]>
Commit | Line | Data |
---|---|---|
85a453d5 | 1 | /* Target-dependent code for Renesas D10V, for GDB. |
349c5d5f | 2 | |
51603483 | 3 | Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software |
349c5d5f | 4 | Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | /* Contributed by Martin Hunt, [email protected] */ | |
24 | ||
25 | #include "defs.h" | |
26 | #include "frame.h" | |
7f6104a9 | 27 | #include "frame-unwind.h" |
270cb5d6 | 28 | #include "frame-base.h" |
c906108c SS |
29 | #include "symtab.h" |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "gdbcore.h" | |
33 | #include "gdb_string.h" | |
34 | #include "value.h" | |
35 | #include "inferior.h" | |
c5aa993b | 36 | #include "dis-asm.h" |
c906108c SS |
37 | #include "symfile.h" |
38 | #include "objfiles.h" | |
104c1213 | 39 | #include "language.h" |
28d069e6 | 40 | #include "arch-utils.h" |
4e052eda | 41 | #include "regcache.h" |
e8933a55 | 42 | #include "remote.h" |
f0d4cc9e | 43 | #include "floatformat.h" |
b91b96f4 | 44 | #include "gdb/sim-d10v.h" |
8238d0bf | 45 | #include "sim-regno.h" |
92bf2b80 | 46 | #include "disasm.h" |
a0f267c7 | 47 | #include "trad-frame.h" |
4ce44c66 | 48 | |
fa1fd571 AC |
49 | #include "gdb_assert.h" |
50 | ||
4ce44c66 JM |
51 | struct gdbarch_tdep |
52 | { | |
53 | int a0_regnum; | |
54 | int nr_dmap_regs; | |
f6684c31 AC |
55 | unsigned long (*dmap_register) (void *regcache, int nr); |
56 | unsigned long (*imap_register) (void *regcache, int nr); | |
4ce44c66 JM |
57 | }; |
58 | ||
59 | /* These are the addresses the D10V-EVA board maps data and | |
db72fa6b | 60 | instruction memory to. */ |
cce74817 | 61 | |
78eac43e MS |
62 | enum memspace { |
63 | DMEM_START = 0x2000000, | |
64 | IMEM_START = 0x1000000, | |
65 | STACK_START = 0x200bffe | |
66 | }; | |
cce74817 | 67 | |
db72fa6b | 68 | /* d10v register names. */ |
4ce44c66 JM |
69 | |
70 | enum | |
71 | { | |
72 | R0_REGNUM = 0, | |
78eac43e | 73 | R3_REGNUM = 3, |
6c2b5168 | 74 | D10V_FP_REGNUM = 11, |
4ce44c66 | 75 | LR_REGNUM = 13, |
f75493ed | 76 | D10V_SP_REGNUM = 15, |
4ce44c66 | 77 | PSW_REGNUM = 16, |
27d94c49 | 78 | D10V_PC_REGNUM = 18, |
4ce44c66 | 79 | NR_IMAP_REGS = 2, |
78eac43e MS |
80 | NR_A_REGS = 2, |
81 | TS2_NUM_REGS = 37, | |
82 | TS3_NUM_REGS = 42, | |
db72fa6b | 83 | /* d10v calling convention. */ |
78eac43e MS |
84 | ARG1_REGNUM = R0_REGNUM, |
85 | ARGN_REGNUM = R3_REGNUM, | |
86 | RET1_REGNUM = R0_REGNUM, | |
4ce44c66 | 87 | }; |
78eac43e | 88 | |
b9362cc7 | 89 | static int |
f75493ed AC |
90 | nr_dmap_regs (struct gdbarch *gdbarch) |
91 | { | |
92 | return gdbarch_tdep (gdbarch)->nr_dmap_regs; | |
93 | } | |
94 | ||
b9362cc7 | 95 | static int |
f75493ed AC |
96 | a0_regnum (struct gdbarch *gdbarch) |
97 | { | |
98 | return gdbarch_tdep (gdbarch)->a0_regnum; | |
99 | } | |
4ce44c66 | 100 | |
392a587b JM |
101 | /* Local functions */ |
102 | ||
a14ed312 | 103 | extern void _initialize_d10v_tdep (void); |
392a587b | 104 | |
a14ed312 | 105 | static void d10v_eva_prepare_to_trace (void); |
392a587b | 106 | |
a14ed312 | 107 | static void d10v_eva_get_trace_data (void); |
c906108c | 108 | |
23964bcd | 109 | static CORE_ADDR |
6ae2f580 | 110 | d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
489137c0 | 111 | { |
6ae2f580 AC |
112 | /* Align to the size of an instruction (so that they can safely be |
113 | pushed onto the stack. */ | |
114 | return sp & ~3; | |
489137c0 | 115 | } |
c906108c SS |
116 | |
117 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
118 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
119 | and TYPE is the type (which is known to be struct, union or array). | |
120 | ||
121 | The d10v returns anything less than 8 bytes in size in | |
db72fa6b | 122 | registers. */ |
c906108c | 123 | |
f5e1cf12 | 124 | static int |
fba45db2 | 125 | d10v_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 126 | { |
02da6206 JSC |
127 | long alignment; |
128 | int i; | |
129 | /* The d10v only passes a struct in a register when that structure | |
db72fa6b | 130 | has an alignment that matches the size of a register. */ |
02da6206 | 131 | /* If the structure doesn't fit in 4 registers, put it on the |
db72fa6b | 132 | stack. */ |
02da6206 JSC |
133 | if (TYPE_LENGTH (type) > 8) |
134 | return 1; | |
135 | /* If the struct contains only one field, don't put it on the stack | |
db72fa6b | 136 | - gcc can fit it in one or more registers. */ |
02da6206 JSC |
137 | if (TYPE_NFIELDS (type) == 1) |
138 | return 0; | |
139 | alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); | |
140 | for (i = 1; i < TYPE_NFIELDS (type); i++) | |
141 | { | |
142 | /* If the alignment changes, just assume it goes on the | |
db72fa6b | 143 | stack. */ |
02da6206 JSC |
144 | if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment) |
145 | return 1; | |
146 | } | |
147 | /* If the alignment is suitable for the d10v's 16 bit registers, | |
db72fa6b | 148 | don't put it on the stack. */ |
02da6206 JSC |
149 | if (alignment == 2 || alignment == 4) |
150 | return 0; | |
151 | return 1; | |
c906108c SS |
152 | } |
153 | ||
154 | ||
f4f9705a | 155 | static const unsigned char * |
fba45db2 | 156 | d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
392a587b | 157 | { |
c5aa993b JM |
158 | static unsigned char breakpoint[] = |
159 | {0x2f, 0x90, 0x5e, 0x00}; | |
392a587b JM |
160 | *lenptr = sizeof (breakpoint); |
161 | return breakpoint; | |
162 | } | |
163 | ||
4ce44c66 | 164 | /* Map the REG_NR onto an ascii name. Return NULL or an empty string |
db72fa6b | 165 | when the reg_nr isn't valid. */ |
4ce44c66 JM |
166 | |
167 | enum ts2_regnums | |
168 | { | |
169 | TS2_IMAP0_REGNUM = 32, | |
170 | TS2_DMAP_REGNUM = 34, | |
171 | TS2_NR_DMAP_REGS = 1, | |
172 | TS2_A0_REGNUM = 35 | |
173 | }; | |
174 | ||
fa88f677 | 175 | static const char * |
4ce44c66 | 176 | d10v_ts2_register_name (int reg_nr) |
392a587b | 177 | { |
c5aa993b JM |
178 | static char *register_names[] = |
179 | { | |
180 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
181 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
182 | "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", | |
183 | "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", | |
184 | "imap0", "imap1", "dmap", "a0", "a1" | |
392a587b JM |
185 | }; |
186 | if (reg_nr < 0) | |
187 | return NULL; | |
188 | if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) | |
189 | return NULL; | |
c5aa993b | 190 | return register_names[reg_nr]; |
392a587b JM |
191 | } |
192 | ||
4ce44c66 JM |
193 | enum ts3_regnums |
194 | { | |
195 | TS3_IMAP0_REGNUM = 36, | |
196 | TS3_DMAP0_REGNUM = 38, | |
197 | TS3_NR_DMAP_REGS = 4, | |
198 | TS3_A0_REGNUM = 32 | |
199 | }; | |
200 | ||
fa88f677 | 201 | static const char * |
4ce44c66 JM |
202 | d10v_ts3_register_name (int reg_nr) |
203 | { | |
204 | static char *register_names[] = | |
205 | { | |
206 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
207 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
208 | "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", | |
209 | "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", | |
210 | "a0", "a1", | |
211 | "spi", "spu", | |
212 | "imap0", "imap1", | |
213 | "dmap0", "dmap1", "dmap2", "dmap3" | |
214 | }; | |
215 | if (reg_nr < 0) | |
216 | return NULL; | |
217 | if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) | |
218 | return NULL; | |
219 | return register_names[reg_nr]; | |
220 | } | |
221 | ||
bf93dfed JB |
222 | /* Access the DMAP/IMAP registers in a target independent way. |
223 | ||
224 | Divide the D10V's 64k data space into four 16k segments: | |
225 | 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and | |
226 | 0xc000 -- 0xffff. | |
227 | ||
228 | On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 -- | |
229 | 0x7fff) always map to the on-chip data RAM, and the fourth always | |
