]>
Commit | Line | Data |
---|---|---|
bd5635a1 RP |
1 | /* Get info from stack frames; |
2 | convert between frames, blocks, functions and pc values. | |
dc1b349d MS |
3 | Copyright 1986, 1987, 1988, 1989, 1991, 1994, 1995, 1996 |
4 | Free Software Foundation, Inc. | |
bd5635a1 RP |
5 | |
6 | This file is part of GDB. | |
7 | ||
5259796b | 8 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 9 | it under the terms of the GNU General Public License as published by |
5259796b JG |
10 | the Free Software Foundation; either version 2 of the License, or |
11 | (at your option) any later version. | |
bd5635a1 | 12 | |
5259796b | 13 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
5259796b | 19 | along with this program; if not, write to the Free Software |
0e2c2c1e | 20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
bd5635a1 RP |
21 | |
22 | #include "defs.h" | |
bd5635a1 | 23 | #include "symtab.h" |
23a8e291 JK |
24 | #include "bfd.h" |
25 | #include "symfile.h" | |
26 | #include "objfiles.h" | |
bd5635a1 RP |
27 | #include "frame.h" |
28 | #include "gdbcore.h" | |
29 | #include "value.h" /* for read_register */ | |
30 | #include "target.h" /* for target_has_stack */ | |
23a8e291 | 31 | #include "inferior.h" /* for read_pc */ |
16726dd1 | 32 | #include "annotate.h" |
bd5635a1 | 33 | |
23a8e291 | 34 | /* Is ADDR inside the startup file? Note that if your machine |
bd5635a1 RP |
35 | has a way to detect the bottom of the stack, there is no need |
36 | to call this function from FRAME_CHAIN_VALID; the reason for | |
37 | doing so is that some machines have no way of detecting bottom | |
23a8e291 JK |
38 | of stack. |
39 | ||
40 | A PC of zero is always considered to be the bottom of the stack. */ | |
41 | ||
bd5635a1 | 42 | int |
23a8e291 | 43 | inside_entry_file (addr) |
bd5635a1 RP |
44 | CORE_ADDR addr; |
45 | { | |
23a8e291 JK |
46 | if (addr == 0) |
47 | return 1; | |
48 | if (symfile_objfile == 0) | |
49 | return 0; | |
cef4c2e7 PS |
50 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT |
51 | /* Do not stop backtracing if the pc is in the call dummy | |
52 | at the entry point. */ | |
dc1b349d MS |
53 | /* FIXME: Won't always work with zeros for the last two arguments */ |
54 | if (PC_IN_CALL_DUMMY (addr, 0, 0)) | |
cef4c2e7 PS |
55 | return 0; |
56 | #endif | |
23a8e291 JK |
57 | return (addr >= symfile_objfile -> ei.entry_file_lowpc && |
58 | addr < symfile_objfile -> ei.entry_file_highpc); | |
bd5635a1 RP |
59 | } |
60 | ||
e140f1da JG |
61 | /* Test a specified PC value to see if it is in the range of addresses |
62 | that correspond to the main() function. See comments above for why | |
63 | we might want to do this. | |
64 | ||
23a8e291 JK |
65 | Typically called from FRAME_CHAIN_VALID. |
66 | ||
67 | A PC of zero is always considered to be the bottom of the stack. */ | |
e140f1da JG |
68 | |
69 | int | |
23a8e291 | 70 | inside_main_func (pc) |
e140f1da JG |
71 | CORE_ADDR pc; |
72 | { | |
23a8e291 JK |
73 | if (pc == 0) |
74 | return 1; | |
75 | if (symfile_objfile == 0) | |
76 | return 0; | |
0e2c2c1e | 77 | |
dc1b349d MS |
78 | /* If the addr range is not set up at symbol reading time, set it up now. |
79 | This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because | |
80 | it is unable to set it up and symbol reading time. */ | |
81 | ||
82 | if (symfile_objfile -> ei.main_func_lowpc == INVALID_ENTRY_LOWPC && | |
83 | symfile_objfile -> ei.main_func_highpc == INVALID_ENTRY_HIGHPC) | |
0e2c2c1e | 84 | { |
dc1b349d MS |
85 | struct symbol *mainsym; |
86 | ||
0e2c2c1e KH |
87 | mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL); |
88 | if (mainsym && SYMBOL_CLASS(mainsym) == LOC_BLOCK) | |
89 | { | |
90 | symfile_objfile->ei.main_func_lowpc = BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym)); | |
91 | symfile_objfile->ei.main_func_highpc = BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym)); | |
92 | } | |
0e2c2c1e | 93 | } |
23a8e291 JK |
94 | return (symfile_objfile -> ei.main_func_lowpc <= pc && |
95 | symfile_objfile -> ei.main_func_highpc > pc); | |
e140f1da JG |
96 | } |
97 | ||
98 | /* Test a specified PC value to see if it is in the range of addresses | |
23a8e291 JK |
99 | that correspond to the process entry point function. See comments |
100 | in objfiles.h for why we might want to do this. | |
101 | ||
102 | Typically called from FRAME_CHAIN_VALID. | |
e140f1da | 103 | |
23a8e291 | 104 | A PC of zero is always considered to be the bottom of the stack. */ |
e140f1da JG |
105 | |
106 | int | |
23a8e291 | 107 | inside_entry_func (pc) |
e140f1da JG |
108 | CORE_ADDR pc; |
109 | { | |
23a8e291 JK |
110 | if (pc == 0) |
111 | return 1; | |
112 | if (symfile_objfile == 0) | |
113 | return 0; | |
cef4c2e7 PS |
114 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT |
115 | /* Do not stop backtracing if the pc is in the call dummy | |
116 | at the entry point. */ | |
dc1b349d | 117 | /* FIXME: Won't always work with zeros for the last two arguments */ |
cef4c2e7 PS |
118 | if (PC_IN_CALL_DUMMY (pc, 0, 0)) |
119 | return 0; | |
120 | #endif | |
23a8e291 JK |
121 | return (symfile_objfile -> ei.entry_func_lowpc <= pc && |
122 | symfile_objfile -> ei.entry_func_highpc > pc); | |
e140f1da JG |
123 | } |
124 | ||
0e2c2c1e KH |
125 | /* Info about the innermost stack frame (contents of FP register) */ |
126 | ||
127 | static struct frame_info *current_frame; | |
bd5635a1 | 128 | |
0e2c2c1e KH |
129 | /* Cache for frame addresses already read by gdb. Valid only while |
