Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
9eefe2a2 SR |
2 | /* |
3 | * This file is part of UBIFS. | |
4 | * | |
5 | * Copyright (C) 2006-2008 Nokia Corporation. | |
6 | * Copyright (C) 2006, 2007 University of Szeged, Hungary | |
7 | * | |
9eefe2a2 SR |
8 | * Authors: Artem Bityutskiy (Битюцкий Артём) |
9 | * Adrian Hunter | |
10 | * Zoltan Sogor | |
11 | */ | |
12 | ||
13 | /* | |
14 | * This file implements UBIFS I/O subsystem which provides various I/O-related | |
15 | * helper functions (reading/writing/checking/validating nodes) and implements | |
16 | * write-buffering support. Write buffers help to save space which otherwise | |
17 | * would have been wasted for padding to the nearest minimal I/O unit boundary. | |
18 | * Instead, data first goes to the write-buffer and is flushed when the | |
19 | * buffer is full or when it is not used for some time (by timer). This is | |
20 | * similar to the mechanism is used by JFFS2. | |
21 | * | |
ff94bc40 HS |
22 | * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum |
23 | * write size (@c->max_write_size). The latter is the maximum amount of bytes | |
24 | * the underlying flash is able to program at a time, and writing in | |
25 | * @c->max_write_size units should presumably be faster. Obviously, | |
26 | * @c->min_io_size <= @c->max_write_size. Write-buffers are of | |
27 | * @c->max_write_size bytes in size for maximum performance. However, when a | |
28 | * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size | |
29 | * boundary) which contains data is written, not the whole write-buffer, | |
30 | * because this is more space-efficient. | |
31 | * | |
32 | * This optimization adds few complications to the code. Indeed, on the one | |
33 | * hand, we want to write in optimal @c->max_write_size bytes chunks, which | |
34 | * also means aligning writes at the @c->max_write_size bytes offsets. On the | |
35 | * other hand, we do not want to waste space when synchronizing the write | |
36 | * buffer, so during synchronization we writes in smaller chunks. And this makes | |
37 | * the next write offset to be not aligned to @c->max_write_size bytes. So the | |
38 | * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned | |
39 | * to @c->max_write_size bytes again. We do this by temporarily shrinking | |
40 | * write-buffer size (@wbuf->size). | |
41 | * | |
9eefe2a2 SR |
42 | * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by |
43 | * mutexes defined inside these objects. Since sometimes upper-level code | |
44 | * has to lock the write-buffer (e.g. journal space reservation code), many | |
45 | * functions related to write-buffers have "nolock" suffix which means that the | |
46 | * caller has to lock the write-buffer before calling this function. | |
47 | * | |
48 | * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not | |
49 | * aligned, UBIFS starts the next node from the aligned address, and the padded | |
50 | * bytes may contain any rubbish. In other words, UBIFS does not put padding | |
51 | * bytes in those small gaps. Common headers of nodes store real node lengths, | |
52 | * not aligned lengths. Indexing nodes also store real lengths in branches. | |
53 | * | |
54 | * UBIFS uses padding when it pads to the next min. I/O unit. In this case it | |
55 | * uses padding nodes or padding bytes, if the padding node does not fit. | |
56 | * | |
ff94bc40 HS |
57 | * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when |
58 | * they are read from the flash media. | |
9eefe2a2 SR |
59 | */ |
60 | ||
ff94bc40 | 61 | #ifndef __UBOOT__ |
691d719d | 62 | #include <init.h> |
61b29b82 | 63 | #include <dm/devres.h> |
ff94bc40 HS |
64 | #include <linux/crc32.h> |
65 | #include <linux/slab.h> | |
3db71108 | 66 | #include <u-boot/crc.h> |
ff94bc40 HS |
67 | #else |
68 | #include <linux/compat.h> | |
69 | #include <linux/err.h> | |
70 | #endif | |
9eefe2a2 SR |
71 | #include "ubifs.h" |
72 | ||
73 | /** | |
74 | * ubifs_ro_mode - switch UBIFS to read read-only mode. | |
75 | * @c: UBIFS file-system description object | |
76 | * @err: error code which is the reason of switching to R/O mode | |
77 | */ | |
78 | void ubifs_ro_mode(struct ubifs_info *c, int err) | |
79 | { | |
ff94bc40 HS |
80 | if (!c->ro_error) { |
81 | c->ro_error = 1; | |
9eefe2a2 | 82 | c->no_chk_data_crc = 0; |
ff94bc40 | 83 | c->vfs_sb->s_flags |= MS_RDONLY; |
0195a7bb | 84 | ubifs_warn(c, "switched to read-only mode, error %d", err); |
ff94bc40 HS |
85 | dump_stack(); |
86 | } | |
87 | } | |
88 | ||
89 | /* | |
90 | * Below are simple wrappers over UBI I/O functions which include some | |
91 | * additional checks and UBIFS debugging stuff. See corresponding UBI function | |
92 | * for more information. | |
93 | */ | |
94 | ||
95 | int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, | |
96 | int len, int even_ebadmsg) | |
97 | { | |
98 | int err; | |
99 | ||
100 | err = ubi_read(c->ubi, lnum, buf, offs, len); | |
101 | /* | |
102 | * In case of %-EBADMSG print the error message only if the | |
103 | * @even_ebadmsg is true. | |
104 | */ | |
105 | if (err && (err != -EBADMSG || even_ebadmsg)) { | |
0195a7bb | 106 | ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", |
ff94bc40 HS |
107 | len, lnum, offs, err); |
108 | dump_stack(); | |
109 | } | |
110 | return err; | |
111 | } | |
112 | ||
113 | int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, | |
114 | int len) | |
115 | { | |
116 | int err; | |
117 | ||
118 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