230 | maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into | |
231 | unified memory or instruction memory, under the control of the | |
232 | single DMAP register. | |
233 | ||
234 | On the TS3, there are four DMAP registers, each of which controls | |
235 | one of the segments. */ | |
4ce44c66 JM |
236 | |
237 | static unsigned long | |
f6684c31 | 238 | d10v_ts2_dmap_register (void *regcache, int reg_nr) |
4ce44c66 JM |
239 | { |
240 | switch (reg_nr) | |
241 | { | |
242 | case 0: | |
243 | case 1: | |
244 | return 0x2000; | |
245 | case 2: | |
f6684c31 AC |
246 | { |
247 | ULONGEST reg; | |
248 | regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, ®); | |
249 | return reg; | |
250 | } | |
4ce44c66 JM |
251 | default: |
252 | return 0; | |
253 | } | |
254 | } | |
255 | ||
256 | static unsigned long | |
f6684c31 | 257 | d10v_ts3_dmap_register (void *regcache, int reg_nr) |
4ce44c66 | 258 | { |
f6684c31 AC |
259 | ULONGEST reg; |
260 | regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, ®); | |
261 | return reg; | |
4ce44c66 JM |
262 | } |
263 | ||
264 | static unsigned long | |
f6684c31 | 265 | d10v_ts2_imap_register (void *regcache, int reg_nr) |
4ce44c66 | 266 | { |
f6684c31 AC |
267 | ULONGEST reg; |
268 | regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, ®); | |
269 | return reg; | |
4ce44c66 JM |
270 | } |
271 | ||
272 | static unsigned long | |
f6684c31 | 273 | d10v_ts3_imap_register (void *regcache, int reg_nr) |
4ce44c66 | 274 | { |
f6684c31 AC |
275 | ULONGEST reg; |
276 | regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, ®); | |
277 | return reg; | |
4ce44c66 JM |
278 | } |
279 | ||
62700349 AC |
280 | /* MAP GDB's internal register numbering (determined by the layout |
281 | from the DEPRECATED_REGISTER_BYTE array) onto the simulator's | |
db72fa6b | 282 | register numbering. */ |
4ce44c66 JM |
283 | |
284 | static int | |
285 | d10v_ts2_register_sim_regno (int nr) | |
286 | { | |
e8933a55 AC |
287 | /* Only makes sense to supply raw registers. */ |
288 | gdb_assert (nr >= 0 && nr < NUM_REGS); | |
4ce44c66 JM |
289 | if (nr >= TS2_IMAP0_REGNUM |
290 | && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS) | |
291 | return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM; | |
292 | if (nr == TS2_DMAP_REGNUM) | |
293 | return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM; | |
294 | if (nr >= TS2_A0_REGNUM | |
295 | && nr < TS2_A0_REGNUM + NR_A_REGS) | |
296 | return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM; | |
297 | return nr; | |
298 | } | |
299 | ||
300 | static int | |
301 | d10v_ts3_register_sim_regno (int nr) | |
302 | { | |
e8933a55 AC |
303 | /* Only makes sense to supply raw registers. */ |
304 | gdb_assert (nr >= 0 && nr < NUM_REGS); | |
4ce44c66 JM |
305 | if (nr >= TS3_IMAP0_REGNUM |
306 | && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS) | |
307 | return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM; | |
308 | if (nr >= TS3_DMAP0_REGNUM | |
309 | && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS) | |
310 | return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM; | |
311 | if (nr >= TS3_A0_REGNUM | |
312 | && nr < TS3_A0_REGNUM + NR_A_REGS) | |
313 | return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM; | |
314 | return nr; | |
315 | } | |
316 | ||
392a587b JM |
317 | /* Return the GDB type object for the "standard" data type |
318 | of data in register N. */ | |
319 | ||
f5e1cf12 | 320 | static struct type * |
35cac7cf | 321 | d10v_register_type (struct gdbarch *gdbarch, int reg_nr) |
392a587b | 322 | { |
27d94c49 | 323 | if (reg_nr == D10V_PC_REGNUM) |
75af7f68 | 324 | return builtin_type_void_func_ptr; |
f75493ed | 325 | if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM) |
095a4c96 | 326 | return builtin_type_void_data_ptr; |
f75493ed AC |
327 | else if (reg_nr >= a0_regnum (gdbarch) |
328 | && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS)) | |
4ce44c66 | 329 | return builtin_type_int64; |
392a587b | 330 | else |
4ce44c66 | 331 | return builtin_type_int16; |
392a587b JM |
332 | } |
333 | ||
f5e1cf12 | 334 | static int |
fba45db2 | 335 | d10v_daddr_p (CORE_ADDR x) |
392a587b JM |
336 | { |
337 | return (((x) & 0x3000000) == DMEM_START); | |
338 | } | |
339 | ||
f5e1cf12 | 340 | static int |
fba45db2 | 341 | d10v_iaddr_p (CORE_ADDR x) |
392a587b JM |
342 | { |
343 | return (((x) & 0x3000000) == IMEM_START); | |
344 | } | |
345 | ||
169a7369 MS |
346 | static CORE_ADDR |
347 | d10v_make_daddr (CORE_ADDR x) | |
348 | { | |
349 | return ((x) | DMEM_START); | |
350 | } | |
351 | ||
352 | static CORE_ADDR | |
353 | d10v_make_iaddr (CORE_ADDR x) | |
354 | { | |
355 | if (d10v_iaddr_p (x)) | |
db72fa6b | 356 | return x; /* Idempotency -- x is already in the IMEM space. */ |
169a7369 MS |
357 | else |
358 | return (((x) << 2) | IMEM_START); | |
359 | } | |
392a587b | 360 | |
f5e1cf12 | 361 | static CORE_ADDR |
fba45db2 | 362 | d10v_convert_iaddr_to_raw (CORE_ADDR x) |
392a587b JM |
363 | { |
364 | return (((x) >> 2) & 0xffff); | |
365 | } | |
366 | ||
f5e1cf12 | 367 | static CORE_ADDR |
fba45db2 | 368 | d10v_convert_daddr_to_raw (CORE_ADDR x) |
392a587b JM |
369 | { |
370 | return ((x) & 0xffff); | |
371 | } | |
372 | ||
75af7f68 JB |
373 | static void |
374 | d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr) | |
375 | { | |
376 | /* Is it a code address? */ | |
377 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
378 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) | |
379 | { | |
75af7f68 JB |
380 | store_unsigned_integer (buf, TYPE_LENGTH (type), |
381 | d10v_convert_iaddr_to_raw (addr)); | |
382 | } | |
383 | else | |
384 | { | |
385 | /* Strip off any upper segment bits. */ | |
386 | store_unsigned_integer (buf, TYPE_LENGTH (type), | |
387 | d10v_convert_daddr_to_raw (addr)); | |
388 | } | |
389 | } | |
390 | ||
391 | static CORE_ADDR | |
66140c26 | 392 | d10v_pointer_to_address (struct type *type, const void *buf) |
75af7f68 | 393 | { |
f75493ed | 394 | CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type)); |
75af7f68 JB |
395 | /* Is it a code address? */ |
396 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
74a9bb82 FF |
397 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD |
398 | || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) | |
75af7f68 JB |
399 | return d10v_make_iaddr (addr); |
400 | else | |
401 | return d10v_make_daddr (addr); | |
402 | } | |
403 | ||
095a4c96 EZ |
404 | /* Don't do anything if we have an integer, this way users can type 'x |
405 | <addr>' w/o having gdb outsmart them. The internal gdb conversions | |
406 | to the correct space are taken care of in the pointer_to_address | |
407 | function. If we don't do this, 'x $fp' wouldn't work. */ | |
fc0c74b1 AC |
408 | static CORE_ADDR |
409 | d10v_integer_to_address (struct type *type, void *buf) | |
410 | { | |
411 | LONGEST val; | |
412 | val = unpack_long (type, buf); | |
095a4c96 | 413 | return val; |
fc0c74b1 | 414 | } |
75af7f68 | 415 | |
392a587b JM |
416 | /* Write into appropriate registers a function return value |
417 | of type TYPE, given in virtual format. | |
418 | ||
419 | Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */ | |
420 | ||
f5e1cf12 | 421 | static void |
fa1fd571 AC |
422 | d10v_store_return_value (struct type *type, struct regcache *regcache, |
423 | const void *valbuf) | |
392a587b | 424 | { |
fa1fd571 AC |
425 | /* Only char return values need to be shifted right within the first |
426 | regnum. */ | |
3d79a47c MS |
427 | if (TYPE_LENGTH (type) == 1 |
428 | && TYPE_CODE (type) == TYPE_CODE_INT) | |
429 | { | |
fa1fd571 AC |
430 | bfd_byte tmp[2]; |
431 | tmp[1] = *(bfd_byte *)valbuf; | |
432 | regcache_cooked_write (regcache, RET1_REGNUM, tmp); | |
3d79a47c MS |
433 | } |
434 | else | |
fa1fd571 AC |
435 | { |
436 | int reg; | |
