]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Evaluate expressions for GDB. |
b6ba6518 | 2 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
61051030 | 3 | 1996, 1997, 1998, 1999, 2000, 2001 |
c906108c SS |
4 | Free Software Foundation, Inc. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "gdb_string.h" | |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "value.h" | |
28 | #include "expression.h" | |
29 | #include "target.h" | |
30 | #include "frame.h" | |
c5aa993b JM |
31 | #include "language.h" /* For CAST_IS_CONVERSION */ |
32 | #include "f-lang.h" /* for array bound stuff */ | |
015a42b4 | 33 | #include "cp-abi.h" |
c906108c | 34 | |
c5aa993b | 35 | /* Defined in symtab.c */ |
c906108c SS |
36 | extern int hp_som_som_object_present; |
37 | ||
c5aa993b | 38 | /* This is defined in valops.c */ |
c906108c SS |
39 | extern int overload_resolution; |
40 | ||
070ad9f0 DB |
41 | /* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue |
42 | on with successful lookup for member/method of the rtti type. */ | |
43 | extern int objectprint; | |
c906108c SS |
44 | |
45 | /* Prototypes for local functions. */ | |
46 | ||
61051030 | 47 | static struct value *evaluate_subexp_for_sizeof (struct expression *, int *); |
c906108c | 48 | |
61051030 AC |
49 | static struct value *evaluate_subexp_for_address (struct expression *, |
50 | int *, enum noside); | |
c906108c | 51 | |
61051030 AC |
52 | static struct value *evaluate_subexp (struct type *, struct expression *, |
53 | int *, enum noside); | |
c906108c | 54 | |
a14ed312 | 55 | static char *get_label (struct expression *, int *); |
c906108c | 56 | |
61051030 AC |
57 | static struct value *evaluate_struct_tuple (struct value *, |
58 | struct expression *, int *, | |
59 | enum noside, int); | |
c906108c | 60 | |
61051030 AC |
61 | static LONGEST init_array_element (struct value *, struct value *, |
62 | struct expression *, int *, enum noside, | |
63 | LONGEST, LONGEST); | |
c906108c | 64 | |
61051030 | 65 | static struct value * |
fba45db2 KB |
66 | evaluate_subexp (struct type *expect_type, register struct expression *exp, |
67 | register int *pos, enum noside noside) | |
c906108c SS |
68 | { |
69 | return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside); | |
70 | } | |
71 | \f | |
72 | /* Parse the string EXP as a C expression, evaluate it, | |
73 | and return the result as a number. */ | |
74 | ||
75 | CORE_ADDR | |
fba45db2 | 76 | parse_and_eval_address (char *exp) |
c906108c SS |
77 | { |
78 | struct expression *expr = parse_expression (exp); | |
79 | register CORE_ADDR addr; | |
c5aa993b | 80 | register struct cleanup *old_chain = |
c13c43fd | 81 | make_cleanup (free_current_contents, &expr); |
c906108c | 82 | |
1aa20aa8 | 83 | addr = value_as_address (evaluate_expression (expr)); |
c906108c SS |
84 | do_cleanups (old_chain); |
85 | return addr; | |
86 | } | |
87 | ||
88 | /* Like parse_and_eval_address but takes a pointer to a char * variable | |
89 | and advanced that variable across the characters parsed. */ | |
90 | ||
91 | CORE_ADDR | |
fba45db2 | 92 | parse_and_eval_address_1 (char **expptr) |
c906108c | 93 | { |
c5aa993b | 94 | struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0); |
c906108c SS |
95 | register CORE_ADDR addr; |
96 | register struct cleanup *old_chain = | |
c13c43fd | 97 | make_cleanup (free_current_contents, &expr); |
c906108c | 98 | |
1aa20aa8 | 99 | addr = value_as_address (evaluate_expression (expr)); |
c906108c SS |
100 | do_cleanups (old_chain); |
101 | return addr; | |
102 | } | |
103 | ||
bb518678 DT |
104 | /* Like parse_and_eval_address, but treats the value of the expression |
105 | as an integer, not an address, returns a LONGEST, not a CORE_ADDR */ | |
106 | LONGEST | |
107 | parse_and_eval_long (char *exp) | |
108 | { | |
109 | struct expression *expr = parse_expression (exp); | |
110 | register LONGEST retval; | |
111 | register struct cleanup *old_chain = | |
112 | make_cleanup (free_current_contents, &expr); | |
113 | ||
114 | retval = value_as_long (evaluate_expression (expr)); | |
115 | do_cleanups (old_chain); | |
116 | return (retval); | |
117 | } | |
118 | ||
61051030 | 119 | struct value * |
fba45db2 | 120 | parse_and_eval (char *exp) |
c906108c SS |
121 | { |
122 | struct expression *expr = parse_expression (exp); | |
61051030 | 123 | struct value *val; |
c906108c | 124 | register struct cleanup *old_chain |
c13c43fd | 125 | = make_cleanup (free_current_contents, &expr); |
c906108c SS |
126 | |
127 | val = evaluate_expression (expr); | |
128 | do_cleanups (old_chain); | |
129 | return val; | |
130 | } | |
131 | ||
132 | /* Parse up to a comma (or to a closeparen) | |
133 | in the string EXPP as an expression, evaluate it, and return the value. | |
134 | EXPP is advanced to point to the comma. */ | |
135 | ||
61051030 | 136 | struct value * |
fba45db2 | 137 | parse_to_comma_and_eval (char **expp) |
c906108c SS |
138 | { |
139 | struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1); | |
61051030 | 140 | struct value *val; |
c906108c | 141 | register struct cleanup *old_chain |
c13c43fd | 142 | = make_cleanup (free_current_contents, &expr); |
c906108c SS |
143 | |
144 | val = evaluate_expression (expr); | |
145 | do_cleanups (old_chain); | |
146 | return val; | |
147 | } | |
148 | \f | |
149 | /* Evaluate an expression in internal prefix form | |
150 | such as is constructed by parse.y. | |
151 | ||
152 | See expression.h for info on the format of an expression. */ | |
153 | ||
61051030 | 154 | struct value * |
fba45db2 | 155 | evaluate_expression (struct expression *exp) |
c906108c SS |
156 | { |
157 | int pc = 0; | |
158 | return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL); | |
159 | } | |
160 | ||
161 | /* Evaluate an expression, avoiding all memory references | |
162 | and getting a value whose type alone is correct. */ | |
163 | ||
61051030 | 164 | struct value * |
fba45db2 | 165 | evaluate_type (struct expression *exp) |
c906108c SS |
166 | { |
167 | int pc = 0; | |
168 | return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS); | |
169 | } | |
170 | ||
171 | /* If the next expression is an OP_LABELED, skips past it, | |
172 | returning the label. Otherwise, does nothing and returns NULL. */ | |
173 | ||
c5aa993b | 174 | static char * |
fba45db2 | 175 | get_label (register struct expression *exp, int *pos) |
c906108c SS |
176 | { |
177 | if (exp->elts[*pos].opcode == OP_LABELED) | |
178 | { | |
179 | int pc = (*pos)++; | |
180 | char *name = &exp->elts[pc + 2].string; | |
181 | int tem = longest_to_int (exp->elts[pc + 1].longconst); | |
182 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
183 | return name; | |
184 | } | |
185 | else | |
186 | return NULL; | |
187 | } | |
188 | ||
67e469d1 | 189 | /* This function evaluates tuples (in Chill) or brace-initializers |
c906108c SS |
190 | (in C/C++) for structure types. */ |
191 | ||
61051030 AC |
192 | static struct value * |
193 | evaluate_struct_tuple (struct value *struct_val, | |
194 | register struct expression *exp, | |
fba45db2 | 195 | register int *pos, enum noside noside, int nargs) |
c906108c SS |
196 | { |
197 | struct type *struct_type = check_typedef (VALUE_TYPE (struct_val)); | |
198 | struct type *substruct_type = struct_type; | |
199 | struct type *field_type; | |
200 | int fieldno = -1; | |
201 | int variantno = -1; | |
202 | int subfieldno = -1; | |
c5aa993b | 203 | while (--nargs >= 0) |
c906108c SS |
204 | { |
205 | int pc = *pos; | |
61051030 | 206 | struct value *val = NULL; |
c906108c SS |
207 | int nlabels = 0; |
208 | int bitpos, bitsize; | |
209 | char *addr; | |
c5aa993b | 210 | |
c906108c SS |
211 | /* Skip past the labels, and count them. */ |
212 | while (get_label (exp, pos) != NULL) | |
213 | nlabels++; | |
214 | ||
215 | do | |
216 | { | |
217 | char *label = get_label (exp, &pc); | |
218 | if (label) | |
219 | { | |
220 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); | |
221 | fieldno++) | |
222 | { | |
223 | char *field_name = TYPE_FIELD_NAME (struct_type, fieldno); | |
224 | if (field_name != NULL && STREQ (field_name, label)) | |
225 | { | |
226 | variantno = -1; | |
227 | subfieldno = fieldno; | |
228 | substruct_type = struct_type; | |
229 | goto found; | |
230 | } | |
231 | } | |
232 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); | |
233 | fieldno++) | |
234 | { | |
235 | char *field_name = TYPE_FIELD_NAME (struct_type, fieldno); | |
236 | field_type = TYPE_FIELD_TYPE (struct_type, fieldno); | |
237 | if ((field_name == 0 || *field_name == '\0') | |
238 | && TYPE_CODE (field_type) == TYPE_CODE_UNION) | |
239 | { | |
240 | variantno = 0; | |
241 | for (; variantno < TYPE_NFIELDS (field_type); | |
242 | variantno++) | |
243 | { | |
244 | substruct_type | |
245 | = TYPE_FIELD_TYPE (field_type, variantno); | |
246 | if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT) | |
c5aa993b | 247 | { |
c906108c | 248 | for (subfieldno = 0; |
c5aa993b | 249 | subfieldno < TYPE_NFIELDS (substruct_type); |
c906108c SS |
250 | subfieldno++) |
251 | { | |
252 | if (STREQ (TYPE_FIELD_NAME (substruct_type, | |
253 | subfieldno), | |
254 | label)) | |
255 | { | |
256 | goto found; | |
257 | } | |
258 | } | |
259 | } | |
260 | } | |
261 | } | |
262 | } | |
263 | error ("there is no field named %s", label); | |
264 | found: | |
265 | ; | |
266 | } | |
267 | else | |
268 | { | |
269 | /* Unlabelled tuple element - go to next field. */ | |
270 | if (variantno >= 0) | |
271 | { | |
272 | subfieldno++; | |
273 | if (subfieldno >= TYPE_NFIELDS (substruct_type)) | |
274 | { | |
275 | variantno = -1; | |
276 | substruct_type = struct_type; | |
277 | } | |
278 | } | |
279 | if (variantno < 0) | |
280 | { | |
