]> Git Repo - J-linux.git/blob - arch/arm/vfp/vfpmodule.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / arm / vfp / vfpmodule.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/vfp/vfpmodule.c
4  *
5  *  Copyright (C) 2004 ARM Limited.
6  *  Written by Deep Blue Solutions Limited.
7  */
8 #include <linux/types.h>
9 #include <linux/cpu.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21 #include <linux/perf_event.h>
22
23 #include <asm/cp15.h>
24 #include <asm/cputype.h>
25 #include <asm/system_info.h>
26 #include <asm/thread_notify.h>
27 #include <asm/traps.h>
28 #include <asm/vfp.h>
29 #include <asm/neon.h>
30
31 #include "vfpinstr.h"
32 #include "vfp.h"
33
34 static bool have_vfp __ro_after_init;
35
36 /*
37  * Dual-use variable.
38  * Used in startup: set to non-zero if VFP checks fail
39  * After startup, holds VFP architecture
40  */
41 static unsigned int VFP_arch;
42
43 #ifdef CONFIG_CPU_FEROCEON
44 extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
45 #endif
46
47 /*
48  * The pointer to the vfpstate structure of the thread which currently
49  * owns the context held in the VFP hardware, or NULL if the hardware
50  * context is invalid.
51  *
52  * For UP, this is sufficient to tell which thread owns the VFP context.
53  * However, for SMP, we also need to check the CPU number stored in the
54  * saved state too to catch migrations.
55  */
56 union vfp_state *vfp_current_hw_state[NR_CPUS];
57
58 /*
59  * Claim ownership of the VFP unit.
60  *
61  * The caller may change VFP registers until vfp_state_release() is called.
62  *
63  * local_bh_disable() is used to disable preemption and to disable VFP
64  * processing in softirq context. On PREEMPT_RT kernels local_bh_disable() is
65  * not sufficient because it only serializes soft interrupt related sections
66  * via a local lock, but stays preemptible. Disabling preemption is the right
67  * choice here as bottom half processing is always in thread context on RT
68  * kernels so it implicitly prevents bottom half processing as well.
69  */
70 static void vfp_state_hold(void)
71 {
72         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
73                 local_bh_disable();
74         else
75                 preempt_disable();
76 }
77
78 static void vfp_state_release(void)
79 {
80         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
81                 local_bh_enable();
82         else
83                 preempt_enable();
84 }
85
86 /*
87  * Is 'thread's most up to date state stored in this CPUs hardware?
88  * Must be called from non-preemptible context.
89  */
90 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
91 {
92 #ifdef CONFIG_SMP
93         if (thread->vfpstate.hard.cpu != cpu)
94                 return false;
95 #endif
96         return vfp_current_hw_state[cpu] == &thread->vfpstate;
97 }
98
99 /*
100  * Force a reload of the VFP context from the thread structure.  We do
101  * this by ensuring that access to the VFP hardware is disabled, and
102  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
103  */
104 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
105 {
106         if (vfp_state_in_hw(cpu, thread)) {
107                 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
108                 vfp_current_hw_state[cpu] = NULL;
109         }
110 #ifdef CONFIG_SMP
111         thread->vfpstate.hard.cpu = NR_CPUS;
112 #endif
113 }
114
115 /*
116  * Per-thread VFP initialization.
117  */
118 static void vfp_thread_flush(struct thread_info *thread)
119 {
120         union vfp_state *vfp = &thread->vfpstate;
121         unsigned int cpu;
122
123         /*
124          * Disable VFP to ensure we initialize it first.  We must ensure
125          * that the modification of vfp_current_hw_state[] and hardware
126          * disable are done for the same CPU and without preemption.
127          *
128          * Do this first to ensure that preemption won't overwrite our
129          * state saving should access to the VFP be enabled at this point.