437 | /* A structure is never more than 8 bytes long. See | |
438 | use_struct_convention(). */ | |
439 | gdb_assert (TYPE_LENGTH (type) <= 8); | |
440 | /* Write out most registers, stop loop before trying to write | |
441 | out any dangling byte at the end of the buffer. */ | |
442 | for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++) | |
443 | { | |
444 | regcache_cooked_write (regcache, RET1_REGNUM + reg, | |
445 | (bfd_byte *) valbuf + reg * 2); | |
446 | } | |
447 | /* Write out any dangling byte at the end of the buffer. */ | |
448 | if ((reg * 2) + 1 == TYPE_LENGTH (type)) | |
449 | regcache_cooked_write_part (regcache, reg, 0, 1, | |
450 | (bfd_byte *) valbuf + reg * 2); | |
451 | } | |
392a587b JM |
452 | } |
453 | ||
454 | /* Extract from an array REGBUF containing the (raw) register state | |
455 | the address in which a function should return its structure value, | |
456 | as a CORE_ADDR (or an expression that can be used as one). */ | |
457 | ||
f5e1cf12 | 458 | static CORE_ADDR |
fa1fd571 | 459 | d10v_extract_struct_value_address (struct regcache *regcache) |
392a587b | 460 | { |
fa1fd571 AC |
461 | ULONGEST addr; |
462 | regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr); | |
463 | return (addr | DMEM_START); | |
392a587b JM |
464 | } |
465 | ||
c5aa993b | 466 | static int |
fba45db2 | 467 | check_prologue (unsigned short op) |
c906108c SS |
468 | { |
469 | /* st rn, @-sp */ | |
470 | if ((op & 0x7E1F) == 0x6C1F) | |
471 | return 1; | |
472 | ||
473 | /* st2w rn, @-sp */ | |
474 | if ((op & 0x7E3F) == 0x6E1F) | |
475 | return 1; | |
476 | ||
477 | /* subi sp, n */ | |
478 | if ((op & 0x7FE1) == 0x01E1) | |
479 | return 1; | |
480 | ||
481 | /* mv r11, sp */ | |
482 | if (op == 0x417E) | |
483 | return 1; | |
484 | ||
485 | /* nop */ | |
486 | if (op == 0x5E00) | |
487 | return 1; | |
488 | ||
489 | /* st rn, @sp */ | |
490 | if ((op & 0x7E1F) == 0x681E) | |
491 | return 1; | |
492 | ||
493 | /* st2w rn, @sp */ | |
c5aa993b JM |
494 | if ((op & 0x7E3F) == 0x3A1E) |
495 | return 1; | |
c906108c SS |
496 | |
497 | return 0; | |
498 | } | |
499 | ||
f5e1cf12 | 500 | static CORE_ADDR |
fba45db2 | 501 | d10v_skip_prologue (CORE_ADDR pc) |
c906108c SS |
502 | { |
503 | unsigned long op; | |
504 | unsigned short op1, op2; | |
505 | CORE_ADDR func_addr, func_end; | |
506 | struct symtab_and_line sal; | |
507 | ||
db72fa6b | 508 | /* If we have line debugging information, then the end of the prologue |
74276724 | 509 | should be the first assembly instruction of the first source line. */ |
c906108c SS |
510 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
511 | { | |
512 | sal = find_pc_line (func_addr, 0); | |
c5aa993b | 513 | if (sal.end && sal.end < func_end) |
c906108c SS |
514 | return sal.end; |
515 | } | |
c5aa993b JM |
516 | |
517 | if (target_read_memory (pc, (char *) &op, 4)) | |
db72fa6b | 518 | return pc; /* Can't access it -- assume no prologue. */ |
c906108c SS |
519 | |
520 | while (1) | |
521 | { | |
c5aa993b | 522 | op = (unsigned long) read_memory_integer (pc, 4); |
c906108c SS |
523 | if ((op & 0xC0000000) == 0xC0000000) |
524 | { | |
525 | /* long instruction */ | |
c5aa993b JM |
526 | if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */ |
527 | ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */ | |
528 | ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */ | |
c906108c SS |
529 | break; |
530 | } | |
531 | else | |
532 | { | |
533 | /* short instructions */ | |
534 | if ((op & 0xC0000000) == 0x80000000) | |
535 | { | |
536 | op2 = (op & 0x3FFF8000) >> 15; | |
537 | op1 = op & 0x7FFF; | |
c5aa993b JM |
538 | } |
539 | else | |
c906108c SS |
540 | { |
541 | op1 = (op & 0x3FFF8000) >> 15; | |
542 | op2 = op & 0x7FFF; | |
543 | } | |
c5aa993b | 544 | if (check_prologue (op1)) |
c906108c | 545 | { |
c5aa993b | 546 | if (!check_prologue (op2)) |
c906108c | 547 | { |
db72fa6b MS |
548 | /* If the previous opcode was really part of the |
549 | prologue and not just a NOP, then we want to | |
550 | break after both instructions. */ | |
c906108c SS |
551 | if (op1 != 0x5E00) |
552 | pc += 4; | |
553 | break; | |
554 | } | |
555 | } | |
556 | else | |
557 | break; | |
558 | } | |
559 | pc += 4; | |
560 | } | |
561 | return pc; | |
562 | } | |
563 | ||
7f6104a9 | 564 | struct d10v_unwind_cache |
c906108c | 565 | { |
270cb5d6 AC |
566 | /* The previous frame's inner most stack address. Used as this |
567 | frame ID's stack_addr. */ | |
568 | CORE_ADDR prev_sp; | |
569 | /* The frame's base, optionally used by the high-level debug info. */ | |
ceea5145 | 570 | CORE_ADDR base; |
7f6104a9 | 571 | int size; |
0d843116 AC |
572 | /* How far the SP and r11 (FP) have been offset from the start of |
573 | the stack frame (as defined by the previous frame's stack | |
574 | pointer). */ | |
575 | LONGEST sp_offset; | |
576 | LONGEST r11_offset; | |
7f6104a9 | 577 | int uses_frame; |
a0f267c7 | 578 | /* Table indicating the location of each and every register. */ |
8983bd83 | 579 | struct trad_frame_saved_reg *saved_regs; |
7f6104a9 | 580 | }; |
c906108c | 581 | |
c5aa993b | 582 | static int |
7f6104a9 AC |
583 | prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op, |
584 | CORE_ADDR addr) | |
c906108c SS |
585 | { |
586 | int n; | |
587 | ||
588 | /* st rn, @-sp */ | |
589 | if ((op & 0x7E1F) == 0x6C1F) | |
590 | { | |
591 | n = (op & 0x1E0) >> 5; | |
0d843116 | 592 | info->sp_offset -= 2; |
a0f267c7 | 593 | info->saved_regs[n].addr = info->sp_offset; |
c906108c SS |
594 | return 1; |
595 | } | |
596 | ||
597 | /* st2w rn, @-sp */ | |
598 | else if ((op & 0x7E3F) == 0x6E1F) | |
599 | { | |
600 | n = (op & 0x1E0) >> 5; | |
0d843116 | 601 | info->sp_offset -= 4; |
a0f267c7 AC |
602 | info->saved_regs[n + 0].addr = info->sp_offset + 0; |
603 | info->saved_regs[n + 1].addr = info->sp_offset + 2; | |
c906108c SS |
604 | return 1; |
605 | } | |
606 | ||
607 | /* subi sp, n */ | |
608 | if ((op & 0x7FE1) == 0x01E1) | |
609 | { | |
610 | n = (op & 0x1E) >> 1; | |
611 | if (n == 0) | |
612 | n = 16; | |
0d843116 | 613 | info->sp_offset -= n; |
c906108c SS |
614 | return 1; |
615 | } | |
616 | ||
617 | /* mv r11, sp */ | |
618 | if (op == 0x417E) | |
619 | { | |
7f6104a9 | 620 | info->uses_frame = 1; |
0d843116 AC |
621 | info->r11_offset = info->sp_offset; |
622 | return 1; | |
623 | } | |
624 | ||
625 | /* st rn, @r11 */ | |
626 | if ((op & 0x7E1F) == 0x6816) | |
627 | { | |
628 | n = (op & 0x1E0) >> 5; | |
a0f267c7 | 629 | info->saved_regs[n].addr = info->r11_offset; |
c906108c SS |
630 | return 1; |
631 | } | |
632 | ||
633 | /* nop */ | |
634 | if (op == 0x5E00) | |
635 | return 1; | |
636 | ||
637 | /* st rn, @sp */ | |
638 | if ((op & 0x7E1F) == 0x681E) | |
639 | { | |
640 | n = (op & 0x1E0) >> 5; | |
a0f267c7 | 641 | info->saved_regs[n].addr = info->sp_offset; |
c906108c SS |
642 | return 1; |
643 | } | |
644 | ||
645 | /* st2w rn, @sp */ | |
646 | if ((op & 0x7E3F) == 0x3A1E) | |
647 | { | |
648 | n = (op & 0x1E0) >> 5; | |
a0f267c7 AC |
649 | info->saved_regs[n + 0].addr = info->sp_offset + 0; |
650 | info->saved_regs[n + 1].addr = info->sp_offset + 2; | |
c906108c SS |
651 | return 1; |
652 | } | |
653 | ||
654 | return 0; | |
655 | } | |
656 | ||
cce74817 JM |
657 | /* Put here the code to store, into fi->saved_regs, the addresses of |
658 | the saved registers of frame described by FRAME_INFO. This | |
659 | includes special registers such as pc and fp saved in special ways | |
660 | in the stack frame. sp is even more special: the address we return | |
db72fa6b | 661 | for it IS the sp for the next frame. */ |
cce74817 | 662 | |
b9362cc7 | 663 | static struct d10v_unwind_cache * |
6dc42492 AC |
664 | d10v_frame_unwind_cache (struct frame_info *next_frame, |
665 | void **this_prologue_cache) | |
c906108c | 666 | { |
ae1e7417 | 667 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
