1 // SPDX-License-Identifier: GPL-2.0+
3 * (C) Copyright 2013-2020
4 * NVIDIA Corporation <www.nvidia.com>
7 /* Tegra210 Clock control functions */
11 #include <asm/cache.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/sysctr.h>
15 #include <asm/arch/tegra.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <asm/arch-tegra/timer.h>
22 * Clock types that we can use as a source. The Tegra210 has muxes for the
23 * peripheral clocks, and in most cases there are four options for the clock
24 * source. This gives us a clock 'type' and exploits what commonality exists
27 * Letters are obvious, except for T which means CLK_M, and S which means the
28 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
29 * datasheet) and PLL_M are different things. The former is the basic
30 * clock supplied to the SOC from an external oscillator. The latter is the
33 * See definitions in clock_id in the header file.
36 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
37 CLOCK_TYPE_MCPA, /* and so on */
51 CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
54 CLOCK_TYPE_MCPTM2C2C3,
56 CLOCK_TYPE_AC2CC3P_TS2,
57 CLOCK_TYPE_PC01C00_C42C41TC40,
60 CLOCK_TYPE_NONE = -1, /* invalid clock type */
64 CLOCK_MAX_MUX = 8 /* number of source options for each clock */
68 * Clock source mux for each clock type. This just converts our enum into
69 * a list of mux sources for use by the code.
72 * The extra column in each clock source array is used to store the mask
73 * bits in its register for the source.
75 #define CLK(x) CLOCK_ID_ ## x
76 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
77 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
78 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
80 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
81 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
83 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
84 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
86 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
87 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
89 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
90 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
92 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
93 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
95 { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
96 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
98 { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
99 CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
101 { CLK(PERIPH), CLK(NONE), CLK(DISPLAY), CLK(NONE),
102 CLK(NONE), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
104 { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
105 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
108 { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
109 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
112 /* Additional clock types on Tegra114+ */
113 /* CLOCK_TYPE_PC2CC3M */
114 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
115 CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
117 /* CLOCK_TYPE_PC2CC3S_T */
118 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
119 CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE),
121 /* CLOCK_TYPE_PC2CC3M_T */
122 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
123 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
125 /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
126 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
127 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
129 /* CLOCK_TYPE_MC2CC3P_A */
130 { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
131 CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE),
134 { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
135 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
137 /* CLOCK_TYPE_MCPTM2C2C3 */
138 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
139 CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
141 /* CLOCK_TYPE_PC2CC3T_S */
142 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
143 CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE),
145 /* CLOCK_TYPE_AC2CC3P_TS2 */
146 { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
147 CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2),
149 /* CLOCK_TYPE_PC01C00_C42C41TC40 */
150 { CLK(PERIPH), CLK(CGENERAL_1), CLK(CGENERAL_0), CLK(NONE),
151 CLK(CGENERAL4_2), CLK(CGENERAL4_1), CLK(OSC), CLK(CGENERAL4_0),
156 * Clock type for each peripheral clock source. We put the name in each
157 * record just so it is easy to match things up
159 #define TYPE(name, type) type
160 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
162 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
163 TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
164 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
165 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M),
166 TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T),
167 TYPE(PERIPHC_05h, CLOCK_TYPE_NONE),
168 TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T),
