]>
Commit | Line | Data |
---|---|---|
6d25662f JG |
1 | // Copyright (c) 2016 Jack Grigg |
2 | // Copyright (c) 2016 The Zcash developers | |
3 | // Distributed under the MIT software license, see the accompanying | |
4 | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | |
5 | ||
6 | // Implementation of the Equihash Proof-of-Work algorithm. | |
7 | // | |
8 | // Reference | |
9 | // ========= | |
10 | // Alex Biryukov and Dmitry Khovratovich | |
11 | // Equihash: Asymmetric Proof-of-Work Based on the Generalized Birthday Problem | |
12 | // NDSS ’16, 21-24 February 2016, San Diego, CA, USA | |
13 | // https://www.internetsociety.org/sites/default/files/blogs-media/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf | |
14 | ||
15 | #include "crypto/equihash.h" | |
16 | #include "util.h" | |
17 | ||
18 | #include <algorithm> | |
6d25662f JG |
19 | #include <iostream> |
20 | #include <stdexcept> | |
21 | ||
e9574728 JG |
22 | template<unsigned int N, unsigned int K> |
23 | int Equihash<N,K>::InitialiseState(eh_HashState& base_state) | |
6d25662f | 24 | { |
e9574728 JG |
25 | unsigned int n = N; |
26 | unsigned int k = K; | |
6d25662f JG |
27 | unsigned char personalization[crypto_generichash_blake2b_PERSONALBYTES] = {}; |
28 | memcpy(personalization, "ZcashPOW", 8); | |
29 | memcpy(personalization+8, &n, 4); | |
30 | memcpy(personalization+12, &k, 4); | |
31 | return crypto_generichash_blake2b_init_salt_personal(&base_state, | |
32 | NULL, 0, // No key. | |
e9574728 | 33 | N/8, |
6d25662f JG |
34 | NULL, // No salt. |
35 | personalization); | |
36 | } | |
37 | ||
c92c1f60 JG |
38 | eh_trunc TruncateIndex(eh_index i, unsigned int ilen) |
39 | { | |
40 | // Truncate to 8 bits | |
41 | assert(sizeof(eh_trunc) == 1); | |
42 | return (i >> (ilen - 8)) & 0xff; | |
43 | } | |
44 | ||
45 | eh_index UntruncateIndex(eh_trunc t, eh_index r, unsigned int ilen) | |
46 | { | |
47 | eh_index i{t}; | |
48 | return (i << (ilen - 8)) | r; | |
49 | } | |
50 | ||
6d25662f JG |
51 | StepRow::StepRow(unsigned int n, const eh_HashState& base_state, eh_index i) : |
52 | hash {new unsigned char[n/8]}, | |
a3361e77 | 53 | len {n/8} |
6d25662f JG |
54 | { |
55 | eh_HashState state; | |
56 | state = base_state; | |
57 | crypto_generichash_blake2b_update(&state, (unsigned char*) &i, sizeof(eh_index)); | |
58 | crypto_generichash_blake2b_final(&state, hash, n/8); | |
6d25662f JG |
59 | } |
60 | ||
61 | StepRow::~StepRow() | |
62 | { | |
63 | delete[] hash; | |
64 | } | |
65 | ||
66 | StepRow::StepRow(const StepRow& a) : | |
67 | hash {new unsigned char[a.len]}, | |
a3361e77 | 68 | len {a.len} |
6d25662f | 69 | { |
6afef0dd | 70 | std::copy(a.hash, a.hash+a.len, hash); |
6d25662f JG |
71 | } |
72 | ||
a3361e77 JG |
73 | FullStepRow::FullStepRow(unsigned int n, const eh_HashState& base_state, eh_index i) : |
74 | StepRow {n, base_state, i}, | |
75 | indices {i} | |
76 | { | |
77 | assert(indices.size() == 1); | |
78 | } | |
79 | ||
80 | FullStepRow& FullStepRow::operator=(const FullStepRow& a) | |
6d25662f JG |
81 | { |
82 | unsigned char* p = new unsigned char[a.len]; | |