130 | inferior is stopped. Control variables for the frame cache should | |
131 | be local to this module. */ | |
bd5635a1 | 132 | |
bd5635a1 RP |
133 | struct obstack frame_cache_obstack; |
134 | ||
135 | /* Return the innermost (currently executing) stack frame. */ | |
136 | ||
0e2c2c1e | 137 | struct frame_info * |
bd5635a1 RP |
138 | get_current_frame () |
139 | { | |
16726dd1 JK |
140 | if (current_frame == NULL) |
141 | { | |
142 | if (target_has_stack) | |
143 | current_frame = create_new_frame (read_fp (), read_pc ()); | |
144 | else | |
145 | error ("No stack."); | |
146 | } | |
bd5635a1 RP |
147 | return current_frame; |
148 | } | |
149 | ||
150 | void | |
151 | set_current_frame (frame) | |
0e2c2c1e | 152 | struct frame_info *frame; |
bd5635a1 RP |
153 | { |
154 | current_frame = frame; | |
155 | } | |
156 | ||
16726dd1 JK |
157 | /* Create an arbitrary (i.e. address specified by user) or innermost frame. |
158 | Always returns a non-NULL value. */ | |
159 | ||
0e2c2c1e | 160 | struct frame_info * |
bd5635a1 | 161 | create_new_frame (addr, pc) |
0e2c2c1e | 162 | CORE_ADDR addr; |
bd5635a1 RP |
163 | CORE_ADDR pc; |
164 | { | |
0e2c2c1e | 165 | struct frame_info *fi; |
d541211d | 166 | char *name; |
bd5635a1 | 167 | |
0e2c2c1e | 168 | fi = (struct frame_info *) |
bd5635a1 RP |
169 | obstack_alloc (&frame_cache_obstack, |
170 | sizeof (struct frame_info)); | |
171 | ||
172 | /* Arbitrary frame */ | |
0e2c2c1e KH |
173 | fi->next = NULL; |
174 | fi->prev = NULL; | |
175 | fi->frame = addr; | |
176 | fi->pc = pc; | |
d541211d | 177 | find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); |
0e2c2c1e | 178 | fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name); |
bd5635a1 RP |
179 | |
180 | #ifdef INIT_EXTRA_FRAME_INFO | |
0e2c2c1e | 181 | INIT_EXTRA_FRAME_INFO (0, fi); |
bd5635a1 RP |
182 | #endif |
183 | ||
0e2c2c1e | 184 | return fi; |
bd5635a1 RP |
185 | } |
186 | ||
0e2c2c1e KH |
187 | /* Return the frame that called FI. |
188 | If FI is the original frame (it has no caller), return 0. */ | |
bd5635a1 | 189 | |
0e2c2c1e | 190 | struct frame_info * |
bd5635a1 | 191 | get_prev_frame (frame) |
0e2c2c1e | 192 | struct frame_info *frame; |
bd5635a1 | 193 | { |
bd5635a1 RP |
194 | return get_prev_frame_info (frame); |
195 | } | |
196 | ||
0e2c2c1e | 197 | /* Return the frame that FRAME calls (NULL if FRAME is the innermost |
bd5635a1 RP |
198 | frame). */ |
199 | ||
0e2c2c1e | 200 | struct frame_info * |
bd5635a1 | 201 | get_next_frame (frame) |
0e2c2c1e | 202 | struct frame_info *frame; |
bd5635a1 | 203 | { |
bd5635a1 RP |
204 | return frame->next; |
205 | } | |
206 | ||
0e2c2c1e KH |
207 | /* Flush the entire frame cache. */ |
208 | ||
bd5635a1 RP |
209 | void |
210 | flush_cached_frames () | |
211 | { | |
212 | /* Since we can't really be sure what the first object allocated was */ | |
213 | obstack_free (&frame_cache_obstack, 0); | |
214 | obstack_init (&frame_cache_obstack); | |
215 | ||
0e2c2c1e KH |
216 | current_frame = NULL; /* Invalidate cache */ |
217 | select_frame (NULL, -1); | |
16726dd1 | 218 | annotate_frames_invalid (); |
bd5635a1 RP |
219 | } |
220 | ||
2403f49b | 221 | /* Flush the frame cache, and start a new one if necessary. */ |
16726dd1 | 222 | |
2403f49b JK |
223 | void |
224 | reinit_frame_cache () | |
225 | { | |
2403f49b | 226 | flush_cached_frames (); |
0e2c2c1e KH |
227 | |
228 | /* FIXME: The inferior_pid test is wrong if there is a corefile. */ | |
16726dd1 | 229 | if (inferior_pid != 0) |
2289e1c3 | 230 | { |
2289e1c3 JK |
231 | select_frame (get_current_frame (), 0); |
232 | } | |
bd5635a1 RP |
233 | } |
234 | ||
235 | /* If a machine allows frameless functions, it should define a macro | |
236 | FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct | |
237 | frame_info for the frame, and FRAMELESS should be set to nonzero | |
238 | if it represents a frameless function invocation. */ | |
239 | ||
23a8e291 | 240 | /* Return nonzero if the function for this frame lacks a prologue. Many |
bd5635a1 RP |
241 | machines can define FRAMELESS_FUNCTION_INVOCATION to just call this |
242 | function. */ | |
243 | ||
244 | int | |
245 | frameless_look_for_prologue (frame) | |
0e2c2c1e | 246 | struct frame_info *frame; |
bd5635a1 RP |
247 | { |
248 | CORE_ADDR func_start, after_prologue; | |
dc1b349d | 249 | func_start = get_pc_function_start (frame->pc); |
bd5635a1 RP |
250 | if (func_start) |
251 | { | |
dc1b349d | 252 | func_start += FUNCTION_START_OFFSET; |
bd5635a1 | 253 | after_prologue = func_start; |
5259796b JG |
254 | #ifdef SKIP_PROLOGUE_FRAMELESS_P |
255 | /* This is faster, since only care whether there *is* a prologue, | |
256 | not how long it is. */ | |
257 | SKIP_PROLOGUE_FRAMELESS_P (after_prologue); | |
258 | #else | |
bd5635a1 | 259 | SKIP_PROLOGUE (after_prologue); |
5259796b | 260 | #endif |
bd5635a1 RP |
261 | return after_prologue == func_start; |
262 | } | |
263 | else | |
264 | /* If we can't find the start of the function, we don't really | |
265 | know whether the function is frameless, but we should be able | |
266 | to get a reasonable (i.e. best we can do under the | |
267 | circumstances) backtrace by saying that it isn't. */ | |
268 | return 0; | |
269 | } | |
270 | ||
e140f1da JG |
271 | /* Default a few macros that people seldom redefine. */ |
272 | ||
bd5635a1 RP |
273 | #if !defined (INIT_FRAME_PC) |
274 | #define INIT_FRAME_PC(fromleaf, prev) \ | |
275 | prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \ | |
276 | prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); | |
