]> Git Repo - VerusCoin.git/blame - src/key.cpp
Auto merge of #2443 - str4d:1621-priority-download-path, r=str4d
[VerusCoin.git] / src / key.cpp
CommitLineData
f914f1a7 1// Copyright (c) 2009-2014 The Bitcoin Core developers
50fa0797 2// Copyright (c) 2017 The Zcash developers
ffd8edda 3// Distributed under the MIT software license, see the accompanying
3a25a2b9 4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
93db3fce 5
51ed9ec9
BD
6#include "key.h"
7
734f85c4 8#include "arith_uint256.h"
437ada3e 9#include "crypto/common.h"
36fa4a78 10#include "crypto/hmac_sha512.h"
d2e74c55 11#include "pubkey.h"
001a53d7 12#include "random.h"
977cdade 13
fda3fed1 14#include <secp256k1.h>
c1afe40a 15#include <secp256k1_recovery.h>
dfa23b94 16
c1afe40a
PW
17static secp256k1_context* secp256k1_context_sign = NULL;
18
19/** These functions are taken from the libsecp256k1 distribution and are very ugly. */
c032f1b6
JG
20
21/**
22 * This parses a format loosely based on a DER encoding of the ECPrivateKey type from
23 * section C.4 of SEC 1 <http://www.secg.org/sec1-v2.pdf>, with the following caveats:
24 *
25 * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
26 * required to be encoded as one octet if it is less than 256, as DER would require.
27 * * The octet-length of the SEQUENCE must not be greater than the remaining
28 * length of the key encoding, but need not match it (i.e. the encoding may contain
29 * junk after the encoded SEQUENCE).
30 * * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
31 * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
32 * or not it is validly encoded DER.
33 *
34 * out32 must point to an output buffer of length at least 32 bytes.
35 */
c1afe40a
PW
36static int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
37 const unsigned char *end = privkey + privkeylen;
c1afe40a
PW
38 memset(out32, 0, 32);
39 /* sequence header */
50fa0797 40 if (end - privkey < 1 || *privkey != 0x30u) {
c1afe40a
PW
41 return 0;
42 }
43 privkey++;
44 /* sequence length constructor */
50fa0797 45 if (end - privkey < 1 || !(*privkey & 0x80u)) {
c1afe40a
PW
46 return 0;
47 }
1f594106 48 size_t lenb = *privkey & ~0x80u; privkey++;
c1afe40a
PW
49 if (lenb < 1 || lenb > 2) {
50 return 0;
51 }
50fa0797 52 if (end - privkey < lenb) {
c1afe40a
PW
53 return 0;
54 }
55 /* sequence length */
1f594106 56 size_t len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0u);
c1afe40a 57 privkey += lenb;
50fa0797 58 if (end - privkey < len) {
c1afe40a
PW
59 return 0;
60 }
61 /* sequence element 0: version number (=1) */
50fa0797 62 if (end - privkey < 3 || privkey[0] != 0x02u || privkey[1] != 0x01u || privkey[2] != 0x01u) {
c1afe40a
PW
63 return 0;
64 }
65 privkey += 3;
66 /* sequence element 1: octet string, up to 32 bytes */
50fa0797 67 if (end - privkey < 2 || privkey[0] != 0x04u) {
c1afe40a
PW
68 return 0;
69 }
50fa0797
JG
70 size_t oslen = privkey[1];
71 privkey += 2;
72 if (oslen > 32 || end - privkey < oslen) {
73 return 0;
74 }
75 memcpy(out32 + (32 - oslen), privkey, oslen);
c1afe40a
PW
76 if (!secp256k1_ec_seckey_verify(ctx, out32)) {
77 memset(out32, 0, 32);
78 return 0;
79 }
80 return 1;
81}
82
c032f1b6
JG
83/**
84 * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
85 * <http://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
86 * included.
87 *
877964c8
JG
88 * privkey must point to an output buffer of length at least PRIVATE_KEY_SIZE bytes.
89 * privkeylen must initially be set to the size of the privkey buffer. Upon return it
90 * will be set to the number of bytes used in the buffer.
c032f1b6
JG
91 * key32 must point to a 32-byte raw private key.