130          */
131         cpu = get_cpu();
132         if (vfp_current_hw_state[cpu] == vfp)
133                 vfp_current_hw_state[cpu] = NULL;
134         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
135         put_cpu();
136
137         memset(vfp, 0, sizeof(union vfp_state));
138
139         vfp->hard.fpexc = FPEXC_EN;
140         vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
141 #ifdef CONFIG_SMP
142         vfp->hard.cpu = NR_CPUS;
143 #endif
144 }
145
146 static void vfp_thread_exit(struct thread_info *thread)
147 {
148         /* release case: Per-thread VFP cleanup. */
149         union vfp_state *vfp = &thread->vfpstate;
150         unsigned int cpu = get_cpu();
151
152         if (vfp_current_hw_state[cpu] == vfp)
153                 vfp_current_hw_state[cpu] = NULL;
154         put_cpu();
155 }
156
157 static void vfp_thread_copy(struct thread_info *thread)
158 {
159         struct thread_info *parent = current_thread_info();
160
161         vfp_sync_hwstate(parent);
162         thread->vfpstate = parent->vfpstate;
163 #ifdef CONFIG_SMP
164         thread->vfpstate.hard.cpu = NR_CPUS;
165 #endif
166 }
167
168 /*
169  * When this function is called with the following 'cmd's, the following
170  * is true while this function is being run:
171  *  THREAD_NOFTIFY_SWTICH:
172  *   - the previously running thread will not be scheduled onto another CPU.
173  *   - the next thread to be run (v) will not be running on another CPU.
174  *   - thread->cpu is the local CPU number
175  *   - not preemptible as we're called in the middle of a thread switch
176  *  THREAD_NOTIFY_FLUSH:
177  *   - the thread (v) will be running on the local CPU, so
178  *      v === current_thread_info()
179  *   - thread->cpu is the local CPU number at the time it is accessed,
180  *      but may change at any time.
181  *   - we could be preempted if tree preempt rcu is enabled, so
182  *      it is unsafe to use thread->cpu.
183  *  THREAD_NOTIFY_EXIT
184  *   - we could be preempted if tree preempt rcu is enabled, so
185  *      it is unsafe to use thread->cpu.
186  */
187 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
188 {
189         struct thread_info *thread = v;
190         u32 fpexc;
191 #ifdef CONFIG_SMP
192         unsigned int cpu;
193 #endif
194
195         switch (cmd) {
196         case THREAD_NOTIFY_SWITCH:
197                 fpexc = fmrx(FPEXC);
198
199 #ifdef CONFIG_SMP
200                 cpu = thread->cpu;
201
202                 /*
203                  * On SMP, if VFP is enabled, save the old state in
204                  * case the thread migrates to a different CPU. The
205                  * restoring is done lazily.
206                  */
207                 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
208                         vfp_save_state(vfp_current_hw_state[cpu], fpexc);
209 #endif
210
211                 /*
212                  * Always disable VFP so we can lazily save/restore the
213                  * old state.
214                  */
215                 fmxr(FPEXC, fpexc & ~FPEXC_EN);
216                 break;
217
218         case THREAD_NOTIFY_FLUSH:
219                 vfp_thread_flush(thread);
220                 break;
221
222         case THREAD_NOTIFY_EXIT:
223                 vfp_thread_exit(thread);
224                 break;
225
226         case THREAD_NOTIFY_COPY:
227                 vfp_thread_copy(thread);
228                 break;
229         }
230
231         return NOTIFY_DONE;
232 }
233
234 static struct notifier_block vfp_notifier_block = {
235         .notifier_call  = vfp_notifier,
236 };
237
238 /*
239  * Raise a SIGFPE for the current process.
240  * sicode describes the signal being raised.
241  */
242 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
243 {
244         /*
245          * This is the same as NWFPE, because it's not clear what
246          * this is used for
247          */
248         current->thread.error_code = 0;
249         current->thread.trap_no = 6;
250
251         send_sig_fault(SIGFPE, sicode,
252                        (void __user *)(instruction_pointer(regs) - 4),
253                        current);
254 }
255
256 static void vfp_panic(char *reason, u32 inst)
257 {
258         int i;
259
260         pr_err("VFP: Error: %s\n", reason);
261         pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
262                 fmrx(FPEXC), fmrx(FPSCR), inst);
263         for (i = 0; i < 32; i += 2)
264                 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
265                        i, vfp_get_float(i), i+1, vfp_get_float(i+1));
266 }
267
268 /*
269  * Process bitmask of exception conditions.