281 | fieldno++; | |
282 | subfieldno = fieldno; | |
283 | if (fieldno >= TYPE_NFIELDS (struct_type)) | |
284 | error ("too many initializers"); | |
285 | field_type = TYPE_FIELD_TYPE (struct_type, fieldno); | |
286 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
287 | && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0') | |
288 | error ("don't know which variant you want to set"); | |
289 | } | |
290 | } | |
291 | ||
292 | /* Here, struct_type is the type of the inner struct, | |
293 | while substruct_type is the type of the inner struct. | |
294 | These are the same for normal structures, but a variant struct | |
295 | contains anonymous union fields that contain substruct fields. | |
296 | The value fieldno is the index of the top-level (normal or | |
297 | anonymous union) field in struct_field, while the value | |
298 | subfieldno is the index of the actual real (named inner) field | |
299 | in substruct_type. */ | |
300 | ||
301 | field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno); | |
302 | if (val == 0) | |
303 | val = evaluate_subexp (field_type, exp, pos, noside); | |
304 | ||
305 | /* Now actually set the field in struct_val. */ | |
306 | ||
307 | /* Assign val to field fieldno. */ | |
308 | if (VALUE_TYPE (val) != field_type) | |
309 | val = value_cast (field_type, val); | |
310 | ||
311 | bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno); | |
312 | bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno); | |
313 | if (variantno >= 0) | |
314 | bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno); | |
315 | addr = VALUE_CONTENTS (struct_val) + bitpos / 8; | |
316 | if (bitsize) | |
317 | modify_field (addr, value_as_long (val), | |
318 | bitpos % 8, bitsize); | |
319 | else | |
320 | memcpy (addr, VALUE_CONTENTS (val), | |
321 | TYPE_LENGTH (VALUE_TYPE (val))); | |
c5aa993b JM |
322 | } |
323 | while (--nlabels > 0); | |
c906108c SS |
324 | } |
325 | return struct_val; | |
326 | } | |
327 | ||
328 | /* Recursive helper function for setting elements of array tuples for Chill. | |
329 | The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); | |
330 | the element value is ELEMENT; | |
331 | EXP, POS and NOSIDE are as usual. | |
332 | Evaluates index expresions and sets the specified element(s) of | |
333 | ARRAY to ELEMENT. | |
334 | Returns last index value. */ | |
335 | ||
336 | static LONGEST | |
61051030 | 337 | init_array_element (struct value *array, struct value *element, |
fba45db2 KB |
338 | register struct expression *exp, register int *pos, |
339 | enum noside noside, LONGEST low_bound, LONGEST high_bound) | |
c906108c SS |
340 | { |
341 | LONGEST index; | |
342 | int element_size = TYPE_LENGTH (VALUE_TYPE (element)); | |
343 | if (exp->elts[*pos].opcode == BINOP_COMMA) | |
344 | { | |
345 | (*pos)++; | |
346 | init_array_element (array, element, exp, pos, noside, | |
347 | low_bound, high_bound); | |
348 | return init_array_element (array, element, | |
349 | exp, pos, noside, low_bound, high_bound); | |
350 | } | |
351 | else if (exp->elts[*pos].opcode == BINOP_RANGE) | |
352 | { | |
353 | LONGEST low, high; | |
354 | (*pos)++; | |
355 | low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); | |
356 | high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); | |
357 | if (low < low_bound || high > high_bound) | |
358 | error ("tuple range index out of range"); | |
c5aa993b | 359 | for (index = low; index <= high; index++) |
c906108c SS |
360 | { |
361 | memcpy (VALUE_CONTENTS_RAW (array) | |
362 | + (index - low_bound) * element_size, | |
363 | VALUE_CONTENTS (element), element_size); | |
364 | } | |
365 | } | |
366 | else | |
367 | { | |
368 | index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); | |
369 | if (index < low_bound || index > high_bound) | |
370 | error ("tuple index out of range"); | |
371 | memcpy (VALUE_CONTENTS_RAW (array) + (index - low_bound) * element_size, | |
372 | VALUE_CONTENTS (element), element_size); | |
373 | } | |
374 | return index; | |
375 | } | |
376 | ||
61051030 | 377 | struct value * |
fba45db2 KB |
378 | evaluate_subexp_standard (struct type *expect_type, |
379 | register struct expression *exp, register int *pos, | |
380 | enum noside noside) | |
c906108c SS |
381 | { |
382 | enum exp_opcode op; | |
383 | int tem, tem2, tem3; | |
384 | register int pc, pc2 = 0, oldpos; | |
61051030 AC |
385 | struct value *arg1 = NULL; |
386 | struct value *arg2 = NULL; | |
387 | struct value *arg3; | |
c906108c SS |
388 | struct type *type; |
389 | int nargs; | |
61051030 | 390 | struct value **argvec; |
c5aa993b | 391 | int upper, lower, retcode; |
c906108c SS |
392 | int code; |
393 | int ix; | |
394 | long mem_offset; | |
c5aa993b | 395 | struct type **arg_types; |
c906108c SS |
396 | int save_pos1; |
397 | ||
c906108c SS |
398 | pc = (*pos)++; |
399 | op = exp->elts[pc].opcode; | |
400 | ||
401 | switch (op) | |
402 | { | |
403 | case OP_SCOPE: | |
404 | tem = longest_to_int (exp->elts[pc + 2].longconst); | |
405 | (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1); | |
406 | arg1 = value_struct_elt_for_reference (exp->elts[pc + 1].type, | |
407 | 0, | |
408 | exp->elts[pc + 1].type, | |
409 | &exp->elts[pc + 3].string, | |
cce74817 | 410 | NULL_TYPE); |
c906108c SS |
411 | if (arg1 == NULL) |
412 | error ("There is no field named %s", &exp->elts[pc + 3].string); | |
413 | return arg1; | |
414 | ||
415 | case OP_LONG: | |
416 | (*pos) += 3; | |
417 | return value_from_longest (exp->elts[pc + 1].type, | |
418 | exp->elts[pc + 2].longconst); | |
419 | ||
420 | case OP_DOUBLE: | |
421 | (*pos) += 3; | |
422 | return value_from_double (exp->elts[pc + 1].type, | |
423 | exp->elts[pc + 2].doubleconst); | |
424 | ||
425 | case OP_VAR_VALUE: | |
426 | (*pos) += 3; | |
427 | if (noside == EVAL_SKIP) | |
428 | goto nosideret; | |
c906108c | 429 | |
070ad9f0 DB |
430 | /* JYG: We used to just return value_zero of the symbol type |
431 | if we're asked to avoid side effects. Otherwise we return | |
432 | value_of_variable (...). However I'm not sure if | |
433 | value_of_variable () has any side effect. | |
434 | We need a full value object returned here for whatis_exp () | |
435 | to call evaluate_type () and then pass the full value to | |
436 | value_rtti_target_type () if we are dealing with a pointer | |
437 | or reference to a base class and print object is on. */ | |
c906108c | 438 | |
c906108c SS |
439 | return value_of_variable (exp->elts[pc + 2].symbol, |
440 | exp->elts[pc + 1].block); | |
441 | ||
442 | case OP_LAST: | |
443 | (*pos) += 2; | |
444 | return | |
445 | access_value_history (longest_to_int (exp->elts[pc + 1].longconst)); | |
446 | ||
447 | case OP_REGISTER: | |
448 | { | |
c5aa993b | 449 | int regno = longest_to_int (exp->elts[pc + 1].longconst); |
61051030 | 450 | struct value *val = value_of_register (regno); |
c906108c SS |
451 | |
452 | (*pos) += 2; | |
453 | if (val == NULL) | |
454 | error ("Value of register %s not available.", REGISTER_NAME (regno)); | |
455 | else | |
456 | return val; | |
457 | } | |
458 | case OP_BOOL: | |
459 | (*pos) += 2; | |
460 | return value_from_longest (LA_BOOL_TYPE, | |
c5aa993b | 461 | exp->elts[pc + 1].longconst); |
c906108c SS |
462 | |
463 | case OP_INTERNALVAR: | |
464 | (*pos) += 2; | |
465 | return value_of_internalvar (exp->elts[pc + 1].internalvar); | |
466 | ||
467 | case OP_STRING: | |
468 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
469 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
470 | if (noside == EVAL_SKIP) | |
471 | goto nosideret; | |
472 | return value_string (&exp->elts[pc + 2].string, tem); | |
473 | ||
474 | case OP_BITSTRING: | |
475 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
476 | (*pos) | |
477 | += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT); | |
478 | if (noside == EVAL_SKIP) | |
479 | goto nosideret; | |
480 | return value_bitstring (&exp->elts[pc + 2].string, tem); | |
481 | break; | |
482 | ||
483 | case OP_ARRAY: | |
484 | (*pos) += 3; | |
485 | tem2 = longest_to_int (exp->elts[pc + 1].longconst); | |
486 | tem3 = longest_to_int (exp->elts[pc + 2].longconst); | |
487 | nargs = tem3 - tem2 + 1; | |
488 | type = expect_type ? check_typedef (expect_type) : NULL_TYPE; | |
489 | ||
490 | if (expect_type != NULL_TYPE && noside != EVAL_SKIP | |
491 | && TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
492 | { | |
61051030 | 493 | struct value *rec = allocate_value (expect_type); |
c906108c SS |
494 | memset (VALUE_CONTENTS_RAW (rec), '\0', TYPE_LENGTH (type)); |
495 | return evaluate_struct_tuple (rec, exp, pos, noside, nargs); | |
496 | } | |
497 | ||
498 | if (expect_type != NULL_TYPE && noside != EVAL_SKIP | |
499 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
500 | { | |
501 | struct type *range_type = TYPE_FIELD_TYPE (type, 0); | |
502 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
61051030 | 503 | struct value *array = allocate_value (expect_type); |
c906108c SS |
504 | int element_size = TYPE_LENGTH (check_typedef (element_type)); |
505 | LONGEST low_bound, high_bound, index; | |
506 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
507 | { | |
508 | low_bound = 0; | |
509 | high_bound = (TYPE_LENGTH (type) / element_size) - 1; | |
510 | } | |
511 | index = low_bound; | |
512 | memset (VALUE_CONTENTS_RAW (array), 0, TYPE_LENGTH (expect_type)); | |
c5aa993b | 513 | for (tem = nargs; --nargs >= 0;) |
c906108c | 514 | { |
61051030 | 515 | struct value *element; |
c906108c SS |
516 | int index_pc = 0; |
517 | if (exp->elts[*pos].opcode == BINOP_RANGE) | |
518 | { | |
519 | index_pc = ++(*pos); | |
520 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
521 | } | |
