols (msymbols, mcount, objfile); |
c906108c SS |
932 | |
933 | obstack_blank (&objfile->symbol_obstack, | |
c5aa993b | 934 | (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); |
c906108c SS |
935 | msymbols = (struct minimal_symbol *) |
936 | obstack_finish (&objfile->symbol_obstack); | |
937 | ||
938 | /* We also terminate the minimal symbol table with a "null symbol", | |
c5aa993b JM |
939 | which is *not* included in the size of the table. This makes it |
940 | easier to find the end of the table when we are handed a pointer | |
941 | to some symbol in the middle of it. Zero out the fields in the | |
942 | "null symbol" allocated at the end of the array. Note that the | |
943 | symbol count does *not* include this null symbol, which is why it | |
944 | is indexed by mcount and not mcount-1. */ | |
c906108c SS |
945 | |
946 | SYMBOL_NAME (&msymbols[mcount]) = NULL; | |
947 | SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; | |
948 | MSYMBOL_INFO (&msymbols[mcount]) = NULL; | |
949 | MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; | |
950 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); | |
951 | ||
952 | /* Attach the minimal symbol table to the specified objfile. | |
c5aa993b JM |
953 | The strings themselves are also located in the symbol_obstack |
954 | of this objfile. */ | |
c906108c | 955 | |
c5aa993b JM |
956 | objfile->minimal_symbol_count = mcount; |
957 | objfile->msymbols = msymbols; | |
c906108c SS |
958 | |
959 | /* Now walk through all the minimal symbols, selecting the newly added | |
c5aa993b | 960 | ones and attempting to cache their C++ demangled names. */ |
c906108c | 961 | |
c5aa993b | 962 | for (; mcount-- > 0; msymbols++) |
afbb8d7a KB |
963 | SYMBOL_INIT_DEMANGLED_NAME (msymbols, &objfile->symbol_obstack); |
964 | ||
965 | /* Now build the hash tables; we can't do this incrementally | |
966 | at an earlier point since we weren't finished with the obstack | |
967 | yet. (And if the msymbol obstack gets moved, all the internal | |
968 | pointers to other msymbols need to be adjusted.) */ | |
969 | build_minimal_symbol_hash_tables (objfile); | |
c906108c SS |
970 | } |
971 | } | |
972 | ||
973 | /* Sort all the minimal symbols in OBJFILE. */ | |
974 | ||
975 | void | |
fba45db2 | 976 | msymbols_sort (struct objfile *objfile) |
c906108c SS |
977 | { |
978 | qsort (objfile->msymbols, objfile->minimal_symbol_count, | |
979 | sizeof (struct minimal_symbol), compare_minimal_symbols); | |
afbb8d7a | 980 | build_minimal_symbol_hash_tables (objfile); |
c906108c SS |
981 | } |
982 | ||
983 | /* Check if PC is in a shared library trampoline code stub. | |
984 | Return minimal symbol for the trampoline entry or NULL if PC is not | |
985 | in a trampoline code stub. */ | |
986 | ||
987 | struct minimal_symbol * | |
fba45db2 | 988 | lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
989 | { |
990 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); | |
991 | ||
992 | if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) | |
993 | return msymbol; | |
994 | return NULL; | |
995 | } | |
996 | ||
997 | /* If PC is in a shared library trampoline code stub, return the | |
998 | address of the `real' function belonging to the stub. | |
999 | Return 0 if PC is not in a trampoline code stub or if the real | |
1000 | function is not found in the minimal symbol table. | |
1001 | ||
1002 | We may fail to find the right function if a function with the | |
1003 | same name is defined in more than one shared library, but this | |
1004 | is considered bad programming style. We could return 0 if we find | |
1005 | a duplicate function in case this matters someday. */ | |
1006 | ||
1007 | CORE_ADDR | |
fba45db2 | 1008 | find_solib_trampoline_target (CORE_ADDR pc) |
c906108c SS |
1009 | { |
1010 | struct objfile *objfile; | |
1011 | struct minimal_symbol *msymbol; | |
1012 | struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc); | |
1013 | ||
1014 | if (tsymbol != NULL) | |
1015 | { | |
1016 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
1017 | { |
1018 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
1019 | && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (tsymbol))) | |
1020 | return SYMBOL_VALUE_ADDRESS (msymbol); | |
1021 | } | |
c906108c SS |
1022 | } |
1023 | return 0; | |
1024 | } |