277 | #endif | |
278 | ||
e140f1da JG |
279 | #ifndef FRAME_CHAIN_COMBINE |
280 | #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) | |
281 | #endif | |
282 | ||
bd5635a1 RP |
283 | /* Return a structure containing various interesting information |
284 | about the frame that called NEXT_FRAME. Returns NULL | |
285 | if there is no such frame. */ | |
286 | ||
287 | struct frame_info * | |
288 | get_prev_frame_info (next_frame) | |
0e2c2c1e | 289 | struct frame_info *next_frame; |
bd5635a1 | 290 | { |
0e2c2c1e | 291 | CORE_ADDR address = 0; |
bd5635a1 RP |
292 | struct frame_info *prev; |
293 | int fromleaf = 0; | |
d541211d | 294 | char *name; |
bd5635a1 RP |
295 | |
296 | /* If the requested entry is in the cache, return it. | |
297 | Otherwise, figure out what the address should be for the entry | |
298 | we're about to add to the cache. */ | |
299 | ||
300 | if (!next_frame) | |
301 | { | |
9e837b37 PS |
302 | #if 0 |
303 | /* This screws value_of_variable, which just wants a nice clean | |
304 | NULL return from block_innermost_frame if there are no frames. | |
305 | I don't think I've ever seen this message happen otherwise. | |
306 | And returning NULL here is a perfectly legitimate thing to do. */ | |
bd5635a1 RP |
307 | if (!current_frame) |
308 | { | |
309 | error ("You haven't set up a process's stack to examine."); | |
310 | } | |
9e837b37 | 311 | #endif |
bd5635a1 RP |
312 | |
313 | return current_frame; | |
314 | } | |
315 | ||
316 | /* If we have the prev one, return it */ | |
317 | if (next_frame->prev) | |
318 | return next_frame->prev; | |
319 | ||
320 | /* On some machines it is possible to call a function without | |
321 | setting up a stack frame for it. On these machines, we | |
322 | define this macro to take two args; a frameinfo pointer | |
323 | identifying a frame and a variable to set or clear if it is | |
324 | or isn't leafless. */ | |
325 | #ifdef FRAMELESS_FUNCTION_INVOCATION | |
326 | /* Still don't want to worry about this except on the innermost | |
327 | frame. This macro will set FROMLEAF if NEXT_FRAME is a | |
328 | frameless function invocation. */ | |
329 | if (!(next_frame->next)) | |
330 | { | |
331 | FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf); | |
332 | if (fromleaf) | |
0e2c2c1e | 333 | address = FRAME_FP (next_frame); |
bd5635a1 RP |
334 | } |
335 | #endif | |
336 | ||
337 | if (!fromleaf) | |
338 | { | |
339 | /* Two macros defined in tm.h specify the machine-dependent | |
340 | actions to be performed here. | |
341 | First, get the frame's chain-pointer. | |
342 | If that is zero, the frame is the outermost frame or a leaf | |
343 | called by the outermost frame. This means that if start | |
344 | calls main without a frame, we'll return 0 (which is fine | |
345 | anyway). | |
346 | ||
347 | Nope; there's a problem. This also returns when the current | |
348 | routine is a leaf of main. This is unacceptable. We move | |
349 | this to after the ffi test; I'd rather have backtraces from | |
350 | start go curfluy than have an abort called from main not show | |
351 | main. */ | |
352 | address = FRAME_CHAIN (next_frame); | |
353 | if (!FRAME_CHAIN_VALID (address, next_frame)) | |
354 | return 0; | |
355 | address = FRAME_CHAIN_COMBINE (address, next_frame); | |
356 | } | |
e140f1da JG |
357 | if (address == 0) |
358 | return 0; | |
bd5635a1 RP |
359 | |
360 | prev = (struct frame_info *) | |
361 | obstack_alloc (&frame_cache_obstack, | |
362 | sizeof (struct frame_info)); | |
363 | ||
364 | if (next_frame) | |
365 | next_frame->prev = prev; | |
366 | prev->next = next_frame; | |
367 | prev->prev = (struct frame_info *) 0; | |
368 | prev->frame = address; | |
23a8e291 JK |
369 | prev->signal_handler_caller = 0; |
370 | ||
371 | /* This change should not be needed, FIXME! We should | |
372 | determine whether any targets *need* INIT_FRAME_PC to happen | |
373 | after INIT_EXTRA_FRAME_INFO and come up with a simple way to | |
374 | express what goes on here. | |
375 | ||
376 | INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame | |
377 | (where the PC is already set up) and here (where it isn't). | |
378 | INIT_FRAME_PC is only called from here, always after | |
379 | INIT_EXTRA_FRAME_INFO. | |
380 | ||
381 | The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC | |
382 | value (which hasn't been set yet). Some other machines appear to | |
383 | require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo. | |
384 | ||
385 | We shouldn't need INIT_FRAME_PC_FIRST to add more complication to | |
386 | an already overcomplicated part of GDB. [email protected], 15Sep92. | |
387 | ||
0e2c2c1e KH |
388 | Assuming that some machines need INIT_FRAME_PC after |
389 | INIT_EXTRA_FRAME_INFO, one possible scheme: | |
23a8e291 JK |
390 | |
391 | SETUP_INNERMOST_FRAME() | |
392 | Default version is just create_new_frame (read_fp ()), | |
393 | read_pc ()). Machines with extra frame info would do that (or the | |
394 | local equivalent) and then set the extra fields. | |
395 | SETUP_ARBITRARY_FRAME(argc, argv) | |
396 | Only change here is that create_new_frame would no longer init extra | |
397 | frame info; SETUP_ARBITRARY_FRAME would have to do that. | |
398 | INIT_PREV_FRAME(fromleaf, prev) | |
9e837b37 PS |
399 | Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should |
400 | also return a flag saying whether to keep the new frame, or | |
401 | whether to discard it, because on some machines (e.g. mips) it | |
402 | is really awkward to have FRAME_CHAIN_VALID called *before* | |