522 | element = evaluate_subexp (element_type, exp, pos, noside); | |
523 | if (VALUE_TYPE (element) != element_type) | |
524 | element = value_cast (element_type, element); | |
525 | if (index_pc) | |
526 | { | |
527 | int continue_pc = *pos; | |
528 | *pos = index_pc; | |
529 | index = init_array_element (array, element, exp, pos, noside, | |
530 | low_bound, high_bound); | |
531 | *pos = continue_pc; | |
532 | } | |
533 | else | |
534 | { | |
535 | if (index > high_bound) | |
536 | /* to avoid memory corruption */ | |
537 | error ("Too many array elements"); | |
538 | memcpy (VALUE_CONTENTS_RAW (array) | |
539 | + (index - low_bound) * element_size, | |
540 | VALUE_CONTENTS (element), | |
541 | element_size); | |
542 | } | |
543 | index++; | |
544 | } | |
545 | return array; | |
546 | } | |
547 | ||
548 | if (expect_type != NULL_TYPE && noside != EVAL_SKIP | |
549 | && TYPE_CODE (type) == TYPE_CODE_SET) | |
550 | { | |
61051030 | 551 | struct value *set = allocate_value (expect_type); |
c906108c SS |
552 | char *valaddr = VALUE_CONTENTS_RAW (set); |
553 | struct type *element_type = TYPE_INDEX_TYPE (type); | |
554 | struct type *check_type = element_type; | |
555 | LONGEST low_bound, high_bound; | |
556 | ||
557 | /* get targettype of elementtype */ | |
558 | while (TYPE_CODE (check_type) == TYPE_CODE_RANGE || | |
559 | TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF) | |
560 | check_type = TYPE_TARGET_TYPE (check_type); | |
561 | ||
562 | if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0) | |
563 | error ("(power)set type with unknown size"); | |
564 | memset (valaddr, '\0', TYPE_LENGTH (type)); | |
565 | for (tem = 0; tem < nargs; tem++) | |
566 | { | |
567 | LONGEST range_low, range_high; | |
568 | struct type *range_low_type, *range_high_type; | |
61051030 | 569 | struct value *elem_val; |
c906108c SS |
570 | if (exp->elts[*pos].opcode == BINOP_RANGE) |
571 | { | |
572 | (*pos)++; | |
573 | elem_val = evaluate_subexp (element_type, exp, pos, noside); | |
574 | range_low_type = VALUE_TYPE (elem_val); | |
575 | range_low = value_as_long (elem_val); | |
576 | elem_val = evaluate_subexp (element_type, exp, pos, noside); | |
577 | range_high_type = VALUE_TYPE (elem_val); | |
578 | range_high = value_as_long (elem_val); | |
579 | } | |
580 | else | |
581 | { | |
582 | elem_val = evaluate_subexp (element_type, exp, pos, noside); | |
583 | range_low_type = range_high_type = VALUE_TYPE (elem_val); | |
584 | range_low = range_high = value_as_long (elem_val); | |
585 | } | |
586 | /* check types of elements to avoid mixture of elements from | |
c5aa993b JM |
587 | different types. Also check if type of element is "compatible" |
588 | with element type of powerset */ | |
c906108c SS |
589 | if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE) |
590 | range_low_type = TYPE_TARGET_TYPE (range_low_type); | |
591 | if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE) | |
592 | range_high_type = TYPE_TARGET_TYPE (range_high_type); | |
593 | if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) || | |
594 | (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM && | |
595 | (range_low_type != range_high_type))) | |
596 | /* different element modes */ | |
597 | error ("POWERSET tuple elements of different mode"); | |
598 | if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) || | |
599 | (TYPE_CODE (check_type) == TYPE_CODE_ENUM && | |
600 | range_low_type != check_type)) | |
601 | error ("incompatible POWERSET tuple elements"); | |
602 | if (range_low > range_high) | |
603 | { | |
604 | warning ("empty POWERSET tuple range"); | |
605 | continue; | |
606 | } | |
607 | if (range_low < low_bound || range_high > high_bound) | |
608 | error ("POWERSET tuple element out of range"); | |
609 | range_low -= low_bound; | |
610 | range_high -= low_bound; | |
c5aa993b | 611 | for (; range_low <= range_high; range_low++) |
c906108c SS |
612 | { |
613 | int bit_index = (unsigned) range_low % TARGET_CHAR_BIT; | |
614 | if (BITS_BIG_ENDIAN) | |
615 | bit_index = TARGET_CHAR_BIT - 1 - bit_index; | |
c5aa993b | 616 | valaddr[(unsigned) range_low / TARGET_CHAR_BIT] |
c906108c SS |
617 | |= 1 << bit_index; |
618 | } | |
619 | } | |
620 | return set; | |
621 | } | |
622 | ||
623 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * nargs); | |
624 | for (tem = 0; tem < nargs; tem++) | |
625 | { | |
626 | /* Ensure that array expressions are coerced into pointer objects. */ | |
627 | argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); | |
628 | } | |
629 | if (noside == EVAL_SKIP) | |
630 | goto nosideret; | |
631 | return value_array (tem2, tem3, argvec); | |
632 | ||
633 | case TERNOP_SLICE: | |
634 | { | |
61051030 | 635 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
c906108c | 636 | int lowbound |
c5aa993b | 637 | = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
c906108c | 638 | int upper |
c5aa993b | 639 | = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
c906108c SS |
640 | if (noside == EVAL_SKIP) |
641 | goto nosideret; | |
642 | return value_slice (array, lowbound, upper - lowbound + 1); | |
643 | } | |
644 | ||
645 | case TERNOP_SLICE_COUNT: | |
646 | { | |
61051030 | 647 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
c906108c | 648 | int lowbound |
c5aa993b | 649 | = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
c906108c | 650 | int length |
c5aa993b | 651 | = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
c906108c SS |
652 | return value_slice (array, lowbound, length); |
653 | } | |
654 | ||
655 | case TERNOP_COND: | |
656 | /* Skip third and second args to evaluate the first one. */ | |
657 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
658 | if (value_logical_not (arg1)) | |
659 | { | |
660 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
661 | return evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
662 | } | |
663 | else | |
664 | { | |
665 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
666 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
667 | return arg2; | |
668 | } | |
669 | ||
670 | case OP_FUNCALL: | |
671 | (*pos) += 2; | |
672 | op = exp->elts[*pos].opcode; | |
673 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
674 | /* Allocate arg vector, including space for the function to be | |
c5aa993b | 675 | called in argvec[0] and a terminating NULL */ |
c906108c SS |
676 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 3)); |
677 | if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR) | |
678 | { | |
679 | LONGEST fnptr; | |
680 | ||
c5aa993b JM |
681 | /* 1997-08-01 Currently we do not support function invocation |
682 | via pointers-to-methods with HP aCC. Pointer does not point | |
683 | to the function, but possibly to some thunk. */ | |
684 | if (hp_som_som_object_present) | |
685 | { | |
686 | error ("Not implemented: function invocation through pointer to method with HP aCC"); | |
687 | } | |
c906108c SS |
688 | |
689 | nargs++; | |
690 | /* First, evaluate the structure into arg2 */ | |
691 | pc2 = (*pos)++; | |
692 | ||
693 | if (noside == EVAL_SKIP) | |
694 | goto nosideret; | |
695 | ||
696 | if (op == STRUCTOP_MEMBER) | |
697 | { | |
698 | arg2 = evaluate_subexp_for_address (exp, pos, noside); | |
699 | } | |
700 | else | |
701 | { | |
702 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
703 | } | |
704 | ||
705 | /* If the function is a virtual function, then the | |
706 | aggregate value (providing the structure) plays | |
707 | its part by providing the vtable. Otherwise, | |
708 | it is just along for the ride: call the function | |
709 | directly. */ | |
710 | ||
711 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
712 | ||
713 | fnptr = value_as_long (arg1); | |
714 | ||
c5aa993b | 715 | if (METHOD_PTR_IS_VIRTUAL (fnptr)) |
c906108c | 716 | { |
c5aa993b | 717 | int fnoffset = METHOD_PTR_TO_VOFFSET (fnptr); |
c906108c SS |
718 | struct type *basetype; |
719 | struct type *domain_type = | |
c5aa993b | 720 | TYPE_DOMAIN_TYPE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))); |
c906108c SS |
721 | int i, j; |
722 | basetype = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)); | |
723 | if (domain_type != basetype) | |
c5aa993b | 724 | arg2 = value_cast (lookup_pointer_type (domain_type), arg2); |
c906108c SS |
725 | basetype = TYPE_VPTR_BASETYPE (domain_type); |
726 | for (i = TYPE_NFN_FIELDS (basetype) - 1; i >= 0; i--) | |
727 | { | |
728 | struct fn_field *f = TYPE_FN_FIELDLIST1 (basetype, i); | |
729 | /* If one is virtual, then all are virtual. */ | |
730 | if (TYPE_FN_FIELD_VIRTUAL_P (f, 0)) | |
731 | for (j = TYPE_FN_FIELDLIST_LENGTH (basetype, i) - 1; j >= 0; --j) | |
732 | if ((int) TYPE_FN_FIELD_VOFFSET (f, j) == fnoffset) | |
733 | { | |
61051030 | 734 | struct value *temp = value_ind (arg2); |
c906108c SS |
735 | arg1 = value_virtual_fn_field (&temp, f, j, domain_type, 0); |
736 | arg2 = value_addr (temp); | |
737 | goto got_it; | |
738 | } | |
739 | } | |
740 | if (i < 0) | |
741 | error ("virtual function at index %d not found", fnoffset); | |
742 | } | |
743 | else | |
744 | { | |
745 | VALUE_TYPE (arg1) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))); | |
746 | } | |
747 | got_it: | |
748 | ||
749 | /* Now, say which argument to start evaluating from */ | |
750 | tem = 2; | |
751 | } | |
752 | else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR) | |
753 | { | |
754 | /* Hair for method invocations */ | |
755 | int tem2; | |
756 | ||
757 | nargs++; | |
758 | /* First, evaluate the structure into arg2 */ | |
759 | pc2 = (*pos)++; | |
760 | tem2 = longest_to_int (exp->elts[pc2 + 1].longconst); | |
761 | *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1); | |
762 | if (noside == EVAL_SKIP) | |