119 | if (c->ro_error) | |
120 | return -EROFS; | |
121 | if (!dbg_is_tst_rcvry(c)) | |
122 | err = ubi_leb_write(c->ubi, lnum, buf, offs, len); | |
0195a7bb | 123 | #ifndef __UBOOT__ |
ff94bc40 HS |
124 | else |
125 | err = dbg_leb_write(c, lnum, buf, offs, len); | |
0195a7bb | 126 | #endif |
ff94bc40 | 127 | if (err) { |
0195a7bb | 128 | ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", |
ff94bc40 HS |
129 | len, lnum, offs, err); |
130 | ubifs_ro_mode(c, err); | |
131 | dump_stack(); | |
132 | } | |
133 | return err; | |
134 | } | |
135 | ||
136 | int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) | |
137 | { | |
138 | int err; | |
139 | ||
140 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
141 | if (c->ro_error) | |
142 | return -EROFS; | |
143 | if (!dbg_is_tst_rcvry(c)) | |
144 | err = ubi_leb_change(c->ubi, lnum, buf, len); | |
0195a7bb | 145 | #ifndef __UBOOT__ |
ff94bc40 HS |
146 | else |
147 | err = dbg_leb_change(c, lnum, buf, len); | |
0195a7bb | 148 | #endif |
ff94bc40 | 149 | if (err) { |
0195a7bb | 150 | ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", |
ff94bc40 HS |
151 | len, lnum, err); |
152 | ubifs_ro_mode(c, err); | |
153 | dump_stack(); | |
9eefe2a2 | 154 | } |
ff94bc40 HS |
155 | return err; |
156 | } | |
157 | ||
158 | int ubifs_leb_unmap(struct ubifs_info *c, int lnum) | |
159 | { | |
160 | int err; | |
161 | ||
162 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
163 | if (c->ro_error) | |
164 | return -EROFS; | |
165 | if (!dbg_is_tst_rcvry(c)) | |
166 | err = ubi_leb_unmap(c->ubi, lnum); | |
0195a7bb | 167 | #ifndef __UBOOT__ |
ff94bc40 HS |
168 | else |
169 | err = dbg_leb_unmap(c, lnum); | |
0195a7bb | 170 | #endif |
ff94bc40 | 171 | if (err) { |
0195a7bb | 172 | ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); |
ff94bc40 HS |
173 | ubifs_ro_mode(c, err); |
174 | dump_stack(); | |
175 | } | |
176 | return err; | |
177 | } | |
178 | ||
179 | int ubifs_leb_map(struct ubifs_info *c, int lnum) | |
180 | { | |
181 | int err; | |
182 | ||
183 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
184 | if (c->ro_error) | |
185 | return -EROFS; | |
186 | if (!dbg_is_tst_rcvry(c)) | |
187 | err = ubi_leb_map(c->ubi, lnum); | |
0195a7bb | 188 | #ifndef __UBOOT__ |
ff94bc40 HS |
189 | else |
190 | err = dbg_leb_map(c, lnum); | |
0195a7bb | 191 | #endif |
ff94bc40 | 192 | if (err) { |
0195a7bb | 193 | ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); |
ff94bc40 HS |
194 | ubifs_ro_mode(c, err); |
195 | dump_stack(); | |
196 | } | |
197 | return err; | |
198 | } | |
199 | ||
200 | int ubifs_is_mapped(const struct ubifs_info *c, int lnum) | |
201 | { | |
202 | int err; | |
203 | ||
204 | err = ubi_is_mapped(c->ubi, lnum); | |
205 | if (err < 0) { | |
0195a7bb | 206 | ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", |
ff94bc40 HS |
207 | lnum, err); |
208 | dump_stack(); | |
209 | } | |
210 | return err; | |
9eefe2a2 SR |
211 | } |
212 | ||
213 | /** | |
214 | * ubifs_check_node - check node. | |
215 | * @c: UBIFS file-system description object | |
216 | * @buf: node to check | |
217 | * @lnum: logical eraseblock number | |
218 | * @offs: offset within the logical eraseblock | |
219 | * @quiet: print no messages | |
220 | * @must_chk_crc: indicates whether to always check the CRC | |
221 | * | |
222 | * This function checks node magic number and CRC checksum. This function also | |
223 | * validates node length to prevent UBIFS from becoming crazy when an attacker | |
224 | * feeds it a file-system image with incorrect nodes. For example, too large | |
225 | * node length in the common header could cause UBIFS to read memory outside of | |
226 | * allocated buffer when checking the CRC checksum. | |
227 | * | |
228 | * This function may skip data nodes CRC checking if @c->no_chk_data_crc is | |
229 | * true, which is controlled by corresponding UBIFS mount option. However, if | |
230 | * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is | |
ff94bc40 HS |
231 | * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are |
232 | * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC | |
233 | * is checked. This is because during mounting or re-mounting from R/O mode to | |
234 | * R/W mode we may read journal nodes (when replying the journal or doing the | |
235 | * recovery) and the journal nodes may potentially be corrupted, so checking is | |
236 | * required. | |
9eefe2a2 SR |
237 | * |
238 | * This function returns zero in case of success and %-EUCLEAN in case of bad | |
239 | * CRC or magic. | |
240 | */ | |
241 | int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, | |
242 | int offs, int quiet, int must_chk_crc) | |
243 | { | |
244 | int err = -EINVAL, type, node_len; | |
245 | uint32_t crc, node_crc, magic; | |
246 | const struct ubifs_ch *ch = buf; | |
247 | ||
248 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | |
249 | ubifs_assert(!(offs & 7) && offs < c->leb_size); | |
250 | ||
251 | magic = le32_to_cpu(ch->magic); | |
252 | if (magic != UBIFS_NODE_MAGIC) { | |
253 | if (!quiet) | |
0195a7bb | 254 | ubifs_err(c, "bad magic %#08x, expected %#08x", |
9eefe2a2 SR |
255 | magic, UBIFS_NODE_MAGIC); |
256 | err = -EUCLEAN; | |
257 | goto out; | |
258 | } | |
259 | ||
260 | type = ch->node_type; | |
261 | if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { | |
262 | if (!quiet) | |
0195a7bb | 263 | ubifs_err(c, "bad node type %d", type); |
9eefe2a2 SR |
264 | goto out; |
265 | } | |
266 | ||
267 | node_len = le32_to_cpu(ch->len); | |