169 TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T),
172 TYPE(PERIPHC_08h, CLOCK_TYPE_NONE),
173 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16),
174 TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16),
175 TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE),
176 TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE),
177 TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T),
178 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDD2T),
179 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDD2T),
182 TYPE(PERIPHC_10h, CLOCK_TYPE_NONE),
183 TYPE(PERIPHC_11h, CLOCK_TYPE_NONE),
184 TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A),
185 TYPE(PERIPHC_13h, CLOCK_TYPE_NONE),
186 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T),
187 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T),
188 TYPE(PERIPHC_16h, CLOCK_TYPE_NONE),
189 TYPE(PERIPHC_17h, CLOCK_TYPE_NONE),
192 TYPE(PERIPHC_18h, CLOCK_TYPE_NONE),
193 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T),
194 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T),
195 TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE),
196 TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE),
197 TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T),
198 TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T),
199 TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T),
202 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A),
203 TYPE(PERIPHC_21h, CLOCK_TYPE_NONE),
204 TYPE(PERIPHC_22h, CLOCK_TYPE_NONE),
205 TYPE(PERIPHC_23h, CLOCK_TYPE_NONE),
206 TYPE(PERIPHC_24h, CLOCK_TYPE_NONE),
207 TYPE(PERIPHC_25h, CLOCK_TYPE_NONE),
208 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16),
209 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3),
212 TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T),
213 TYPE(PERIPHC_29h, CLOCK_TYPE_NONE),
214 TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
215 TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE),
216 TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE),
217 TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T),
218 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16),
219 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T),
222 TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T),
223 TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T),
224 TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T),
225 TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T),
226 TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T),
227 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T),
228 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
229 TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE),
232 TYPE(PERIPHC_38h, CLOCK_TYPE_NONE),
233 TYPE(PERIPHC_39h, CLOCK_TYPE_NONE),
234 TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE),
235 TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE),
236 TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A),
237 TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T),
238 TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE),
239 TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE),
242 TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */
243 TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T),
244 TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S),
245 TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
246 TYPE(PERIPHC_I2S5, CLOCK_TYPE_AXPT),
247 TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16),
248 TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T),
249 TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T),
252 TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2),
253 TYPE(PERIPHC_49h, CLOCK_TYPE_NONE),
254 TYPE(PERIPHC_4ah, CLOCK_TYPE_NONE),
255 TYPE(PERIPHC_4bh, CLOCK_TYPE_NONE),
256 TYPE(PERIPHC_4ch, CLOCK_TYPE_NONE),
257 TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
258 TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T),
259 TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
262 TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
263 TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
264 TYPE(PERIPHC_52h, CLOCK_TYPE_NONE),
265 TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T),
266 TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
267 TYPE(PERIPHC_55h, CLOCK_TYPE_NONE),
268 TYPE(PERIPHC_56h, CLOCK_TYPE_NONE),
269 TYPE(PERIPHC_57h, CLOCK_TYPE_NONE),
272 TYPE(PERIPHC_58h, CLOCK_TYPE_NONE),
273 TYPE(PERIPHC_59h, CLOCK_TYPE_NONE),
274 TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE),
275 TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE),
276 TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT),
277 TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
278 TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T),
279 TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE),
282 TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
283 TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
284 TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE),