6afef0dd | 83 | std::copy(a.hash, a.hash+a.len, p); |
6d25662f JG |
84 | delete[] hash; |
85 | hash = p; | |
86 | len = a.len; | |
87 | indices = a.indices; | |
88 | return *this; | |
89 | } | |
90 | ||
a3361e77 | 91 | FullStepRow& FullStepRow::operator^=(const FullStepRow& a) |
6d25662f JG |
92 | { |
93 | if (a.len != len) { | |
94 | throw std::invalid_argument("Hash length differs"); | |
95 | } | |
96 | if (a.indices.size() != indices.size()) { | |
97 | throw std::invalid_argument("Number of indices differs"); | |
98 | } | |
99 | unsigned char* p = new unsigned char[len]; | |
100 | for (int i = 0; i < len; i++) | |
101 | p[i] = hash[i] ^ a.hash[i]; | |
102 | delete[] hash; | |
103 | hash = p; | |
104 | indices.reserve(indices.size() + a.indices.size()); | |
105 | indices.insert(indices.end(), a.indices.begin(), a.indices.end()); | |
106 | return *this; | |
107 | } | |
108 | ||
a3361e77 | 109 | void FullStepRow::TrimHash(int l) |
6d25662f JG |
110 | { |
111 | unsigned char* p = new unsigned char[len-l]; | |
6afef0dd | 112 | std::copy(hash+l, hash+len, p); |
6d25662f JG |
113 | delete[] hash; |
114 | hash = p; | |
115 | len -= l; | |
116 | } | |
117 | ||
118 | bool StepRow::IsZero() | |
119 | { | |
120 | char res = 0; | |
121 | for (int i = 0; i < len; i++) | |
122 | res |= hash[i]; | |
123 | return res == 0; | |
124 | } | |
125 | ||
126 | bool HasCollision(StepRow& a, StepRow& b, int l) | |
127 | { | |
128 | bool res = true; | |
129 | for (int j = 0; j < l; j++) | |
130 | res &= a.hash[j] == b.hash[j]; | |
131 | return res; | |
132 | } | |
133 | ||
134 | // Checks if the intersection of a.indices and b.indices is empty | |
a3361e77 | 135 | bool DistinctIndices(const FullStepRow& a, const FullStepRow& b) |
6d25662f JG |
136 | { |
137 | std::vector<eh_index> aSrt(a.indices); | |
138 | std::vector<eh_index> bSrt(b.indices); | |
139 | ||
140 | std::sort(aSrt.begin(), aSrt.end()); | |
141 | std::sort(bSrt.begin(), bSrt.end()); | |
142 | ||
143 | unsigned int i = 0; | |
144 | for (unsigned int j = 0; j < bSrt.size(); j++) { | |
145 | while (aSrt[i] < bSrt[j]) { | |
146 | i++; | |
147 | if (i == aSrt.size()) { return true; } | |
148 | } | |
149 | assert(aSrt[i] >= bSrt[j]); | |
150 | if (aSrt[i] == bSrt[j]) { return false; } | |
151 | } | |
152 | return true; | |
153 | } | |
154 | ||
c92c1f60 JG |
155 | bool IsValidBranch(const FullStepRow& a, const unsigned int ilen, const eh_trunc t) |
156 | { | |
157 | return TruncateIndex(a.indices[0], ilen) == t; | |
158 | } | |
159 | ||
160 | TruncatedStepRow::TruncatedStepRow(unsigned int n, const eh_HashState& base_state, eh_index i, unsigned int ilen) : | |
161 | StepRow {n, base_state, i}, | |
39f5cb35 | 162 | lenIndices {1} |
c92c1f60 | 163 | { |
39f5cb35 JG |
164 | unsigned char* p = new unsigned char[len+lenIndices]; |
165 | std::copy(hash, hash+len, p); | |
166 | p[len] = TruncateIndex(i, ilen); | |
167 | delete[] hash; | |
168 | hash = p; | |
169 | } | |
170 | ||
171 | TruncatedStepRow::TruncatedStepRow(const TruncatedStepRow& a) : | |
172 | StepRow {a}, | |
173 | lenIndices {a.lenIndices} | |
174 | { | |