268 | if (node_len + offs > c->leb_size) | |
269 | goto out_len; | |
270 | ||
271 | if (c->ranges[type].max_len == 0) { | |
272 | if (node_len != c->ranges[type].len) | |
273 | goto out_len; | |
274 | } else if (node_len < c->ranges[type].min_len || | |
275 | node_len > c->ranges[type].max_len) | |
276 | goto out_len; | |
277 | ||
ff94bc40 HS |
278 | if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && |
279 | !c->remounting_rw && c->no_chk_data_crc) | |
9eefe2a2 SR |
280 | return 0; |
281 | ||
282 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); | |
283 | node_crc = le32_to_cpu(ch->crc); | |
284 | if (crc != node_crc) { | |
285 | if (!quiet) | |
0195a7bb | 286 | ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", |
9eefe2a2 SR |
287 | crc, node_crc); |
288 | err = -EUCLEAN; | |
289 | goto out; | |
290 | } | |
291 | ||
292 | return 0; | |
293 | ||
294 | out_len: | |
295 | if (!quiet) | |
0195a7bb | 296 | ubifs_err(c, "bad node length %d", node_len); |
9eefe2a2 SR |
297 | out: |
298 | if (!quiet) { | |
0195a7bb | 299 | ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); |
ff94bc40 HS |
300 | ubifs_dump_node(c, buf); |
301 | dump_stack(); | |
9eefe2a2 SR |
302 | } |
303 | return err; | |
304 | } | |
305 | ||
306 | /** | |
307 | * ubifs_pad - pad flash space. | |
308 | * @c: UBIFS file-system description object | |
309 | * @buf: buffer to put padding to | |
310 | * @pad: how many bytes to pad | |
311 | * | |
312 | * The flash media obliges us to write only in chunks of %c->min_io_size and | |
313 | * when we have to write less data we add padding node to the write-buffer and | |
314 | * pad it to the next minimal I/O unit's boundary. Padding nodes help when the | |
315 | * media is being scanned. If the amount of wasted space is not enough to fit a | |
316 | * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes | |
317 | * pattern (%UBIFS_PADDING_BYTE). | |
318 | * | |
319 | * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is | |
320 | * used. | |
321 | */ | |
322 | void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) | |
323 | { | |
324 | uint32_t crc; | |
325 | ||
326 | ubifs_assert(pad >= 0 && !(pad & 7)); | |
327 | ||
328 | if (pad >= UBIFS_PAD_NODE_SZ) { | |
329 | struct ubifs_ch *ch = buf; | |
330 | struct ubifs_pad_node *pad_node = buf; | |
331 | ||
332 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
333 | ch->node_type = UBIFS_PAD_NODE; | |
334 | ch->group_type = UBIFS_NO_NODE_GROUP; | |
335 | ch->padding[0] = ch->padding[1] = 0; | |
336 | ch->sqnum = 0; | |
337 | ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); | |
338 | pad -= UBIFS_PAD_NODE_SZ; | |
339 | pad_node->pad_len = cpu_to_le32(pad); | |
340 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); | |
341 | ch->crc = cpu_to_le32(crc); | |
342 | memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); | |
343 | } else if (pad > 0) | |
344 | /* Too little space, padding node won't fit */ | |
345 | memset(buf, UBIFS_PADDING_BYTE, pad); | |
346 | } | |
347 | ||
348 | /** | |
349 | * next_sqnum - get next sequence number. | |
350 | * @c: UBIFS file-system description object | |
351 | */ | |
352 | static unsigned long long next_sqnum(struct ubifs_info *c) | |
353 | { | |
354 | unsigned long long sqnum; | |
355 | ||
356 | spin_lock(&c->cnt_lock); | |
357 | sqnum = ++c->max_sqnum; | |
358 | spin_unlock(&c->cnt_lock); | |
359 | ||
360 | if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { | |
361 | if (sqnum >= SQNUM_WATERMARK) { | |
0195a7bb | 362 | ubifs_err(c, "sequence number overflow %llu, end of life", |
9eefe2a2 SR |
363 | sqnum); |
364 | ubifs_ro_mode(c, -EINVAL); | |
365 | } | |
0195a7bb | 366 | ubifs_warn(c, "running out of sequence numbers, end of life soon"); |
9eefe2a2 SR |
367 | } |
368 | ||
369 | return sqnum; | |
370 | } | |
371 | ||
372 | /** | |
373 | * ubifs_prepare_node - prepare node to be written to flash. | |
374 | * @c: UBIFS file-system description object | |
375 | * @node: the node to pad | |
376 | * @len: node length | |
377 | * @pad: if the buffer has to be padded | |
378 | * | |
379 | * This function prepares node at @node to be written to the media - it | |
380 | * calculates node CRC, fills the common header, and adds proper padding up to | |
381 | * the next minimum I/O unit if @pad is not zero. | |
382 | */ | |
383 | void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) | |
384 | { | |
385 | uint32_t crc; | |
386 | struct ubifs_ch *ch = node; | |
387 | unsigned long long sqnum = next_sqnum(c); | |
388 | ||
389 | ubifs_assert(len >= UBIFS_CH_SZ); | |
390 | ||
391 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
392 | ch->len = cpu_to_le32(len); | |
393 | ch->group_type = UBIFS_NO_NODE_GROUP; | |
394 | ch->sqnum = cpu_to_le64(sqnum); | |
395 | ch->padding[0] = ch->padding[1] = 0; | |
396 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | |
397 | ch->crc = cpu_to_le32(crc); | |
398 | ||
399 | if (pad) { | |
400 | len = ALIGN(len, 8); | |
401 | pad = ALIGN(len, c->min_io_size) - len; | |
402 | ubifs_pad(c, node + len, pad); | |
403 | } | |
404 | } | |
405 | ||
ff94bc40 HS |
406 | /** |
407 | * ubifs_prep_grp_node - prepare node of a group to be written to flash. | |
408 | * @c: UBIFS file-system description object | |
409 | * @node: the node to pad | |
410 | * @len: node length | |
411 | * @last: indicates the last node of the group | |
412 | * | |
413 | * This function prepares node at @node to be written to the media - it | |
