#include "key.h"
+#include "arith_uint256.h"
+#include "crypto/common.h"
#include "crypto/hmac_sha512.h"
-#include "crypto/rfc6979_hmac_sha256.h"
#include "eccryptoverify.h"
#include "pubkey.h"
#include "random.h"
#include <secp256k1.h>
#include "ecwrapper.h"
-//! anonymous namespace
-namespace {
-
-class CSecp256k1Init {
-public:
- CSecp256k1Init() {
- secp256k1_start(SECP256K1_START_SIGN);
- }
- ~CSecp256k1Init() {
- secp256k1_stop();
- }
-};
-static CSecp256k1Init instance_of_csecp256k1;
-
-} // anon namespace
+static secp256k1_context_t* secp256k1_context = NULL;
bool CKey::Check(const unsigned char *vch) {
return eccrypto::Check(vch);
}
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
- if (!secp256k1_ec_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size()))
+ if (!secp256k1_ec_privkey_import(secp256k1_context, (unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
fCompressed = fCompressedIn;
fValid = true;
int privkeylen, ret;
privkey.resize(279);
privkeylen = 279;
- ret = secp256k1_ec_privkey_export(begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed);
+ ret = secp256k1_ec_privkey_export(secp256k1_context, begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed);
assert(ret);
privkey.resize(privkeylen);
return privkey;
assert(fValid);
CPubKey result;
int clen = 65;
- int ret = secp256k1_ec_pubkey_create((unsigned char*)result.begin(), &clen, begin(), fCompressed);
+ int ret = secp256k1_ec_pubkey_create(secp256k1_context, (unsigned char*)result.begin(), &clen, begin(), fCompressed);
assert((int)result.size() == clen);
assert(ret);
assert(result.IsValid());
if (!fValid)
return false;
vchSig.resize(72);
- RFC6979_HMAC_SHA256 prng(begin(), 32, (unsigned char*)&hash, 32);
- do {
- uint256 nonce;
- prng.Generate((unsigned char*)&nonce, 32);
- nonce += test_case;
- int nSigLen = 72;
- int ret = secp256k1_ecdsa_sign((const unsigned char*)&hash, (unsigned char*)&vchSig[0], &nSigLen, begin(), (unsigned char*)&nonce);
- nonce = 0;
- if (ret) {
- vchSig.resize(nSigLen);
- return true;
- }
- } while(true);
+ int nSigLen = 72;
+ unsigned char extra_entropy[32] = {0};
+ WriteLE32(extra_entropy, test_case);
+ int ret = secp256k1_ecdsa_sign(secp256k1_context, hash.begin(), (unsigned char*)&vchSig[0], &nSigLen, begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL);
+ assert(ret);
+ vchSig.resize(nSigLen);
+ return true;
}
bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
std::string str = "Bitcoin key verification\n";
GetRandBytes(rnd, sizeof(rnd));
uint256 hash;
- CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize((unsigned char*)&hash);
+ CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin());
std::vector<unsigned char> vchSig;
Sign(hash, vchSig);
return pubkey.Verify(hash, vchSig);
return false;
vchSig.resize(65);
int rec = -1;
- RFC6979_HMAC_SHA256 prng(begin(), 32, (unsigned char*)&hash, 32);
- do {
- uint256 nonce;
- prng.Generate((unsigned char*)&nonce, 32);
- int ret = secp256k1_ecdsa_sign_compact((const unsigned char*)&hash, &vchSig[1], begin(), (unsigned char*)&nonce, &rec);
- nonce = 0;
- if (ret)
- break;
- } while(true);
+ int ret = secp256k1_ecdsa_sign_compact(secp256k1_context, hash.begin(), &vchSig[1], begin(), secp256k1_nonce_function_rfc6979, NULL, &rec);
+ assert(ret);
assert(rec != -1);
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
return true;
}
bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
- if (!secp256k1_ec_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size()))
+ if (!secp256k1_ec_privkey_import(secp256k1_context, (unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
fCompressed = vchPubKey.IsCompressed();
fValid = true;
return VerifyPubKey(vchPubKey);
}
-bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const {
+bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
assert(IsValid());
assert(IsCompressed());
unsigned char out[64];
assert(begin() + 32 == end());
BIP32Hash(cc, nChild, 0, begin(), out);
}
- memcpy(ccChild, out+32, 32);
+ memcpy(ccChild.begin(), out+32, 32);
memcpy((unsigned char*)keyChild.begin(), begin(), 32);
- bool ret = secp256k1_ec_privkey_tweak_add((unsigned char*)keyChild.begin(), out);
+ bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context, (unsigned char*)keyChild.begin(), out);
UnlockObject(out);
keyChild.fCompressed = true;
keyChild.fValid = ret;
CKeyID id = key.GetPubKey().GetID();
memcpy(&out.vchFingerprint[0], &id, 4);
out.nChild = nChild;
- return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode);
+ return key.Derive(out.key, out.chaincode, nChild, chaincode);
}
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
LockObject(out);
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
key.Set(&out[0], &out[32], true);
- memcpy(vchChainCode, &out[32], 32);
+ memcpy(chaincode.begin(), &out[32], 32);
UnlockObject(out);
nDepth = 0;
nChild = 0;
memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
ret.nChild = nChild;
ret.pubkey = key.GetPubKey();
- memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32);
+ ret.chaincode = chaincode;
return ret;
}
memcpy(code+1, vchFingerprint, 4);
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
- memcpy(code+9, vchChainCode, 32);
+ memcpy(code+9, chaincode.begin(), 32);
code[41] = 0;
assert(key.size() == 32);
memcpy(code+42, key.begin(), 32);
nDepth = code[0];
memcpy(vchFingerprint, code+1, 4);
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
- memcpy(vchChainCode, code+9, 32);
+ memcpy(chaincode.begin(), code+9, 32);
key.Set(code+42, code+74, true);
}
bool ECC_InitSanityCheck() {
-#if !defined(USE_SECP256K1)
if (!CECKey::SanityCheck()) {
return false;
}
-#endif
CKey key;
key.MakeNewKey(true);
CPubKey pubkey = key.GetPubKey();
return key.VerifyPubKey(pubkey);
}
+
+
+void ECC_Start() {
+ assert(secp256k1_context == NULL);
+
+ secp256k1_context_t *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ assert(ctx != NULL);
+
+ {
+ // Pass in a random blinding seed to the secp256k1 context.
+ unsigned char seed[32];
+ LockObject(seed);
+ GetRandBytes(seed, 32);
+ bool ret = secp256k1_context_randomize(ctx, seed);
+ assert(ret);
+ UnlockObject(seed);
+ }
+
+ secp256k1_context = ctx;
+}
+
+void ECC_Stop() {
+ secp256k1_context_t *ctx = secp256k1_context;
+ secp256k1_context = NULL;
+
+ if (ctx) {
+ secp256k1_context_destroy(ctx);
+ }
+}