175 | unsigned char* p = new unsigned char[a.len+a.lenIndices]; | |
176 | std::copy(a.hash, a.hash+a.len+a.lenIndices, p); | |
177 | delete[] hash; | |
178 | hash = p; | |
c92c1f60 JG |
179 | } |
180 | ||
181 | TruncatedStepRow& TruncatedStepRow::operator=(const TruncatedStepRow& a) | |
182 | { | |
39f5cb35 JG |
183 | unsigned char* p = new unsigned char[a.len+a.lenIndices]; |
184 | std::copy(a.hash, a.hash+a.len+a.lenIndices, p); | |
c92c1f60 JG |
185 | delete[] hash; |
186 | hash = p; | |
187 | len = a.len; | |
39f5cb35 | 188 | lenIndices = a.lenIndices; |
c92c1f60 JG |
189 | return *this; |
190 | } | |
191 | ||
192 | TruncatedStepRow& TruncatedStepRow::operator^=(const TruncatedStepRow& a) | |
193 | { | |
194 | if (a.len != len) { | |
195 | throw std::invalid_argument("Hash length differs"); | |
196 | } | |
39f5cb35 | 197 | if (a.lenIndices != lenIndices) { |
c92c1f60 JG |
198 | throw std::invalid_argument("Number of indices differs"); |
199 | } | |
39f5cb35 | 200 | unsigned char* p = new unsigned char[len+lenIndices+a.lenIndices]; |
c92c1f60 JG |
201 | for (int i = 0; i < len; i++) |
202 | p[i] = hash[i] ^ a.hash[i]; | |
39f5cb35 JG |
203 | std::copy(hash+len, hash+len+lenIndices, p+len); |
204 | std::copy(a.hash+a.len, a.hash+a.len+a.lenIndices, p+len+lenIndices); | |
c92c1f60 JG |
205 | delete[] hash; |
206 | hash = p; | |
39f5cb35 | 207 | lenIndices += a.lenIndices; |
c92c1f60 JG |
208 | return *this; |
209 | } | |
210 | ||
39f5cb35 JG |
211 | void TruncatedStepRow::TrimHash(int l) |
212 | { | |
213 | unsigned char* p = new unsigned char[len-l+lenIndices]; | |
214 | std::copy(hash+l, hash+len+lenIndices, p); | |
215 | delete[] hash; | |
216 | hash = p; | |
217 | len -= l; | |
218 | } | |
219 | ||
220 | eh_trunc* TruncatedStepRow::GetPartialSolution(eh_index soln_size) const | |
221 | { | |
222 | assert(lenIndices == soln_size); | |
223 | eh_trunc* p = new eh_trunc[lenIndices]; | |
224 | std::copy(hash+len, hash+len+lenIndices, p); | |
225 | return p; | |
226 | } | |
227 | ||
e9574728 JG |
228 | template<unsigned int N, unsigned int K> |
229 | std::set<std::vector<eh_index>> Equihash<N,K>::BasicSolve(const eh_HashState& base_state) | |
6d25662f | 230 | { |
e9574728 | 231 | eh_index init_size { 1 << (CollisionBitLength + 1) }; |
6d25662f JG |
232 | |
233 | // 1) Generate first list | |
234 | LogPrint("pow", "Generating first list\n"); | |
a3361e77 | 235 | std::vector<FullStepRow> X; |
6d25662f JG |
236 | X.reserve(init_size); |
237 | for (eh_index i = 0; i < init_size; i++) { | |
e9574728 | 238 | X.emplace_back(N, base_state, i); |
6d25662f JG |
239 | } |
240 | ||
241 | // 3) Repeat step 2 until 2n/(k+1) bits remain | |
e9574728 | 242 | for (int r = 1; r < K && X.size() > 0; r++) { |
6d25662f JG |
243 | LogPrint("pow", "Round %d:\n", r); |
244 | // 2a) Sort the list | |
245 | LogPrint("pow", "- Sorting list\n"); | |
246 | std::sort(X.begin(), X.end()); | |
247 | ||
248 | LogPrint("pow", "- Finding collisions\n"); | |
249 | int i = 0; | |
250 | int posFree = 0; | |
a3361e77 | 251 | std::vector<FullStepRow> Xc; |
6d25662f JG |
252 | while (i < X.size() - 1) { |