414 | * calculates node CRC and fills the common header. | |
415 | */ | |
416 | void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) | |
417 | { | |
418 | uint32_t crc; | |
419 | struct ubifs_ch *ch = node; | |
420 | unsigned long long sqnum = next_sqnum(c); | |
421 | ||
422 | ubifs_assert(len >= UBIFS_CH_SZ); | |
423 | ||
424 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
425 | ch->len = cpu_to_le32(len); | |
426 | if (last) | |
427 | ch->group_type = UBIFS_LAST_OF_NODE_GROUP; | |
428 | else | |
429 | ch->group_type = UBIFS_IN_NODE_GROUP; | |
430 | ch->sqnum = cpu_to_le64(sqnum); | |
431 | ch->padding[0] = ch->padding[1] = 0; | |
432 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | |
433 | ch->crc = cpu_to_le32(crc); | |
434 | } | |
435 | ||
436 | #ifndef __UBOOT__ | |
437 | /** | |
438 | * wbuf_timer_callback - write-buffer timer callback function. | |
0195a7bb | 439 | * @timer: timer data (write-buffer descriptor) |
ff94bc40 HS |
440 | * |
441 | * This function is called when the write-buffer timer expires. | |
442 | */ | |
443 | static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) | |
444 | { | |
445 | struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); | |
446 | ||
447 | dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); | |
448 | wbuf->need_sync = 1; | |
449 | wbuf->c->need_wbuf_sync = 1; | |
450 | ubifs_wake_up_bgt(wbuf->c); | |
451 | return HRTIMER_NORESTART; | |
452 | } | |
453 | ||
454 | /** | |
455 | * new_wbuf_timer - start new write-buffer timer. | |
456 | * @wbuf: write-buffer descriptor | |
457 | */ | |
458 | static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) | |
459 | { | |
460 | ubifs_assert(!hrtimer_active(&wbuf->timer)); | |
461 | ||
462 | if (wbuf->no_timer) | |
463 | return; | |
464 | dbg_io("set timer for jhead %s, %llu-%llu millisecs", | |
465 | dbg_jhead(wbuf->jhead), | |
466 | div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), | |
467 | div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, | |
468 | USEC_PER_SEC)); | |
469 | hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, | |
470 | HRTIMER_MODE_REL); | |
471 | } | |
472 | #endif | |
473 | ||
474 | /** | |
475 | * cancel_wbuf_timer - cancel write-buffer timer. | |
476 | * @wbuf: write-buffer descriptor | |
477 | */ | |
478 | static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) | |
479 | { | |
480 | if (wbuf->no_timer) | |
481 | return; | |
482 | wbuf->need_sync = 0; | |
483 | #ifndef __UBOOT__ | |
484 | hrtimer_cancel(&wbuf->timer); | |
485 | #endif | |
486 | } | |
487 | ||
488 | /** | |
489 | * ubifs_wbuf_sync_nolock - synchronize write-buffer. | |
490 | * @wbuf: write-buffer to synchronize | |
491 | * | |
492 | * This function synchronizes write-buffer @buf and returns zero in case of | |
493 | * success or a negative error code in case of failure. | |
494 | * | |
495 | * Note, although write-buffers are of @c->max_write_size, this function does | |
496 | * not necessarily writes all @c->max_write_size bytes to the flash. Instead, | |
497 | * if the write-buffer is only partially filled with data, only the used part | |
498 | * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. | |
499 | * This way we waste less space. | |
500 | */ | |
501 | int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) | |
502 | { | |
503 | struct ubifs_info *c = wbuf->c; | |
504 | int err, dirt, sync_len; | |
505 | ||
506 | cancel_wbuf_timer_nolock(wbuf); | |
507 | if (!wbuf->used || wbuf->lnum == -1) | |
508 | /* Write-buffer is empty or not seeked */ | |
509 | return 0; | |
510 | ||
511 | dbg_io("LEB %d:%d, %d bytes, jhead %s", | |
512 | wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); | |
513 | ubifs_assert(!(wbuf->avail & 7)); | |
514 | ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); | |
515 | ubifs_assert(wbuf->size >= c->min_io_size); | |
516 | ubifs_assert(wbuf->size <= c->max_write_size); | |
517 | ubifs_assert(wbuf->size % c->min_io_size == 0); | |
518 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
519 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
520 | ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); | |
521 | ||
522 | if (c->ro_error) | |
523 | return -EROFS; | |
524 | ||
525 | /* | |
526 | * Do not write whole write buffer but write only the minimum necessary | |
527 | * amount of min. I/O units. | |
528 | */ | |
529 | sync_len = ALIGN(wbuf->used, c->min_io_size); | |
530 | dirt = sync_len - wbuf->used; | |
531 | if (dirt) | |
532 | ubifs_pad(c, wbuf->buf + wbuf->used, dirt); | |
533 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); | |
534 | if (err) | |
535 | return err; | |
536 | ||
537 | spin_lock(&wbuf->lock); | |
538 | wbuf->offs += sync_len; | |
539 | /* | |
540 | * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. | |
541 | * But our goal is to optimize writes and make sure we write in | |
542 | * @c->max_write_size chunks and to @c->max_write_size-aligned offset. | |
543 | * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make | |
544 | * sure that @wbuf->offs + @wbuf->size is aligned to | |
545 | * @c->max_write_size. This way we make sure that after next | |
546 | * write-buffer flush we are again at the optimal offset (aligned to | |
547 | * @c->max_write_size). | |
548 | */ | |
549 | if (c->leb_size - wbuf->offs < c->max_write_size) | |
550 | wbuf->size = c->leb_size - wbuf->offs; | |
551 | else if (wbuf->offs & (c->max_write_size - 1)) | |
552 | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | |
553 | else | |