763 | goto nosideret; | |
764 | ||
765 | if (op == STRUCTOP_STRUCT) | |
766 | { | |
767 | /* If v is a variable in a register, and the user types | |
c5aa993b JM |
768 | v.method (), this will produce an error, because v has |
769 | no address. | |
770 | ||
771 | A possible way around this would be to allocate a | |
772 | copy of the variable on the stack, copy in the | |
773 | contents, call the function, and copy out the | |
774 | contents. I.e. convert this from call by reference | |
775 | to call by copy-return (or whatever it's called). | |
776 | However, this does not work because it is not the | |
777 | same: the method being called could stash a copy of | |
778 | the address, and then future uses through that address | |
779 | (after the method returns) would be expected to | |
780 | use the variable itself, not some copy of it. */ | |
c906108c SS |
781 | arg2 = evaluate_subexp_for_address (exp, pos, noside); |
782 | } | |
783 | else | |
784 | { | |
785 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
786 | } | |
787 | /* Now, say which argument to start evaluating from */ | |
788 | tem = 2; | |
789 | } | |
790 | else | |
791 | { | |
792 | /* Non-method function call */ | |
793 | save_pos1 = *pos; | |
794 | argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside); | |
795 | tem = 1; | |
796 | type = VALUE_TYPE (argvec[0]); | |
797 | if (type && TYPE_CODE (type) == TYPE_CODE_PTR) | |
798 | type = TYPE_TARGET_TYPE (type); | |
799 | if (type && TYPE_CODE (type) == TYPE_CODE_FUNC) | |
800 | { | |
801 | for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++) | |
802 | { | |
c5aa993b JM |
803 | /* pai: FIXME This seems to be coercing arguments before |
804 | * overload resolution has been done! */ | |
805 | argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1), | |
c906108c SS |
806 | exp, pos, noside); |
807 | } | |
808 | } | |
809 | } | |
810 | ||
811 | /* Evaluate arguments */ | |
812 | for (; tem <= nargs; tem++) | |
813 | { | |
814 | /* Ensure that array expressions are coerced into pointer objects. */ | |
815 | argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); | |
816 | } | |
817 | ||
818 | /* signal end of arglist */ | |
819 | argvec[tem] = 0; | |
820 | ||
821 | if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR) | |
822 | { | |
823 | int static_memfuncp; | |
61051030 | 824 | struct value *temp = arg2; |
c906108c | 825 | char tstr[256]; |
c5aa993b JM |
826 | |
827 | /* Method invocation : stuff "this" as first parameter */ | |
828 | /* pai: this used to have lookup_pointer_type for some reason, | |
829 | * but temp is already a pointer to the object */ | |
4478b372 JB |
830 | argvec[1] |
831 | = value_from_pointer (VALUE_TYPE (temp), | |
832 | VALUE_ADDRESS (temp) + VALUE_OFFSET (temp)); | |
c5aa993b JM |
833 | /* Name of method from expression */ |
834 | strcpy (tstr, &exp->elts[pc2 + 2].string); | |
835 | ||
836 | if (overload_resolution && (exp->language_defn->la_language == language_cplus)) | |
837 | { | |
838 | /* Language is C++, do some overload resolution before evaluation */ | |
61051030 | 839 | struct value *valp = NULL; |
c5aa993b JM |
840 | |
841 | /* Prepare list of argument types for overload resolution */ | |
c2636352 | 842 | arg_types = (struct type **) alloca (nargs * (sizeof (struct type *))); |
c5aa993b JM |
843 | for (ix = 1; ix <= nargs; ix++) |
844 | arg_types[ix - 1] = VALUE_TYPE (argvec[ix]); | |
845 | ||
846 | (void) find_overload_match (arg_types, nargs, tstr, | |
847 | 1 /* method */ , 0 /* strict match */ , | |
848 | arg2 /* the object */ , NULL, | |
849 | &valp, NULL, &static_memfuncp); | |
850 | ||
851 | ||
852 | argvec[1] = arg2; /* the ``this'' pointer */ | |
853 | argvec[0] = valp; /* use the method found after overload resolution */ | |
854 | } | |
855 | else | |
856 | /* Non-C++ case -- or no overload resolution */ | |
857 | { | |
858 | temp = arg2; | |
859 | argvec[0] = value_struct_elt (&temp, argvec + 1, tstr, | |
860 | &static_memfuncp, | |
861 | op == STRUCTOP_STRUCT | |
862 | ? "structure" : "structure pointer"); | |
863 | argvec[1] = arg2; /* the ``this'' pointer */ | |
864 | } | |
c906108c SS |
865 | |
866 | if (static_memfuncp) | |
867 | { | |
868 | argvec[1] = argvec[0]; | |
869 | nargs--; | |
870 | argvec++; | |
871 | } | |
872 | } | |
873 | else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR) | |
874 | { | |
875 | argvec[1] = arg2; | |
876 | argvec[0] = arg1; | |
877 | } | |
917317f4 | 878 | else if (op == OP_VAR_VALUE) |
c5aa993b | 879 | { |
c906108c | 880 | /* Non-member function being called */ |
917317f4 JM |
881 | /* fn: This can only be done for C++ functions. A C-style function |
882 | in a C++ program, for instance, does not have the fields that | |
883 | are expected here */ | |
c906108c | 884 | |
c5aa993b JM |
885 | if (overload_resolution && (exp->language_defn->la_language == language_cplus)) |
886 | { | |
887 | /* Language is C++, do some overload resolution before evaluation */ | |
888 | struct symbol *symp; | |
889 | ||
890 | /* Prepare list of argument types for overload resolution */ | |
c2636352 | 891 | arg_types = (struct type **) alloca (nargs * (sizeof (struct type *))); |
c5aa993b JM |
892 | for (ix = 1; ix <= nargs; ix++) |
893 | arg_types[ix - 1] = VALUE_TYPE (argvec[ix]); | |
894 | ||
895 | (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ , | |
896 | 0 /* not method */ , 0 /* strict match */ , | |
917317f4 | 897 | NULL, exp->elts[save_pos1+2].symbol /* the function */ , |
c5aa993b JM |
898 | NULL, &symp, NULL); |
899 | ||
900 | /* Now fix the expression being evaluated */ | |
917317f4 | 901 | exp->elts[save_pos1+2].symbol = symp; |
c5aa993b JM |
902 | argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside); |
903 | } | |
904 | else | |
905 | { | |
906 | /* Not C++, or no overload resolution allowed */ | |
907 | /* nothing to be done; argvec already correctly set up */ | |
908 | } | |
909 | } | |
917317f4 JM |
910 | else |
911 | { | |
912 | /* It is probably a C-style function */ | |
913 | /* nothing to be done; argvec already correctly set up */ | |
914 | } | |
c906108c SS |
915 | |
916 | do_call_it: | |
917 | ||
918 | if (noside == EVAL_SKIP) | |
919 | goto nosideret; | |
0478d61c FF |
920 | if (argvec[0] == NULL) |
921 | error ("Cannot evaluate function -- may be inlined"); | |
c906108c SS |
922 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
923 | { | |
924 | /* If the return type doesn't look like a function type, call an | |
925 | error. This can happen if somebody tries to turn a variable into | |
926 | a function call. This is here because people often want to | |
927 | call, eg, strcmp, which gdb doesn't know is a function. If | |
928 | gdb isn't asked for it's opinion (ie. through "whatis"), | |
929 | it won't offer it. */ | |
930 | ||
931 | struct type *ftype = | |
c5aa993b | 932 | TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0])); |
c906108c SS |
933 | |
934 | if (ftype) | |
935 | return allocate_value (TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0]))); | |
936 | else | |
937 | error ("Expression of type other than \"Function returning ...\" used as function"); | |
938 | } | |
c906108c SS |
939 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
940 | /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */ | |
941 | ||
c5aa993b | 942 | case OP_F77_UNDETERMINED_ARGLIST: |
c906108c SS |
943 | |
944 | /* Remember that in F77, functions, substring ops and | |
945 | array subscript operations cannot be disambiguated | |
946 | at parse time. We have made all array subscript operations, | |
947 | substring operations as well as function calls come here | |
948 | and we now have to discover what the heck this thing actually was. | |
c5aa993b | 949 | If it is a function, we process just as if we got an OP_FUNCALL. */ |
c906108c | 950 | |
c5aa993b | 951 | nargs = longest_to_int (exp->elts[pc + 1].longconst); |
c906108c SS |
952 | (*pos) += 2; |
953 | ||
c5aa993b | 954 | /* First determine the type code we are dealing with. */ |
c906108c SS |
955 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
956 | type = check_typedef (VALUE_TYPE (arg1)); | |
957 | code = TYPE_CODE (type); | |
958 | ||
c5aa993b | 959 | switch (code) |
c906108c SS |
960 | { |
961 | case TYPE_CODE_ARRAY: | |
962 | goto multi_f77_subscript; | |
963 | ||
964 | case TYPE_CODE_STRING: | |
965 | goto op_f77_substr; | |
966 | ||
967 | case TYPE_CODE_PTR: | |
968 | case TYPE_CODE_FUNC: | |
969 | /* It's a function call. */ | |
970 | /* Allocate arg vector, including space for the function to be | |
971 | called in argvec[0] and a terminating NULL */ | |
972 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 2)); | |
973 | argvec[0] = arg1; | |
974 | tem = 1; | |
975 | for (; tem <= nargs; tem++) | |
976 | argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); | |
c5aa993b | 977 | argvec[tem] = 0; /* signal end of arglist */ |
c906108c SS |
978 | goto do_call_it; |
979 | ||
980 | default: | |
c5aa993b | 981 | error ("Cannot perform substring on this type"); |
c906108c SS |
982 | } |
983 | ||
984 | op_f77_substr: | |
985 | /* We have a substring operation on our hands here, | |
986 | let us get the string we will be dealing with */ | |
987 | ||
988 | /* Now evaluate the 'from' and 'to' */ | |
989 | ||
990 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
991 | ||
992 | if (nargs < 2) | |
993 | return value_subscript (arg1, arg2); | |
994 | ||
995 | arg3 = evaluate_subexp_with_coercion (exp, pos, noside); | |
996 | ||
997 | if (noside == EVAL_SKIP) | |
c5aa993b JM |
998 | goto nosideret; |
999 | ||
c906108c SS |
1000 | tem2 = value_as_long (arg2); |
1001 | tem3 = value_as_long (arg3); | |
c5aa993b | 1002 | |