253 | // 2b) Find next set of unordered pairs with collisions on the next n/(k+1) bits | |
254 | int j = 1; | |
255 | while (i+j < X.size() && | |
e9574728 | 256 | HasCollision(X[i], X[i+j], CollisionByteLength)) { |
6d25662f JG |
257 | j++; |
258 | } | |
259 | ||
260 | // 2c) Calculate tuples (X_i ^ X_j, (i, j)) | |
261 | for (int l = 0; l < j - 1; l++) { | |
262 | for (int m = l + 1; m < j; m++) { | |
263 | if (DistinctIndices(X[i+l], X[i+m])) { | |
264 | Xc.push_back(X[i+l] ^ X[i+m]); | |
e9574728 | 265 | Xc.back().TrimHash(CollisionByteLength); |
6d25662f JG |
266 | } |
267 | } | |
268 | } | |
269 | ||
270 | // 2d) Store tuples on the table in-place if possible | |
271 | while (posFree < i+j && Xc.size() > 0) { | |
272 | X[posFree++] = Xc.back(); | |
273 | Xc.pop_back(); | |
274 | } | |
275 | ||
276 | i += j; | |
277 | } | |
278 | ||
279 | // 2e) Handle edge case where final table entry has no collision | |
280 | while (posFree < X.size() && Xc.size() > 0) { | |
281 | X[posFree++] = Xc.back(); | |
282 | Xc.pop_back(); | |
283 | } | |
284 | ||
285 | if (Xc.size() > 0) { | |
286 | // 2f) Add overflow to end of table | |
287 | X.insert(X.end(), Xc.begin(), Xc.end()); | |
288 | } else if (posFree < X.size()) { | |
289 | // 2g) Remove empty space at the end | |
290 | X.erase(X.begin()+posFree, X.end()); | |
291 | X.shrink_to_fit(); | |
292 | } | |
293 | } | |
294 | ||
295 | // k+1) Find a collision on last 2n(k+1) bits | |
296 | LogPrint("pow", "Final round:\n"); | |
297 | std::set<std::vector<eh_index>> solns; | |
298 | if (X.size() > 1) { | |
299 | LogPrint("pow", "- Sorting list\n"); | |
300 | std::sort(X.begin(), X.end()); | |
301 | LogPrint("pow", "- Finding collisions\n"); | |
302 | for (int i = 0; i < X.size() - 1; i++) { | |
a3361e77 | 303 | FullStepRow res = X[i] ^ X[i+1]; |
6d25662f JG |
304 | if (res.IsZero() && DistinctIndices(X[i], X[i+1])) { |
305 | solns.insert(res.GetSolution()); | |
306 | } | |
307 | } | |
308 | } else | |
309 | LogPrint("pow", "- List is empty\n"); | |
310 | ||
311 | return solns; | |
312 | } | |
313 | ||
c92c1f60 JG |
314 | void CollideBranches(std::vector<FullStepRow>& X, const unsigned int clen, const unsigned int ilen, const eh_trunc lt, const eh_trunc rt) |
315 | { | |
316 | int i = 0; | |
317 | int posFree = 0; | |
318 | std::vector<FullStepRow> Xc; | |
319 | while (i < X.size() - 1) { | |
320 | // 2b) Find next set of unordered pairs with collisions on the next n/(k+1) bits | |
321 | int j = 1; | |
322 | while (i+j < X.size() && | |
323 | HasCollision(X[i], X[i+j], clen)) { | |
324 | j++; | |
325 | } | |
326 | ||
327 | // 2c) Calculate tuples (X_i ^ X_j, (i, j)) | |
328 | for (int l = 0; l < j - 1; l++) { | |
329 | for (int m = l + 1; m < j; m++) { | |
330 | if (DistinctIndices(X[i+l], X[i+m])) { | |
331 | if (IsValidBranch(X[i+l], ilen, lt) && IsValidBranch(X[i+m], ilen, rt)) { | |
332 | Xc.push_back(X[i+l] ^ X[i+m]); | |
333 | Xc.back().TrimHash(clen); | |
334 | } else if (IsValidBranch(X[i+m], ilen, lt) && IsValidBranch(X[i+l], ilen, rt)) { | |
335 | Xc.push_back(X[i+m] ^ X[i+l]); | |
336 | Xc.back().TrimHash(clen); | |
337 | } | |