554 | wbuf->size = c->max_write_size; | |
555 | wbuf->avail = wbuf->size; | |
556 | wbuf->used = 0; | |
557 | wbuf->next_ino = 0; | |
558 | spin_unlock(&wbuf->lock); | |
559 | ||
560 | if (wbuf->sync_callback) | |
561 | err = wbuf->sync_callback(c, wbuf->lnum, | |
562 | c->leb_size - wbuf->offs, dirt); | |
563 | return err; | |
564 | } | |
565 | ||
566 | /** | |
567 | * ubifs_wbuf_seek_nolock - seek write-buffer. | |
568 | * @wbuf: write-buffer | |
569 | * @lnum: logical eraseblock number to seek to | |
570 | * @offs: logical eraseblock offset to seek to | |
571 | * | |
572 | * This function targets the write-buffer to logical eraseblock @lnum:@offs. | |
573 | * The write-buffer has to be empty. Returns zero in case of success and a | |
574 | * negative error code in case of failure. | |
575 | */ | |
576 | int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) | |
577 | { | |
578 | const struct ubifs_info *c = wbuf->c; | |
579 | ||
580 | dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); | |
581 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); | |
582 | ubifs_assert(offs >= 0 && offs <= c->leb_size); | |
583 | ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); | |
584 | ubifs_assert(lnum != wbuf->lnum); | |
585 | ubifs_assert(wbuf->used == 0); | |
586 | ||
587 | spin_lock(&wbuf->lock); | |
588 | wbuf->lnum = lnum; | |
589 | wbuf->offs = offs; | |
590 | if (c->leb_size - wbuf->offs < c->max_write_size) | |
591 | wbuf->size = c->leb_size - wbuf->offs; | |
592 | else if (wbuf->offs & (c->max_write_size - 1)) | |
593 | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | |
594 | else | |
595 | wbuf->size = c->max_write_size; | |
596 | wbuf->avail = wbuf->size; | |
597 | wbuf->used = 0; | |
598 | spin_unlock(&wbuf->lock); | |
599 | ||
600 | return 0; | |
601 | } | |
602 | ||
603 | #ifndef __UBOOT__ | |
604 | /** | |
605 | * ubifs_bg_wbufs_sync - synchronize write-buffers. | |
606 | * @c: UBIFS file-system description object | |
607 | * | |
608 | * This function is called by background thread to synchronize write-buffers. | |
609 | * Returns zero in case of success and a negative error code in case of | |
610 | * failure. | |
611 | */ | |
612 | int ubifs_bg_wbufs_sync(struct ubifs_info *c) | |
613 | { | |
614 | int err, i; | |
615 | ||
616 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
617 | if (!c->need_wbuf_sync) | |
618 | return 0; | |
619 | c->need_wbuf_sync = 0; | |
620 | ||
621 | if (c->ro_error) { | |
622 | err = -EROFS; | |
623 | goto out_timers; | |
624 | } | |
625 | ||
626 | dbg_io("synchronize"); | |
627 | for (i = 0; i < c->jhead_cnt; i++) { | |
628 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
629 | ||
630 | cond_resched(); | |
631 | ||
632 | /* | |
633 | * If the mutex is locked then wbuf is being changed, so | |
634 | * synchronization is not necessary. | |
635 | */ | |
636 | if (mutex_is_locked(&wbuf->io_mutex)) | |
637 | continue; | |
638 | ||
639 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
640 | if (!wbuf->need_sync) { | |
641 | mutex_unlock(&wbuf->io_mutex); | |
642 | continue; | |
643 | } | |
644 | ||
645 | err = ubifs_wbuf_sync_nolock(wbuf); | |
646 | mutex_unlock(&wbuf->io_mutex); | |
647 | if (err) { | |
0195a7bb | 648 | ubifs_err(c, "cannot sync write-buffer, error %d", err); |
ff94bc40 HS |
649 | ubifs_ro_mode(c, err); |
650 | goto out_timers; | |
651 | } | |
652 | } | |
653 | ||
654 | return 0; | |
655 | ||
656 | out_timers: | |
657 | /* Cancel all timers to prevent repeated errors */ | |
658 | for (i = 0; i < c->jhead_cnt; i++) { | |
659 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
660 | ||
661 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
662 | cancel_wbuf_timer_nolock(wbuf); | |
663 | mutex_unlock(&wbuf->io_mutex); | |
664 | } | |
665 | return err; | |
666 | } | |
667 | ||
668 | /** | |
669 | * ubifs_wbuf_write_nolock - write data to flash via write-buffer. | |
670 | * @wbuf: write-buffer | |
671 | * @buf: node to write | |
672 | * @len: node length | |
673 | * | |
674 | * This function writes data to flash via write-buffer @wbuf. This means that | |
675 | * the last piece of the node won't reach the flash media immediately if it | |
676 | * does not take whole max. write unit (@c->max_write_size). Instead, the node | |
677 | * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or | |
678 | * because more data are appended to the write-buffer). | |
679 | * | |
680 | * This function returns zero in case of success and a negative error code in | |
681 | * case of failure. If the node cannot be written because there is no more | |
682 | * space in this logical eraseblock, %-ENOSPC is returned. | |
683 | */ | |
684 | int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) | |
685 | { | |
686 | struct ubifs_info *c = wbuf->c; | |
687 | int err, written, n, aligned_len = ALIGN(len, 8); | |
688 | ||
689 | dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, | |
690 | dbg_ntype(((struct ubifs_ch *)buf)->node_type), | |
691 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); | |
692 | ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); | |
693 | ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); | |
694 | ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); | |
695 | ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); | |
696 | ubifs_assert(wbuf->size >= c->min_io_size); | |
697 | ubifs_assert(wbuf->size <= c->max_write_size); | |
698 | ubifs_assert(wbuf->size % c->min_io_size == 0); | |
699 | ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); | |
