]>
Commit | Line | Data |
---|---|---|
f914f1a7 | 1 | // Copyright (c) 2009-2014 The Bitcoin Core developers |
50fa0797 | 2 | // Copyright (c) 2017 The Zcash developers |
ffd8edda | 3 | // Distributed under the MIT software license, see the accompanying |
bc909a7a | 4 | // file COPYING or https://www.opensource.org/licenses/mit-license.php . |
93db3fce | 5 | |
51ed9ec9 BD |
6 | #include "key.h" |
7 | ||
734f85c4 | 8 | #include "arith_uint256.h" |
437ada3e | 9 | #include "crypto/common.h" |
36fa4a78 | 10 | #include "crypto/hmac_sha512.h" |
d2e74c55 | 11 | #include "pubkey.h" |
001a53d7 | 12 | #include "random.h" |
977cdade | 13 | |
fda3fed1 | 14 | #include <secp256k1.h> |
c1afe40a | 15 | #include <secp256k1_recovery.h> |
dfa23b94 | 16 | |
c1afe40a PW |
17 | static secp256k1_context* secp256k1_context_sign = NULL; |
18 | ||
19 | /** These functions are taken from the libsecp256k1 distribution and are very ugly. */ | |
c032f1b6 JG |
20 | |
21 | /** | |
22 | * This parses a format loosely based on a DER encoding of the ECPrivateKey type from | |
23 | * section C.4 of SEC 1 <http://www.secg.org/sec1-v2.pdf>, with the following caveats: | |
24 | * | |
25 | * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not | |
26 | * required to be encoded as one octet if it is less than 256, as DER would require. | |
27 | * * The octet-length of the SEQUENCE must not be greater than the remaining | |
28 | * length of the key encoding, but need not match it (i.e. the encoding may contain | |
29 | * junk after the encoded SEQUENCE). | |
30 | * * The privateKey OCTET STRING is zero-filled on the left to 32 octets. | |
31 | * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether | |
32 | * or not it is validly encoded DER. | |
33 | * | |
34 | * out32 must point to an output buffer of length at least 32 bytes. | |
35 | */ | |
c1afe40a PW |
36 | static int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) { |
37 | const unsigned char *end = privkey + privkeylen; | |
c1afe40a PW |
38 | memset(out32, 0, 32); |
39 | /* sequence header */ | |
50fa0797 | 40 | if (end - privkey < 1 || *privkey != 0x30u) { |
c1afe40a PW |
41 | return 0; |
42 | } | |
43 | privkey++; | |
44 | /* sequence length constructor */ | |
50fa0797 | 45 | if (end - privkey < 1 || !(*privkey & 0x80u)) { |
c1afe40a PW |
46 | return 0; |
47 | } | |
1f594106 | 48 | size_t lenb = *privkey & ~0x80u; privkey++; |
c1afe40a PW |
49 | if (lenb < 1 || lenb > 2) { |
50 | return 0; | |
51 | } | |
50fa0797 | 52 | if (end - privkey < lenb) { |
c1afe40a PW |
53 | return 0; |
54 | } | |
55 | /* sequence length */ | |
1f594106 | 56 | size_t len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0u); |
c1afe40a | 57 | privkey += lenb; |
50fa0797 | 58 | if (end - privkey < len) { |
c1afe40a PW |
59 | return 0; |
60 | } | |
61 | /* sequence element 0: version number (=1) */ | |
50fa0797 | 62 | if (end - privkey < 3 || privkey[0] != 0x02u || privkey[1] != 0x01u || privkey[2] != 0x01u) { |
c1afe40a PW |
63 | return 0; |
64 | } | |
65 | privkey += 3; | |
66 | /* sequence element 1: octet string, up to 32 bytes */ | |
50fa0797 | 67 | if (end - privkey < 2 || privkey[0] != 0x04u) { |
c1afe40a PW |
68 | return 0; |
69 | } | |
50fa0797 JG |
70 | size_t oslen = privkey[1]; |
71 | privkey += 2; | |
72 | if (oslen > 32 || end - privkey < oslen) { | |
73 | return 0; | |
74 | } | |
75 | memcpy(out32 + (32 - oslen), privkey, oslen); | |
c1afe40a PW |
76 | if (!secp256k1_ec_seckey_verify(ctx, out32)) { |
77 | memset(out32, 0, 32); | |
78 | return 0; | |
79 | } | |
80 | return 1; | |
81 | } | |
82 | ||
c032f1b6 JG |
83 | /** |
84 | * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1 | |
85 | * <http://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are | |
86 | * included. | |
87 | * | |
c4c7c663 | 88 | * privkey must point to an output buffer of length at least CKey::PRIVATE_KEY_SIZE bytes. |
877964c8 JG |
89 | * privkeylen must initially be set to the size of the privkey buffer. Upon return it |
