]> Git Repo - VerusCoin.git/blame - src/arith_uint256.cpp
PBaaS refund fix to fund refund transactions with gateway deposits
[VerusCoin.git] / src / arith_uint256.cpp
CommitLineData
bfc60703
WL
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2014 The Bitcoin developers
3// Distributed under the MIT software license, see the accompanying
bc909a7a 4// file COPYING or https://www.opensource.org/licenses/mit-license.php .
bfc60703
WL
5
6#include "arith_uint256.h"
7
92cdb1aa 8#include "uint256.h"
bfc60703 9#include "utilstrencodings.h"
f4e64872 10#include "crypto/common.h"
bfc60703
WL
11
12#include <stdio.h>
13#include <string.h>
14
15template <unsigned int BITS>
16base_uint<BITS>::base_uint(const std::string& str)
17{
18 SetHex(str);
19}
20
bfc60703
WL
21template <unsigned int BITS>
22base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
23{
24 base_uint<BITS> a(*this);
25 for (int i = 0; i < WIDTH; i++)
26 pn[i] = 0;
27 int k = shift / 32;
28 shift = shift % 32;
29 for (int i = 0; i < WIDTH; i++) {
30 if (i + k + 1 < WIDTH && shift != 0)
31 pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
32 if (i + k < WIDTH)
33 pn[i + k] |= (a.pn[i] << shift);
34 }
35 return *this;
36}
37
38template <unsigned int BITS>
39base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
40{
41 base_uint<BITS> a(*this);
42 for (int i = 0; i < WIDTH; i++)
43 pn[i] = 0;
44 int k = shift / 32;
45 shift = shift % 32;
46 for (int i = 0; i < WIDTH; i++) {
47 if (i - k - 1 >= 0 && shift != 0)
48 pn[i - k - 1] |= (a.pn[i] << (32 - shift));
49 if (i - k >= 0)
50 pn[i - k] |= (a.pn[i] >> shift);
51 }
52 return *this;
53}
54
55template <unsigned int BITS>
56base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
57{
58 uint64_t carry = 0;
59 for (int i = 0; i < WIDTH; i++) {
60 uint64_t n = carry + (uint64_t)b32 * pn[i];
61 pn[i] = n & 0xffffffff;
62 carry = n >> 32;
63 }
64 return *this;
65}
66
67template <unsigned int BITS>
68base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
69{
70 base_uint<BITS> a = *this;
71 *this = 0;
72 for (int j = 0; j < WIDTH; j++) {
73 uint64_t carry = 0;
74 for (int i = 0; i + j < WIDTH; i++) {
75 uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
76 pn[i + j] = n & 0xffffffff;
77 carry = n >> 32;
78 }
79 }
80 return *this;
81}
82
83template <unsigned int BITS>
84base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
85{
86 base_uint<BITS> div = b; // make a copy, so we can shift.
87 base_uint<BITS> num = *this; // make a copy, so we can subtract.
88 *this = 0; // the quotient.
89 int num_bits = num.bits();
90 int div_bits = div.bits();
91 if (div_bits == 0)
92 throw uint_error("Division by zero");
93 if (div_bits > num_bits) // the result is certainly 0.
94 return *this;
95 int shift = num_bits - div_bits;
96 div <<= shift; // shift so that div and num align.
97 while (shift >= 0) {
98 if (num >= div) {
99 num -= div;
100 pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
101 }
102 div >>= 1; // shift back.
103 shift--;
104 }
105 // num now contains the remainder of the division.