92 */
c1afe40a 93static int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
877964c8 94 assert(*privkeylen >= PRIVATE_KEY_SIZE);
fd0d1c7d
JG
95 static_assert(
96 PRIVATE_KEY_SIZE >= COMPRESSED_PRIVATE_KEY_SIZE,
97 "COMPRESSED_PRIVATE_KEY_SIZE is larger than PRIVATE_KEY_SIZE");
c1afe40a
PW
98 secp256k1_pubkey pubkey;
99 size_t pubkeylen = 0;
100 if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
101 *privkeylen = 0;
102 return 0;
103 }
104 if (compressed) {
105 static const unsigned char begin[] = {
106 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
107 };
108 static const unsigned char middle[] = {
109 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
110 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
111 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
112 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
113 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
114 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
115 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
116 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
117 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
118 };
119 unsigned char *ptr = privkey;
120 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
121 memcpy(ptr, key32, 32); ptr += 32;
122 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
877964c8 123 pubkeylen = COMPRESSED_PUBLIC_KEY_SIZE;
c1afe40a
PW
124 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
125 ptr += pubkeylen;
126 *privkeylen = ptr - privkey;
877964c8 127 assert(*privkeylen == COMPRESSED_PRIVATE_KEY_SIZE);
c1afe40a
PW
128 } else {
129 static const unsigned char begin[] = {
130 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
131 };
132 static const unsigned char middle[] = {
133 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
134 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
135 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
136 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
137 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
138 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
139 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
140 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
141 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
142 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
143 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
144 };
145 unsigned char *ptr = privkey;
146 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
147 memcpy(ptr, key32, 32); ptr += 32;
148 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
877964c8 149 pubkeylen = PUBLIC_KEY_SIZE;
c1afe40a
PW
150 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
151 ptr += pubkeylen;
152 *privkeylen = ptr - privkey;
877964c8 153 assert(*privkeylen == PRIVATE_KEY_SIZE);
c1afe40a
PW
154 }
155 return 1;
156}
dfa23b94
PW
157
158bool CKey::Check(const unsigned char *vch) {
c1afe40a 159 return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
096e06db
GA
160}
161
dfa23b94
PW
162void CKey::MakeNewKey(bool fCompressedIn) {
163 do {
001a53d7 164 GetRandBytes(vch, sizeof(vch));
dfa23b94
PW
165 } while (!Check(vch));
166 fValid = true;
167 fCompressed = fCompressedIn;
096e06db
GA
168}
169
dfa23b94 170bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
c1afe40a 171 if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size()))
dfa23b94 172 return false;
dfa23b94
PW
173 fCompressed = fCompressedIn;
174 fValid = true;
175 return true;
096e06db
GA
176}
177
dfa23b94
PW
178CPrivKey CKey::GetPrivKey() const {
179 assert(fValid);
fda3fed1 180 CPrivKey privkey;
c1afe40a
PW
181 int ret;
182 size_t privkeylen;
877964c8
JG
183 privkey.resize(PRIVATE_KEY_SIZE);
184 privkeylen = PRIVATE_KEY_SIZE;
c1afe40a 185 ret = ec_privkey_export_der(secp256k1_context_sign, (unsigned char*)&privkey[0], &privkeylen, begin(), fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
fda3fed1
PW
186 assert(ret);
187 privkey.resize(privkeylen);
dfa23b94 188 return privkey;
096e06db
GA
189}
190
dfa23b94
PW
191CPubKey CKey::GetPubKey() const {
192 assert(fValid);
c1afe40a 193 secp256k1_pubkey pubkey;
877964c8 194 size_t clen = PUBLIC_KEY_SIZE;
bdaec6ab 195 CPubKey result;
c1afe40a 196 int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
fda3fed1 197 assert(ret);
c1afe40a
PW
198 secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
199 assert(result.size() == clen);
bdaec6ab
CF
200 assert(result.IsValid());
201 return result;
096e06db
GA
202}
203
a53fd414 204bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_t test_case) const {
dfa23b94 205 if (!fValid)
096e06db 206 return false;
877964c8
JG
207 vchSig.resize(SIGNATURE_SIZE);
208 size_t nSigLen = SIGNATURE_SIZE;
437ada3e
PW
209 unsigned char extra_entropy[32] = {0};
210 WriteLE32(extra_entropy, test_case);
c1afe40a
PW
211 secp256k1_ecdsa_signature sig;
212 int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL);
1a9576de 213 assert(ret);
c1afe40a 214 secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, (unsigned char*)&vchSig[0], &nSigLen, &sig);
1a9576de