ceea5145 AC |
668 | CORE_ADDR pc; |
669 | ULONGEST prev_sp; | |
670 | ULONGEST this_base; | |
c906108c SS |
671 | unsigned long op; |
672 | unsigned short op1, op2; | |
673 | int i; | |
7f6104a9 AC |
674 | struct d10v_unwind_cache *info; |
675 | ||
6dc42492 AC |
676 | if ((*this_prologue_cache)) |
677 | return (*this_prologue_cache); | |
7f6104a9 AC |
678 | |
679 | info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache); | |
6dc42492 | 680 | (*this_prologue_cache) = info; |
a0f267c7 | 681 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); |
7f6104a9 | 682 | |
7f6104a9 | 683 | info->size = 0; |
0d843116 | 684 | info->sp_offset = 0; |
c906108c | 685 | |
7f6104a9 | 686 | info->uses_frame = 0; |
be41e9f4 | 687 | for (pc = frame_func_unwind (next_frame); |
81f8a206 | 688 | pc > 0 && pc < frame_pc_unwind (next_frame); |
270cb5d6 | 689 | pc += 4) |
c906108c | 690 | { |
ae1e7417 | 691 | op = get_frame_memory_unsigned (next_frame, pc, 4); |
c906108c SS |
692 | if ((op & 0xC0000000) == 0xC0000000) |
693 | { | |
694 | /* long instruction */ | |
695 | if ((op & 0x3FFF0000) == 0x01FF0000) | |
696 | { | |
697 | /* add3 sp,sp,n */ | |
698 | short n = op & 0xFFFF; | |
0d843116 | 699 | info->sp_offset += n; |
c906108c SS |
700 | } |
701 | else if ((op & 0x3F0F0000) == 0x340F0000) | |
702 | { | |
703 | /* st rn, @(offset,sp) */ | |
704 | short offset = op & 0xFFFF; | |
705 | short n = (op >> 20) & 0xF; | |
a0f267c7 | 706 | info->saved_regs[n].addr = info->sp_offset + offset; |
c906108c SS |
707 | } |
708 | else if ((op & 0x3F1F0000) == 0x350F0000) | |
709 | { | |
710 | /* st2w rn, @(offset,sp) */ | |
711 | short offset = op & 0xFFFF; | |
712 | short n = (op >> 20) & 0xF; | |
a0f267c7 AC |
713 | info->saved_regs[n + 0].addr = info->sp_offset + offset + 0; |
714 | info->saved_regs[n + 1].addr = info->sp_offset + offset + 2; | |
c906108c SS |
715 | } |
716 | else | |
717 | break; | |
718 | } | |
719 | else | |
720 | { | |
721 | /* short instructions */ | |
722 | if ((op & 0xC0000000) == 0x80000000) | |
723 | { | |
724 | op2 = (op & 0x3FFF8000) >> 15; | |
725 | op1 = op & 0x7FFF; | |
c5aa993b JM |
726 | } |
727 | else | |
c906108c SS |
728 | { |
729 | op1 = (op & 0x3FFF8000) >> 15; | |
730 | op2 = op & 0x7FFF; | |
731 | } | |
7f6104a9 AC |
732 | if (!prologue_find_regs (info, op1, pc) |
733 | || !prologue_find_regs (info, op2, pc)) | |
c906108c SS |
734 | break; |
735 | } | |
c906108c | 736 | } |
c5aa993b | 737 | |
0d843116 | 738 | info->size = -info->sp_offset; |
c906108c | 739 | |
a0f267c7 AC |
740 | /* Compute the previous frame's stack pointer (which is also the |
741 | frame's ID's stack address), and this frame's base pointer. */ | |
ceea5145 AC |
742 | if (info->uses_frame) |
743 | { | |
744 | /* The SP was moved to the FP. This indicates that a new frame | |
745 | was created. Get THIS frame's FP value by unwinding it from | |
746 | the next frame. */ | |
6c2b5168 | 747 | frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base); |
ceea5145 AC |
748 | /* The FP points at the last saved register. Adjust the FP back |
749 | to before the first saved register giving the SP. */ | |
750 | prev_sp = this_base + info->size; | |
751 | } | |
ceea5145 AC |
752 | else |
753 | { | |
754 | /* Assume that the FP is this frame's SP but with that pushed | |
755 | stack space added back. */ | |
f75493ed | 756 | frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base); |
ceea5145 AC |
757 | prev_sp = this_base + info->size; |
758 | } | |
759 | ||
a0f267c7 AC |
760 | /* Convert that SP/BASE into real addresses. */ |
761 | info->prev_sp = d10v_make_daddr (prev_sp); | |
ceea5145 | 762 | info->base = d10v_make_daddr (this_base); |
c906108c | 763 | |
ceea5145 AC |
764 | /* Adjust all the saved registers so that they contain addresses and |
765 | not offsets. */ | |
c5aa993b | 766 | for (i = 0; i < NUM_REGS - 1; i++) |
3b3850e8 | 767 | if (trad_frame_addr_p (info->saved_regs, i)) |
c906108c | 768 | { |
a0f267c7 | 769 | info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); |
c906108c SS |
770 | } |
771 | ||
a0f267c7 AC |
772 | /* The call instruction moves the caller's PC in the callee's LR. |
773 | Since this is an unwind, do the reverse. Copy the location of LR | |
774 | into PC (the address / regnum) so that a request for PC will be | |
775 | converted into a request for the LR. */ | |
776 | info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM]; | |
777 | ||
778 | /* The previous frame's SP needed to be computed. Save the computed | |
779 | value. */ | |
3b3850e8 AC |
780 | trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM, |
781 | d10v_make_daddr (prev_sp)); | |
c906108c | 782 | |
7f6104a9 | 783 | return info; |
c906108c SS |
784 | } |
785 | ||
786 | static void | |
5f601589 AC |
787 | d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, |
788 | struct frame_info *frame, int regnum, int all) | |
c906108c | 789 | { |
f6684c31 | 790 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
5f601589 | 791 | if (regnum >= 0) |
4ce44c66 | 792 | { |
5f601589 AC |
793 | default_print_registers_info (gdbarch, file, frame, regnum, all); |
794 | return; | |
4ce44c66 | 795 | } |
5f601589 AC |
796 | |
797 | { | |
798 | ULONGEST pc, psw, rpt_s, rpt_e, rpt_c; | |
7f5f525d AC |
799 | pc = get_frame_register_unsigned (frame, D10V_PC_REGNUM); |
800 | psw = get_frame_register_unsigned (frame, PSW_REGNUM); | |
801 | rpt_s = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_s", -1)); | |
802 | rpt_e = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_e", -1)); | |
803 | rpt_c = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_c", -1)); | |
5f601589 AC |
804 | fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n", |
805 | (long) pc, (long) d10v_make_iaddr (pc), (long) psw, | |
806 | (long) rpt_s, (long) rpt_e, (long) rpt_c); | |
807 | } | |
808 | ||
809 | { | |
810 | int group; | |
811 | for (group = 0; group < 16; group += 8) | |
812 | { | |
813 | int r; | |
814 | fprintf_filtered (file, "R%d-R%-2d", group, group + 7); | |
815 | for (r = group; r < group + 8; r++) | |
816 | { | |
817 | ULONGEST tmp; | |
7f5f525d | 818 | tmp = get_frame_register_unsigned (frame, r); |
5f601589 AC |
819 | fprintf_filtered (file, " %04lx", (long) tmp); |
820 | } | |
821 | fprintf_filtered (file, "\n"); | |
822 | } | |
823 | } | |
824 | ||
825 | /* Note: The IMAP/DMAP registers don't participate in function | |
826 | calls. Don't bother trying to unwind them. */ | |
827 | ||
6789195b | 828 | { |
5f601589 AC |
829 | int a; |
830 | for (a = 0; a < NR_IMAP_REGS; a++) | |
831 | { | |
832 | if (a > 0) | |
833 | fprintf_filtered (file, " "); | |
f6684c31 AC |
834 | fprintf_filtered (file, "IMAP%d %04lx", a, |
835 | tdep->imap_register (current_regcache, a)); | |
5f601589 | 836 | } |
f75493ed | 837 | if (nr_dmap_regs (gdbarch) == 1) |
5f601589 | 838 | /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */ |
f6684c31 AC |
839 | fprintf_filtered (file, " DMAP %04lx\n", |
840 | tdep->dmap_register (current_regcache, 2)); | |
5f601589 AC |
841 | else |
842 | { | |
f75493ed | 843 | for (a = 0; a < nr_dmap_regs (gdbarch); a++) |
5f601589 | 844 | { |
f6684c31 AC |
845 | fprintf_filtered (file, " DMAP%d %04lx", a, |
846 | tdep->dmap_register (current_regcache, a)); | |
5f601589 AC |
847 | } |
848 | fprintf_filtered (file, "\n"); | |
849 | } | |
850 | } | |
851 | ||
852 | { | |
0c92afe8 | 853 | char num[MAX_REGISTER_SIZE]; |
5f601589 AC |
854 | int a; |
855 | fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1); | |
f75493ed | 856 | for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++) |
6789195b AC |
857 | { |
858 | int i; | |
5f601589 | 859 | fprintf_filtered (file, " "); |
7f5f525d | 860 | get_frame_register (frame, a, num); |
ae1e7417 | 861 | for (i = 0; i < register_size (gdbarch, a); i++) |
6789195b | 862 | { |