270  */
271 static int vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr)
272 {
273         int si_code = 0;
274
275         pr_debug("VFP: raising exceptions %08x\n", exceptions);
276
277         if (exceptions == VFP_EXCEPTION_ERROR) {
278                 vfp_panic("unhandled bounce", inst);
279                 return FPE_FLTINV;
280         }
281
282         /*
283          * If any of the status flags are set, update the FPSCR.
284          * Comparison instructions always return at least one of
285          * these flags set.
286          */
287         if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
288                 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
289
290         fpscr |= exceptions;
291
292         fmxr(FPSCR, fpscr);
293
294 #define RAISE(stat,en,sig)                              \
295         if (exceptions & stat && fpscr & en)            \
296                 si_code = sig;
297
298         /*
299          * These are arranged in priority order, least to highest.
300          */
301         RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
302         RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
303         RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
304         RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
305         RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
306
307         return si_code;
308 }
309
310 /*
311  * Emulate a VFP instruction.
312  */
313 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
314 {
315         u32 exceptions = VFP_EXCEPTION_ERROR;
316
317         pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
318
319         if (INST_CPRTDO(inst)) {
320                 if (!INST_CPRT(inst)) {
321                         /*
322                          * CPDO
323                          */
324                         if (vfp_single(inst)) {
325                                 exceptions = vfp_single_cpdo(inst, fpscr);
326                         } else {
327                                 exceptions = vfp_double_cpdo(inst, fpscr);
328                         }
329                 } else {
330                         /*
331                          * A CPRT instruction can not appear in FPINST2, nor
332                          * can it cause an exception.  Therefore, we do not
333                          * have to emulate it.
334                          */
335                 }
336         } else {
337                 /*
338                  * A CPDT instruction can not appear in FPINST2, nor can
339                  * it cause an exception.  Therefore, we do not have to
340                  * emulate it.
341                  */
342         }
343         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
344         return exceptions & ~VFP_NAN_FLAG;
345 }
346
347 /*
348  * Package up a bounce condition.
349  */
350 static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
351 {
352         u32 fpscr, orig_fpscr, fpsid, exceptions;
353         int si_code2 = 0;
354         int si_code = 0;
355
356         pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
357
358         /*
359          * At this point, FPEXC can have the following configuration:
360          *
361          *  EX DEX IXE
362          *  0   1   x   - synchronous exception
363          *  1   x   0   - asynchronous exception
364          *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
365          *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
366          *                implementation), undefined otherwise
367          *
368          * Clear various bits and enable access to the VFP so we can
369          * handle the bounce.
370          */
371         fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
372
373         fpsid = fmrx(FPSID);
374         orig_fpscr = fpscr = fmrx(FPSCR);
375
376         /*
377          * Check for the special VFP subarch 1 and FPSCR.IXE bit case
378          */
379         if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
380             && (fpscr & FPSCR_IXE)) {
381                 /*
382                  * Synchronous exception, emulate the trigger instruction
383                  */
384                 goto emulate;
385         }
386
387         if (fpexc & FPEXC_EX) {
388                 /*
389                  * Asynchronous exception. The instruction is read from FPINST
390                  * and the interrupted instruction has to be restarted.
391                  */
392                 trigger = fmrx(FPINST);
393                 regs->ARM_pc -= 4;
394         } else if (!(fpexc & FPEXC_DEX)) {
395                 /*
396                  * Illegal combination of bits. It can be caused by an
397                  * unallocated VFP instruction but with FPSCR.IXE set and not
398                  * on VFP subarch 1.
399                  */
400                 si_code = vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr);
401                 goto exit;
402         }
403
404         /*
405          * Modify fpscr to indicate the number of iterations remaining.
406          * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
407          * whether FPEXC.VECITR or FPSCR.LEN is used.
408          */
409         if (fpexc & (FPEXC_EX | FPEXC_VV)) {
410                 u32 len;
411
412                 len = fpexc + (1 << FPEXC_LENGTH_BIT);
413
414                 fpscr &= ~FPSCR_LENGTH_MASK;
415                 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
416         }
417
418         /*
419          * Handle the first FP instruction.  We used to take note of the
420          * FPEXC bounce reason, but this appears to be unreliable.