403 | INIT_EXTRA_FRAME_INFO (there is no good way to get information | |
404 | deduced in FRAME_CHAIN_VALID into the extra fields of the new frame). | |
23a8e291 JK |
405 | std_frame_pc(fromleaf, prev) |
406 | This is the default setting for INIT_PREV_FRAME. It just does what | |
407 | the default INIT_FRAME_PC does. Some machines will call it from | |
408 | INIT_PREV_FRAME (either at the beginning, the end, or in the middle). | |
409 | Some machines won't use it. | |
0e2c2c1e | 410 | [email protected], 13Apr93, 31Jan94, 14Dec94. */ |
23a8e291 JK |
411 | |
412 | #ifdef INIT_FRAME_PC_FIRST | |
413 | INIT_FRAME_PC_FIRST (fromleaf, prev); | |
414 | #endif | |
bd5635a1 RP |
415 | |
416 | #ifdef INIT_EXTRA_FRAME_INFO | |
e140f1da | 417 | INIT_EXTRA_FRAME_INFO(fromleaf, prev); |
bd5635a1 RP |
418 | #endif |
419 | ||
420 | /* This entry is in the frame queue now, which is good since | |
9e837b37 | 421 | FRAME_SAVED_PC may use that queue to figure out its value |
e140f1da | 422 | (see tm-sparc.h). We want the pc saved in the inferior frame. */ |
bd5635a1 RP |
423 | INIT_FRAME_PC(fromleaf, prev); |
424 | ||
9e837b37 PS |
425 | /* If ->frame and ->pc are unchanged, we are in the process of getting |
426 | ourselves into an infinite backtrace. Some architectures check this | |
427 | in FRAME_CHAIN or thereabouts, but it seems like there is no reason | |
428 | this can't be an architecture-independent check. */ | |
429 | if (next_frame != NULL) | |
430 | { | |
431 | if (prev->frame == next_frame->frame | |
432 | && prev->pc == next_frame->pc) | |
433 | { | |
434 | next_frame->prev = NULL; | |
435 | obstack_free (&frame_cache_obstack, prev); | |
436 | return NULL; | |
437 | } | |
438 | } | |
439 | ||
d541211d PS |
440 | find_pc_partial_function (prev->pc, &name, |
441 | (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
442 | if (IN_SIGTRAMP (prev->pc, name)) | |
23a8e291 JK |
443 | prev->signal_handler_caller = 1; |
444 | ||
bd5635a1 RP |
445 | return prev; |
446 | } | |
447 | ||
448 | CORE_ADDR | |
449 | get_frame_pc (frame) | |
0e2c2c1e | 450 | struct frame_info *frame; |
bd5635a1 | 451 | { |
0e2c2c1e | 452 | return frame->pc; |
bd5635a1 RP |
453 | } |
454 | ||
455 | #if defined (FRAME_FIND_SAVED_REGS) | |
456 | /* Find the addresses in which registers are saved in FRAME. */ | |
457 | ||
458 | void | |
0e2c2c1e KH |
459 | get_frame_saved_regs (frame, saved_regs_addr) |
460 | struct frame_info *frame; | |
bd5635a1 RP |
461 | struct frame_saved_regs *saved_regs_addr; |
462 | { | |
0e2c2c1e | 463 | FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr); |
bd5635a1 RP |
464 | } |
465 | #endif | |
466 | ||
467 | /* Return the innermost lexical block in execution | |
468 | in a specified stack frame. The frame address is assumed valid. */ | |
469 | ||
470 | struct block * | |
471 | get_frame_block (frame) | |
0e2c2c1e | 472 | struct frame_info *frame; |
bd5635a1 | 473 | { |
bd5635a1 RP |
474 | CORE_ADDR pc; |
475 | ||
0e2c2c1e KH |
476 | pc = frame->pc; |
477 | if (frame->next != 0 && frame->next->signal_handler_caller == 0) | |
747a6329 PS |
478 | /* We are not in the innermost frame and we were not interrupted |
479 | by a signal. We need to subtract one to get the correct block, | |
480 | in case the call instruction was the last instruction of the block. | |
481 | If there are any machines on which the saved pc does not point to | |
0e2c2c1e | 482 | after the call insn, we probably want to make frame->pc point after |
747a6329 | 483 | the call insn anyway. */ |
bd5635a1 RP |
484 | --pc; |
485 | return block_for_pc (pc); | |
486 | } | |
487 | ||
488 | struct block * | |
489 | get_current_block () | |
490 | { | |
491 | return block_for_pc (read_pc ()); | |
492 | } | |
493 | ||
494 | CORE_ADDR | |
495 | get_pc_function_start (pc) | |
496 | CORE_ADDR pc; | |
497 | { | |
23a8e291 | 498 | register struct block *bl; |
bd5635a1 | 499 | register struct symbol *symbol; |
23a8e291 JK |
500 | register struct minimal_symbol *msymbol; |
501 | CORE_ADDR fstart; | |
502 | ||
503 | if ((bl = block_for_pc (pc)) != NULL && | |
504 | (symbol = block_function (bl)) != NULL) | |
bd5635a1 | 505 | { |
23a8e291 JK |
506 | bl = SYMBOL_BLOCK_VALUE (symbol); |
507 | fstart = BLOCK_START (bl); | |
bd5635a1 | 508 | } |
23a8e291 JK |
509 | else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL) |
510 | { | |
511 | fstart = SYMBOL_VALUE_ADDRESS (msymbol); | |
512 | } | |
513 | else | |
514 | { | |
515 | fstart = 0; | |
516 | } | |
517 | return (fstart); | |
bd5635a1 RP |
518 | } |
519 | ||
520 | /* Return the symbol for the function executing in frame FRAME. */ | |
521 | ||
522 | struct symbol * | |
523 | get_frame_function (frame) | |
0e2c2c1e | 524 | struct frame_info *frame; |
bd5635a1 RP |
525 | { |
526 | register struct block *bl = get_frame_block (frame); | |
527 | if (bl == 0) | |
528 | return 0; | |
529 | return block_function (bl); | |
530 | } | |
531 | \f | |
532 | /* Return the blockvector immediately containing the innermost lexical block | |
533 | containing the specified pc value, or 0 if there is none. | |
534 | PINDEX is a pointer to the index value of the block. If PINDEX | |
535 | is NULL, we don't pass this information back to the caller. */ | |
536 | ||
537 | struct blockvector * | |
538 | blockvector_for_pc (pc, pindex) | |
539 | register CORE_ADDR pc; | |
540 | int *pindex; | |
541 | { | |
542 | register struct block *b; | |
543 | register int bot, top, half; | |
544 | register struct symtab *s; | |