285 TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
286 TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE),
287 TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE),
288 TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE),
289 TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE),
292 TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE),
293 TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE),
294 TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE),
295 TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE),
296 TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE),
297 TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
298 TYPE(PERIPHC_6eh, CLOCK_TYPE_NONE),
299 TYPE(PERIPHC_6fh, CLOCK_TYPE_NONE),
302 TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
303 TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
304 TYPE(PERIPHC_72h, CLOCK_TYPE_NONE),
305 TYPE(PERIPHC_73h, CLOCK_TYPE_NONE),
306 TYPE(PERIPHC_74h, CLOCK_TYPE_NONE),
307 TYPE(PERIPHC_75h, CLOCK_TYPE_NONE),
308 TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
309 TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16),
312 TYPE(PERIPHC_78h, CLOCK_TYPE_NONE),
313 TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3),
314 TYPE(PERIPHC_7ah, CLOCK_TYPE_NONE),
315 TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE),
316 TYPE(PERIPHC_7ch, CLOCK_TYPE_NONE),
317 TYPE(PERIPHC_7dh, CLOCK_TYPE_NONE),
318 TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE),
319 TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE),
322 TYPE(PERIPHC_SDMMC_LEGACY_TM, CLOCK_TYPE_NONE),
323 TYPE(PERIPHC_NVDEC, CLOCK_TYPE_NONE),
324 TYPE(PERIPHC_NVJPG, CLOCK_TYPE_NONE),
325 TYPE(PERIPHC_NVENC, CLOCK_TYPE_NONE),
326 TYPE(PERIPHC_84h, CLOCK_TYPE_NONE),
327 TYPE(PERIPHC_85h, CLOCK_TYPE_NONE),
328 TYPE(PERIPHC_86h, CLOCK_TYPE_NONE),
329 TYPE(PERIPHC_87h, CLOCK_TYPE_NONE),
332 TYPE(PERIPHC_88h, CLOCK_TYPE_NONE),
333 TYPE(PERIPHC_89h, CLOCK_TYPE_NONE),
334 TYPE(PERIPHC_DMIC3, CLOCK_TYPE_NONE),
335 TYPE(PERIPHC_APE, CLOCK_TYPE_NONE),
336 TYPE(PERIPHC_QSPI, CLOCK_TYPE_PC01C00_C42C41TC40),
337 TYPE(PERIPHC_VI_I2C, CLOCK_TYPE_PC2CC3M_T16),
338 TYPE(PERIPHC_USB2_HSIC_TRK, CLOCK_TYPE_NONE),
339 TYPE(PERIPHC_PEX_SATA_USB_RX_BYP, CLOCK_TYPE_NONE),
342 TYPE(PERIPHC_MAUD, CLOCK_TYPE_NONE),
343 TYPE(PERIPHC_TSECB, CLOCK_TYPE_NONE),
347 * This array translates a periph_id to a periphc_internal_id
349 * Not present/matched up:
350 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
351 * SPDIF - which is both 0x08 and 0x0c
354 #define NONE(name) (-1)
355 #define OFFSET(name, value) PERIPHC_ ## name
356 #define INTERNAL_ID(id) (id & 0x000000ff)
357 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
366 PERIPHC_UART2, /* and vfir 0x68 */
398 /* Middle word: 63:32 */
410 PERIPHC_SBC1, /* SBCx = SPIx */
438 /* Upper word 95:64 */
598 /* Y: 192 (192 - 223) */
600 PERIPHC_SDMMC_LEGACY_TM,
604 PERIPHC_DMIC3, /* 197 */
605 PERIPHC_APE, /* 198 */
619 PERIPHC_VI_I2C, /* 208 */
622 PERIPHC_QSPI, /* 211 */
632 PERIPHC_NVENC, /* 219 */
640 * PLL divider shift/mask tables for all PLL IDs.
642 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
644 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLC, etc.)
645 * If lock_ena or lock_det are >31, they're not used in that PLL (PLLC, etc.)
647 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
648 .lock_ena = 32, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLC */
649 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
650 .lock_ena = 4, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
651 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
652 .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 3, .kvco_shift = 2, .kvco_mask = 1 }, /* PLLP */
653 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
654 .lock_ena = 28, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLA */
655 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 16, .p_mask = 0x1F,
656 .lock_ena = 29, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLU */
657 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 11, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x07,
658 .lock_ena = 18, .lock_det = 27, .kcp_shift = 23, .kcp_mask = 3, .kvco_shift = 22, .kvco_mask = 1 }, /* PLLD */
659 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
660 .lock_ena = 18, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLX */
661 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
662 .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
663 { .m_shift = 0, .m_mask = 0, .n_shift = 0, .n_mask = 0, .p_shift = 0, .p_mask = 0,
664 .lock_ena = 0, .lock_det = 0, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLS (gone)*/
665 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 19, .p_mask = 0x1F,
666 .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */
670 * Get the oscillator frequency, from the corresponding hardware configuration
671 * field. Note that Tegra30+ support 3 new higher freqs, but we map back
672 * to the old T20 freqs. Support for the higher oscillators is TBD.