c906108c SS |
1003 | return value_slice (arg1, tem2, tem3 - tem2 + 1); |
1004 | ||
1005 | case OP_COMPLEX: | |
1006 | /* We have a complex number, There should be 2 floating | |
c5aa993b | 1007 | point numbers that compose it */ |
c906108c | 1008 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
c5aa993b | 1009 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
c906108c SS |
1010 | |
1011 | return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16); | |
1012 | ||
1013 | case STRUCTOP_STRUCT: | |
1014 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
1015 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
1016 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1017 | if (noside == EVAL_SKIP) | |
1018 | goto nosideret; | |
1019 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1020 | return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1), | |
1021 | &exp->elts[pc + 2].string, | |
1022 | 0), | |
1023 | lval_memory); | |
1024 | else | |
1025 | { | |
61051030 | 1026 | struct value *temp = arg1; |
c906108c SS |
1027 | return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string, |
1028 | NULL, "structure"); | |
1029 | } | |
1030 | ||
1031 | case STRUCTOP_PTR: | |
1032 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
1033 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
1034 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1035 | if (noside == EVAL_SKIP) | |
1036 | goto nosideret; | |
070ad9f0 DB |
1037 | |
1038 | /* JYG: if print object is on we need to replace the base type | |
1039 | with rtti type in order to continue on with successful | |
1040 | lookup of member / method only available in the rtti type. */ | |
1041 | { | |
1042 | struct type *type = VALUE_TYPE (arg1); | |
1043 | struct type *real_type; | |
1044 | int full, top, using_enc; | |
1045 | ||
1046 | if (objectprint && TYPE_TARGET_TYPE(type) && | |
1047 | (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS)) | |
1048 | { | |
1049 | real_type = value_rtti_target_type (arg1, &full, &top, &using_enc); | |
1050 | if (real_type) | |
1051 | { | |
1052 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
1053 | real_type = lookup_pointer_type (real_type); | |
1054 | else | |
1055 | real_type = lookup_reference_type (real_type); | |
1056 | ||
1057 | arg1 = value_cast (real_type, arg1); | |
1058 | } | |
1059 | } | |
1060 | } | |
1061 | ||
c906108c SS |
1062 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
1063 | return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1), | |
1064 | &exp->elts[pc + 2].string, | |
1065 | 0), | |
1066 | lval_memory); | |
1067 | else | |
1068 | { | |
61051030 | 1069 | struct value *temp = arg1; |
c906108c SS |
1070 | return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string, |
1071 | NULL, "structure pointer"); | |
1072 | } | |
1073 | ||
1074 | case STRUCTOP_MEMBER: | |
1075 | arg1 = evaluate_subexp_for_address (exp, pos, noside); | |
1076 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1077 | ||
c5aa993b | 1078 | /* With HP aCC, pointers to methods do not point to the function code */ |
c906108c | 1079 | if (hp_som_som_object_present && |
c5aa993b JM |
1080 | (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) && |
1081 | (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_METHOD)) | |
1082 | error ("Pointers to methods not supported with HP aCC"); /* 1997-08-19 */ | |
1083 | ||
c906108c SS |
1084 | mem_offset = value_as_long (arg2); |
1085 | goto handle_pointer_to_member; | |
1086 | ||
1087 | case STRUCTOP_MPTR: | |
1088 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1089 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1090 | ||
c5aa993b | 1091 | /* With HP aCC, pointers to methods do not point to the function code */ |
c906108c | 1092 | if (hp_som_som_object_present && |
c5aa993b JM |
1093 | (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) && |
1094 | (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_METHOD)) | |
1095 | error ("Pointers to methods not supported with HP aCC"); /* 1997-08-19 */ | |
c906108c SS |
1096 | |
1097 | mem_offset = value_as_long (arg2); | |
1098 | ||
c5aa993b | 1099 | handle_pointer_to_member: |
c906108c SS |
1100 | /* HP aCC generates offsets that have bit #29 set; turn it off to get |
1101 | a real offset to the member. */ | |
1102 | if (hp_som_som_object_present) | |
c5aa993b JM |
1103 | { |
1104 | if (!mem_offset) /* no bias -> really null */ | |
1105 | error ("Attempted dereference of null pointer-to-member"); | |
1106 | mem_offset &= ~0x20000000; | |
1107 | } | |
c906108c SS |
1108 | if (noside == EVAL_SKIP) |
1109 | goto nosideret; | |
1110 | type = check_typedef (VALUE_TYPE (arg2)); | |
1111 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
1112 | goto bad_pointer_to_member; | |
1113 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
1114 | if (TYPE_CODE (type) == TYPE_CODE_METHOD) | |
1115 | error ("not implemented: pointer-to-method in pointer-to-member construct"); | |
1116 | if (TYPE_CODE (type) != TYPE_CODE_MEMBER) | |
1117 | goto bad_pointer_to_member; | |
1118 | /* Now, convert these values to an address. */ | |
1119 | arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)), | |
1120 | arg1); | |
4478b372 | 1121 | arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
c906108c SS |
1122 | value_as_long (arg1) + mem_offset); |
1123 | return value_ind (arg3); | |
c5aa993b JM |
1124 | bad_pointer_to_member: |
1125 | error ("non-pointer-to-member value used in pointer-to-member construct"); | |
c906108c SS |
1126 | |
1127 | case BINOP_CONCAT: | |
1128 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1129 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1130 | if (noside == EVAL_SKIP) | |
1131 | goto nosideret; | |
1132 | if (binop_user_defined_p (op, arg1, arg2)) | |
1133 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1134 | else | |
1135 | return value_concat (arg1, arg2); | |
1136 | ||
1137 | case BINOP_ASSIGN: | |
1138 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1139 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
1140 | ||
c5aa993b | 1141 | /* Do special stuff for HP aCC pointers to members */ |
c906108c | 1142 | if (hp_som_som_object_present) |
c5aa993b JM |
1143 | { |
1144 | /* 1997-08-19 Can't assign HP aCC pointers to methods. No details of | |
1145 | the implementation yet; but the pointer appears to point to a code | |
1146 | sequence (thunk) in memory -- in any case it is *not* the address | |
1147 | of the function as it would be in a naive implementation. */ | |
1148 | if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) && | |
1149 | (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_METHOD)) | |
1150 | error ("Assignment to pointers to methods not implemented with HP aCC"); | |
1151 | ||
1152 | /* HP aCC pointers to data members require a constant bias */ | |
1153 | if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) && | |
1154 | (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_MEMBER)) | |
1155 | { | |
1156 | unsigned int *ptr = (unsigned int *) VALUE_CONTENTS (arg2); /* forces evaluation */ | |
1157 | *ptr |= 0x20000000; /* set 29th bit */ | |
1158 | } | |
1159 | } | |
1160 | ||
c906108c SS |
1161 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
1162 | return arg1; | |
1163 | if (binop_user_defined_p (op, arg1, arg2)) | |
1164 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1165 | else | |
1166 | return value_assign (arg1, arg2); | |
1167 | ||
1168 | case BINOP_ASSIGN_MODIFY: | |
1169 | (*pos) += 2; | |
1170 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1171 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
1172 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
1173 | return arg1; | |
1174 | op = exp->elts[pc + 1].opcode; | |
1175 | if (binop_user_defined_p (op, arg1, arg2)) | |
1176 | return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside); | |
1177 | else if (op == BINOP_ADD) | |
1178 | arg2 = value_add (arg1, arg2); | |
1179 | else if (op == BINOP_SUB) | |
1180 | arg2 = value_sub (arg1, arg2); | |
1181 | else | |
1182 | arg2 = value_binop (arg1, arg2, op); | |
1183 | return value_assign (arg1, arg2); | |
1184 | ||
1185 | case BINOP_ADD: | |
1186 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1187 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1188 | if (noside == EVAL_SKIP) | |
1189 | goto nosideret; | |
1190 | if (binop_user_defined_p (op, arg1, arg2)) | |
1191 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1192 | else | |
1193 | return value_add (arg1, arg2); | |
1194 | ||
1195 | case BINOP_SUB: | |
1196 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1197 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1198 | if (noside == EVAL_SKIP) | |
1199 | goto nosideret; | |
1200 | if (binop_user_defined_p (op, arg1, arg2)) | |
1201 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1202 | else | |
1203 | return value_sub (arg1, arg2); | |
1204 | ||
1205 | case BINOP_MUL: | |
1206 | case BINOP_DIV: | |
1207 | case BINOP_REM: | |
1208 | case BINOP_MOD: | |
1209 | case BINOP_LSH: | |
1210 | case BINOP_RSH: | |
1211 | case BINOP_BITWISE_AND: | |
1212 | case BINOP_BITWISE_IOR: | |
1213 | case BINOP_BITWISE_XOR: | |
1214 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1215 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1216 | if (noside == EVAL_SKIP) | |
1217 | goto nosideret; | |
1218 | if (binop_user_defined_p (op, arg1, arg2)) | |
1219 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
c5aa993b JM |
1220 | else if (noside == EVAL_AVOID_SIDE_EFFECTS |
1221 | && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD)) | |
1222 | return value_zero (VALUE_TYPE (arg1), not_lval); | |