545 | struct blockvector *bl; | |
546 | ||
547 | /* First search all symtabs for one whose file contains our pc */ | |
548 | s = find_pc_symtab (pc); | |
549 | if (s == 0) | |
550 | return 0; | |
551 | ||
552 | bl = BLOCKVECTOR (s); | |
553 | b = BLOCKVECTOR_BLOCK (bl, 0); | |
554 | ||
555 | /* Then search that symtab for the smallest block that wins. */ | |
556 | /* Use binary search to find the last block that starts before PC. */ | |
557 | ||
558 | bot = 0; | |
559 | top = BLOCKVECTOR_NBLOCKS (bl); | |
560 | ||
561 | while (top - bot > 1) | |
562 | { | |
563 | half = (top - bot + 1) >> 1; | |
564 | b = BLOCKVECTOR_BLOCK (bl, bot + half); | |
565 | if (BLOCK_START (b) <= pc) | |
566 | bot += half; | |
567 | else | |
568 | top = bot + half; | |
569 | } | |
570 | ||
571 | /* Now search backward for a block that ends after PC. */ | |
572 | ||
573 | while (bot >= 0) | |
574 | { | |
575 | b = BLOCKVECTOR_BLOCK (bl, bot); | |
576 | if (BLOCK_END (b) > pc) | |
577 | { | |
578 | if (pindex) | |
579 | *pindex = bot; | |
580 | return bl; | |
581 | } | |
582 | bot--; | |
583 | } | |
584 | ||
585 | return 0; | |
586 | } | |
587 | ||
588 | /* Return the innermost lexical block containing the specified pc value, | |
589 | or 0 if there is none. */ | |
590 | ||
591 | struct block * | |
592 | block_for_pc (pc) | |
593 | register CORE_ADDR pc; | |
594 | { | |
595 | register struct blockvector *bl; | |
596 | int index; | |
597 | ||
598 | bl = blockvector_for_pc (pc, &index); | |
599 | if (bl) | |
600 | return BLOCKVECTOR_BLOCK (bl, index); | |
601 | return 0; | |
602 | } | |
603 | ||
604 | /* Return the function containing pc value PC. | |
605 | Returns 0 if function is not known. */ | |
606 | ||
607 | struct symbol * | |
608 | find_pc_function (pc) | |
609 | CORE_ADDR pc; | |
610 | { | |
611 | register struct block *b = block_for_pc (pc); | |
612 | if (b == 0) | |
613 | return 0; | |
614 | return block_function (b); | |
615 | } | |
616 | ||
617 | /* These variables are used to cache the most recent result | |
618 | * of find_pc_partial_function. */ | |
619 | ||
620 | static CORE_ADDR cache_pc_function_low = 0; | |
621 | static CORE_ADDR cache_pc_function_high = 0; | |
622 | static char *cache_pc_function_name = 0; | |
623 | ||
624 | /* Clear cache, e.g. when symbol table is discarded. */ | |
625 | ||
626 | void | |
627 | clear_pc_function_cache() | |
628 | { | |
629 | cache_pc_function_low = 0; | |
630 | cache_pc_function_high = 0; | |
631 | cache_pc_function_name = (char *)0; | |
632 | } | |
633 | ||
d541211d PS |
634 | /* Finds the "function" (text symbol) that is smaller than PC but |
635 | greatest of all of the potential text symbols. Sets *NAME and/or | |
636 | *ADDRESS conditionally if that pointer is non-null. If ENDADDR is | |
637 | non-null, then set *ENDADDR to be the end of the function | |
638 | (exclusive), but passing ENDADDR as non-null means that the | |
639 | function might cause symbols to be read. This function either | |
640 | succeeds or fails (not halfway succeeds). If it succeeds, it sets | |
641 | *NAME, *ADDRESS, and *ENDADDR to real information and returns 1. | |
642 | If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero | |
643 | and returns 0. */ | |
bd5635a1 RP |
644 | |
645 | int | |
d541211d | 646 | find_pc_partial_function (pc, name, address, endaddr) |
bd5635a1 RP |
647 | CORE_ADDR pc; |
648 | char **name; | |
649 | CORE_ADDR *address; | |
d541211d | 650 | CORE_ADDR *endaddr; |
bd5635a1 RP |
651 | { |
652 | struct partial_symtab *pst; | |
653 | struct symbol *f; | |
23a8e291 | 654 | struct minimal_symbol *msymbol; |
bd5635a1 | 655 | struct partial_symbol *psb; |
981a3309 | 656 | struct obj_section *sec; |
bd5635a1 RP |
657 | |
658 | if (pc >= cache_pc_function_low && pc < cache_pc_function_high) | |
d541211d PS |
659 | goto return_cached_value; |
660 | ||
661 | /* If sigtramp is in the u area, it counts as a function (especially | |
662 | important for step_1). */ | |
663 | #if defined SIGTRAMP_START | |
664 | if (IN_SIGTRAMP (pc, (char *)NULL)) | |
bd5635a1 | 665 | { |
dc1b349d MS |
666 | cache_pc_function_low = SIGTRAMP_START (pc); |
667 | cache_pc_function_high = SIGTRAMP_END (pc); | |
d541211d PS |
668 | cache_pc_function_name = "<sigtramp>"; |
669 | ||
670 | goto return_cached_value; | |
bd5635a1 | 671 | } |
d541211d | 672 | #endif |
bd5635a1 | 673 | |
d541211d | 674 | msymbol = lookup_minimal_symbol_by_pc (pc); |
bd5635a1 RP |
675 | pst = find_pc_psymtab (pc); |
676 | if (pst) | |
677 | { | |
d541211d PS |
678 | /* Need to read the symbols to get a good value for the end address. */ |
679 | if (endaddr != NULL && !pst->readin) | |
2f1c7c3f JK |
680 | { |
681 | /* Need to get the terminal in case symbol-reading produces | |
682 | output. */ | |
683 | target_terminal_ours_for_output (); | |
684 | PSYMTAB_TO_SYMTAB (pst); | |
685 | } | |
d541211d | 686 | |
bd5635a1 RP |
687 | if (pst->readin) |
688 | { | |
d541211d PS |
689 | /* Checking whether the msymbol has a larger value is for the |
690 | "pathological" case mentioned in print_frame_info. */ | |
bd5635a1 | 691 | f = find_pc_function (pc); |
d541211d PS |
692 | if (f != NULL |
693 | && (msymbol == NULL | |
694 | || (BLOCK_START (SYMBOL_BLOCK_VALUE (f)) | |
695 | >= SYMBOL_VALUE_ADDRESS (msymbol)))) | |
bd5635a1 | 696 | { |
d541211d PS |
697 | cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f)); |
698 | cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f)); | |
699 | cache_pc_function_name = SYMBOL_NAME (f); | |
700 | goto return_cached_value; | |