106 return *this;
107}
108
109template <unsigned int BITS>
110int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
111{
e4f53bd2 112 if ( (uint64_t)pn < 0x1000 || (uint64_t)b.pn <= 0x1000 )
88e117ad 113 {
007aca38 114 //fprintf(stderr,"CompareTo null %p or %p\n",pn,b.pn);
88e117ad 115 return(0);
116 }
bfc60703
WL
117 for (int i = WIDTH - 1; i >= 0; i--) {
118 if (pn[i] < b.pn[i])
119 return -1;
120 if (pn[i] > b.pn[i])
121 return 1;
122 }
123 return 0;
124}
125
126template <unsigned int BITS>
127bool base_uint<BITS>::EqualTo(uint64_t b) const
128{
129 for (int i = WIDTH - 1; i >= 2; i--) {
130 if (pn[i])
131 return false;
132 }
133 if (pn[1] != (b >> 32))
134 return false;
135 if (pn[0] != (b & 0xfffffffful))
136 return false;
137 return true;
138}
139
140template <unsigned int BITS>
141double base_uint<BITS>::getdouble() const
142{
143 double ret = 0.0;
144 double fact = 1.0;
145 for (int i = 0; i < WIDTH; i++) {
146 ret += fact * pn[i];
147 fact *= 4294967296.0;
148 }
149 return ret;
150}
151
152template <unsigned int BITS>
153std::string base_uint<BITS>::GetHex() const
154{
6bd0dc2a 155 return ArithToUint256(*this).GetHex();
bfc60703
WL
156}
157
158template <unsigned int BITS>
159void base_uint<BITS>::SetHex(const char* psz)
160{
6bd0dc2a 161 *this = UintToArith256(uint256S(psz));
bfc60703
WL
162}
163
164template <unsigned int BITS>
165void base_uint<BITS>::SetHex(const std::string& str)
166{
167 SetHex(str.c_str());
168}
169
170template <unsigned int BITS>
171std::string base_uint<BITS>::ToString() const
172{
173 return (GetHex());
174}
175
176template <unsigned int BITS>
177unsigned int base_uint<BITS>::bits() const
178{
179 for (int pos = WIDTH - 1; pos >= 0; pos--) {
180 if (pn[pos]) {
ff405316
DA
181 for (size_t bits = 31; bits > 0; bits--) {
182 if (pn[pos] & (1U << bits)) {
bfc60703 183 return 32 * pos + bits + 1;
ff405316 184 }
bfc60703
WL
185 }
186 return 32 * pos + 1;
187 }
188 }
189 return 0;
190}
191
bfc60703
WL
192// Explicit instantiations for base_uint<256>
193template base_uint<256>::base_uint(const std::string&);
bfc60703
WL
194template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
195template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
196template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
197template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
198template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
199template int base_uint<256>::CompareTo(const base_uint<256>&) const;
200template bool base_uint<256>::EqualTo(uint64_t) const;
201template double base_uint<256>::getdouble() const;
202template std::string base_uint<256>::GetHex() const;
203template std::string base_uint<256>::ToString() const;
204template void base_uint<256>::SetHex(const char*);
205template void base_uint<256>::SetHex(const std::string&);
206template unsigned int base_uint<256>::bits() const;
207
208// This implementation directly uses shifts instead of going
209// through an intermediate MPI representation.
210arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
211{
212 int nSize = nCompact >> 24;
213 uint32_t nWord = nCompact & 0x007fffff;
214 if (nSize <= 3) {
215 nWord >>= 8 * (3 - nSize);
216 *this = nWord;
217 } else {
218 *this = nWord;
219 *this <<= 8 * (nSize - 3);
220 }
221 if (pfNegative)
222 *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
223 if (pfOverflow)
224 *pfOverflow = nWord != 0 && ((nSize > 34) ||
225 (nWord > 0xff && nSize > 33) ||
226 (nWord > 0xffff && nSize > 32));
227 return *this;
228}
229
230uint32_t arith_uint256::GetCompact(bool fNegative) const
231{
232 int nSize = (bits() + 7) / 8;
233 uint32_t nCompact = 0;
234 if (nSize <= 3) {
235 nCompact = GetLow64() << 8 * (3 - nSize);
236 } else {
237 arith_uint256 bn = *this >> 8 * (nSize - 3);
238 nCompact = bn.GetLow64();
239 }
240 // The 0x00800000 bit denotes the sign.
241 // Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
242 if (nCompact & 0x00800000) {
243 nCompact >>= 8;
244 nSize++;
245 }
246 assert((nCompact & ~0x007fffff) == 0);
247 assert(nSize < 256);
248 nCompact |= nSize << 24;
249 nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
250 return nCompact;
251}
252
92cdb1aa
WL
253uint256 ArithToUint256(const arith_uint256 &a)
254{
255 uint256 b;
f4e64872
WL
256 for(int x=0; x<a.WIDTH; ++x)
257 WriteLE32(b.begin() + x*4, a.pn[x]);
92cdb1aa
WL
258 return b;
259}
260arith_uint256 UintToArith256(const uint256 &a)
261{
262 arith_uint256 b;
f4e64872
WL
263 for(int x=0; x<b.WIDTH; ++x)
264 b.pn[x] = ReadLE32(a.begin() + x*4);
92cdb1aa
WL
265 return b;
266}
This page took 0.189515 seconds and 4 git commands to generate.