421          * Emulate the bounced instruction instead.
422          */
423         exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
424         if (exceptions)
425                 si_code2 = vfp_raise_exceptions(exceptions, trigger, orig_fpscr);
426
427         /*
428          * If there isn't a second FP instruction, exit now. Note that
429          * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
430          */
431         if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
432                 goto exit;
433
434         /*
435          * The barrier() here prevents fpinst2 being read
436          * before the condition above.
437          */
438         barrier();
439         trigger = fmrx(FPINST2);
440
441  emulate:
442         exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
443         if (exceptions)
444                 si_code = vfp_raise_exceptions(exceptions, trigger, orig_fpscr);
445 exit:
446         vfp_state_release();
447         if (si_code2)
448                 vfp_raise_sigfpe(si_code2, regs);
449         if (si_code)
450                 vfp_raise_sigfpe(si_code, regs);
451 }
452
453 static void vfp_enable(void *unused)
454 {
455         u32 access;
456
457         BUG_ON(preemptible());
458         access = get_copro_access();
459
460         /*
461          * Enable full access to VFP (cp10 and cp11)
462          */
463         set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
464 }
465
466 /* Called by platforms on which we want to disable VFP because it may not be
467  * present on all CPUs within a SMP complex. Needs to be called prior to
468  * vfp_init().
469  */
470 void __init vfp_disable(void)
471 {
472         if (VFP_arch) {
473                 pr_debug("%s: should be called prior to vfp_init\n", __func__);
474                 return;
475         }
476         VFP_arch = 1;
477 }
478
479 #ifdef CONFIG_CPU_PM
480 static int vfp_pm_suspend(void)
481 {
482         struct thread_info *ti = current_thread_info();
483         u32 fpexc = fmrx(FPEXC);
484
485         /* if vfp is on, then save state for resumption */
486         if (fpexc & FPEXC_EN) {
487                 pr_debug("%s: saving vfp state\n", __func__);
488                 vfp_save_state(&ti->vfpstate, fpexc);
489
490                 /* disable, just in case */
491                 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
492         } else if (vfp_current_hw_state[ti->cpu]) {
493 #ifndef CONFIG_SMP
494                 fmxr(FPEXC, fpexc | FPEXC_EN);
495                 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
496                 fmxr(FPEXC, fpexc);
497 #endif
498         }
499
500         /* clear any information we had about last context state */
501         vfp_current_hw_state[ti->cpu] = NULL;
502
503         return 0;
504 }
505
506 static void vfp_pm_resume(void)
507 {
508         /* ensure we have access to the vfp */
509         vfp_enable(NULL);
510
511         /* and disable it to ensure the next usage restores the state */
512         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
513 }
514
515 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
516         void *v)
517 {
518         switch (cmd) {
519         case CPU_PM_ENTER:
520                 vfp_pm_suspend();
521                 break;
522         case CPU_PM_ENTER_FAILED:
523         case CPU_PM_EXIT:
524                 vfp_pm_resume();
525                 break;
526         }
527         return NOTIFY_OK;
528 }
529
530 static struct notifier_block vfp_cpu_pm_notifier_block = {
531         .notifier_call = vfp_cpu_pm_notifier,
532 };
533
534 static void vfp_pm_init(void)
535 {
536         cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
537 }
538
539 #else
540 static inline void vfp_pm_init(void) { }
541 #endif /* CONFIG_CPU_PM */
542
543 /*
544  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
545  * with the hardware state.
546  */
547 void vfp_sync_hwstate(struct thread_info *thread)
548 {
549         vfp_state_hold();
550
551         if (vfp_state_in_hw(raw_smp_processor_id(), thread)) {
552                 u32 fpexc = fmrx(FPEXC);
553
554                 /*
555                  * Save the last VFP state on this CPU.
556                  */
557                 fmxr(FPEXC, fpexc | FPEXC_EN);
558                 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
559                 fmxr(FPEXC, fpexc);
560         }
561
562         vfp_state_release();
563 }
564
565 /* Ensure that the thread reloads the hardware VFP state on the next use. */
566 void vfp_flush_hwstate(struct thread_info *thread)
567 {
568         unsigned int cpu = get_cpu();
569
570         vfp_force_reload(cpu, thread);
571
572         put_cpu();
573 }
574
575 /*
576  * Save the current VFP state into the provided structures and prepare
577  * for entry into a new function (signal handler).