674 enum clock_osc_freq clock_get_osc_freq(void)
676 struct clk_rst_ctlr *clkrst =
677 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
680 reg = readl(&clkrst->crc_osc_ctrl);
681 reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
683 * 0 = 13MHz, 1 = 16.8MHz, 4 = 19.2MHz, 5 = 38.4MHz,
684 * 8 = 12MHz, 9 = 48MHz, 12 = 26MHz
687 debug("OSC_FREQ is 38.4MHz (%d) ...\n", reg);
688 /* Map it to the 5th CLOCK_OSC_ enum, i.e. 4 */
693 * Map to most common (T20) freqs (except 38.4, handled above):
694 * 13/16.8 = 0, 19.2 = 1, 12/48 = 2, 26 = 3
699 /* Returns a pointer to the clock source register for a peripheral */
700 u32 *get_periph_source_reg(enum periph_id periph_id)
702 struct clk_rst_ctlr *clkrst =
703 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
704 enum periphc_internal_id internal_id;
706 /* Coresight is a special case */
707 if (periph_id == PERIPH_ID_CSI)
708 return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
710 assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
711 internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
712 assert(internal_id != -1);
714 if (internal_id < PERIPHC_VW_FIRST)
716 return &clkrst->crc_clk_src[internal_id];
718 if (internal_id < PERIPHC_X_FIRST) {
720 internal_id -= PERIPHC_VW_FIRST;
721 return &clkrst->crc_clk_src_vw[internal_id];
724 if (internal_id < PERIPHC_Y_FIRST) {
726 internal_id -= PERIPHC_X_FIRST;
727 return &clkrst->crc_clk_src_x[internal_id];
731 internal_id -= PERIPHC_Y_FIRST;
732 return &clkrst->crc_clk_src_y[internal_id];
735 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
736 int *divider_bits, int *type)
738 enum periphc_internal_id internal_id;
740 if (!clock_periph_id_isvalid(periph_id))
743 internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
744 if (!periphc_internal_id_isvalid(internal_id))
747 *type = clock_periph_type[internal_id];
748 if (!clock_type_id_isvalid(*type))
751 *mux_bits = clock_source[*type][CLOCK_MAX_MUX];
753 if (*type == CLOCK_TYPE_PC2CC3M_T16)
761 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
763 enum periphc_internal_id internal_id;
766 if (!clock_periph_id_isvalid(periph_id))
767 return CLOCK_ID_NONE;
769 internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
770 if (!periphc_internal_id_isvalid(internal_id))
771 return CLOCK_ID_NONE;
773 type = clock_periph_type[internal_id];
774 if (!clock_type_id_isvalid(type))
775 return CLOCK_ID_NONE;
777 return clock_source[type][source];
781 * Given a peripheral ID and the required source clock, this returns which
782 * value should be programmed into the source mux for that peripheral.
784 * There is special code here to handle the one source type with 5 sources.
786 * @param periph_id peripheral to start
787 * @param source PLL id of required parent clock
788 * @param mux_bits Set to number of bits in mux register: 2 or 4
789 * @param divider_bits Set to number of divider bits (8 or 16)
790 * @return mux value (0-4, or -1 if not found)
792 int get_periph_clock_source(enum periph_id periph_id,
793 enum clock_id parent, int *mux_bits, int *divider_bits)
795 enum clock_type_id type;
798 err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
801 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
802 if (clock_source[type][mux] == parent)
805 /* if we get here, either us or the caller has made a mistake */
806 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
811 void clock_set_enable(enum periph_id periph_id, int enable)
813 struct clk_rst_ctlr *clkrst =
814 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
818 /* Enable/disable the clock to this peripheral */
819 assert(clock_periph_id_isvalid(periph_id));
820 if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
821 clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
822 else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
823 clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
824 else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
825 clk = &clkrst->crc_clk_out_enb_x;
827 clk = &clkrst->crc_clk_out_enb_y;
831 reg |= PERIPH_MASK(periph_id);