338 | } | |
339 | } | |
340 | } | |
341 | ||
342 | // 2d) Store tuples on the table in-place if possible | |
343 | while (posFree < i+j && Xc.size() > 0) { | |
344 | X[posFree++] = Xc.back(); | |
345 | Xc.pop_back(); | |
346 | } | |
347 | ||
348 | i += j; | |
349 | } | |
350 | ||
351 | // 2e) Handle edge case where final table entry has no collision | |
352 | while (posFree < X.size() && Xc.size() > 0) { | |
353 | X[posFree++] = Xc.back(); | |
354 | Xc.pop_back(); | |
355 | } | |
356 | ||
357 | if (Xc.size() > 0) { | |
358 | // 2f) Add overflow to end of table | |
359 | X.insert(X.end(), Xc.begin(), Xc.end()); | |
360 | } else if (posFree < X.size()) { | |
361 | // 2g) Remove empty space at the end | |
362 | X.erase(X.begin()+posFree, X.end()); | |
363 | X.shrink_to_fit(); | |
364 | } | |
365 | } | |
366 | ||
e9574728 JG |
367 | template<unsigned int N, unsigned int K> |
368 | std::set<std::vector<eh_index>> Equihash<N,K>::OptimisedSolve(const eh_HashState& base_state) | |
c92c1f60 | 369 | { |
e9574728 | 370 | eh_index init_size { 1 << (CollisionBitLength + 1) }; |
c92c1f60 JG |
371 | |
372 | // First run the algorithm with truncated indices | |
373 | ||
e9574728 | 374 | eh_index soln_size { 1 << K }; |
39f5cb35 | 375 | std::vector<eh_trunc*> partialSolns; |
c92c1f60 JG |
376 | { |
377 | ||
378 | // 1) Generate first list | |
379 | LogPrint("pow", "Generating first list\n"); | |
380 | std::vector<TruncatedStepRow> Xt; | |
381 | Xt.reserve(init_size); | |
382 | for (eh_index i = 0; i < init_size; i++) { | |
e9574728 | 383 | Xt.emplace_back(N, base_state, i, CollisionBitLength + 1); |
c92c1f60 JG |
384 | } |
385 | ||
386 | // 3) Repeat step 2 until 2n/(k+1) bits remain | |
e9574728 | 387 | for (int r = 1; r < K && Xt.size() > 0; r++) { |
c92c1f60 JG |
388 | LogPrint("pow", "Round %d:\n", r); |
389 | // 2a) Sort the list | |
390 | LogPrint("pow", "- Sorting list\n"); | |
391 | std::sort(Xt.begin(), Xt.end()); | |
392 | ||
393 | LogPrint("pow", "- Finding collisions\n"); | |
394 | int i = 0; | |
395 | int posFree = 0; | |
396 | std::vector<TruncatedStepRow> Xc; | |
397 | while (i < Xt.size() - 1) { | |
398 | // 2b) Find next set of unordered pairs with collisions on the next n/(k+1) bits | |
399 | int j = 1; | |
400 | while (i+j < Xt.size() && | |
e9574728 | 401 | HasCollision(Xt[i], Xt[i+j], CollisionByteLength)) { |
c92c1f60 JG |
402 | j++; |
403 | } | |
404 | ||
405 | // 2c) Calculate tuples (X_i ^ X_j, (i, j)) | |
406 | for (int l = 0; l < j - 1; l++) { | |
407 | for (int m = l + 1; m < j; m++) { | |
408 | // We truncated, so don't check for distinct indices here | |
409 | Xc.push_back(Xt[i+l] ^ Xt[i+m]); | |
e9574728 | 410 | Xc.back().TrimHash(CollisionByteLength); |
c92c1f60 JG |
411 | } |
412 | } | |
413 | ||
414 | // 2d) Store tuples on the table in-place if possible | |
415 | while (posFree < i+j && Xc.size() > 0) { | |
416 | Xt[posFree++] = Xc.back(); | |
417 | Xc.pop_back(); | |
418 | } | |
419 | ||
420 | i += j; | |
421 | } | |
422 | ||
423 | // 2e) Handle edge case where final table entry has no collision | |
424 | while (posFree < Xt.size() && Xc.size() > 0) { | |