bd5635a1 | 701 | } |
bd5635a1 | 702 | } |
cef4c2e7 | 703 | else |
bd5635a1 | 704 | { |
cef4c2e7 PS |
705 | /* Now that static symbols go in the minimal symbol table, perhaps |
706 | we could just ignore the partial symbols. But at least for now | |
707 | we use the partial or minimal symbol, whichever is larger. */ | |
708 | psb = find_pc_psymbol (pst, pc); | |
709 | ||
710 | if (psb | |
711 | && (msymbol == NULL || | |
712 | (SYMBOL_VALUE_ADDRESS (psb) | |
713 | >= SYMBOL_VALUE_ADDRESS (msymbol)))) | |
714 | { | |
715 | /* This case isn't being cached currently. */ | |
716 | if (address) | |
717 | *address = SYMBOL_VALUE_ADDRESS (psb); | |
718 | if (name) | |
719 | *name = SYMBOL_NAME (psb); | |
720 | /* endaddr non-NULL can't happen here. */ | |
721 | return 1; | |
722 | } | |
bd5635a1 RP |
723 | } |
724 | } | |
d541211d | 725 | |
981a3309 SG |
726 | /* Not in the normal symbol tables, see if the pc is in a known section. |
727 | If it's not, then give up. This ensures that anything beyond the end | |
728 | of the text seg doesn't appear to be part of the last function in the | |
729 | text segment. */ | |
730 | ||
731 | sec = find_pc_section (pc); | |
732 | ||
733 | if (!sec) | |
734 | msymbol = NULL; | |
735 | ||
d541211d PS |
736 | /* Must be in the minimal symbol table. */ |
737 | if (msymbol == NULL) | |
bd5635a1 | 738 | { |
d541211d PS |
739 | /* No available symbol. */ |
740 | if (name != NULL) | |
741 | *name = 0; | |
742 | if (address != NULL) | |
743 | *address = 0; | |
744 | if (endaddr != NULL) | |
745 | *endaddr = 0; | |
746 | return 0; | |
bd5635a1 RP |
747 | } |
748 | ||
dc1b349d | 749 | cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol); |
23a8e291 | 750 | cache_pc_function_name = SYMBOL_NAME (msymbol); |
d541211d | 751 | |
981a3309 SG |
752 | /* Use the lesser of the next minimal symbol, or the end of the section, as |
753 | the end of the function. */ | |
754 | ||
755 | if (SYMBOL_NAME (msymbol + 1) != NULL | |
756 | && SYMBOL_VALUE_ADDRESS (msymbol + 1) < sec->endaddr) | |
23a8e291 | 757 | cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + 1); |
bd5635a1 | 758 | else |
981a3309 SG |
759 | /* We got the start address from the last msymbol in the objfile. |
760 | So the end address is the end of the section. */ | |
761 | cache_pc_function_high = sec->endaddr; | |
d541211d PS |
762 | |
763 | return_cached_value: | |
bd5635a1 RP |
764 | if (address) |
765 | *address = cache_pc_function_low; | |
766 | if (name) | |
767 | *name = cache_pc_function_name; | |
d541211d PS |
768 | if (endaddr) |
769 | *endaddr = cache_pc_function_high; | |
bd5635a1 RP |
770 | return 1; |
771 | } | |
772 | ||
479fdd26 | 773 | /* Return the innermost stack frame executing inside of BLOCK, |
2289e1c3 | 774 | or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */ |
23a8e291 | 775 | |
0e2c2c1e | 776 | struct frame_info * |
bd5635a1 RP |
777 | block_innermost_frame (block) |
778 | struct block *block; | |
779 | { | |
0e2c2c1e | 780 | struct frame_info *frame; |
2289e1c3 JK |
781 | register CORE_ADDR start; |
782 | register CORE_ADDR end; | |
bd5635a1 | 783 | |
479fdd26 JK |
784 | if (block == NULL) |
785 | return NULL; | |
786 | ||
2289e1c3 JK |
787 | start = BLOCK_START (block); |
788 | end = BLOCK_END (block); | |
789 | ||
0e2c2c1e | 790 | frame = NULL; |
bd5635a1 RP |
791 | while (1) |
792 | { | |
793 | frame = get_prev_frame (frame); | |
0e2c2c1e KH |
794 | if (frame == NULL) |
795 | return NULL; | |
796 | if (frame->pc >= start && frame->pc < end) | |
bd5635a1 RP |
797 | return frame; |
798 | } | |
799 | } | |
800 | ||
0e2c2c1e KH |
801 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
802 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
999dd04b | 803 | |
0e2c2c1e | 804 | struct frame_info * |
999dd04b | 805 | find_frame_addr_in_frame_chain (frame_addr) |
0e2c2c1e | 806 | CORE_ADDR frame_addr; |
999dd04b | 807 | { |
0e2c2c1e | 808 | struct frame_info *frame = NULL; |
999dd04b | 809 | |
16726dd1 | 810 | if (frame_addr == (CORE_ADDR)0) |
999dd04b JL |
811 | return NULL; |
812 | ||
813 | while (1) | |
814 | { | |
815 | frame = get_prev_frame (frame); | |
816 | if (frame == NULL) | |
817 | return NULL; | |
999dd04b JL |
818 | if (FRAME_FP (frame) == frame_addr) |
819 | return frame; | |
820 | } | |
821 | } | |
822 | ||
d541211d PS |
823 | #ifdef SIGCONTEXT_PC_OFFSET |
824 | /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */ | |
825 | ||
826 | CORE_ADDR | |
827 | sigtramp_saved_pc (frame) | |
0e2c2c1e | 828 | struct frame_info *frame; |
d541211d PS |
829 | { |
830 | CORE_ADDR sigcontext_addr; | |
831 | char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; | |
832 | int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT; | |
833 | int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT; | |
834 | ||
835 | /* Get sigcontext address, it is the third parameter on the stack. */ | |
836 | if (frame->next) | |
837 | sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next) | |
0e2c2c1e KH |
838 | + FRAME_ARGS_SKIP |
839 | + sigcontext_offs, | |
d541211d PS |
840 | ptrbytes); |
841 | else | |
842 | sigcontext_addr = read_memory_integer (read_register (SP_REGNUM) | |
843 | + sigcontext_offs, | |
844 | ptrbytes); | |
845 | ||
846 | /* Don't cause a memory_error when accessing sigcontext in case the stack | |
847 | layout has changed or the stack is corrupt. */ | |
848 | target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes); | |
849 | return extract_unsigned_integer (buf, ptrbytes); | |
850 | } | |