578  */
579 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
580                                     struct user_vfp_exc *ufp_exc)
581 {
582         struct thread_info *thread = current_thread_info();
583         struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
584
585         /* Ensure that the saved hwstate is up-to-date. */
586         vfp_sync_hwstate(thread);
587
588         /*
589          * Copy the floating point registers. There can be unused
590          * registers see asm/hwcap.h for details.
591          */
592         memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
593
594         /*
595          * Copy the status and control register.
596          */
597         ufp->fpscr = hwstate->fpscr;
598
599         /*
600          * Copy the exception registers.
601          */
602         ufp_exc->fpexc = hwstate->fpexc;
603         ufp_exc->fpinst = hwstate->fpinst;
604         ufp_exc->fpinst2 = hwstate->fpinst2;
605
606         /* Ensure that VFP is disabled. */
607         vfp_flush_hwstate(thread);
608
609         /*
610          * As per the PCS, clear the length and stride bits for function
611          * entry.
612          */
613         hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
614         return 0;
615 }
616
617 /* Sanitise and restore the current VFP state from the provided structures. */
618 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
619 {
620         struct thread_info *thread = current_thread_info();
621         struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
622         unsigned long fpexc;
623
624         /* Disable VFP to avoid corrupting the new thread state. */
625         vfp_flush_hwstate(thread);
626
627         /*
628          * Copy the floating point registers. There can be unused
629          * registers see asm/hwcap.h for details.
630          */
631         memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
632         /*
633          * Copy the status and control register.
634          */
635         hwstate->fpscr = ufp->fpscr;
636
637         /*
638          * Sanitise and restore the exception registers.
639          */
640         fpexc = ufp_exc->fpexc;
641
642         /* Ensure the VFP is enabled. */
643         fpexc |= FPEXC_EN;
644
645         /* Ensure FPINST2 is invalid and the exception flag is cleared. */
646         fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
647         hwstate->fpexc = fpexc;
648
649         hwstate->fpinst = ufp_exc->fpinst;
650         hwstate->fpinst2 = ufp_exc->fpinst2;
651
652         return 0;
653 }
654
655 /*
656  * VFP hardware can lose all context when a CPU goes offline.
657  * As we will be running in SMP mode with CPU hotplug, we will save the
658  * hardware state at every thread switch.  We clear our held state when
659  * a CPU has been killed, indicating that the VFP hardware doesn't contain
660  * a threads VFP state.  When a CPU starts up, we re-enable access to the
661  * VFP hardware. The callbacks below are called on the CPU which
662  * is being offlined/onlined.
663  */
664 static int vfp_dying_cpu(unsigned int cpu)
665 {
666         vfp_current_hw_state[cpu] = NULL;
667         return 0;
668 }
669
670 static int vfp_starting_cpu(unsigned int unused)
671 {
672         vfp_enable(NULL);
673         return 0;
674 }
675
676 static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
677 {
678         /*
679          * If we reach this point, a floating point exception has been raised
680          * while running in kernel mode. If the NEON/VFP unit was enabled at the
681          * time, it means a VFP instruction has been issued that requires
682          * software assistance to complete, something which is not currently
683          * supported in kernel mode.
684          * If the NEON/VFP unit was disabled, and the location pointed to below
685          * is properly preceded by a call to kernel_neon_begin(), something has
686          * caused the task to be scheduled out and back in again. In this case,
687          * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
688          * be helpful in localizing the problem.
689          */
690         if (fmrx(FPEXC) & FPEXC_EN)
691                 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
692         else
693                 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
694         pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
695         return 1;
696 }
697
698 /*
699  * vfp_support_entry - Handle VFP exception
700  *
701  * @regs:       pt_regs structure holding the register state at exception entry
702  * @trigger:    The opcode of the instruction that triggered the exception
703  *
704  * Returns 0 if the exception was handled, or an error code otherwise.