425 | Xt[posFree++] = Xc.back(); | |
426 | Xc.pop_back(); | |
427 | } | |
428 | ||
429 | if (Xc.size() > 0) { | |
430 | // 2f) Add overflow to end of table | |
431 | Xt.insert(Xt.end(), Xc.begin(), Xc.end()); | |
432 | } else if (posFree < Xt.size()) { | |
433 | // 2g) Remove empty space at the end | |
434 | Xt.erase(Xt.begin()+posFree, Xt.end()); | |
435 | Xt.shrink_to_fit(); | |
436 | } | |
437 | } | |
438 | ||
439 | // k+1) Find a collision on last 2n(k+1) bits | |
440 | LogPrint("pow", "Final round:\n"); | |
441 | if (Xt.size() > 1) { | |
442 | LogPrint("pow", "- Sorting list\n"); | |
443 | std::sort(Xt.begin(), Xt.end()); | |
444 | LogPrint("pow", "- Finding collisions\n"); | |
445 | for (int i = 0; i < Xt.size() - 1; i++) { | |
446 | TruncatedStepRow res = Xt[i] ^ Xt[i+1]; | |
447 | if (res.IsZero()) { | |
39f5cb35 | 448 | partialSolns.push_back(res.GetPartialSolution(soln_size)); |
c92c1f60 JG |
449 | } |
450 | } | |
451 | } else | |
452 | LogPrint("pow", "- List is empty\n"); | |
453 | ||
454 | } // Ensure Xt goes out of scope and is destroyed | |
455 | ||
456 | LogPrint("pow", "Found %d partial solutions\n", partialSolns.size()); | |
457 | ||
458 | // Now for each solution run the algorithm again to recreate the indices | |
459 | LogPrint("pow", "Culling solutions\n"); | |
460 | std::set<std::vector<eh_index>> solns; | |
e9574728 | 461 | eh_index recreate_size { UntruncateIndex(1, 0, CollisionBitLength + 1) }; |
c92c1f60 | 462 | int invalidCount = 0; |
39f5cb35 | 463 | for (eh_trunc* partialSoln : partialSolns) { |
c92c1f60 JG |
464 | // 1) Generate first list of possibilities |
465 | std::vector<std::vector<FullStepRow>> X; | |
39f5cb35 JG |
466 | X.reserve(soln_size); |
467 | for (eh_index i = 0; i < soln_size; i++) { | |
c92c1f60 JG |
468 | std::vector<FullStepRow> ic; |
469 | ic.reserve(recreate_size); | |
470 | for (eh_index j = 0; j < recreate_size; j++) { | |
e9574728 JG |
471 | eh_index newIndex { UntruncateIndex(partialSoln[i], j, CollisionBitLength + 1) }; |
472 | ic.emplace_back(N, base_state, newIndex); | |
c92c1f60 JG |
473 | } |
474 | X.push_back(ic); | |
475 | } | |
476 | ||
477 | // 3) Repeat step 2 for each level of the tree | |
478 | for (int r = 0; X.size() > 1; r++) { | |
479 | std::vector<std::vector<FullStepRow>> Xc; | |
480 | Xc.reserve(X.size()/2); | |
481 | ||
482 | // 2a) For each pair of lists: | |
483 | for (int v = 0; v < X.size(); v += 2) { | |
484 | // 2b) Merge the lists | |
485 | std::vector<FullStepRow> ic(X[v]); | |
486 | ic.reserve(X[v].size() + X[v+1].size()); | |
487 | ic.insert(ic.end(), X[v+1].begin(), X[v+1].end()); | |
488 | std::sort(ic.begin(), ic.end()); | |
e9574728 | 489 | CollideBranches(ic, CollisionByteLength, CollisionBitLength + 1, partialSoln[(1<<r)*v], partialSoln[(1<<r)*(v+1)]); |
c92c1f60 JG |
490 | |
491 | // 2v) Check if this has become an invalid solution | |
492 | if (ic.size() == 0) | |
493 | goto invalidsolution; | |
494 | ||
495 | Xc.push_back(ic); | |
496 | } | |
497 | ||
498 | X = Xc; | |
499 | } | |
500 | ||
501 | // We are at the top of the tree | |