5f601589 | 863 | fprintf_filtered (file, "%02x", (num[i] & 0xff)); |
6789195b AC |
864 | } |
865 | } | |
866 | } | |
5f601589 AC |
867 | fprintf_filtered (file, "\n"); |
868 | } | |
869 | ||
870 | static void | |
871 | show_regs (char *args, int from_tty) | |
872 | { | |
873 | d10v_print_registers_info (current_gdbarch, gdb_stdout, | |
874 | get_current_frame (), -1, 1); | |
c906108c SS |
875 | } |
876 | ||
f5e1cf12 | 877 | static CORE_ADDR |
39f77062 | 878 | d10v_read_pc (ptid_t ptid) |
c906108c | 879 | { |
39f77062 | 880 | ptid_t save_ptid; |
c906108c SS |
881 | CORE_ADDR pc; |
882 | CORE_ADDR retval; | |
883 | ||
39f77062 KB |
884 | save_ptid = inferior_ptid; |
885 | inferior_ptid = ptid; | |
27d94c49 | 886 | pc = (int) read_register (D10V_PC_REGNUM); |
39f77062 | 887 | inferior_ptid = save_ptid; |
7b570125 | 888 | retval = d10v_make_iaddr (pc); |
c906108c SS |
889 | return retval; |
890 | } | |
891 | ||
f5e1cf12 | 892 | static void |
39f77062 | 893 | d10v_write_pc (CORE_ADDR val, ptid_t ptid) |
c906108c | 894 | { |
39f77062 | 895 | ptid_t save_ptid; |
c906108c | 896 | |
39f77062 KB |
897 | save_ptid = inferior_ptid; |
898 | inferior_ptid = ptid; | |
27d94c49 | 899 | write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val)); |
39f77062 | 900 | inferior_ptid = save_ptid; |
c906108c SS |
901 | } |
902 | ||
f5e1cf12 | 903 | static CORE_ADDR |
a9e5fdc2 | 904 | d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) |
c906108c | 905 | { |
a9e5fdc2 AC |
906 | ULONGEST sp; |
907 | frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp); | |
908 | return d10v_make_daddr (sp); | |
c906108c SS |
909 | } |
910 | ||
7a292a7a | 911 | /* When arguments must be pushed onto the stack, they go on in reverse |
db72fa6b | 912 | order. The below implements a FILO (stack) to do this. */ |
7a292a7a SS |
913 | |
914 | struct stack_item | |
915 | { | |
916 | int len; | |
917 | struct stack_item *prev; | |
918 | void *data; | |
919 | }; | |
920 | ||
a14ed312 KB |
921 | static struct stack_item *push_stack_item (struct stack_item *prev, |
922 | void *contents, int len); | |
7a292a7a | 923 | static struct stack_item * |
fba45db2 | 924 | push_stack_item (struct stack_item *prev, void *contents, int len) |
7a292a7a SS |
925 | { |
926 | struct stack_item *si; | |
927 | si = xmalloc (sizeof (struct stack_item)); | |
928 | si->data = xmalloc (len); | |
929 | si->len = len; | |
930 | si->prev = prev; | |
931 | memcpy (si->data, contents, len); | |
932 | return si; | |
933 | } | |
934 | ||
a14ed312 | 935 | static struct stack_item *pop_stack_item (struct stack_item *si); |
7a292a7a | 936 | static struct stack_item * |
fba45db2 | 937 | pop_stack_item (struct stack_item *si) |
7a292a7a SS |
938 | { |
939 | struct stack_item *dead = si; | |
940 | si = si->prev; | |
b8c9b27d KB |
941 | xfree (dead->data); |
942 | xfree (dead); | |
7a292a7a SS |
943 | return si; |
944 | } | |
945 | ||
946 | ||
7043d8dc AC |
947 | static CORE_ADDR |
948 | d10v_push_dummy_code (struct gdbarch *gdbarch, | |
949 | CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, | |
950 | struct value **args, int nargs, | |
951 | struct type *value_type, | |
952 | CORE_ADDR *real_pc, CORE_ADDR *bp_addr) | |
953 | { | |
954 | /* Allocate space sufficient for a breakpoint. */ | |
955 | sp = (sp - 4) & ~3; | |
956 | /* Store the address of that breakpoint taking care to first convert | |
957 | it into a code (IADDR) address from a stack (DADDR) address. | |
958 | This of course assumes that the two virtual addresses map onto | |
959 | the same real address. */ | |
960 | (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp)); | |
961 | /* d10v always starts the call at the callee's entry point. */ | |
962 | (*real_pc) = funaddr; | |
963 | return sp; | |
964 | } | |
965 | ||
f5e1cf12 | 966 | static CORE_ADDR |
6a65450a AC |
967 | d10v_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
968 | struct regcache *regcache, CORE_ADDR bp_addr, | |
db72fa6b MS |
969 | int nargs, struct value **args, CORE_ADDR sp, |
970 | int struct_return, CORE_ADDR struct_addr) | |
c906108c SS |
971 | { |
972 | int i; | |
973 | int regnum = ARG1_REGNUM; | |
7a292a7a | 974 | struct stack_item *si = NULL; |
7bd91a28 MS |
975 | long val; |
976 | ||
5873a88d | 977 | /* Set the return address. For the d10v, the return breakpoint is |
6a65450a | 978 | always at BP_ADDR. */ |
5873a88d | 979 | regcache_cooked_write_unsigned (regcache, LR_REGNUM, |
6a65450a | 980 | d10v_convert_iaddr_to_raw (bp_addr)); |
5873a88d | 981 | |
4183d812 AC |
982 | /* If STRUCT_RETURN is true, then the struct return address (in |
983 | STRUCT_ADDR) will consume the first argument-passing register. | |
984 | Both adjust the register count and store that value. */ | |
7bd91a28 | 985 | if (struct_return) |
4183d812 | 986 | { |
5873a88d | 987 | regcache_cooked_write_unsigned (regcache, regnum, struct_addr); |
4183d812 AC |
988 | regnum++; |
989 | } | |
c5aa993b | 990 | |
c906108c SS |
991 | /* Fill in registers and arg lists */ |
992 | for (i = 0; i < nargs; i++) | |
993 | { | |
ea7c478f | 994 | struct value *arg = args[i]; |
c906108c SS |
995 | struct type *type = check_typedef (VALUE_TYPE (arg)); |
996 | char *contents = VALUE_CONTENTS (arg); | |
997 | int len = TYPE_LENGTH (type); | |
7bd91a28 MS |
998 | int aligned_regnum = (regnum + 1) & ~1; |
999 | ||
8b279e7a | 1000 | /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */ |
7bd91a28 MS |
1001 | if (len <= 2 && regnum <= ARGN_REGNUM) |
1002 | /* fits in a single register, do not align */ | |
1003 | { | |
1004 | val = extract_unsigned_integer (contents, len); | |
5873a88d | 1005 | regcache_cooked_write_unsigned (regcache, regnum++, val); |
7bd91a28 MS |
1006 | } |
1007 | else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2) | |
1008 | /* value fits in remaining registers, store keeping left | |
1009 | aligned */ | |
c906108c | 1010 | { |
7bd91a28 MS |
1011 | int b; |
1012 | regnum = aligned_regnum; | |
1013 | for (b = 0; b < (len & ~1); b += 2) | |
c906108c | 1014 | { |
7bd91a28 | 1015 | val = extract_unsigned_integer (&contents[b], 2); |
5873a88d | 1016 | regcache_cooked_write_unsigned (regcache, regnum++, val); |
c906108c | 1017 | } |
7bd91a28 | 1018 | if (b < len) |
c906108c | 1019 | { |
7bd91a28 | 1020 | val = extract_unsigned_integer (&contents[b], 1); |
5873a88d | 1021 | regcache_cooked_write_unsigned (regcache, regnum++, (val << 8)); |
c906108c SS |
1022 | } |
1023 | } | |
7bd91a28 MS |
1024 | else |
1025 | { | |
1026 | /* arg will go onto stack */ | |
1027 | regnum = ARGN_REGNUM + 1; | |
1028 | si = push_stack_item (si, contents, len); | |
1029 | } | |
c906108c | 1030 | } |
7a292a7a SS |
1031 | |
1032 | while (si) | |
1033 | { | |
1034 | sp = (sp - si->len) & ~1; | |
1035 | write_memory (sp, si->data, si->len); | |
1036 | si = pop_stack_item (si); | |
1037 | } | |
c5aa993b | 1038 | |
5873a88d | 1039 | /* Finally, update the SP register. */ |
f75493ed | 1040 | regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM, |
5873a88d AC |
1041 | d10v_convert_daddr_to_raw (sp)); |
1042 | ||
c906108c SS |
1043 | return sp; |
1044 | } | |
1045 | ||
1046 | ||
1047 | /* Given a return value in `regbuf' with a type `valtype', | |
1048 | extract and copy its value into `valbuf'. */ | |
1049 | ||
f5e1cf12 | 1050 | static void |
fa1fd571 AC |
1051 | d10v_extract_return_value (struct type *type, struct regcache *regcache, |
1052 | void *valbuf) | |
c906108c SS |
1053 | { |
1054 | int len; | |
fa1fd571 | 1055 | if (TYPE_LENGTH (type) == 1) |
c906108c | 1056 | { |
fa1fd571 AC |
1057 | ULONGEST c; |
1058 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c); | |
3d79a47c MS |
1059 | store_unsigned_integer (valbuf, 1, c); |
1060 | } | |
3d79a47c MS |
1061 | else |
1062 | { | |
1063 | /* For return values of odd size, the first byte is in the | |
1064 | least significant part of the first register. The | |