c906108c SS |
1223 | else |
1224 | return value_binop (arg1, arg2, op); | |
1225 | ||
1226 | case BINOP_RANGE: | |
1227 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1228 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1229 | if (noside == EVAL_SKIP) | |
1230 | goto nosideret; | |
1231 | error ("':' operator used in invalid context"); | |
1232 | ||
1233 | case BINOP_SUBSCRIPT: | |
1234 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1235 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1236 | if (noside == EVAL_SKIP) | |
1237 | goto nosideret; | |
1238 | if (binop_user_defined_p (op, arg1, arg2)) | |
1239 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1240 | else | |
c5aa993b | 1241 | { |
c906108c SS |
1242 | /* If the user attempts to subscript something that is not an |
1243 | array or pointer type (like a plain int variable for example), | |
1244 | then report this as an error. */ | |
1245 | ||
1246 | COERCE_REF (arg1); | |
1247 | type = check_typedef (VALUE_TYPE (arg1)); | |
1248 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY | |
1249 | && TYPE_CODE (type) != TYPE_CODE_PTR) | |
1250 | { | |
1251 | if (TYPE_NAME (type)) | |
1252 | error ("cannot subscript something of type `%s'", | |
1253 | TYPE_NAME (type)); | |
1254 | else | |
1255 | error ("cannot subscript requested type"); | |
1256 | } | |
1257 | ||
1258 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1259 | return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1)); | |
1260 | else | |
1261 | return value_subscript (arg1, arg2); | |
c5aa993b | 1262 | } |
c906108c SS |
1263 | |
1264 | case BINOP_IN: | |
1265 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1266 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1267 | if (noside == EVAL_SKIP) | |
1268 | goto nosideret; | |
1269 | return value_in (arg1, arg2); | |
c5aa993b | 1270 | |
c906108c SS |
1271 | case MULTI_SUBSCRIPT: |
1272 | (*pos) += 2; | |
1273 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
1274 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1275 | while (nargs-- > 0) | |
1276 | { | |
1277 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
1278 | /* FIXME: EVAL_SKIP handling may not be correct. */ | |
1279 | if (noside == EVAL_SKIP) | |
1280 | { | |
1281 | if (nargs > 0) | |
1282 | { | |
1283 | continue; | |
1284 | } | |
1285 | else | |
1286 | { | |
1287 | goto nosideret; | |
1288 | } | |
1289 | } | |
1290 | /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */ | |
1291 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1292 | { | |
1293 | /* If the user attempts to subscript something that has no target | |
c5aa993b JM |
1294 | type (like a plain int variable for example), then report this |
1295 | as an error. */ | |
1296 | ||
c906108c SS |
1297 | type = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (arg1))); |
1298 | if (type != NULL) | |
1299 | { | |
1300 | arg1 = value_zero (type, VALUE_LVAL (arg1)); | |
1301 | noside = EVAL_SKIP; | |
1302 | continue; | |
1303 | } | |
1304 | else | |
1305 | { | |
1306 | error ("cannot subscript something of type `%s'", | |
1307 | TYPE_NAME (VALUE_TYPE (arg1))); | |
1308 | } | |
1309 | } | |
c5aa993b | 1310 | |
c906108c SS |
1311 | if (binop_user_defined_p (op, arg1, arg2)) |
1312 | { | |
1313 | arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1314 | } | |
1315 | else | |
1316 | { | |
1317 | arg1 = value_subscript (arg1, arg2); | |
1318 | } | |
1319 | } | |
1320 | return (arg1); | |
1321 | ||
1322 | multi_f77_subscript: | |
c5aa993b JM |
1323 | { |
1324 | int subscript_array[MAX_FORTRAN_DIMS + 1]; /* 1-based array of | |
1325 | subscripts, max == 7 */ | |
1326 | int array_size_array[MAX_FORTRAN_DIMS + 1]; | |
1327 | int ndimensions = 1, i; | |
1328 | struct type *tmp_type; | |
1329 | int offset_item; /* The array offset where the item lives */ | |
c906108c SS |
1330 | |
1331 | if (nargs > MAX_FORTRAN_DIMS) | |
1332 | error ("Too many subscripts for F77 (%d Max)", MAX_FORTRAN_DIMS); | |
1333 | ||
1334 | tmp_type = check_typedef (VALUE_TYPE (arg1)); | |
1335 | ndimensions = calc_f77_array_dims (type); | |
1336 | ||
1337 | if (nargs != ndimensions) | |
1338 | error ("Wrong number of subscripts"); | |
1339 | ||
1340 | /* Now that we know we have a legal array subscript expression | |
c5aa993b | 1341 | let us actually find out where this element exists in the array. */ |
c906108c | 1342 | |
c5aa993b | 1343 | offset_item = 0; |
c906108c SS |
1344 | for (i = 1; i <= nargs; i++) |
1345 | { | |
c5aa993b | 1346 | /* Evaluate each subscript, It must be a legal integer in F77 */ |
c906108c SS |
1347 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); |
1348 | ||
c5aa993b | 1349 | /* Fill in the subscript and array size arrays */ |
c906108c SS |
1350 | |
1351 | subscript_array[i] = value_as_long (arg2); | |
c5aa993b | 1352 | |
c906108c SS |
1353 | retcode = f77_get_dynamic_upperbound (tmp_type, &upper); |
1354 | if (retcode == BOUND_FETCH_ERROR) | |
c5aa993b | 1355 | error ("Cannot obtain dynamic upper bound"); |
c906108c | 1356 | |
c5aa993b | 1357 | retcode = f77_get_dynamic_lowerbound (tmp_type, &lower); |
c906108c | 1358 | if (retcode == BOUND_FETCH_ERROR) |
c5aa993b | 1359 | error ("Cannot obtain dynamic lower bound"); |
c906108c SS |
1360 | |
1361 | array_size_array[i] = upper - lower + 1; | |
c5aa993b JM |
1362 | |
1363 | /* Zero-normalize subscripts so that offsetting will work. */ | |
1364 | ||
c906108c SS |
1365 | subscript_array[i] -= lower; |
1366 | ||
1367 | /* If we are at the bottom of a multidimensional | |
1368 | array type then keep a ptr to the last ARRAY | |
1369 | type around for use when calling value_subscript() | |
1370 | below. This is done because we pretend to value_subscript | |
1371 | that we actually have a one-dimensional array | |
1372 | of base element type that we apply a simple | |
c5aa993b | 1373 | offset to. */ |
c906108c | 1374 | |
c5aa993b JM |
1375 | if (i < nargs) |
1376 | tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type)); | |
c906108c SS |
1377 | } |
1378 | ||
1379 | /* Now let us calculate the offset for this item */ | |
1380 | ||
c5aa993b JM |
1381 | offset_item = subscript_array[ndimensions]; |
1382 | ||
c906108c | 1383 | for (i = ndimensions - 1; i >= 1; i--) |
c5aa993b | 1384 | offset_item = |
c906108c SS |
1385 | array_size_array[i] * offset_item + subscript_array[i]; |
1386 | ||
1387 | /* Construct a value node with the value of the offset */ | |
1388 | ||
c5aa993b | 1389 | arg2 = value_from_longest (builtin_type_f_integer, offset_item); |
c906108c SS |
1390 | |
1391 | /* Let us now play a dirty trick: we will take arg1 | |
1392 | which is a value node pointing to the topmost level | |
1393 | of the multidimensional array-set and pretend | |
1394 | that it is actually a array of the final element | |
1395 | type, this will ensure that value_subscript() | |
1396 | returns the correct type value */ | |
1397 | ||
c5aa993b | 1398 | VALUE_TYPE (arg1) = tmp_type; |
c906108c SS |
1399 | return value_ind (value_add (value_coerce_array (arg1), arg2)); |
1400 | } | |
1401 | ||
1402 | case BINOP_LOGICAL_AND: | |
1403 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1404 | if (noside == EVAL_SKIP) | |
1405 | { | |
1406 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1407 | goto nosideret; | |
1408 | } | |
c5aa993b | 1409 | |
c906108c SS |
1410 | oldpos = *pos; |
1411 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
1412 | *pos = oldpos; | |
c5aa993b JM |
1413 | |
1414 | if (binop_user_defined_p (op, arg1, arg2)) | |
c906108c SS |
1415 | { |
1416 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1417 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1418 | } | |
1419 | else | |
1420 | { | |
1421 | tem = value_logical_not (arg1); | |
1422 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, | |
1423 | (tem ? EVAL_SKIP : noside)); | |
1424 | return value_from_longest (LA_BOOL_TYPE, | |
c5aa993b | 1425 | (LONGEST) (!tem && !value_logical_not (arg2))); |
c906108c SS |
1426 | } |
1427 | ||
1428 | case BINOP_LOGICAL_OR: | |
1429 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1430 | if (noside == EVAL_SKIP) | |
1431 | { | |
1432 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1433 | goto nosideret; | |
1434 | } | |
c5aa993b | 1435 | |
c906108c SS |
1436 | oldpos = *pos; |
1437 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
1438 | *pos = oldpos; | |
c5aa993b JM |
1439 | |
1440 | if (binop_user_defined_p (op, arg1, arg2)) | |
c906108c SS |
1441 | { |
1442 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1443 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1444 | } | |
1445 | else | |
1446 | { | |
1447 | tem = value_logical_not (arg1); | |
1448 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, | |
1449 | (!tem ? EVAL_SKIP : noside)); | |
1450 | return value_from_longest (LA_BOOL_TYPE, | |
c5aa993b | 1451 | (LONGEST) (!tem || !value_logical_not (arg2))); |
c906108c SS |
1452 | } |
1453 | ||
1454 | case BINOP_EQUAL: | |
1455 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1456 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
1457 | if (noside == EVAL_SKIP) | |
1458 | goto nosideret; | |
1459 | if (binop_user_defined_p (op, arg1, arg2)) | |
1460 | { | |
1461 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1462 | } | |
1463 | else | |
1464 | { | |
1465 | tem = value_equal (arg1, arg2); | |
1466 | return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); | |
1467 | } | |
1468 | ||
1469 | case BINOP_NOTEQUAL: | |
1470 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1471 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
1472 | if (noside == EVAL_SKIP) | |
1473 | goto nosideret; | |