90 | * will be set to the number of bytes used in the buffer. | |
c032f1b6 JG |
91 | * key32 must point to a 32-byte raw private key. |
92 | */ | |
c1afe40a | 93 | static int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) { |
c4c7c663 | 94 | assert(*privkeylen >= CKey::PRIVATE_KEY_SIZE); |
c1afe40a PW |
95 | secp256k1_pubkey pubkey; |
96 | size_t pubkeylen = 0; | |
97 | if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) { | |
98 | *privkeylen = 0; | |
99 | return 0; | |
100 | } | |
101 | if (compressed) { | |
102 | static const unsigned char begin[] = { | |
103 | 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20 | |
104 | }; | |
105 | static const unsigned char middle[] = { | |
106 | 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, | |
107 | 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
108 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
109 | 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, | |
110 | 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, | |
111 | 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, | |
112 | 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
113 | 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, | |
114 | 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00 | |
115 | }; | |
116 | unsigned char *ptr = privkey; | |
117 | memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); | |
118 | memcpy(ptr, key32, 32); ptr += 32; | |
119 | memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); | |
c4c7c663 | 120 | pubkeylen = CPubKey::COMPRESSED_PUBLIC_KEY_SIZE; |
c1afe40a PW |
121 | secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED); |
122 | ptr += pubkeylen; | |
123 | *privkeylen = ptr - privkey; | |
c4c7c663 | 124 | assert(*privkeylen == CKey::COMPRESSED_PRIVATE_KEY_SIZE); |
c1afe40a PW |
125 | } else { |
126 | static const unsigned char begin[] = { | |
127 | 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20 | |
128 | }; | |
129 | static const unsigned char middle[] = { | |
130 | 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, | |
131 | 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
132 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
133 | 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, | |
134 | 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, | |
135 | 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, | |
136 | 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11, | |
137 | 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10, | |
138 | 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
139 | 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, | |
140 | 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00 | |
141 | }; | |
142 | unsigned char *ptr = privkey; | |
143 | memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); | |
144 | memcpy(ptr, key32, 32); ptr += 32; | |
145 | memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); | |
c4c7c663 | 146 | pubkeylen = CPubKey::PUBLIC_KEY_SIZE; |
c1afe40a PW |
147 | secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED); |
148 | ptr += pubkeylen; | |
149 | *privkeylen = ptr - privkey; | |
c4c7c663 | 150 | assert(*privkeylen == CKey::PRIVATE_KEY_SIZE); |
c1afe40a PW |
151 | } |
152 | return 1; | |
153 | } | |
dfa23b94 PW |
154 | |
155 | bool CKey::Check(const unsigned char *vch) { | |
c1afe40a | 156 | return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch); |
096e06db GA |
157 | } |
158 | ||
dfa23b94 PW |
159 | void CKey::MakeNewKey(bool fCompressedIn) { |
160 | do { | |
001a53d7 | 161 | GetRandBytes(vch, sizeof(vch)); |
dfa23b94 PW |
162 | } while (!Check(vch)); |
163 | fValid = true; | |
164 | fCompressed = fCompressedIn; | |
096e06db GA |
165 | } |
166 | ||
dfa23b94 | 167 | bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { |
c1afe40a | 168 | if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size())) |
dfa23b94 | 169 | return false; |
dfa23b94 PW |
170 | fCompressed = fCompressedIn; |
171 | fValid = true; | |