fa1fd571 AC |
1065 | remaining bytes in remaining registers. Interestingly, when |
1066 | such values are passed in, the last byte is in the most | |
db72fa6b | 1067 | significant byte of that same register - wierd. */ |
fa1fd571 AC |
1068 | int reg = RET1_REGNUM; |
1069 | int off = 0; | |
1070 | if (TYPE_LENGTH (type) & 1) | |
1071 | { | |
1072 | regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1, | |
1073 | (bfd_byte *)valbuf + off); | |
1074 | off++; | |
1075 | reg++; | |
1076 | } | |
1077 | /* Transfer the remaining registers. */ | |
1078 | for (; off < TYPE_LENGTH (type); reg++, off += 2) | |
1079 | { | |
1080 | regcache_cooked_read (regcache, RET1_REGNUM + reg, | |
1081 | (bfd_byte *) valbuf + off); | |
1082 | } | |
c906108c SS |
1083 | } |
1084 | } | |
1085 | ||
c2c6d25f JM |
1086 | /* Translate a GDB virtual ADDR/LEN into a format the remote target |
1087 | understands. Returns number of bytes that can be transfered | |
4ce44c66 JM |
1088 | starting at TARG_ADDR. Return ZERO if no bytes can be transfered |
1089 | (segmentation fault). Since the simulator knows all about how the | |
db72fa6b | 1090 | VM system works, we just call that to do the translation. */ |
c2c6d25f | 1091 | |
4ce44c66 | 1092 | static void |
f6684c31 AC |
1093 | remote_d10v_translate_xfer_address (struct gdbarch *gdbarch, |
1094 | struct regcache *regcache, | |
1095 | CORE_ADDR memaddr, int nr_bytes, | |
c2c6d25f JM |
1096 | CORE_ADDR *targ_addr, int *targ_len) |
1097 | { | |
f6684c31 | 1098 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
4ce44c66 JM |
1099 | long out_addr; |
1100 | long out_len; | |
f6684c31 AC |
1101 | out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache, |
1102 | tdep->dmap_register, tdep->imap_register); | |
4ce44c66 JM |
1103 | *targ_addr = out_addr; |
1104 | *targ_len = out_len; | |
c2c6d25f JM |
1105 | } |
1106 | ||
4ce44c66 | 1107 | |
c906108c SS |
1108 | /* The following code implements access to, and display of, the D10V's |
1109 | instruction trace buffer. The buffer consists of 64K or more | |
1110 | 4-byte words of data, of which each words includes an 8-bit count, | |
1111 | an 8-bit segment number, and a 16-bit instruction address. | |
1112 | ||
1113 | In theory, the trace buffer is continuously capturing instruction | |
1114 | data that the CPU presents on its "debug bus", but in practice, the | |
1115 | ROMified GDB stub only enables tracing when it continues or steps | |
1116 | the program, and stops tracing when the program stops; so it | |
1117 | actually works for GDB to read the buffer counter out of memory and | |
1118 | then read each trace word. The counter records where the tracing | |
1119 | stops, but there is no record of where it started, so we remember | |
1120 | the PC when we resumed and then search backwards in the trace | |
1121 | buffer for a word that includes that address. This is not perfect, | |
1122 | because you will miss trace data if the resumption PC is the target | |
1123 | of a branch. (The value of the buffer counter is semi-random, any | |
1124 | trace data from a previous program stop is gone.) */ | |
1125 | ||
1126 | /* The address of the last word recorded in the trace buffer. */ | |
1127 | ||
1128 | #define DBBC_ADDR (0xd80000) | |
1129 | ||
1130 | /* The base of the trace buffer, at least for the "Board_0". */ | |
1131 | ||
1132 | #define TRACE_BUFFER_BASE (0xf40000) | |
1133 | ||
a14ed312 | 1134 | static void trace_command (char *, int); |
c906108c | 1135 | |
a14ed312 | 1136 | static void untrace_command (char *, int); |
c906108c | 1137 | |
a14ed312 | 1138 | static void trace_info (char *, int); |
c906108c | 1139 | |
a14ed312 | 1140 | static void tdisassemble_command (char *, int); |
c906108c | 1141 | |
a14ed312 | 1142 | static void display_trace (int, int); |
c906108c SS |
1143 | |
1144 | /* True when instruction traces are being collected. */ | |
1145 | ||
1146 | static int tracing; | |
1147 | ||
1148 | /* Remembered PC. */ | |
1149 | ||
1150 | static CORE_ADDR last_pc; | |
1151 | ||
1152 | /* True when trace output should be displayed whenever program stops. */ | |
1153 | ||
1154 | static int trace_display; | |
1155 | ||
1156 | /* True when trace listing should include source lines. */ | |
1157 | ||
1158 | static int default_trace_show_source = 1; | |
1159 | ||
c5aa993b JM |
1160 | struct trace_buffer |
1161 | { | |
1162 | int size; | |
1163 | short *counts; | |
1164 | CORE_ADDR *addrs; | |
1165 | } | |
1166 | trace_data; | |
c906108c SS |
1167 | |
1168 | static void | |
fba45db2 | 1169 | trace_command (char *args, int from_tty) |
c906108c SS |
1170 | { |
1171 | /* Clear the host-side trace buffer, allocating space if needed. */ | |
1172 | trace_data.size = 0; | |
1173 | if (trace_data.counts == NULL) | |
f75493ed | 1174 | trace_data.counts = XCALLOC (65536, short); |
c906108c | 1175 | if (trace_data.addrs == NULL) |
f75493ed | 1176 | trace_data.addrs = XCALLOC (65536, CORE_ADDR); |
c906108c SS |
1177 | |
1178 | tracing = 1; | |
1179 | ||
1180 | printf_filtered ("Tracing is now on.\n"); | |
1181 | } | |
1182 | ||
1183 | static void | |
fba45db2 | 1184 | untrace_command (char *args, int from_tty) |
c906108c SS |
1185 | { |
1186 | tracing = 0; | |
1187 | ||
1188 | printf_filtered ("Tracing is now off.\n"); | |
1189 | } | |
1190 | ||
1191 | static void | |
fba45db2 | 1192 | trace_info (char *args, int from_tty) |
c906108c SS |
1193 | { |
1194 | int i; | |
1195 | ||
1196 | if (trace_data.size) | |
1197 | { | |
1198 | printf_filtered ("%d entries in trace buffer:\n", trace_data.size); | |
1199 | ||
1200 | for (i = 0; i < trace_data.size; ++i) | |
1201 | { | |
d4f3574e SS |
1202 | printf_filtered ("%d: %d instruction%s at 0x%s\n", |
1203 | i, | |
1204 | trace_data.counts[i], | |
c906108c | 1205 | (trace_data.counts[i] == 1 ? "" : "s"), |
d4f3574e | 1206 | paddr_nz (trace_data.addrs[i])); |
c906108c SS |
1207 | } |
1208 | } | |
1209 | else | |
1210 | printf_filtered ("No entries in trace buffer.\n"); | |
1211 | ||
1212 | printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off")); | |
1213 | } | |
1214 | ||
392a587b | 1215 | static void |
fba45db2 | 1216 | d10v_eva_prepare_to_trace (void) |
c906108c SS |
1217 | { |
1218 | if (!tracing) | |
1219 | return; | |
1220 | ||
27d94c49 | 1221 | last_pc = read_register (D10V_PC_REGNUM); |
c906108c SS |
1222 | } |
1223 | ||
1224 | /* Collect trace data from the target board and format it into a form | |
1225 | more useful for display. */ | |
1226 | ||
392a587b | 1227 | static void |
fba45db2 | 1228 | d10v_eva_get_trace_data (void) |
c906108c SS |
1229 | { |
1230 | int count, i, j, oldsize; | |
1231 | int trace_addr, trace_seg, trace_cnt, next_cnt; | |
1232 | unsigned int last_trace, trace_word, next_word; | |
1233 | unsigned int *tmpspace; | |
1234 | ||
1235 | if (!tracing) | |
1236 | return; | |
1237 | ||
c5aa993b | 1238 | tmpspace = xmalloc (65536 * sizeof (unsigned int)); |
c906108c SS |
1239 | |
1240 | last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2; | |
1241 | ||
1242 | /* Collect buffer contents from the target, stopping when we reach | |
1243 | the word recorded when execution resumed. */ | |
1244 | ||
1245 | count = 0; | |
1246 | while (last_trace > 0) | |
1247 | { | |
1248 | QUIT; | |
1249 | trace_word = | |
1250 | read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4); | |
1251 | trace_addr = trace_word & 0xffff; | |
1252 | last_trace -= 4; | |
1253 | /* Ignore an apparently nonsensical entry. */ | |
1254 | if (trace_addr == 0xffd5) | |
1255 | continue; | |
1256 | tmpspace[count++] = trace_word; | |
1257 | if (trace_addr == last_pc) | |
1258 | break; | |
1259 | if (count > 65535) | |
1260 | break; | |
1261 | } | |
1262 | ||
1263 | /* Move the data to the host-side trace buffer, adjusting counts to | |
1264 | include the last instruction executed and transforming the address | |