700 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
701 | ubifs_assert(!c->space_fixup); | |
702 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
703 | ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); | |
704 | ||
705 | if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { | |
706 | err = -ENOSPC; | |
707 | goto out; | |
708 | } | |
709 | ||
710 | cancel_wbuf_timer_nolock(wbuf); | |
711 | ||
712 | if (c->ro_error) | |
713 | return -EROFS; | |
714 | ||
715 | if (aligned_len <= wbuf->avail) { | |
716 | /* | |
717 | * The node is not very large and fits entirely within | |
718 | * write-buffer. | |
719 | */ | |
720 | memcpy(wbuf->buf + wbuf->used, buf, len); | |
721 | ||
722 | if (aligned_len == wbuf->avail) { | |
723 | dbg_io("flush jhead %s wbuf to LEB %d:%d", | |
724 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | |
725 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, | |
726 | wbuf->offs, wbuf->size); | |
727 | if (err) | |
728 | goto out; | |
729 | ||
730 | spin_lock(&wbuf->lock); | |
731 | wbuf->offs += wbuf->size; | |
732 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
733 | wbuf->size = c->max_write_size; | |
734 | else | |
735 | wbuf->size = c->leb_size - wbuf->offs; | |
736 | wbuf->avail = wbuf->size; | |
737 | wbuf->used = 0; | |
738 | wbuf->next_ino = 0; | |
739 | spin_unlock(&wbuf->lock); | |
740 | } else { | |
741 | spin_lock(&wbuf->lock); | |
742 | wbuf->avail -= aligned_len; | |
743 | wbuf->used += aligned_len; | |
744 | spin_unlock(&wbuf->lock); | |
745 | } | |
746 | ||
747 | goto exit; | |
748 | } | |
749 | ||
750 | written = 0; | |
751 | ||
752 | if (wbuf->used) { | |
753 | /* | |
754 | * The node is large enough and does not fit entirely within | |
755 | * current available space. We have to fill and flush | |
756 | * write-buffer and switch to the next max. write unit. | |
757 | */ | |
758 | dbg_io("flush jhead %s wbuf to LEB %d:%d", | |
759 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | |
760 | memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); | |
761 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, | |
762 | wbuf->size); | |
763 | if (err) | |
764 | goto out; | |
765 | ||
766 | wbuf->offs += wbuf->size; | |
767 | len -= wbuf->avail; | |
768 | aligned_len -= wbuf->avail; | |
769 | written += wbuf->avail; | |
770 | } else if (wbuf->offs & (c->max_write_size - 1)) { | |
771 | /* | |
772 | * The write-buffer offset is not aligned to | |
773 | * @c->max_write_size and @wbuf->size is less than | |
774 | * @c->max_write_size. Write @wbuf->size bytes to make sure the | |
775 | * following writes are done in optimal @c->max_write_size | |
776 | * chunks. | |
777 | */ | |
778 | dbg_io("write %d bytes to LEB %d:%d", | |
779 | wbuf->size, wbuf->lnum, wbuf->offs); | |
780 | err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, | |
781 | wbuf->size); | |
782 | if (err) | |
783 | goto out; | |
784 | ||
785 | wbuf->offs += wbuf->size; | |
786 | len -= wbuf->size; | |
787 | aligned_len -= wbuf->size; | |
788 | written += wbuf->size; | |
789 | } | |
790 | ||
791 | /* | |
792 | * The remaining data may take more whole max. write units, so write the | |
793 | * remains multiple to max. write unit size directly to the flash media. | |
794 | * We align node length to 8-byte boundary because we anyway flash wbuf | |
795 | * if the remaining space is less than 8 bytes. | |
796 | */ | |
797 | n = aligned_len >> c->max_write_shift; | |
798 | if (n) { | |
799 | n <<= c->max_write_shift; | |
800 | dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, | |
801 | wbuf->offs); | |
802 | err = ubifs_leb_write(c, wbuf->lnum, buf + written, | |
803 | wbuf->offs, n); | |
804 | if (err) | |
805 | goto out; | |
806 | wbuf->offs += n; | |
807 | aligned_len -= n; | |
808 | len -= n; | |
809 | written += n; | |
810 | } | |
811 | ||
812 | spin_lock(&wbuf->lock); | |
813 | if (aligned_len) | |
814 | /* | |
815 | * And now we have what's left and what does not take whole | |
816 | * max. write unit, so write it to the write-buffer and we are | |
817 | * done. | |
818 | */ | |
819 | memcpy(wbuf->buf, buf + written, len); | |
820 | ||
821 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
822 | wbuf->size = c->max_write_size; | |
823 | else | |
824 | wbuf->size = c->leb_size - wbuf->offs; | |
825 | wbuf->avail = wbuf->size - aligned_len; | |
826 | wbuf->used = aligned_len; | |
827 | wbuf->next_ino = 0; | |
828 | spin_unlock(&wbuf->lock); | |
829 | ||
830 | exit: | |
831 | if (wbuf->sync_callback) { | |
832 | int free = c->leb_size - wbuf->offs - wbuf->used; | |
833 | ||
834 | err = wbuf->sync_callback(c, wbuf->lnum, free, 0); | |
835 | if (err) | |
836 | goto out; | |
837 | } | |
838 | ||
839 | if (wbuf->used) | |
840 | new_wbuf_timer_nolock(wbuf); | |
841 | ||
842 | return 0; | |
843 | ||
844 | out: | |
0195a7bb | 845 | ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", |
ff94bc40 HS |
846 | len, wbuf->lnum, wbuf->offs, err); |
847 | ubifs_dump_node(c, buf); | |
848 | dump_stack(); | |
849 | ubifs_dump_leb(c, wbuf->lnum); | |
850 | return err; | |
851 | } | |
852 | ||
853 | /** | |
854 | * ubifs_write_node - write node to the media. | |
855 | * @c: UBIFS file-system description object | |
856 | * @buf: the node to write | |
857 | * @len: node length | |
858 | * @lnum: logical eraseblock number | |
859 | * @offs: offset within the logical eraseblock | |
860 | * | |
861 | * This function automatically fills node magic number, assigns sequence | |