502 | assert(X.size() == 1); | |
503 | for (FullStepRow row : X[0]) { | |
504 | solns.insert(row.GetSolution()); | |
505 | } | |
39f5cb35 | 506 | goto deletesolution; |
c92c1f60 JG |
507 | |
508 | invalidsolution: | |
509 | invalidCount++; | |
39f5cb35 JG |
510 | |
511 | deletesolution: | |
512 | delete[] partialSoln; | |
c92c1f60 JG |
513 | } |
514 | LogPrint("pow", "- Number of invalid solutions found: %d\n", invalidCount); | |
515 | ||
516 | return solns; | |
517 | } | |
518 | ||
e9574728 JG |
519 | template<unsigned int N, unsigned int K> |
520 | bool Equihash<N,K>::IsValidSolution(const eh_HashState& base_state, std::vector<eh_index> soln) | |
6d25662f | 521 | { |
e9574728 | 522 | eh_index soln_size { 1u << K }; |
6d25662f JG |
523 | if (soln.size() != soln_size) { |
524 | LogPrint("pow", "Invalid solution size: %d\n", soln.size()); | |
525 | return false; | |
526 | } | |
527 | ||
a3361e77 | 528 | std::vector<FullStepRow> X; |
6d25662f JG |
529 | X.reserve(soln_size); |
530 | for (eh_index i : soln) { | |
e9574728 | 531 | X.emplace_back(N, base_state, i); |
6d25662f JG |
532 | } |
533 | ||
534 | while (X.size() > 1) { | |
a3361e77 | 535 | std::vector<FullStepRow> Xc; |
6d25662f | 536 | for (int i = 0; i < X.size(); i += 2) { |
e9574728 | 537 | if (!HasCollision(X[i], X[i+1], CollisionByteLength)) { |
6d25662f JG |
538 | LogPrint("pow", "Invalid solution: invalid collision length between StepRows\n"); |
539 | LogPrint("pow", "X[i] = %s\n", X[i].GetHex()); | |
540 | LogPrint("pow", "X[i+1] = %s\n", X[i+1].GetHex()); | |
541 | return false; | |
542 | } | |
543 | if (X[i+1].IndicesBefore(X[i])) { | |
544 | return false; | |
545 | LogPrint("pow", "Invalid solution: Index tree incorrectly ordered\n"); | |
546 | } | |
547 | if (!DistinctIndices(X[i], X[i+1])) { | |
548 | LogPrint("pow", "Invalid solution: duplicate indices\n"); | |
549 | return false; | |
550 | } | |
551 | Xc.push_back(X[i] ^ X[i+1]); | |
e9574728 | 552 | Xc.back().TrimHash(CollisionByteLength); |
6d25662f JG |
553 | } |
554 | X = Xc; | |
555 | } | |
556 | ||
557 | assert(X.size() == 1); | |
558 | return X[0].IsZero(); | |
559 | } | |
e9574728 JG |
560 | |
561 | // Explicit instantiations for Equihash<96,5> | |
562 | template int Equihash<96,5>::InitialiseState(eh_HashState& base_state); | |
563 | template std::set<std::vector<eh_index>> Equihash<96,5>::BasicSolve(const eh_HashState& base_state); | |
564 | template std::set<std::vector<eh_index>> Equihash<96,5>::OptimisedSolve(const eh_HashState& base_state); | |
565 | template bool Equihash<96,5>::IsValidSolution(const eh_HashState& base_state, std::vector<eh_index> soln); | |
566 | ||
567 | // Explicit instantiations for Equihash<48,5> | |
568 | template int Equihash<48,5>::InitialiseState(eh_HashState& base_state); | |
569 | template std::set<std::vector<eh_index>> Equihash<48,5>::BasicSolve(const eh_HashState& base_state); | |
570 | template std::set<std::vector<eh_index>> Equihash<48,5>::OptimisedSolve(const eh_HashState& base_state); | |
571 | template bool Equihash<48,5>::IsValidSolution(const eh_HashState& base_state, std::vector<eh_index> soln); |