172 | return true; | |
096e06db GA |
173 | } |
174 | ||
dfa23b94 PW |
175 | CPrivKey CKey::GetPrivKey() const { |
176 | assert(fValid); | |
fda3fed1 | 177 | CPrivKey privkey; |
c1afe40a PW |
178 | int ret; |
179 | size_t privkeylen; | |
877964c8 JG |
180 | privkey.resize(PRIVATE_KEY_SIZE); |
181 | privkeylen = PRIVATE_KEY_SIZE; | |
c1afe40a | 182 | ret = ec_privkey_export_der(secp256k1_context_sign, (unsigned char*)&privkey[0], &privkeylen, begin(), fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED); |
fda3fed1 PW |
183 | assert(ret); |
184 | privkey.resize(privkeylen); | |
dfa23b94 | 185 | return privkey; |
096e06db GA |
186 | } |
187 | ||
dfa23b94 PW |
188 | CPubKey CKey::GetPubKey() const { |
189 | assert(fValid); | |
c1afe40a | 190 | secp256k1_pubkey pubkey; |
c4c7c663 | 191 | size_t clen = CPubKey::PUBLIC_KEY_SIZE; |
bdaec6ab | 192 | CPubKey result; |
c1afe40a | 193 | int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin()); |
fda3fed1 | 194 | assert(ret); |
c1afe40a PW |
195 | secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED); |
196 | assert(result.size() == clen); | |
bdaec6ab CF |
197 | assert(result.IsValid()); |
198 | return result; | |
096e06db GA |
199 | } |
200 | ||
a53fd414 | 201 | bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_t test_case) const { |
dfa23b94 | 202 | if (!fValid) |
096e06db | 203 | return false; |
c4c7c663 JG |
204 | vchSig.resize(CPubKey::SIGNATURE_SIZE); |
205 | size_t nSigLen = CPubKey::SIGNATURE_SIZE; | |
437ada3e PW |
206 | unsigned char extra_entropy[32] = {0}; |
207 | WriteLE32(extra_entropy, test_case); | |
c1afe40a PW |
208 | secp256k1_ecdsa_signature sig; |
209 | int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL); | |
1a9576de | 210 | assert(ret); |
c1afe40a | 211 | secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, (unsigned char*)&vchSig[0], &nSigLen, &sig); |
1a9576de PW |
212 | vchSig.resize(nSigLen); |
213 | return true; | |
096e06db GA |
214 | } |
215 | ||
d0c41a73 PW |
216 | bool CKey::VerifyPubKey(const CPubKey& pubkey) const { |
217 | if (pubkey.IsCompressed() != fCompressed) { | |
218 | return false; | |
219 | } | |
220 | unsigned char rnd[8]; | |
d2c1e4a8 | 221 | std::string str = "Zcash key verification\n"; |
d0c41a73 PW |
222 | GetRandBytes(rnd, sizeof(rnd)); |
223 | uint256 hash; | |
1a9576de | 224 | CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin()); |
d0c41a73 PW |
225 | std::vector<unsigned char> vchSig; |
226 | Sign(hash, vchSig); | |
227 | return pubkey.Verify(hash, vchSig); | |
228 | } | |
229 | ||
dfa23b94 PW |
230 | bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const { |
231 | if (!fValid) | |
096e06db | 232 | return false; |
c4c7c663 | 233 | vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE); |
dfa23b94 | 234 | int rec = -1; |
c1afe40a PW |
235 | secp256k1_ecdsa_recoverable_signature sig; |
236 | int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, NULL); | |
237 | assert(ret); | |
238 | secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, (unsigned char*)&vchSig[1], &rec, &sig); | |
1a9576de | 239 | assert(ret); |
dfa23b94 PW |
240 | assert(rec != -1); |
241 | vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); | |
242 | return true; | |
243 | } | |
096e06db | 244 | |
6e51b3bd | 245 | bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) { |
c1afe40a | 246 | if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size())) |
6e51b3bd | 247 | return false; |
6e51b3bd | 248 | fCompressed = vchPubKey.IsCompressed(); |
249 | fValid = true; | |
fda3fed1 | 250 | |
a42eef6f | 251 | if (fSkipCheck) |
252 | return true; | |
fda3fed1 | 253 | |
d0c41a73 | 254 | return VerifyPubKey(vchPubKey); |
6e51b3bd | 255 | } |
256 | ||
a5748996 | 257 | bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const { |
eb2c9990 PW |
258 | assert(IsValid()); |
259 | assert(IsCompressed()); | |
260 | unsigned char out[64]; | |
261 | LockObject(out); | |
262 | if ((nChild >> 31) == 0) { | |