PW
215 vchSig.resize(nSigLen);
216 return true;
096e06db
GA
217}
218
d0c41a73
PW
219bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
220 if (pubkey.IsCompressed() != fCompressed) {
221 return false;
222 }
223 unsigned char rnd[8];
224 std::string str = "Bitcoin key verification\n";
225 GetRandBytes(rnd, sizeof(rnd));
226 uint256 hash;
1a9576de 227 CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin());
d0c41a73
PW
228 std::vector<unsigned char> vchSig;
229 Sign(hash, vchSig);
230 return pubkey.Verify(hash, vchSig);
231}
232
dfa23b94
PW
233bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
234 if (!fValid)
096e06db 235 return false;
877964c8 236 vchSig.resize(COMPACT_SIGNATURE_SIZE);
dfa23b94 237 int rec = -1;
c1afe40a
PW
238 secp256k1_ecdsa_recoverable_signature sig;
239 int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, NULL);
240 assert(ret);
241 secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, (unsigned char*)&vchSig[1], &rec, &sig);
1a9576de 242 assert(ret);
dfa23b94
PW
243 assert(rec != -1);
244 vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
245 return true;
246}
096e06db 247
6e51b3bd 248bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
c1afe40a 249 if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size()))
6e51b3bd 250 return false;
6e51b3bd 251 fCompressed = vchPubKey.IsCompressed();
252 fValid = true;
fda3fed1 253
a42eef6f 254 if (fSkipCheck)
255 return true;
fda3fed1 256
d0c41a73 257 return VerifyPubKey(vchPubKey);
6e51b3bd 258}
259
a5748996 260bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
eb2c9990
PW
261 assert(IsValid());
262 assert(IsCompressed());
263 unsigned char out[64];
264 LockObject(out);
265 if ((nChild >> 31) == 0) {
266 CPubKey pubkey = GetPubKey();
877964c8 267 assert(pubkey.size() == COMPRESSED_PUBLIC_KEY_SIZE);
eb2c9990
PW
268 BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
269 } else {
50fa0797 270 assert(size() == 32);
eb2c9990
PW
271 BIP32Hash(cc, nChild, 0, begin(), out);
272 }
a5748996 273 memcpy(ccChild.begin(), out+32, 32);
fda3fed1 274 memcpy((unsigned char*)keyChild.begin(), begin(), 32);
c1afe40a 275 bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), out);
eb2c9990
PW
276 UnlockObject(out);
277 keyChild.fCompressed = true;
278 keyChild.fValid = ret;
279 return ret;
280}
281
eb2c9990
PW
282bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const {
283 out.nDepth = nDepth + 1;
284 CKeyID id = key.GetPubKey().GetID();
285 memcpy(&out.vchFingerprint[0], &id, 4);
286 out.nChild = nChild;
a5748996 287 return key.Derive(out.key, out.chaincode, nChild, chaincode);
eb2c9990
PW
288}
289
290void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
977cdade 291 static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
eb2c9990
PW
292 unsigned char out[64];
293 LockObject(out);
977cdade 294 CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
eb2c9990 295 key.Set(&out[0], &out[32], true);
a5748996 296 memcpy(chaincode.begin(), &out[32], 32);
eb2c9990
PW
297 UnlockObject(out);
298 nDepth = 0;
299 nChild = 0;
300 memset(vchFingerprint, 0, sizeof(vchFingerprint));
301}
302
303CExtPubKey CExtKey::Neuter() const {
304 CExtPubKey ret;
305 ret.nDepth = nDepth;
306 memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
307 ret.nChild = nChild;
308 ret.pubkey = key.GetPubKey();
a5748996 309 ret.chaincode = chaincode;
eb2c9990
PW
310 return ret;
311}
312
313void CExtKey::Encode(unsigned char code[74]) const {
314 code[0] = nDepth;
315 memcpy(code+1, vchFingerprint, 4);
316 code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
317 code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
a5748996 318 memcpy(code+9, chaincode.begin(), 32);
eb2c9990
PW
319 code[41] = 0;
320 assert(key.size() == 32);
321 memcpy(code+42, key.begin(), 32);
322}
323
324void CExtKey::Decode(const unsigned char code[74]) {
325 nDepth = code[0];
326 memcpy(vchFingerprint, code+1, 4);
327 nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
a5748996 328 memcpy(chaincode.begin(), code+9, 32);
eb2c9990
PW
329 key.Set(code+42, code+74, true);
330}
331
4a09e1df 332bool ECC_InitSanityCheck() {
f321d6bf
PW
333 CKey key;
334 key.MakeNewKey(true);
335 CPubKey pubkey = key.GetPubKey();
336 return key.VerifyPubKey(pubkey);
4a09e1df 337}
a56054be 338
a56054be 339void ECC_Start() {
c1afe40a 340 assert(secp256k1_context_sign == NULL);
a56054be 341
c1afe40a 342 secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
a56054be
PW
343 assert(ctx != NULL);
344
345 {
346 // Pass in a random blinding seed to the secp256k1 context.
347 unsigned char seed[32];
348 LockObject(seed);
349 GetRandBytes(seed, 32);
350 bool ret = secp256k1_context_randomize(ctx, seed);
351 assert(ret);
352 UnlockObject(seed);
353 }
354
c1afe40a 355 secp256k1_context_sign = ctx;
a56054be
PW
356}
357
358void ECC_Stop() {
c1afe40a
PW
359 secp256k1_context *ctx = secp256k1_context_sign;
360 secp256k1_context_sign = NULL;
a56054be
PW
361
362 if (ctx) {
363 secp256k1_context_destroy(ctx);
364 }
365}
This page took 0.231685 seconds and 4 git commands to generate.