833 reg &= ~PERIPH_MASK(periph_id);
837 void reset_set_enable(enum periph_id periph_id, int enable)
839 struct clk_rst_ctlr *clkrst =
840 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
844 /* Enable/disable reset to the peripheral */
845 assert(clock_periph_id_isvalid(periph_id));
846 if (periph_id < PERIPH_ID_VW_FIRST)
847 reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
848 else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
849 reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
850 else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
851 reset = &clkrst->crc_rst_devices_x;
853 reset = &clkrst->crc_rst_devices_y;
857 reg |= PERIPH_MASK(periph_id);
859 reg &= ~PERIPH_MASK(periph_id);
863 #ifdef CONFIG_OF_CONTROL
865 * Convert a device tree clock ID to our peripheral ID. They are mostly
866 * the same but we are very cautious so we check that a valid clock ID is
869 * @param clk_id Clock ID according to tegra210 device tree binding
870 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
872 enum periph_id clk_id_to_periph_id(int clk_id)
874 if (clk_id > PERIPH_ID_COUNT)
875 return PERIPH_ID_NONE;
878 case PERIPH_ID_RESERVED4:
879 case PERIPH_ID_RESERVED25:
880 case PERIPH_ID_RESERVED35:
881 case PERIPH_ID_RESERVED36:
882 case PERIPH_ID_RESERVED38:
883 case PERIPH_ID_RESERVED43:
884 case PERIPH_ID_RESERVED49:
885 case PERIPH_ID_RESERVED53:
886 case PERIPH_ID_RESERVED64:
887 case PERIPH_ID_RESERVED84:
888 case PERIPH_ID_RESERVED85:
889 case PERIPH_ID_RESERVED86:
890 case PERIPH_ID_RESERVED88:
891 case PERIPH_ID_RESERVED90:
892 case PERIPH_ID_RESERVED92:
893 case PERIPH_ID_RESERVED93:
894 case PERIPH_ID_RESERVED94:
895 case PERIPH_ID_V_RESERVED2:
896 case PERIPH_ID_V_RESERVED4:
897 case PERIPH_ID_V_RESERVED17:
898 case PERIPH_ID_V_RESERVED18:
899 case PERIPH_ID_V_RESERVED19:
900 case PERIPH_ID_V_RESERVED20:
901 case PERIPH_ID_V_RESERVED21:
902 case PERIPH_ID_V_RESERVED22:
903 case PERIPH_ID_W_RESERVED2:
904 case PERIPH_ID_W_RESERVED3:
905 case PERIPH_ID_W_RESERVED4:
906 case PERIPH_ID_W_RESERVED5:
907 case PERIPH_ID_W_RESERVED6:
908 case PERIPH_ID_W_RESERVED7:
909 case PERIPH_ID_W_RESERVED9:
910 case PERIPH_ID_W_RESERVED10:
911 case PERIPH_ID_W_RESERVED11:
912 case PERIPH_ID_W_RESERVED12:
913 case PERIPH_ID_W_RESERVED13:
914 case PERIPH_ID_W_RESERVED15:
915 case PERIPH_ID_W_RESERVED16:
916 case PERIPH_ID_W_RESERVED17:
917 case PERIPH_ID_W_RESERVED18:
918 case PERIPH_ID_W_RESERVED19:
919 case PERIPH_ID_W_RESERVED20:
920 case PERIPH_ID_W_RESERVED23:
921 case PERIPH_ID_W_RESERVED29:
922 case PERIPH_ID_W_RESERVED30:
923 case PERIPH_ID_W_RESERVED31:
924 return PERIPH_ID_NONE;
929 #endif /* CONFIG_OF_CONTROL */
932 * T210 redefines PLLP_OUT2 as PLLP_VCO/DIVP, so do different OUT1-4 setup here.
933 * PLLP_BASE/MISC/etc. is already set up for 408MHz in the BootROM.
935 void tegra210_setup_pllp(void)
937 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
940 /* Set PLLP_OUT1, 3 & 4 freqs to 9.6, 102 & 204MHz */
943 /* Assert RSTN before enable */
944 reg = PLLP_OUT1_RSTN_EN;
945 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
946 /* Set divisor and reenable */
947 reg = (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
948 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
949 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
952 /* Assert RSTN before enable */
953 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
954 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
955 /* Set divisor and reenable */
956 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
957 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
958 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
959 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
960 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
963 * NOTE: If you want to change PLLP_OUT2 away from 204MHz,
964 * you can change PLLP_BASE DIVP here. Currently defaults
965 * to 1, which is 2^1, or 2, so PLLP_OUT2 is 204MHz.
966 * See Table 13 in section 5.1.4 in T210 TRM for more info.