705  */
706 static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
707 {
708         struct thread_info *ti = current_thread_info();
709         u32 fpexc;
710
711         if (unlikely(!have_vfp))
712                 return -ENODEV;
713
714         if (!user_mode(regs))
715                 return vfp_kmode_exception(regs, trigger);
716
717         vfp_state_hold();
718         fpexc = fmrx(FPEXC);
719
720         /*
721          * If the VFP unit was not enabled yet, we have to check whether the
722          * VFP state in the CPU's registers is the most recent VFP state
723          * associated with the process. On UP systems, we don't save the VFP
724          * state eagerly on a context switch, so we may need to save the
725          * VFP state to memory first, as it may belong to another process.
726          */
727         if (!(fpexc & FPEXC_EN)) {
728                 /*
729                  * Enable the VFP unit but mask the FP exception flag for the
730                  * time being, so we can access all the registers.
731                  */
732                 fpexc |= FPEXC_EN;
733                 fmxr(FPEXC, fpexc & ~FPEXC_EX);
734
735                 /*
736                  * Check whether or not the VFP state in the CPU's registers is
737                  * the most recent VFP state associated with this task. On SMP,
738                  * migration may result in multiple CPUs holding VFP states
739                  * that belong to the same task, but only the most recent one
740                  * is valid.
741                  */
742                 if (!vfp_state_in_hw(ti->cpu, ti)) {
743                         if (!IS_ENABLED(CONFIG_SMP) &&
744                             vfp_current_hw_state[ti->cpu] != NULL) {
745                                 /*
746                                  * This CPU is currently holding the most
747                                  * recent VFP state associated with another
748                                  * task, and we must save that to memory first.
749                                  */
750                                 vfp_save_state(vfp_current_hw_state[ti->cpu],
751                                                fpexc);
752                         }
753
754                         /*
755                          * We can now proceed with loading the task's VFP state
756                          * from memory into the CPU registers.
757                          */
758                         fpexc = vfp_load_state(&ti->vfpstate);
759                         vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
760 #ifdef CONFIG_SMP
761                         /*
762                          * Record that this CPU is now the one holding the most
763                          * recent VFP state of the task.
764                          */
765                         ti->vfpstate.hard.cpu = ti->cpu;
766 #endif
767                 }
768
769                 if (fpexc & FPEXC_EX)
770                         /*
771                          * Might as well handle the pending exception before
772                          * retrying branch out before setting an FPEXC that
773                          * stops us reading stuff.
774                          */
775                         goto bounce;
776
777                 /*
778                  * No FP exception is pending: just enable the VFP and
779                  * replay the instruction that trapped.
780                  */
781                 fmxr(FPEXC, fpexc);
782                 vfp_state_release();
783         } else {
784                 /* Check for synchronous or asynchronous exceptions */
785                 if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
786                         u32 fpscr = fmrx(FPSCR);
787
788                         /*
789                          * On some implementations of the VFP subarch 1,
790                          * setting FPSCR.IXE causes all the CDP instructions to
791                          * be bounced synchronously without setting the
792                          * FPEXC.EX bit
793                          */
794                         if (!(fpscr & FPSCR_IXE)) {
795                                 if (!(fpscr & FPSCR_LENGTH_MASK)) {
796                                         pr_debug("not VFP\n");
797                                         vfp_state_release();
798                                         return -ENOEXEC;
799                                 }
800                                 fpexc |= FPEXC_DEX;
801                         }
802                 }