1265 | into something that GDB likes. */ | |
1266 | ||
1267 | for (i = 0; i < count; ++i) | |
1268 | { | |
1269 | trace_word = tmpspace[i]; | |
1270 | next_word = ((i == 0) ? 0 : tmpspace[i - 1]); | |
1271 | trace_addr = trace_word & 0xffff; | |
1272 | next_cnt = (next_word >> 24) & 0xff; | |
1273 | j = trace_data.size + count - i - 1; | |
1274 | trace_data.addrs[j] = (trace_addr << 2) + 0x1000000; | |
1275 | trace_data.counts[j] = next_cnt + 1; | |
1276 | } | |
1277 | ||
1278 | oldsize = trace_data.size; | |
1279 | trace_data.size += count; | |
1280 | ||
b8c9b27d | 1281 | xfree (tmpspace); |
c906108c SS |
1282 | |
1283 | if (trace_display) | |
1284 | display_trace (oldsize, trace_data.size); | |
1285 | } | |
1286 | ||
1287 | static void | |
fba45db2 | 1288 | tdisassemble_command (char *arg, int from_tty) |
c906108c SS |
1289 | { |
1290 | int i, count; | |
1291 | CORE_ADDR low, high; | |
c906108c SS |
1292 | |
1293 | if (!arg) | |
1294 | { | |
1295 | low = 0; | |
1296 | high = trace_data.size; | |
1297 | } | |
c906108c | 1298 | else |
e8933a55 AC |
1299 | { |
1300 | char *space_index = strchr (arg, ' '); | |
1301 | if (space_index == NULL) | |
1302 | { | |
1303 | low = parse_and_eval_address (arg); | |
1304 | high = low + 5; | |
1305 | } | |
1306 | else | |
1307 | { | |
1308 | /* Two arguments. */ | |
1309 | *space_index = '\0'; | |
1310 | low = parse_and_eval_address (arg); | |
1311 | high = parse_and_eval_address (space_index + 1); | |
1312 | if (high < low) | |
1313 | high = low; | |
1314 | } | |
c906108c SS |
1315 | } |
1316 | ||
db72fa6b MS |
1317 | printf_filtered ("Dump of trace from %s to %s:\n", |
1318 | paddr_u (low), paddr_u (high)); | |
c906108c SS |
1319 | |
1320 | display_trace (low, high); | |
1321 | ||
1322 | printf_filtered ("End of trace dump.\n"); | |
1323 | gdb_flush (gdb_stdout); | |
1324 | } | |
1325 | ||
1326 | static void | |
fba45db2 | 1327 | display_trace (int low, int high) |
c906108c SS |
1328 | { |
1329 | int i, count, trace_show_source, first, suppress; | |
1330 | CORE_ADDR next_address; | |
1331 | ||
1332 | trace_show_source = default_trace_show_source; | |
c5aa993b | 1333 | if (!have_full_symbols () && !have_partial_symbols ()) |
c906108c SS |
1334 | { |
1335 | trace_show_source = 0; | |
1336 | printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n"); | |
1337 | printf_filtered ("Trace will not display any source.\n"); | |
1338 | } | |
1339 | ||
1340 | first = 1; | |
1341 | suppress = 0; | |
1342 | for (i = low; i < high; ++i) | |
1343 | { | |
1344 | next_address = trace_data.addrs[i]; | |
c5aa993b | 1345 | count = trace_data.counts[i]; |
c906108c SS |
1346 | while (count-- > 0) |
1347 | { | |
1348 | QUIT; | |
1349 | if (trace_show_source) | |
1350 | { | |
1351 | struct symtab_and_line sal, sal_prev; | |
1352 | ||
1353 | sal_prev = find_pc_line (next_address - 4, 0); | |
1354 | sal = find_pc_line (next_address, 0); | |
1355 | ||
1356 | if (sal.symtab) | |
1357 | { | |
1358 | if (first || sal.line != sal_prev.line) | |
1359 | print_source_lines (sal.symtab, sal.line, sal.line + 1, 0); | |
1360 | suppress = 0; | |
1361 | } | |
1362 | else | |
1363 | { | |
1364 | if (!suppress) | |
1365 | /* FIXME-32x64--assumes sal.pc fits in long. */ | |
1366 | printf_filtered ("No source file for address %s.\n", | |
c5aa993b | 1367 | local_hex_string ((unsigned long) sal.pc)); |
c906108c SS |
1368 | suppress = 1; |
1369 | } | |
1370 | } | |
1371 | first = 0; | |
1372 | print_address (next_address, gdb_stdout); | |
1373 | printf_filtered (":"); | |
1374 | printf_filtered ("\t"); | |
1375 | wrap_here (" "); | |
92bf2b80 | 1376 | next_address += gdb_print_insn (next_address, gdb_stdout); |
c906108c SS |
1377 | printf_filtered ("\n"); |
1378 | gdb_flush (gdb_stdout); | |
1379 | } | |
1380 | } | |
1381 | } | |
1382 | ||
7f6104a9 | 1383 | static CORE_ADDR |
12cc2063 | 1384 | d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
7f6104a9 | 1385 | { |
12cc2063 | 1386 | ULONGEST pc; |
27d94c49 | 1387 | frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc); |
12cc2063 | 1388 | return d10v_make_iaddr (pc); |
7f6104a9 AC |
1389 | } |
1390 | ||
1391 | /* Given a GDB frame, determine the address of the calling function's | |
1392 | frame. This will be used to create a new GDB frame struct. */ | |
1393 | ||
1394 | static void | |
6dc42492 AC |
1395 | d10v_frame_this_id (struct frame_info *next_frame, |
1396 | void **this_prologue_cache, | |
1397 | struct frame_id *this_id) | |
7f6104a9 | 1398 | { |
6dc42492 AC |
1399 | struct d10v_unwind_cache *info |
1400 | = d10v_frame_unwind_cache (next_frame, this_prologue_cache); | |
1401 | CORE_ADDR base; | |
81f8a206 AC |
1402 | CORE_ADDR func; |
1403 | struct frame_id id; | |
7f6104a9 | 1404 | |
81f8a206 AC |
1405 | /* The FUNC is easy. */ |
1406 | func = frame_func_unwind (next_frame); | |
7f6104a9 | 1407 | |
6dc42492 AC |
1408 | /* Hopefully the prologue analysis either correctly determined the |
1409 | frame's base (which is the SP from the previous frame), or set | |
1410 | that base to "NULL". */ | |
270cb5d6 | 1411 | base = info->prev_sp; |
6dc42492 AC |
1412 | if (base == STACK_START || base == 0) |
1413 | return; | |
7f6104a9 | 1414 | |
81f8a206 AC |
1415 | id = frame_id_build (base, func); |
1416 | ||
81f8a206 | 1417 | (*this_id) = id; |
7f6104a9 AC |
1418 | } |
1419 | ||
7f6104a9 | 1420 | static void |
6dc42492 AC |
1421 | d10v_frame_prev_register (struct frame_info *next_frame, |
1422 | void **this_prologue_cache, | |
1423 | int regnum, int *optimizedp, | |
1424 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1425 | int *realnump, void *bufferp) | |
7f6104a9 | 1426 | { |
6dc42492 AC |
1427 | struct d10v_unwind_cache *info |
1428 | = d10v_frame_unwind_cache (next_frame, this_prologue_cache); | |
a0f267c7 AC |
1429 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, |
1430 | optimizedp, lvalp, addrp, realnump, bufferp); | |
7f6104a9 AC |
1431 | } |
1432 | ||
270cb5d6 | 1433 | static const struct frame_unwind d10v_frame_unwind = { |
7df05f2b | 1434 | NORMAL_FRAME, |
6dc42492 AC |
1435 | d10v_frame_this_id, |
1436 | d10v_frame_prev_register | |
7f6104a9 AC |
1437 | }; |
1438 | ||
b9362cc7 | 1439 | static const struct frame_unwind * |
336d1bba | 1440 | d10v_frame_sniffer (struct frame_info *next_frame) |
7f6104a9 AC |
1441 | { |
1442 | return &d10v_frame_unwind; | |
1443 | } | |
1444 | ||
270cb5d6 AC |
1445 | static CORE_ADDR |
1446 | d10v_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
1447 | { | |
1448 | struct d10v_unwind_cache *info | |
1449 | = d10v_frame_unwind_cache (next_frame, this_cache); | |
1450 | return info->base; | |
1451 | } | |
1452 | ||
1453 | static const struct frame_base d10v_frame_base = { | |
1454 | &d10v_frame_unwind, | |
1455 | d10v_frame_base_address, | |
1456 | d10v_frame_base_address, | |
1457 | d10v_frame_base_address | |
1458 | }; | |
1459 | ||
6314f104 AC |
1460 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
1461 | dummy frame. The frame ID's base needs to match the TOS value | |
1462 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1463 | breakpoint. */ | |
1464 | ||
1465 | static struct frame_id | |
1466 | d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1467 | { | |
3e210248 AC |
1468 | return frame_id_build (d10v_unwind_sp (gdbarch, next_frame), |
1469 | frame_pc_unwind (next_frame)); | |
6314f104 AC |
1470 | } |
1471 | ||
0f71a2f6 | 1472 | static gdbarch_init_ftype d10v_gdbarch_init; |
4ce44c66 | 1473 | |
0f71a2f6 | 1474 | static struct gdbarch * |
fba45db2 | 1475 | d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
0f71a2f6 | 1476 | { |
0f71a2f6 | 1477 | struct gdbarch *gdbarch; |
4ce44c66 JM |
1478 | int d10v_num_regs; |
1479 | struct gdbarch_tdep *tdep; | |
1480 | gdbarch_register_name_ftype *d10v_register_name; | |
7c7651b2 | 1481 | gdbarch_register_sim_regno_ftype *d10v_register_sim_regno; |