851 | #endif /* SIGCONTEXT_PC_OFFSET */ | |
852 | ||
dc1b349d MS |
853 | /* |
854 | * DUMMY FRAMES | |
855 | * | |
856 | * The following code serves to maintain the dummy stack frames for | |
857 | * inferior function calls (ie. when gdb calls into the inferior via | |
858 | * call_function_by_hand). This code saves the machine state before | |
859 | * the call in host memory, so it must maintain an independant stack | |
860 | * and keep it consistant etc. I am attempting to make this code | |
861 | * generic enough to be used by many targets. | |
862 | * | |
863 | * The cheapest and most generic way to do CALL_DUMMY on a new target | |
864 | * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to zero, | |
865 | * and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember to define | |
866 | * PUSH_RETURN_ADDRESS, because there won't be a call instruction to do it. | |
867 | */ | |
868 | ||
869 | static struct dummy_frame *dummy_frame_stack = NULL; | |
870 | ||
871 | /* Function: find_dummy_frame(pc, fp, sp) | |
872 | Search the stack of dummy frames for one matching the given PC, FP and SP. | |
873 | This is the work-horse for pc_in_call_dummy and read_register_dummy */ | |
874 | ||
875 | char * | |
876 | generic_find_dummy_frame (pc, fp) | |
877 | CORE_ADDR pc; | |
878 | CORE_ADDR fp; | |
879 | { | |
880 | struct dummy_frame * dummyframe; | |
881 | #ifdef NEED_TEXT_START_END | |
882 | CORE_ADDR bkpt_address; | |
883 | extern CORE_ADDR text_end; | |
884 | #endif | |
885 | ||
886 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT | |
887 | if (pc != entry_point_address ()) | |
888 | return 0; | |
889 | #endif /* AT_ENTRY_POINT */ | |
890 | ||
891 | #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END | |
892 | bkpt_address = text_end - CALL_DUMMY_LENGTH + CALL_DUMMY_BREAKPOINT_OFFSET; | |
893 | if (pc != bkpt_address) | |
894 | return 0; | |
895 | #endif /* BEFORE_TEXT_END */ | |
896 | ||
897 | #if CALL_DUMMY_LOCATION == AFTER_TEXT_END | |
898 | bkpt_address = text_end + CALL_DUMMY_BREAKPOINT_OFFSET; | |
899 | if (pc != bkpt_address) | |
900 | return 0; | |
901 | #endif /* AFTER_TEXT_END */ | |
902 | ||
903 | #if CALL_DUMMY_LOCATION == ON_STACK | |
904 | /* compute the displacement from the CALL_DUMMY breakpoint | |
905 | to the frame pointer */ | |
906 | if (1 INNER_THAN 2) | |
907 | pc += CALL_DUMMY_LENGTH - CALL_DUMMY_BREAKPOINT_OFFSET; | |
908 | else | |
909 | pc += CALL_DUMMY_BREAKPOINT_OFFSET; | |
910 | #endif /* ON_STACK */ | |
911 | ||
912 | for (dummyframe = dummy_frame_stack; dummyframe != NULL; | |
913 | dummyframe = dummyframe->next) | |
914 | if (fp == dummyframe->fp || fp == dummyframe->sp) | |
915 | { | |
916 | /* The frame in question lies between the saved fp and sp, inclusive */ | |
917 | #if CALL_DUMMY_LOCATION == ON_STACK | |
918 | /* NOTE: a better way to do this might be simply to test whether | |
919 | the pc lies between the saved (sp, fp) and CALL_DUMMY_LENGTH. | |
920 | */ | |
921 | ||
922 | if (pc == dummyframe->fp || pc == dummyframe->sp) | |
923 | #endif /* ON_STACK */ | |
924 | return dummyframe->regs; | |
925 | } | |
926 | return 0; | |
927 | } | |
928 | ||
929 | /* Function: pc_in_call_dummy (pc, fp) | |
930 | Return true if this is a dummy frame created by gdb for an inferior call */ | |
931 | ||
932 | int | |
933 | generic_pc_in_call_dummy (pc, fp) | |
934 | CORE_ADDR pc; | |
935 | CORE_ADDR fp; | |
936 | { | |
937 | /* if find_dummy_frame succeeds, then PC is in a call dummy */ | |
938 | return (generic_find_dummy_frame (pc, fp) != 0); | |
939 | } | |
940 | ||
941 | /* Function: read_register_dummy | |
942 | Find a saved register from before GDB calls a function in the inferior */ | |
943 | ||
944 | CORE_ADDR | |
945 | generic_read_register_dummy (pc, fp, regno) | |
946 | CORE_ADDR pc; | |
947 | CORE_ADDR fp; | |
948 | int regno; | |
949 | { | |
950 | char *dummy_regs = generic_find_dummy_frame (pc, fp); | |
951 | ||
952 | if (dummy_regs) | |
953 | return extract_address (&dummy_regs[REGISTER_BYTE (regno)], | |
954 | REGISTER_RAW_SIZE(regno)); | |
955 | else | |
956 | return 0; | |
957 | } | |
958 | ||
959 | /* Save all the registers on the dummy frame stack. Most ports save the | |
960 | registers on the target stack. This results in lots of unnecessary memory | |
961 | references, which are slow when debugging via a serial line. Instead, we | |
962 | save all the registers internally, and never write them to the stack. The | |
963 | registers get restored when the called function returns to the entry point, | |
964 | where a breakpoint is laying in wait. */ | |
965 | ||
966 | void | |
967 | generic_push_dummy_frame () | |
968 | { | |
969 | struct dummy_frame *dummy_frame; | |
970 | CORE_ADDR fp = (get_current_frame ())->frame; | |
971 | ||
972 | /* check to see if there are stale dummy frames, | |
973 | perhaps left over from when a longjump took us out of a | |
974 | function that was called by the debugger */ | |
975 | ||
976 | dummy_frame = dummy_frame_stack; | |
977 | while (dummy_frame) | |
978 | if (dummy_frame->fp INNER_THAN fp) /* stale -- destroy! */ | |
979 | { | |
980 | dummy_frame_stack = dummy_frame->next; | |
981 | free (dummy_frame); | |
982 | dummy_frame = dummy_frame_stack; | |
983 | } | |
984 | else | |
985 | dummy_frame = dummy_frame->next; | |
986 | ||
987 | dummy_frame = xmalloc (sizeof (struct dummy_frame)); | |
988 | dummy_frame->pc = read_register (PC_REGNUM); | |
989 | dummy_frame->sp = read_register (SP_REGNUM); | |
990 | dummy_frame->fp = fp; | |