803 bounce:         regs->ARM_pc += 4;
804                 /* VFP_bounce() will invoke vfp_state_release() */
805                 VFP_bounce(trigger, fpexc, regs);
806         }
807
808         return 0;
809 }
810
811 static struct undef_hook neon_support_hook[] = {{
812         .instr_mask     = 0xfe000000,
813         .instr_val      = 0xf2000000,
814         .cpsr_mask      = PSR_T_BIT,
815         .cpsr_val       = 0,
816         .fn             = vfp_support_entry,
817 }, {
818         .instr_mask     = 0xff100000,
819         .instr_val      = 0xf4000000,
820         .cpsr_mask      = PSR_T_BIT,
821         .cpsr_val       = 0,
822         .fn             = vfp_support_entry,
823 }, {
824         .instr_mask     = 0xef000000,
825         .instr_val      = 0xef000000,
826         .cpsr_mask      = PSR_T_BIT,
827         .cpsr_val       = PSR_T_BIT,
828         .fn             = vfp_support_entry,
829 }, {
830         .instr_mask     = 0xff100000,
831         .instr_val      = 0xf9000000,
832         .cpsr_mask      = PSR_T_BIT,
833         .cpsr_val       = PSR_T_BIT,
834         .fn             = vfp_support_entry,
835 }, {
836         .instr_mask     = 0xff000800,
837         .instr_val      = 0xfc000800,
838         .cpsr_mask      = 0,
839         .cpsr_val       = 0,
840         .fn             = vfp_support_entry,
841 }, {
842         .instr_mask     = 0xff000800,
843         .instr_val      = 0xfd000800,
844         .cpsr_mask      = 0,
845         .cpsr_val       = 0,
846         .fn             = vfp_support_entry,
847 }, {
848         .instr_mask     = 0xff000800,
849         .instr_val      = 0xfe000800,
850         .cpsr_mask      = 0,
851         .cpsr_val       = 0,
852         .fn             = vfp_support_entry,
853 }};
854
855 static struct undef_hook vfp_support_hook = {
856         .instr_mask     = 0x0c000e00,
857         .instr_val      = 0x0c000a00,
858         .fn             = vfp_support_entry,
859 };
860
861 #ifdef CONFIG_KERNEL_MODE_NEON
862
863 /*
864  * Kernel-side NEON support functions
865  */
866 void kernel_neon_begin(void)
867 {
868         struct thread_info *thread = current_thread_info();
869         unsigned int cpu;
870         u32 fpexc;
871
872         vfp_state_hold();
873
874         /*
875          * Kernel mode NEON is only allowed outside of hardirq context with
876          * preemption and softirq processing disabled. This will make sure that
877          * the kernel mode NEON register contents never need to be preserved.
878          */
879         BUG_ON(in_hardirq());
880         cpu = __smp_processor_id();
881
882         fpexc = fmrx(FPEXC) | FPEXC_EN;
883         fmxr(FPEXC, fpexc);
884
885         /*
886          * Save the userland NEON/VFP state. Under UP,
887          * the owner could be a task other than 'current'
888          */
889         if (vfp_state_in_hw(cpu, thread))
890                 vfp_save_state(&thread->vfpstate, fpexc);
891 #ifndef CONFIG_SMP
892         else if (vfp_current_hw_state[cpu] != NULL)
893                 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
894 #endif
895         vfp_current_hw_state[cpu] = NULL;
896 }
897 EXPORT_SYMBOL(kernel_neon_begin);
898
899 void kernel_neon_end(void)
900 {
901         /* Disable the NEON/VFP unit. */
902         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
903         vfp_state_release();
904 }
905 EXPORT_SYMBOL(kernel_neon_end);
906
907 #endif /* CONFIG_KERNEL_MODE_NEON */
908
909 static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
910 {
911         VFP_arch = UINT_MAX;    /* mark as not present */
912         regs->ARM_pc += 4;
913         return 0;
914 }
915
916 static struct undef_hook vfp_detect_hook __initdata = {
917         .instr_mask     = 0x0c000e00,
918         .instr_val      = 0x0c000a00,
919         .cpsr_mask      = MODE_MASK,
920         .cpsr_val       = SVC_MODE,
921         .fn             = vfp_detect,
922 };
923
924 /*
925  * VFP support code initialisation.
926  */
927 static int __init vfp_init(void)
928 {
929         unsigned int vfpsid;
930         unsigned int cpu_arch = cpu_architecture();
931         unsigned int isar6;
932
933         /*
934          * Enable the access to the VFP on all online CPUs so the
935          * following test on FPSID will succeed.
936          */
937         if (cpu_arch >= CPU_ARCH_ARMv6)
938                 on_each_cpu(vfp_enable, NULL, 1);
939
940         /*
941          * First check that there is a VFP that we can use.
942          * The handler is already setup to just log calls, so
943          * we just need to read the VFPSID register.