1474 | if (binop_user_defined_p (op, arg1, arg2)) | |
1475 | { | |
1476 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1477 | } | |
1478 | else | |
1479 | { | |
1480 | tem = value_equal (arg1, arg2); | |
1481 | return value_from_longest (LA_BOOL_TYPE, (LONGEST) ! tem); | |
1482 | } | |
1483 | ||
1484 | case BINOP_LESS: | |
1485 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1486 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
1487 | if (noside == EVAL_SKIP) | |
1488 | goto nosideret; | |
1489 | if (binop_user_defined_p (op, arg1, arg2)) | |
1490 | { | |
1491 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1492 | } | |
1493 | else | |
1494 | { | |
1495 | tem = value_less (arg1, arg2); | |
1496 | return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); | |
1497 | } | |
1498 | ||
1499 | case BINOP_GTR: | |
1500 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1501 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
1502 | if (noside == EVAL_SKIP) | |
1503 | goto nosideret; | |
1504 | if (binop_user_defined_p (op, arg1, arg2)) | |
1505 | { | |
1506 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1507 | } | |
1508 | else | |
1509 | { | |
1510 | tem = value_less (arg2, arg1); | |
1511 | return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); | |
1512 | } | |
1513 | ||
1514 | case BINOP_GEQ: | |
1515 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1516 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
1517 | if (noside == EVAL_SKIP) | |
1518 | goto nosideret; | |
1519 | if (binop_user_defined_p (op, arg1, arg2)) | |
1520 | { | |
1521 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1522 | } | |
1523 | else | |
1524 | { | |
1525 | tem = value_less (arg2, arg1) || value_equal (arg1, arg2); | |
1526 | return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); | |
1527 | } | |
1528 | ||
1529 | case BINOP_LEQ: | |
1530 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1531 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
1532 | if (noside == EVAL_SKIP) | |
1533 | goto nosideret; | |
1534 | if (binop_user_defined_p (op, arg1, arg2)) | |
1535 | { | |
1536 | return value_x_binop (arg1, arg2, op, OP_NULL, noside); | |
1537 | } | |
c5aa993b | 1538 | else |
c906108c SS |
1539 | { |
1540 | tem = value_less (arg1, arg2) || value_equal (arg1, arg2); | |
1541 | return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); | |
1542 | } | |
1543 | ||
1544 | case BINOP_REPEAT: | |
1545 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1546 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1547 | if (noside == EVAL_SKIP) | |
1548 | goto nosideret; | |
1549 | type = check_typedef (VALUE_TYPE (arg2)); | |
1550 | if (TYPE_CODE (type) != TYPE_CODE_INT) | |
1551 | error ("Non-integral right operand for \"@\" operator."); | |
1552 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1553 | { | |
1554 | return allocate_repeat_value (VALUE_TYPE (arg1), | |
c5aa993b | 1555 | longest_to_int (value_as_long (arg2))); |
c906108c SS |
1556 | } |
1557 | else | |
1558 | return value_repeat (arg1, longest_to_int (value_as_long (arg2))); | |
1559 | ||
1560 | case BINOP_COMMA: | |
1561 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1562 | return evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1563 | ||
1564 | case UNOP_NEG: | |
1565 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1566 | if (noside == EVAL_SKIP) | |
1567 | goto nosideret; | |
1568 | if (unop_user_defined_p (op, arg1)) | |
1569 | return value_x_unop (arg1, op, noside); | |
1570 | else | |
1571 | return value_neg (arg1); | |
1572 | ||
1573 | case UNOP_COMPLEMENT: | |
1574 | /* C++: check for and handle destructor names. */ | |
1575 | op = exp->elts[*pos].opcode; | |
1576 | ||
1577 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1578 | if (noside == EVAL_SKIP) | |
1579 | goto nosideret; | |
1580 | if (unop_user_defined_p (UNOP_COMPLEMENT, arg1)) | |
1581 | return value_x_unop (arg1, UNOP_COMPLEMENT, noside); | |
1582 | else | |
1583 | return value_complement (arg1); | |
1584 | ||
1585 | case UNOP_LOGICAL_NOT: | |
1586 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1587 | if (noside == EVAL_SKIP) | |
1588 | goto nosideret; | |
1589 | if (unop_user_defined_p (op, arg1)) | |
1590 | return value_x_unop (arg1, op, noside); | |
1591 | else | |
1592 | return value_from_longest (LA_BOOL_TYPE, | |
1593 | (LONGEST) value_logical_not (arg1)); | |
1594 | ||
1595 | case UNOP_IND: | |
1596 | if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR) | |
c5aa993b | 1597 | expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type)); |
c906108c SS |
1598 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
1599 | if ((TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) && | |
1600 | ((TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_METHOD) || | |
1601 | (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_MEMBER))) | |
c5aa993b | 1602 | error ("Attempt to dereference pointer to member without an object"); |
c906108c SS |
1603 | if (noside == EVAL_SKIP) |
1604 | goto nosideret; | |
1605 | if (unop_user_defined_p (op, arg1)) | |
1606 | return value_x_unop (arg1, op, noside); | |
1607 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1608 | { | |
1609 | type = check_typedef (VALUE_TYPE (arg1)); | |
1610 | if (TYPE_CODE (type) == TYPE_CODE_PTR | |
1611 | || TYPE_CODE (type) == TYPE_CODE_REF | |
c5aa993b | 1612 | /* In C you can dereference an array to get the 1st elt. */ |
c906108c | 1613 | || TYPE_CODE (type) == TYPE_CODE_ARRAY |
c5aa993b | 1614 | ) |
c906108c SS |
1615 | return value_zero (TYPE_TARGET_TYPE (type), |
1616 | lval_memory); | |
1617 | else if (TYPE_CODE (type) == TYPE_CODE_INT) | |
1618 | /* GDB allows dereferencing an int. */ | |
1619 | return value_zero (builtin_type_int, lval_memory); | |
1620 | else | |
1621 | error ("Attempt to take contents of a non-pointer value."); | |
1622 | } | |
1623 | return value_ind (arg1); | |
1624 | ||
1625 | case UNOP_ADDR: | |
1626 | /* C++: check for and handle pointer to members. */ | |
c5aa993b | 1627 | |
c906108c SS |
1628 | op = exp->elts[*pos].opcode; |
1629 | ||
1630 | if (noside == EVAL_SKIP) | |
1631 | { | |
1632 | if (op == OP_SCOPE) | |
1633 | { | |
c5aa993b | 1634 | int temm = longest_to_int (exp->elts[pc + 3].longconst); |
c906108c SS |
1635 | (*pos) += 3 + BYTES_TO_EXP_ELEM (temm + 1); |
1636 | } | |
1637 | else | |
cce74817 | 1638 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
c906108c SS |
1639 | goto nosideret; |
1640 | } | |
c5aa993b JM |
1641 | else |
1642 | { | |
61051030 | 1643 | struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside); |
c5aa993b JM |
1644 | /* If HP aCC object, use bias for pointers to members */ |
1645 | if (hp_som_som_object_present && | |
1646 | (TYPE_CODE (VALUE_TYPE (retvalp)) == TYPE_CODE_PTR) && | |
1647 | (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (retvalp))) == TYPE_CODE_MEMBER)) | |
1648 | { | |
1649 | unsigned int *ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* forces evaluation */ | |
1650 | *ptr |= 0x20000000; /* set 29th bit */ | |
1651 | } | |
1652 | return retvalp; | |
1653 | } | |
1654 | ||
c906108c SS |
1655 | case UNOP_SIZEOF: |
1656 | if (noside == EVAL_SKIP) | |
1657 | { | |
1658 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
1659 | goto nosideret; | |
1660 | } | |
1661 | return evaluate_subexp_for_sizeof (exp, pos); | |
1662 | ||
1663 | case UNOP_CAST: | |
1664 | (*pos) += 2; | |
1665 | type = exp->elts[pc + 1].type; | |
1666 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
1667 | if (noside == EVAL_SKIP) | |
1668 | goto nosideret; | |
1669 | if (type != VALUE_TYPE (arg1)) | |
1670 | arg1 = value_cast (type, arg1); | |
1671 | return arg1; | |
1672 | ||
1673 | case UNOP_MEMVAL: | |
1674 | (*pos) += 2; | |
1675 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); | |
1676 | if (noside == EVAL_SKIP) | |
1677 | goto nosideret; | |
1678 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1679 | return value_zero (exp->elts[pc + 1].type, lval_memory); | |
1680 | else | |
1681 | return value_at_lazy (exp->elts[pc + 1].type, | |
1aa20aa8 | 1682 | value_as_address (arg1), |
c906108c SS |
1683 | NULL); |
1684 | ||
1685 | case UNOP_PREINCREMENT: | |
1686 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); | |
1687 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
1688 | return arg1; | |
1689 | else if (unop_user_defined_p (op, arg1)) | |
1690 | { | |
1691 | return value_x_unop (arg1, op, noside); | |
1692 | } | |
1693 | else | |
1694 | { | |
c5aa993b JM |
1695 | arg2 = value_add (arg1, value_from_longest (builtin_type_char, |
1696 | (LONGEST) 1)); | |
c906108c SS |
1697 | return value_assign (arg1, arg2); |
1698 | } | |
1699 | ||
1700 | case UNOP_PREDECREMENT: | |
1701 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); | |
1702 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
1703 | return arg1; | |
1704 | else if (unop_user_defined_p (op, arg1)) | |
1705 | { | |
1706 | return value_x_unop (arg1, op, noside); | |
1707 | } | |
1708 | else | |
1709 | { | |
c5aa993b JM |
1710 | arg2 = value_sub (arg1, value_from_longest (builtin_type_char, |
1711 | (LONGEST) 1)); | |
c906108c SS |
1712 | return value_assign (arg1, arg2); |
1713 | } | |
1714 | ||
1715 | case UNOP_POSTINCREMENT: | |
1716 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); | |
1717 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
1718 | return arg1; | |
1719 | else if (unop_user_defined_p (op, arg1)) | |
1720 | { | |
1721 | return value_x_unop (arg1, op, noside); | |
1722 | } | |
1723 | else | |
1724 | { | |
c5aa993b JM |
1725 | arg2 = value_add (arg1, value_from_longest (builtin_type_char, |