263 | CPubKey pubkey = GetPubKey(); | |
c4c7c663 | 264 | assert(pubkey.size() == CPubKey::COMPRESSED_PUBLIC_KEY_SIZE); |
eb2c9990 PW |
265 | BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out); |
266 | } else { | |
50fa0797 | 267 | assert(size() == 32); |
eb2c9990 PW |
268 | BIP32Hash(cc, nChild, 0, begin(), out); |
269 | } | |
a5748996 | 270 | memcpy(ccChild.begin(), out+32, 32); |
fda3fed1 | 271 | memcpy((unsigned char*)keyChild.begin(), begin(), 32); |
c1afe40a | 272 | bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), out); |
eb2c9990 PW |
273 | UnlockObject(out); |
274 | keyChild.fCompressed = true; | |
275 | keyChild.fValid = ret; | |
276 | return ret; | |
277 | } | |
278 | ||
eb2c9990 PW |
279 | bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const { |
280 | out.nDepth = nDepth + 1; | |
281 | CKeyID id = key.GetPubKey().GetID(); | |
282 | memcpy(&out.vchFingerprint[0], &id, 4); | |
283 | out.nChild = nChild; | |
a5748996 | 284 | return key.Derive(out.key, out.chaincode, nChild, chaincode); |
eb2c9990 PW |
285 | } |
286 | ||
287 | void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) { | |
977cdade | 288 | static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'}; |
eb2c9990 PW |
289 | unsigned char out[64]; |
290 | LockObject(out); | |
977cdade | 291 | CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out); |
eb2c9990 | 292 | key.Set(&out[0], &out[32], true); |
a5748996 | 293 | memcpy(chaincode.begin(), &out[32], 32); |
eb2c9990 PW |
294 | UnlockObject(out); |
295 | nDepth = 0; | |
296 | nChild = 0; | |
297 | memset(vchFingerprint, 0, sizeof(vchFingerprint)); | |
298 | } | |
299 | ||
300 | CExtPubKey CExtKey::Neuter() const { | |
301 | CExtPubKey ret; | |
302 | ret.nDepth = nDepth; | |
303 | memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4); | |
304 | ret.nChild = nChild; | |
305 | ret.pubkey = key.GetPubKey(); | |
a5748996 | 306 | ret.chaincode = chaincode; |
eb2c9990 PW |
307 | return ret; |
308 | } | |
309 | ||
6cbe2c48 | 310 | void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const { |
eb2c9990 PW |
311 | code[0] = nDepth; |
312 | memcpy(code+1, vchFingerprint, 4); | |
313 | code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; | |
314 | code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; | |
a5748996 | 315 | memcpy(code+9, chaincode.begin(), 32); |
eb2c9990 PW |
316 | code[41] = 0; |
317 | assert(key.size() == 32); | |
318 | memcpy(code+42, key.begin(), 32); | |
319 | } | |
320 | ||
6cbe2c48 | 321 | void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) { |
eb2c9990 PW |
322 | nDepth = code[0]; |
323 | memcpy(vchFingerprint, code+1, 4); | |
324 | nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; | |
a5748996 | 325 | memcpy(chaincode.begin(), code+9, 32); |
6cbe2c48 | 326 | key.Set(code+42, code+BIP32_EXTKEY_SIZE, true); |
eb2c9990 PW |
327 | } |
328 | ||
4a09e1df | 329 | bool ECC_InitSanityCheck() { |
f321d6bf PW |
330 | CKey key; |
331 | key.MakeNewKey(true); | |
332 | CPubKey pubkey = key.GetPubKey(); | |
333 | return key.VerifyPubKey(pubkey); | |
4a09e1df | 334 | } |
a56054be | 335 | |
a56054be | 336 | void ECC_Start() { |
c1afe40a | 337 | assert(secp256k1_context_sign == NULL); |
a56054be | 338 | |
c1afe40a | 339 | secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); |
a56054be PW |
340 | assert(ctx != NULL); |
341 | ||
342 | { | |
343 | // Pass in a random blinding seed to the secp256k1 context. | |
344 | unsigned char seed[32]; | |
345 | LockObject(seed); | |
346 | GetRandBytes(seed, 32); | |
347 | bool ret = secp256k1_context_randomize(ctx, seed); | |
348 | assert(ret); | |
349 | UnlockObject(seed); | |
350 | } | |
351 | ||
c1afe40a | 352 | secp256k1_context_sign = ctx; |
a56054be PW |
353 | } |
354 | ||
355 | void ECC_Stop() { | |
c1afe40a PW |
356 | secp256k1_context *ctx = secp256k1_context_sign; |
357 | secp256k1_context_sign = NULL; | |
a56054be PW |
358 | |
359 | if (ctx) { | |
360 | secp256k1_context_destroy(ctx); | |
361 | } | |
362 | } |