944          */
945         register_undef_hook(&vfp_detect_hook);
946         barrier();
947         vfpsid = fmrx(FPSID);
948         barrier();
949         unregister_undef_hook(&vfp_detect_hook);
950
951         pr_info("VFP support v0.3: ");
952         if (VFP_arch) {
953                 pr_cont("not present\n");
954                 return 0;
955         /* Extract the architecture on CPUID scheme */
956         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
957                 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
958                 VFP_arch >>= FPSID_ARCH_BIT;
959                 /*
960                  * Check for the presence of the Advanced SIMD
961                  * load/store instructions, integer and single
962                  * precision floating point operations. Only check
963                  * for NEON if the hardware has the MVFR registers.
964                  */
965                 if (IS_ENABLED(CONFIG_NEON) &&
966                     (fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
967                         elf_hwcap |= HWCAP_NEON;
968                         for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
969                                 register_undef_hook(&neon_support_hook[i]);
970                 }
971
972                 if (IS_ENABLED(CONFIG_VFPv3)) {
973                         u32 mvfr0 = fmrx(MVFR0);
974                         if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
975                             ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
976                                 elf_hwcap |= HWCAP_VFPv3;
977                                 /*
978                                  * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
979                                  * this configuration only have 16 x 64bit
980                                  * registers.
981                                  */
982                                 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
983                                         /* also v4-D16 */
984                                         elf_hwcap |= HWCAP_VFPv3D16;
985                                 else
986                                         elf_hwcap |= HWCAP_VFPD32;
987                         }
988
989                         if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
990                                 elf_hwcap |= HWCAP_VFPv4;
991                         if (((fmrx(MVFR1) & MVFR1_ASIMDHP_MASK) >> MVFR1_ASIMDHP_BIT) == 0x2)
992                                 elf_hwcap |= HWCAP_ASIMDHP;
993                         if (((fmrx(MVFR1) & MVFR1_FPHP_MASK) >> MVFR1_FPHP_BIT) == 0x3)
994                                 elf_hwcap |= HWCAP_FPHP;
995                 }
996
997                 /*
998                  * Check for the presence of Advanced SIMD Dot Product
999                  * instructions.
1000                  */
1001                 isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
1002                 if (cpuid_feature_extract_field(isar6, 4) == 0x1)
1003                         elf_hwcap |= HWCAP_ASIMDDP;
1004                 /*
1005                  * Check for the presence of Advanced SIMD Floating point
1006                  * half-precision multiplication instructions.
1007                  */
1008                 if (cpuid_feature_extract_field(isar6, 8) == 0x1)
1009                         elf_hwcap |= HWCAP_ASIMDFHM;
1010                 /*
1011                  * Check for the presence of Advanced SIMD Bfloat16
1012                  * floating point instructions.
1013                  */
1014                 if (cpuid_feature_extract_field(isar6, 20) == 0x1)
1015                         elf_hwcap |= HWCAP_ASIMDBF16;
1016                 /*
1017                  * Check for the presence of Advanced SIMD and floating point
1018                  * Int8 matrix multiplication instructions instructions.
1019                  */
1020                 if (cpuid_feature_extract_field(isar6, 24) == 0x1)
1021                         elf_hwcap |= HWCAP_I8MM;
1022
1023         /* Extract the architecture version on pre-cpuid scheme */
1024         } else {
1025                 if (vfpsid & FPSID_NODOUBLE) {
1026                         pr_cont("no double precision support\n");
1027                         return 0;
1028                 }
1029
1030                 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
1031         }
1032
1033         cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
1034                                   "arm/vfp:starting", vfp_starting_cpu,
1035                                   vfp_dying_cpu);
1036
1037         have_vfp = true;
1038
1039         register_undef_hook(&vfp_support_hook);
1040         thread_register_notifier(&vfp_notifier_block);
1041         vfp_pm_init();
1042
1043         /*
1044          * We detected VFP, and the support code is
1045          * in place; report VFP support to userspace.
1046          */
1047         elf_hwcap |= HWCAP_VFP;
1048
1049         pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
1050                 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
1051                 VFP_arch,
1052                 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
1053                 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
1054                 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
1055
1056         return 0;
1057 }
1058
1059 core_initcall(vfp_init);
This page took 0.086221 seconds and 4 git commands to generate.