970 void clock_early_init(void)
972 struct clk_rst_ctlr *clkrst =
973 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
974 struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
977 tegra210_setup_pllp();
980 * PLLC output frequency set to 600Mhz
981 * PLLD output frequency set to 925Mhz
983 switch (clock_get_osc_freq()) {
984 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
985 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
986 clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
989 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
990 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
991 clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
994 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
995 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
996 clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
998 case CLOCK_OSC_FREQ_19_2:
999 clock_set_rate(CLOCK_ID_CGENERAL, 125, 4, 0, 0);
1000 clock_set_rate(CLOCK_ID_DISPLAY, 96, 2, 0, 12);
1002 case CLOCK_OSC_FREQ_38_4:
1003 clock_set_rate(CLOCK_ID_CGENERAL, 125, 8, 0, 0);
1004 clock_set_rate(CLOCK_ID_DISPLAY, 96, 4, 0, 0);
1008 * These are not supported. It is too early to print a
1009 * message and the UART likely won't work anyway due to the
1010 * oscillator being wrong.
1015 /* PLLC_MISC1: Turn IDDQ off. NOTE: T210 PLLC_MISC_1 maps to pll_misc */
1016 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc,
1021 * PLLC_MISC: Take PLLC out of reset. NOTE: T210 PLLC_MISC maps
1024 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1],
1028 /* PLLD_MISC: Set CLKENABLE and LOCK_DETECT bits */
1029 data = (1 << PLLD_ENABLE_CLK) | (1 << pllinfo->lock_ena);
1030 writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
1034 unsigned int clk_m_get_rate(unsigned parent_rate)
1036 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1039 value = readl(&clkrst->crc_spare_reg0);
1040 div = ((value >> 2) & 0x3) + 1;
1042 return parent_rate / div;
1045 void arch_timer_init(void)
1047 struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
1050 freq = clock_get_rate(CLOCK_ID_CLK_M);
1051 debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
1053 if (current_el() == 3)
1054 asm("msr cntfrq_el0, %0\n" : : "r" (freq));
1056 /* Only Tegra114+ has the System Counter regs */
1057 debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
1058 writel(freq, &sysctr->cntfid0);
1060 val = readl(&sysctr->cntcr);
1061 val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
1062 writel(val, &sysctr->cntcr);
1063 debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
1066 #define PLLREFE_MISC 0x4c8
1067 #define PLLREFE_MISC_LOCK BIT(27)
1068 #define PLLREFE_MISC_IDDQ BIT(24)
1070 #define PLLREFE_BASE 0x4c4
1071 #define PLLREFE_BASE_BYPASS BIT(31)
1072 #define PLLREFE_BASE_ENABLE BIT(30)
1073 #define PLLREFE_BASE_REF_DIS BIT(29)
1074 #define PLLREFE_BASE_KCP(kcp) (((kcp) & 0x3) << 27)
1075 #define PLLREFE_BASE_KVCO BIT(26)
1076 #define PLLREFE_BASE_DIVP(p) (((p) & 0x1f) << 16)
1077 #define PLLREFE_BASE_DIVN(n) (((n) & 0xff) << 8)
1078 #define PLLREFE_BASE_DIVM(m) (((m) & 0xff) << 0)
1080 static int tegra_pllref_enable(void)
1083 unsigned long start;
1086 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1087 * Recovery Mode or Boot from USB", sub-section "PLLREFE".