1726 | (LONGEST) 1)); | |
c906108c SS |
1727 | value_assign (arg1, arg2); |
1728 | return arg1; | |
1729 | } | |
1730 | ||
1731 | case UNOP_POSTDECREMENT: | |
1732 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); | |
1733 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
1734 | return arg1; | |
1735 | else if (unop_user_defined_p (op, arg1)) | |
1736 | { | |
1737 | return value_x_unop (arg1, op, noside); | |
1738 | } | |
1739 | else | |
1740 | { | |
c5aa993b JM |
1741 | arg2 = value_sub (arg1, value_from_longest (builtin_type_char, |
1742 | (LONGEST) 1)); | |
c906108c SS |
1743 | value_assign (arg1, arg2); |
1744 | return arg1; | |
1745 | } | |
c5aa993b | 1746 | |
c906108c SS |
1747 | case OP_THIS: |
1748 | (*pos) += 1; | |
1749 | return value_of_this (1); | |
1750 | ||
1751 | case OP_TYPE: | |
1752 | error ("Attempt to use a type name as an expression"); | |
1753 | ||
1754 | default: | |
1755 | /* Removing this case and compiling with gcc -Wall reveals that | |
c5aa993b | 1756 | a lot of cases are hitting this case. Some of these should |
2df3850c JM |
1757 | probably be removed from expression.h; others are legitimate |
1758 | expressions which are (apparently) not fully implemented. | |
c906108c | 1759 | |
c5aa993b JM |
1760 | If there are any cases landing here which mean a user error, |
1761 | then they should be separate cases, with more descriptive | |
1762 | error messages. */ | |
c906108c SS |
1763 | |
1764 | error ("\ | |
1765 | GDB does not (yet) know how to evaluate that kind of expression"); | |
1766 | } | |
1767 | ||
c5aa993b | 1768 | nosideret: |
c906108c SS |
1769 | return value_from_longest (builtin_type_long, (LONGEST) 1); |
1770 | } | |
1771 | \f | |
1772 | /* Evaluate a subexpression of EXP, at index *POS, | |
1773 | and return the address of that subexpression. | |
1774 | Advance *POS over the subexpression. | |
1775 | If the subexpression isn't an lvalue, get an error. | |
1776 | NOSIDE may be EVAL_AVOID_SIDE_EFFECTS; | |
1777 | then only the type of the result need be correct. */ | |
1778 | ||
61051030 | 1779 | static struct value * |
fba45db2 KB |
1780 | evaluate_subexp_for_address (register struct expression *exp, register int *pos, |
1781 | enum noside noside) | |
c906108c SS |
1782 | { |
1783 | enum exp_opcode op; | |
1784 | register int pc; | |
1785 | struct symbol *var; | |
1786 | ||
1787 | pc = (*pos); | |
1788 | op = exp->elts[pc].opcode; | |
1789 | ||
1790 | switch (op) | |
1791 | { | |
1792 | case UNOP_IND: | |
1793 | (*pos)++; | |
1794 | return evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1795 | ||
1796 | case UNOP_MEMVAL: | |
1797 | (*pos) += 3; | |
1798 | return value_cast (lookup_pointer_type (exp->elts[pc + 1].type), | |
1799 | evaluate_subexp (NULL_TYPE, exp, pos, noside)); | |
1800 | ||
1801 | case OP_VAR_VALUE: | |
1802 | var = exp->elts[pc + 2].symbol; | |
1803 | ||
1804 | /* C++: The "address" of a reference should yield the address | |
1805 | * of the object pointed to. Let value_addr() deal with it. */ | |
1806 | if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF) | |
c5aa993b | 1807 | goto default_case; |
c906108c SS |
1808 | |
1809 | (*pos) += 4; | |
1810 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1811 | { | |
1812 | struct type *type = | |
c5aa993b | 1813 | lookup_pointer_type (SYMBOL_TYPE (var)); |
c906108c SS |
1814 | enum address_class sym_class = SYMBOL_CLASS (var); |
1815 | ||
1816 | if (sym_class == LOC_CONST | |
1817 | || sym_class == LOC_CONST_BYTES | |
1818 | || sym_class == LOC_REGISTER | |
1819 | || sym_class == LOC_REGPARM) | |
1820 | error ("Attempt to take address of register or constant."); | |
1821 | ||
c5aa993b JM |
1822 | return |
1823 | value_zero (type, not_lval); | |
c906108c SS |
1824 | } |
1825 | else | |
1826 | return | |
1827 | locate_var_value | |
c5aa993b JM |
1828 | (var, |
1829 | block_innermost_frame (exp->elts[pc + 1].block)); | |
c906108c SS |
1830 | |
1831 | default: | |
1832 | default_case: | |
1833 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1834 | { | |
61051030 | 1835 | struct value *x = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
c906108c SS |
1836 | if (VALUE_LVAL (x) == lval_memory) |
1837 | return value_zero (lookup_pointer_type (VALUE_TYPE (x)), | |
1838 | not_lval); | |
1839 | else | |
1840 | error ("Attempt to take address of non-lval"); | |
1841 | } | |
1842 | return value_addr (evaluate_subexp (NULL_TYPE, exp, pos, noside)); | |
1843 | } | |
1844 | } | |
1845 | ||
1846 | /* Evaluate like `evaluate_subexp' except coercing arrays to pointers. | |
1847 | When used in contexts where arrays will be coerced anyway, this is | |
1848 | equivalent to `evaluate_subexp' but much faster because it avoids | |
1849 | actually fetching array contents (perhaps obsolete now that we have | |
1850 | VALUE_LAZY). | |
1851 | ||
1852 | Note that we currently only do the coercion for C expressions, where | |
1853 | arrays are zero based and the coercion is correct. For other languages, | |
1854 | with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION | |
1855 | to decide if coercion is appropriate. | |
1856 | ||
c5aa993b | 1857 | */ |
c906108c | 1858 | |
61051030 | 1859 | struct value * |
fba45db2 KB |
1860 | evaluate_subexp_with_coercion (register struct expression *exp, |
1861 | register int *pos, enum noside noside) | |
c906108c SS |
1862 | { |
1863 | register enum exp_opcode op; | |
1864 | register int pc; | |
61051030 | 1865 | struct value *val; |
c906108c SS |
1866 | struct symbol *var; |
1867 | ||
1868 | pc = (*pos); | |
1869 | op = exp->elts[pc].opcode; | |
1870 | ||
1871 | switch (op) | |
1872 | { | |
1873 | case OP_VAR_VALUE: | |
1874 | var = exp->elts[pc + 2].symbol; | |
1875 | if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY | |
1876 | && CAST_IS_CONVERSION) | |
1877 | { | |
1878 | (*pos) += 4; | |
1879 | val = | |
1880 | locate_var_value | |
c5aa993b | 1881 | (var, block_innermost_frame (exp->elts[pc + 1].block)); |
751a959b | 1882 | return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))), |
c906108c SS |
1883 | val); |
1884 | } | |
1885 | /* FALLTHROUGH */ | |
1886 | ||
1887 | default: | |
1888 | return evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
1889 | } | |
1890 | } | |
1891 | ||
1892 | /* Evaluate a subexpression of EXP, at index *POS, | |
1893 | and return a value for the size of that subexpression. | |
1894 | Advance *POS over the subexpression. */ | |
1895 | ||
61051030 | 1896 | static struct value * |
fba45db2 | 1897 | evaluate_subexp_for_sizeof (register struct expression *exp, register int *pos) |
c906108c SS |
1898 | { |
1899 | enum exp_opcode op; | |
1900 | register int pc; | |
1901 | struct type *type; | |
61051030 | 1902 | struct value *val; |
c906108c SS |
1903 | |
1904 | pc = (*pos); | |
1905 | op = exp->elts[pc].opcode; | |
1906 | ||
1907 | switch (op) | |
1908 | { | |
1909 | /* This case is handled specially | |
c5aa993b JM |
1910 | so that we avoid creating a value for the result type. |
1911 | If the result type is very big, it's desirable not to | |
1912 | create a value unnecessarily. */ | |
c906108c SS |
1913 | case UNOP_IND: |
1914 | (*pos)++; | |
1915 | val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
1916 | type = check_typedef (VALUE_TYPE (val)); | |
1917 | if (TYPE_CODE (type) != TYPE_CODE_PTR | |
1918 | && TYPE_CODE (type) != TYPE_CODE_REF | |
1919 | && TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
1920 | error ("Attempt to take contents of a non-pointer value."); | |
1921 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
1922 | return value_from_longest (builtin_type_int, (LONGEST) | |
c5aa993b | 1923 | TYPE_LENGTH (type)); |
c906108c SS |
1924 | |
1925 | case UNOP_MEMVAL: | |
1926 | (*pos) += 3; | |
1927 | type = check_typedef (exp->elts[pc + 1].type); | |
1928 | return value_from_longest (builtin_type_int, | |
1929 | (LONGEST) TYPE_LENGTH (type)); | |
1930 | ||
1931 | case OP_VAR_VALUE: | |
1932 | (*pos) += 4; | |
1933 | type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); | |
1934 | return | |
1935 | value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type)); | |
1936 | ||
1937 | default: | |
1938 | val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
1939 | return value_from_longest (builtin_type_int, | |
c5aa993b | 1940 | (LONGEST) TYPE_LENGTH (VALUE_TYPE (val))); |
c906108c SS |
1941 | } |
1942 | } | |
1943 | ||
1944 | /* Parse a type expression in the string [P..P+LENGTH). */ | |
1945 | ||
1946 | struct type * | |
fba45db2 | 1947 | parse_and_eval_type (char *p, int length) |
c906108c | 1948 | { |
c5aa993b JM |
1949 | char *tmp = (char *) alloca (length + 4); |
1950 | struct expression *expr; | |
1951 | tmp[0] = '('; | |
1952 | memcpy (tmp + 1, p, length); | |
1953 | tmp[length + 1] = ')'; | |
1954 | tmp[length + 2] = '0'; | |
1955 | tmp[length + 3] = '\0'; | |
1956 | expr = parse_expression (tmp); | |
1957 | if (expr->elts[0].opcode != UNOP_CAST) | |
1958 | error ("Internal error in eval_type."); | |
1959 | return expr->elts[1].type; | |
c906108c SS |
1960 | } |
1961 | ||
1962 | int | |
fba45db2 | 1963 | calc_f77_array_dims (struct type *array_type) |
c906108c SS |
1964 | { |
1965 | int ndimen = 1; | |
1966 | struct type *tmp_type; | |
1967 | ||
c5aa993b | 1968 | if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY)) |
c906108c | 1969 | error ("Can't get dimensions for a non-array type"); |
c5aa993b JM |
1970 | |
1971 | tmp_type = array_type; | |
c906108c SS |
1972 | |
1973 | while ((tmp_type = TYPE_TARGET_TYPE (tmp_type))) | |
1974 | { | |
1975 | if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY) | |
1976 | ++ndimen; | |
1977 | } | |
c5aa993b | 1978 | return ndimen; |
c906108c | 1979 | } |