862 | * number, and calculates node CRC checksum. The length of the @buf buffer has | |
863 | * to be aligned to the minimal I/O unit size. This function automatically | |
864 | * appends padding node and padding bytes if needed. Returns zero in case of | |
865 | * success and a negative error code in case of failure. | |
866 | */ | |
867 | int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, | |
868 | int offs) | |
869 | { | |
870 | int err, buf_len = ALIGN(len, c->min_io_size); | |
871 | ||
872 | dbg_io("LEB %d:%d, %s, length %d (aligned %d)", | |
873 | lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, | |
874 | buf_len); | |
875 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | |
876 | ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); | |
877 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
878 | ubifs_assert(!c->space_fixup); | |
879 | ||
880 | if (c->ro_error) | |
881 | return -EROFS; | |
882 | ||
883 | ubifs_prepare_node(c, buf, len, 1); | |
884 | err = ubifs_leb_write(c, lnum, buf, offs, buf_len); | |
885 | if (err) | |
886 | ubifs_dump_node(c, buf); | |
887 | ||
888 | return err; | |
889 | } | |
890 | #endif | |
891 | ||
892 | /** | |
893 | * ubifs_read_node_wbuf - read node from the media or write-buffer. | |
894 | * @wbuf: wbuf to check for un-written data | |
895 | * @buf: buffer to read to | |
896 | * @type: node type | |
897 | * @len: node length | |
898 | * @lnum: logical eraseblock number | |
899 | * @offs: offset within the logical eraseblock | |
900 | * | |
901 | * This function reads a node of known type and length, checks it and stores | |
902 | * in @buf. If the node partially or fully sits in the write-buffer, this | |
903 | * function takes data from the buffer, otherwise it reads the flash media. | |
904 | * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative | |
905 | * error code in case of failure. | |
906 | */ | |
907 | int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, | |
908 | int lnum, int offs) | |
909 | { | |
910 | const struct ubifs_info *c = wbuf->c; | |
911 | int err, rlen, overlap; | |
912 | struct ubifs_ch *ch = buf; | |
913 | ||
914 | dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, | |
915 | dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); | |
916 | ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | |
917 | ubifs_assert(!(offs & 7) && offs < c->leb_size); | |
918 | ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); | |
919 | ||
920 | spin_lock(&wbuf->lock); | |
921 | overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); | |
922 | if (!overlap) { | |
923 | /* We may safely unlock the write-buffer and read the data */ | |
924 | spin_unlock(&wbuf->lock); | |
925 | return ubifs_read_node(c, buf, type, len, lnum, offs); | |
926 | } | |
927 | ||
928 | /* Don't read under wbuf */ | |
929 | rlen = wbuf->offs - offs; | |
930 | if (rlen < 0) | |
931 | rlen = 0; | |
932 | ||
933 | /* Copy the rest from the write-buffer */ | |
934 | memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); | |
935 | spin_unlock(&wbuf->lock); | |
936 | ||
937 | if (rlen > 0) { | |
938 | /* Read everything that goes before write-buffer */ | |
939 | err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); | |
940 | if (err && err != -EBADMSG) | |
941 | return err; | |
942 | } | |
943 | ||
944 | if (type != ch->node_type) { | |
0195a7bb | 945 | ubifs_err(c, "bad node type (%d but expected %d)", |
ff94bc40 HS |
946 | ch->node_type, type); |
947 | goto out; | |
948 | } | |
949 | ||
950 | err = ubifs_check_node(c, buf, lnum, offs, 0, 0); | |
951 | if (err) { | |
0195a7bb | 952 | ubifs_err(c, "expected node type %d", type); |
ff94bc40 HS |
953 | return err; |
954 | } | |
955 | ||
956 | rlen = le32_to_cpu(ch->len); | |
957 | if (rlen != len) { | |
0195a7bb | 958 | ubifs_err(c, "bad node length %d, expected %d", rlen, len); |
ff94bc40 HS |
959 | goto out; |
960 | } | |
961 | ||
962 | return 0; | |
963 | ||
964 | out: | |
0195a7bb | 965 | ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); |
ff94bc40 HS |
966 | ubifs_dump_node(c, buf); |
967 | dump_stack(); | |
968 | return -EINVAL; | |
969 | } | |
970 | ||
9eefe2a2 SR |
971 | /** |
972 | * ubifs_read_node - read node. | |
973 | * @c: UBIFS file-system description object | |
974 | * @buf: buffer to read to | |
975 | * @type: node type | |
976 | * @len: node length (not aligned) | |
977 | * @lnum: logical eraseblock number | |
978 | * @offs: offset within the logical eraseblock | |
979 | * | |
980 | * This function reads a node of known type and and length, checks it and | |
981 | * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched | |
982 | * and a negative error code in case of failure. | |
983 | */ | |
984 | int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, | |
985 | int lnum, int offs) | |
986 | { | |
987 | int err, l; | |
988 | struct ubifs_ch *ch = buf; | |
989 | ||
990 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); | |
991 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | |
992 | ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); | |
993 | ubifs_assert(!(offs & 7) && offs < c->leb_size); | |
994 | ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); | |
995 | ||
ff94bc40 HS |
996 | err = ubifs_leb_read(c, lnum, buf, offs, len, 0); |
997 | if (err && err != -EBADMSG) | |
9eefe2a2 | 998 | return err; |
9eefe2a2 SR |
999 | |
1000 | if (type != ch->node_type) { | |
0195a7bb HS |
1001 | ubifs_errc(c, "bad node type (%d but expected %d)", |