0f71a2f6 | 1482 | |
db72fa6b | 1483 | /* Find a candidate among the list of pre-declared architectures. */ |
4ce44c66 | 1484 | arches = gdbarch_list_lookup_by_info (arches, &info); |
0f71a2f6 JM |
1485 | if (arches != NULL) |
1486 | return arches->gdbarch; | |
4ce44c66 JM |
1487 | |
1488 | /* None found, create a new architecture from the information | |
db72fa6b | 1489 | provided. */ |
4ce44c66 JM |
1490 | tdep = XMALLOC (struct gdbarch_tdep); |
1491 | gdbarch = gdbarch_alloc (&info, tdep); | |
1492 | ||
1493 | switch (info.bfd_arch_info->mach) | |
1494 | { | |
1495 | case bfd_mach_d10v_ts2: | |
1496 | d10v_num_regs = 37; | |
1497 | d10v_register_name = d10v_ts2_register_name; | |
7c7651b2 | 1498 | d10v_register_sim_regno = d10v_ts2_register_sim_regno; |
4ce44c66 JM |
1499 | tdep->a0_regnum = TS2_A0_REGNUM; |
1500 | tdep->nr_dmap_regs = TS2_NR_DMAP_REGS; | |
4ce44c66 JM |
1501 | tdep->dmap_register = d10v_ts2_dmap_register; |
1502 | tdep->imap_register = d10v_ts2_imap_register; | |
1503 | break; | |
1504 | default: | |
1505 | case bfd_mach_d10v_ts3: | |
1506 | d10v_num_regs = 42; | |
1507 | d10v_register_name = d10v_ts3_register_name; | |
7c7651b2 | 1508 | d10v_register_sim_regno = d10v_ts3_register_sim_regno; |
4ce44c66 JM |
1509 | tdep->a0_regnum = TS3_A0_REGNUM; |
1510 | tdep->nr_dmap_regs = TS3_NR_DMAP_REGS; | |
4ce44c66 JM |
1511 | tdep->dmap_register = d10v_ts3_dmap_register; |
1512 | tdep->imap_register = d10v_ts3_imap_register; | |
1513 | break; | |
1514 | } | |
0f71a2f6 JM |
1515 | |
1516 | set_gdbarch_read_pc (gdbarch, d10v_read_pc); | |
1517 | set_gdbarch_write_pc (gdbarch, d10v_write_pc); | |
a9e5fdc2 | 1518 | set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp); |
0f71a2f6 JM |
1519 | |
1520 | set_gdbarch_num_regs (gdbarch, d10v_num_regs); | |
f75493ed | 1521 | set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM); |
0f71a2f6 | 1522 | set_gdbarch_register_name (gdbarch, d10v_register_name); |
35cac7cf | 1523 | set_gdbarch_register_type (gdbarch, d10v_register_type); |
0f71a2f6 | 1524 | |
75af7f68 JB |
1525 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
1526 | set_gdbarch_addr_bit (gdbarch, 32); | |
1527 | set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer); | |
1528 | set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address); | |
fc0c74b1 | 1529 | set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address); |
0f71a2f6 JM |
1530 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
1531 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1532 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
02da6206 | 1533 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
f0d4cc9e | 1534 | /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long |
db72fa6b | 1535 | double'' is 64 bits. */ |
0f71a2f6 JM |
1536 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
1537 | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1538 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
f0d4cc9e AC |
1539 | switch (info.byte_order) |
1540 | { | |
d7449b42 | 1541 | case BFD_ENDIAN_BIG: |
f0d4cc9e AC |
1542 | set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); |
1543 | set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big); | |
1544 | set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big); | |
1545 | break; | |
778eb05e | 1546 | case BFD_ENDIAN_LITTLE: |
f0d4cc9e AC |
1547 | set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); |
1548 | set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little); | |
db72fa6b MS |
1549 | set_gdbarch_long_double_format (gdbarch, |
1550 | &floatformat_ieee_double_little); | |
f0d4cc9e AC |
1551 | break; |
1552 | default: | |
8e65ff28 AC |
1553 | internal_error (__FILE__, __LINE__, |
1554 | "d10v_gdbarch_init: bad byte order for float format"); | |
f0d4cc9e | 1555 | } |
0f71a2f6 | 1556 | |
fa1fd571 | 1557 | set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value); |
7043d8dc | 1558 | set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code); |
5873a88d | 1559 | set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call); |
fa1fd571 | 1560 | set_gdbarch_store_return_value (gdbarch, d10v_store_return_value); |
db72fa6b MS |
1561 | set_gdbarch_extract_struct_value_address (gdbarch, |
1562 | d10v_extract_struct_value_address); | |
0f71a2f6 JM |
1563 | set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention); |
1564 | ||
0f71a2f6 JM |
1565 | set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue); |
1566 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1567 | set_gdbarch_decr_pc_after_break (gdbarch, 4); | |
1568 | set_gdbarch_function_start_offset (gdbarch, 0); | |
1569 | set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc); | |
1570 | ||
db72fa6b MS |
1571 | set_gdbarch_remote_translate_xfer_address (gdbarch, |
1572 | remote_d10v_translate_xfer_address); | |
0f71a2f6 JM |
1573 | |
1574 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
db72fa6b MS |
1575 | set_gdbarch_frameless_function_invocation (gdbarch, |
1576 | frameless_look_for_prologue); | |
f4ded5b1 | 1577 | |
6ae2f580 | 1578 | set_gdbarch_frame_align (gdbarch, d10v_frame_align); |
0f71a2f6 | 1579 | |
7c7651b2 AC |
1580 | set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno); |
1581 | ||
5f601589 AC |
1582 | set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info); |
1583 | ||
336d1bba | 1584 | frame_unwind_append_sniffer (gdbarch, d10v_frame_sniffer); |
270cb5d6 | 1585 | frame_base_set_default (gdbarch, &d10v_frame_base); |
7f6104a9 | 1586 | |
3e210248 AC |
1587 | /* Methods for saving / extracting a dummy frame's ID. The ID's |
1588 | stack address must match the SP value returned by | |
1589 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
6314f104 | 1590 | set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id); |
6314f104 | 1591 | |
12cc2063 AC |
1592 | /* Return the unwound PC value. */ |
1593 | set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc); | |
1594 | ||
0ef21242 AC |
1595 | set_gdbarch_print_insn (gdbarch, print_insn_d10v); |
1596 | ||
0f71a2f6 JM |
1597 | return gdbarch; |
1598 | } | |
1599 | ||
c906108c | 1600 | void |
fba45db2 | 1601 | _initialize_d10v_tdep (void) |
c906108c | 1602 | { |
0f71a2f6 JM |
1603 | register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init); |
1604 | ||
c906108c SS |
1605 | target_resume_hook = d10v_eva_prepare_to_trace; |
1606 | target_wait_loop_hook = d10v_eva_get_trace_data; | |
1607 | ||
db72fa6b MS |
1608 | deprecate_cmd (add_com ("regs", class_vars, show_regs, |
1609 | "Print all registers"), | |
5f601589 | 1610 | "info registers"); |
c906108c | 1611 | |
cff3e48b | 1612 | add_com ("itrace", class_support, trace_command, |
c906108c SS |
1613 | "Enable tracing of instruction execution."); |
1614 | ||
cff3e48b | 1615 | add_com ("iuntrace", class_support, untrace_command, |
c906108c SS |
1616 | "Disable tracing of instruction execution."); |
1617 | ||
cff3e48b | 1618 | add_com ("itdisassemble", class_vars, tdisassemble_command, |
c906108c SS |
1619 | "Disassemble the trace buffer.\n\ |
1620 | Two optional arguments specify a range of trace buffer entries\n\ | |
1621 | as reported by info trace (NOT addresses!)."); | |
1622 | ||
cff3e48b | 1623 | add_info ("itrace", trace_info, |
c906108c SS |
1624 | "Display info about the trace data buffer."); |
1625 | ||
f75493ed AC |
1626 | add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display, |
1627 | "Set automatic display of trace.\n", | |
1628 | "Show automatic display of trace.\n", | |
1629 | NULL, NULL, &setlist, &showlist); | |
1630 | add_setshow_boolean_cmd ("itracesource", no_class, | |
1631 | &default_trace_show_source, | |
1632 | "Set display of source code with trace.\n", | |
1633 | "Show display of source code with trace.\n", | |
1634 | NULL, NULL, &setlist, &showlist); | |
c5aa993b | 1635 | } |