1090 value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1091 value &= ~PLLREFE_MISC_IDDQ;
1092 writel(value, NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1096 value = PLLREFE_BASE_ENABLE |
1097 PLLREFE_BASE_KCP(0) |
1098 PLLREFE_BASE_DIVP(0) |
1099 PLLREFE_BASE_DIVN(0x41) |
1100 PLLREFE_BASE_DIVM(4);
1101 writel(value, NV_PA_CLK_RST_BASE + PLLREFE_BASE);
1103 debug("waiting for pllrefe lock\n");
1104 start = get_timer(0);
1105 while (get_timer(start) < 250) {
1106 value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1107 if (value & PLLREFE_MISC_LOCK)
1110 if (!(value & PLLREFE_MISC_LOCK)) {
1111 debug(" timeout\n");
1119 #define PLLE_SS_CNTL 0x68
1120 #define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
1121 #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
1122 #define PLLE_SS_CNTL_SSCINVERT (1 << 15)
1123 #define PLLE_SS_CNTL_SSCCENTER (1 << 14)
1124 #define PLLE_SS_CNTL_SSCBYP (1 << 12)
1125 #define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
1126 #define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
1127 #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
1129 #define PLLE_BASE 0x0e8
1130 #define PLLE_BASE_ENABLE (1 << 31)
1131 #define PLLE_BASE_PLDIV_CML(x) (((x) & 0x1f) << 24)
1132 #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
1133 #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
1135 #define PLLE_MISC 0x0ec
1136 #define PLLE_MISC_IDDQ_SWCTL (1 << 14)
1137 #define PLLE_MISC_IDDQ_OVERRIDE_VALUE (1 << 13)
1138 #define PLLE_MISC_LOCK (1 << 11)
1139 #define PLLE_PTS (1 << 8)
1140 #define PLLE_MISC_KCP(x) (((x) & 0x3) << 6)
1141 #define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
1142 #define PLLE_MISC_KVCO (1 << 0)
1144 #define PLLE_AUX 0x48c
1145 #define PLLE_AUX_SS_SEQ_INCLUDE (1 << 31)
1146 #define PLLE_AUX_REF_SEL_PLLREFE (1 << 28)
1147 #define PLLE_AUX_SEQ_ENABLE (1 << 24)
1148 #define PLLE_AUX_SS_SWCTL (1 << 6)
1149 #define PLLE_AUX_ENABLE_SWCTL (1 << 4)
1150 #define PLLE_AUX_USE_LOCKDET (1 << 3)
1152 int tegra_plle_enable(void)
1155 unsigned long start;
1157 /* PLLREF feeds PLLE */
1158 tegra_pllref_enable();
1161 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1162 * Recovery Mode or Boot from USB", sub-section "PLLEs".
1165 /* 1. Select XTAL as the source */
1167 value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1168 value &= ~PLLE_AUX_REF_SEL_PLLREFE;
1169 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1171 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1172 value &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
1173 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1179 * 3. Program the following registers to generate a low jitter 100MHz
1183 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1184 value &= ~PLLE_BASE_PLDIV_CML(0x1f);
1185 value &= ~PLLE_BASE_NDIV(0xff);
1186 value &= ~PLLE_BASE_MDIV(0xff);
1187 value |= PLLE_BASE_PLDIV_CML(0xe);
1188 value |= PLLE_BASE_NDIV(0x7d);
1189 value |= PLLE_BASE_MDIV(2);
1190 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1192 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1194 value &= ~PLLE_MISC_KCP(3);
1195 value &= ~PLLE_MISC_VREG_CTRL(3);
1196 value &= ~PLLE_MISC_KVCO;
1197 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1199 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1200 value |= PLLE_BASE_ENABLE;
1201 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1203 /* 4. Wait for LOCK */
1205 debug("waiting for plle lock\n");
1206 start = get_timer(0);
1207 while (get_timer(start) < 250) {
1208 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1209 if (value & PLLE_MISC_LOCK)
1212 if (!(value & PLLE_MISC_LOCK)) {
1213 debug(" timeout\n");
1220 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1221 value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1222 value |= PLLE_SS_CNTL_SSCINC(1);
1223 value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1224 value |= PLLE_SS_CNTL_SSCINCINTR(0x23);
1225 value &= ~PLLE_SS_CNTL_SSCMAX(0x1fff);
1226 value |= PLLE_SS_CNTL_SSCMAX(0x21);
1227 value &= ~PLLE_SS_CNTL_SSCINVERT;
1228 value &= ~PLLE_SS_CNTL_SSCCENTER;
1229 value &= ~PLLE_SS_CNTL_BYPASS_SS;
1230 value &= ~PLLE_SS_CNTL_SSCBYP;
1231 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1233 /* 6. Wait 300 ns */
1236 value &= ~PLLE_SS_CNTL_INTERP_RESET;
1237 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1242 struct periph_clk_init periph_clk_init_table[] = {
1243 { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1244 { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1245 { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1246 { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1247 { PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1248 { PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1249 { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1250 { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1251 { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1252 { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1253 { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1254 { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
1255 { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1256 { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1257 { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1258 { PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1259 { PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1260 { PERIPH_ID_I2C6, CLOCK_ID_PERIPH },