1002 | ch->node_type, type); | |
9eefe2a2 SR |
1003 | goto out; |
1004 | } | |
1005 | ||
1006 | err = ubifs_check_node(c, buf, lnum, offs, 0, 0); | |
1007 | if (err) { | |
0195a7bb | 1008 | ubifs_errc(c, "expected node type %d", type); |
9eefe2a2 SR |
1009 | return err; |
1010 | } | |
1011 | ||
1012 | l = le32_to_cpu(ch->len); | |
1013 | if (l != len) { | |
0195a7bb | 1014 | ubifs_errc(c, "bad node length %d, expected %d", l, len); |
9eefe2a2 SR |
1015 | goto out; |
1016 | } | |
1017 | ||
1018 | return 0; | |
1019 | ||
1020 | out: | |
0195a7bb HS |
1021 | ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, |
1022 | offs, ubi_is_mapped(c->ubi, lnum)); | |
1023 | if (!c->probing) { | |
1024 | ubifs_dump_node(c, buf); | |
1025 | dump_stack(); | |
1026 | } | |
9eefe2a2 SR |
1027 | return -EINVAL; |
1028 | } | |
ff94bc40 HS |
1029 | |
1030 | /** | |
1031 | * ubifs_wbuf_init - initialize write-buffer. | |
1032 | * @c: UBIFS file-system description object | |
1033 | * @wbuf: write-buffer to initialize | |
1034 | * | |
1035 | * This function initializes write-buffer. Returns zero in case of success | |
1036 | * %-ENOMEM in case of failure. | |
1037 | */ | |
1038 | int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) | |
1039 | { | |
1040 | size_t size; | |
1041 | ||
1042 | wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); | |
1043 | if (!wbuf->buf) | |
1044 | return -ENOMEM; | |
1045 | ||
1046 | size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); | |
1047 | wbuf->inodes = kmalloc(size, GFP_KERNEL); | |
1048 | if (!wbuf->inodes) { | |
1049 | kfree(wbuf->buf); | |
1050 | wbuf->buf = NULL; | |
1051 | return -ENOMEM; | |
1052 | } | |
1053 | ||
1054 | wbuf->used = 0; | |
1055 | wbuf->lnum = wbuf->offs = -1; | |
1056 | /* | |
1057 | * If the LEB starts at the max. write size aligned address, then | |
1058 | * write-buffer size has to be set to @c->max_write_size. Otherwise, | |
1059 | * set it to something smaller so that it ends at the closest max. | |
1060 | * write size boundary. | |
1061 | */ | |
1062 | size = c->max_write_size - (c->leb_start % c->max_write_size); | |
1063 | wbuf->avail = wbuf->size = size; | |
1064 | wbuf->sync_callback = NULL; | |
1065 | mutex_init(&wbuf->io_mutex); | |
1066 | spin_lock_init(&wbuf->lock); | |
1067 | wbuf->c = c; | |
1068 | wbuf->next_ino = 0; | |
1069 | ||
1070 | #ifndef __UBOOT__ | |
1071 | hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
1072 | wbuf->timer.function = wbuf_timer_callback_nolock; | |
1073 | wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); | |
1074 | wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; | |
1075 | wbuf->delta *= 1000000000ULL; | |
1076 | ubifs_assert(wbuf->delta <= ULONG_MAX); | |
1077 | #endif | |
1078 | return 0; | |
1079 | } | |
1080 | ||
1081 | /** | |
1082 | * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. | |
1083 | * @wbuf: the write-buffer where to add | |
1084 | * @inum: the inode number | |
1085 | * | |
1086 | * This function adds an inode number to the inode array of the write-buffer. | |
1087 | */ | |
1088 | void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) | |
1089 | { | |
1090 | if (!wbuf->buf) | |
1091 | /* NOR flash or something similar */ | |
1092 | return; | |
1093 | ||
1094 | spin_lock(&wbuf->lock); | |
1095 | if (wbuf->used) | |
1096 | wbuf->inodes[wbuf->next_ino++] = inum; | |
1097 | spin_unlock(&wbuf->lock); | |
1098 | } | |
1099 | ||
1100 | /** | |
1101 | * wbuf_has_ino - returns if the wbuf contains data from the inode. | |
1102 | * @wbuf: the write-buffer | |
1103 | * @inum: the inode number | |
1104 | * | |
1105 | * This function returns with %1 if the write-buffer contains some data from the | |
1106 | * given inode otherwise it returns with %0. | |
1107 | */ | |
1108 | static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) | |
1109 | { | |
1110 | int i, ret = 0; | |
1111 | ||
1112 | spin_lock(&wbuf->lock); | |
1113 | for (i = 0; i < wbuf->next_ino; i++) | |
1114 | if (inum == wbuf->inodes[i]) { | |
1115 | ret = 1; | |
1116 | break; | |
1117 | } | |
1118 | spin_unlock(&wbuf->lock); | |
1119 | ||
1120 | return ret; | |
1121 | } | |
1122 | ||
1123 | /** | |
1124 | * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. | |
1125 | * @c: UBIFS file-system description object | |
1126 | * @inode: inode to synchronize | |
1127 | * | |
1128 | * This function synchronizes write-buffers which contain nodes belonging to | |
1129 | * @inode. Returns zero in case of success and a negative error code in case of | |
1130 | * failure. | |
1131 | */ | |
1132 | int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) | |
1133 | { | |
1134 | int i, err = 0; | |
1135 | ||
1136 | for (i = 0; i < c->jhead_cnt; i++) { | |
1137 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
1138 | ||
1139 | if (i == GCHD) | |
1140 | /* | |
1141 | * GC head is special, do not look at it. Even if the | |
1142 | * head contains something related to this inode, it is | |
1143 | * a _copy_ of corresponding on-flash node which sits | |
1144 | * somewhere else. | |
1145 | */ | |
1146 | continue; | |
1147 | ||
1148 | if (!wbuf_has_ino(wbuf, inode->i_ino)) | |
1149 | continue; | |
1150 | ||
1151 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
1152 | if (wbuf_has_ino(wbuf, inode->i_ino)) | |
1153 | err = ubifs_wbuf_sync_nolock(wbuf); | |
1154 | mutex_unlock(&wbuf->io_mutex); | |
1155 | ||
1156 | if (err) { | |
1157 | ubifs_ro_mode(c, err); | |
1158 | return err; | |
1159 | } | |
1160 | } | |
1161 | return 0; | |
1162 | } |