991 | read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES); | |
992 | dummy_frame->next = dummy_frame_stack; | |
993 | dummy_frame_stack = dummy_frame; | |
994 | } | |
995 | ||
996 | /* Function: pop_dummy_frame | |
997 | Restore the machine state from a saved dummy stack frame. */ | |
998 | ||
999 | void | |
1000 | generic_pop_dummy_frame () | |
1001 | { | |
1002 | struct dummy_frame *dummy_frame = dummy_frame_stack; | |
1003 | ||
1004 | /* FIXME: what if the first frame isn't the right one, eg.. | |
1005 | because one call-by-hand function has done a longjmp into another one? */ | |
1006 | ||
1007 | if (!dummy_frame) | |
1008 | error ("Can't pop dummy frame!"); | |
1009 | dummy_frame_stack = dummy_frame->next; | |
1010 | write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES); | |
1011 | free (dummy_frame); | |
1012 | } | |
1013 | ||
1014 | /* Function: frame_chain_valid | |
1015 | Returns true for a user frame or a call_function_by_hand dummy frame, | |
1016 | and false for the CRT0 start-up frame. Purpose is to terminate backtrace */ | |
1017 | ||
1018 | int | |
1019 | generic_frame_chain_valid (fp, fi) | |
1020 | CORE_ADDR fp; | |
1021 | struct frame_info *fi; | |
1022 | { | |
1023 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT | |
1024 | if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp)) | |
1025 | return 1; /* don't prune CALL_DUMMY frames */ | |
1026 | else /* fall back to default algorithm (see frame.h) */ | |
1027 | #endif | |
1028 | return (fp != 0 && !inside_entry_file (FRAME_SAVED_PC(fi))); | |
1029 | } | |
1030 | ||
1031 | /* Function: get_saved_register | |
1032 | Find register number REGNUM relative to FRAME and put its (raw, | |
1033 | target format) contents in *RAW_BUFFER. | |
1034 | ||
1035 | Set *OPTIMIZED if the variable was optimized out (and thus can't be | |
1036 | fetched). Note that this is never set to anything other than zero | |
1037 | in this implementation. | |
1038 | ||
1039 | Set *LVAL to lval_memory, lval_register, or not_lval, depending on | |
1040 | whether the value was fetched from memory, from a register, or in a | |
1041 | strange and non-modifiable way (e.g. a frame pointer which was | |
1042 | calculated rather than fetched). We will use not_lval for values | |
1043 | fetched from generic dummy frames. | |
1044 | ||
1045 | Set *ADDRP to the address, either in memory on as a REGISTER_BYTE | |
1046 | offset into the registers array. If the value is stored in a dummy | |
1047 | frame, set *ADDRP to zero. | |
1048 | ||
1049 | To use this implementation, define a function called | |
1050 | "get_saved_register" in your target code, which simply passes all | |
1051 | of its arguments to this function. | |
1052 | ||
1053 | The argument RAW_BUFFER must point to aligned memory. */ | |
1054 | ||
1055 | void | |
1056 | generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
1057 | char *raw_buffer; | |
1058 | int *optimized; | |
1059 | CORE_ADDR *addrp; | |
1060 | struct frame_info *frame; | |
1061 | int regnum; | |
1062 | enum lval_type *lval; | |
1063 | { | |
1064 | CORE_ADDR addr; | |
1065 | struct frame_saved_regs fsr; | |
1066 | ||
1067 | if (!target_has_registers) | |
1068 | error ("No registers."); | |
1069 | ||
1070 | /* Normal systems don't optimize out things with register numbers. */ | |
1071 | if (optimized != NULL) | |
1072 | *optimized = 0; | |
1073 | ||
1074 | if (addrp) /* default assumption: not found in memory */ | |
1075 | *addrp = 0; | |
1076 | ||
1077 | /* Note: since the current frame's registers could only have been | |
1078 | saved by frames INTERIOR TO the current frame, we skip examining | |
1079 | the current frame itself: otherwise, we would be getting the | |
1080 | previous frame's registers which were saved by the current frame. */ | |
1081 | ||
1082 | while ((frame = frame->next) != NULL) | |
1083 | { | |
1084 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) | |
1085 | { | |
1086 | if (lval) /* found it in a CALL_DUMMY frame */ | |
1087 | *lval = not_lval; | |
1088 | if (raw_buffer) | |
1089 | memcpy (raw_buffer, | |
1090 | generic_find_dummy_frame (frame->pc, frame->frame) + | |
1091 | REGISTER_BYTE (regnum), | |
1092 | REGISTER_RAW_SIZE (regnum)); | |
1093 | return; | |
1094 | } | |
1095 | ||
1096 | FRAME_FIND_SAVED_REGS(frame, fsr); | |
1097 | if (fsr.regs[regnum] != 0) | |
1098 | { | |
1099 | if (lval) /* found it saved on the stack */ | |
1100 | *lval = lval_memory; | |
1101 | if (regnum == SP_REGNUM) | |
1102 | { | |
1103 | if (raw_buffer) /* SP register treated specially */ | |
1104 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), | |
1105 | fsr.regs[regnum]); | |
1106 | } | |
1107 | else | |
1108 | { | |
1109 | if (addrp) /* any other register */ | |
1110 | *addrp = fsr.regs[regnum]; | |
1111 | if (raw_buffer) | |
1112 | read_memory (fsr.regs[regnum], raw_buffer, | |
1113 | REGISTER_RAW_SIZE (regnum)); | |
1114 | } | |
1115 | return; | |
1116 | } | |
1117 | } | |
1118 | ||
1119 | /* If we get thru the loop to this point, it means the register was | |
1120 | not saved in any frame. Return the actual live-register value. */ | |
1121 | ||
1122 | if (lval) /* found it in a live register */ | |
1123 | *lval = lval_register; | |
1124 | if (addrp) | |
1125 | *addrp = REGISTER_BYTE (regnum); | |
1126 | if (raw_buffer) | |
1127 | read_register_gen (regnum, raw_buffer); | |
1128 | } | |
1129 | ||
bd5635a1 RP |
1130 | void |
1131 | _initialize_blockframe () | |
1132 | { | |
1133 | obstack_init (&frame_cache_obstack); | |
1134 | } |